JP2022022923A - Paste protection material - Google Patents
Paste protection material Download PDFInfo
- Publication number
- JP2022022923A JP2022022923A JP2020125805A JP2020125805A JP2022022923A JP 2022022923 A JP2022022923 A JP 2022022923A JP 2020125805 A JP2020125805 A JP 2020125805A JP 2020125805 A JP2020125805 A JP 2020125805A JP 2022022923 A JP2022022923 A JP 2022022923A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- solution
- photocatalyst
- nanocellulose
- rubbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 86
- 239000011941 photocatalyst Substances 0.000 claims abstract description 99
- 239000000835 fiber Substances 0.000 claims abstract description 80
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 75
- 239000000243 solution Substances 0.000 claims abstract description 69
- 230000001699 photocatalysis Effects 0.000 claims abstract description 66
- 230000000694 effects Effects 0.000 claims abstract description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052802 copper Inorganic materials 0.000 claims abstract description 49
- 239000010949 copper Substances 0.000 claims abstract description 49
- 229920001046 Nanocellulose Polymers 0.000 claims abstract description 48
- 239000000843 powder Substances 0.000 claims abstract description 25
- 239000007864 aqueous solution Substances 0.000 claims abstract description 23
- 230000003020 moisturizing effect Effects 0.000 claims abstract description 22
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001431 copper ion Inorganic materials 0.000 claims abstract description 16
- 241001474374 Blennius Species 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 14
- 241000195493 Cryptophyta Species 0.000 claims abstract description 11
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 10
- 230000001681 protective effect Effects 0.000 claims description 69
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 57
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 27
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 27
- 235000000346 sugar Nutrition 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 17
- 239000002023 wood Substances 0.000 claims description 14
- 238000005507 spraying Methods 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 6
- 235000011007 phosphoric acid Nutrition 0.000 claims description 6
- 150000003016 phosphoric acids Chemical class 0.000 claims description 6
- 230000001976 improved effect Effects 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 claims 1
- 229940005991 chloric acid Drugs 0.000 claims 1
- 238000004821 distillation Methods 0.000 claims 1
- 241000894006 Bacteria Species 0.000 abstract description 64
- 241000700605 Viruses Species 0.000 abstract description 51
- 238000006243 chemical reaction Methods 0.000 abstract description 19
- 238000000034 method Methods 0.000 abstract description 17
- 230000002265 prevention Effects 0.000 abstract description 2
- 230000037380 skin damage Effects 0.000 abstract 1
- 230000002459 sustained effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 47
- 229920002678 cellulose Polymers 0.000 description 42
- 239000001913 cellulose Substances 0.000 description 42
- 229920000855 Fucoidan Polymers 0.000 description 23
- 230000009471 action Effects 0.000 description 22
- 238000000354 decomposition reaction Methods 0.000 description 22
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 20
- 230000001954 sterilising effect Effects 0.000 description 19
- 241000196324 Embryophyta Species 0.000 description 17
- 238000013032 photocatalytic reaction Methods 0.000 description 17
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 16
- 238000004659 sterilization and disinfection Methods 0.000 description 15
- 239000010419 fine particle Substances 0.000 description 14
- 229920005610 lignin Polymers 0.000 description 14
- 210000004379 membrane Anatomy 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 230000000840 anti-viral effect Effects 0.000 description 12
- -1 but among them Substances 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 239000003242 anti bacterial agent Substances 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 230000001590 oxidative effect Effects 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 description 9
- 239000002121 nanofiber Substances 0.000 description 9
- 239000000123 paper Substances 0.000 description 9
- 230000002155 anti-virotic effect Effects 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 210000001724 microfibril Anatomy 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229920001282 polysaccharide Polymers 0.000 description 8
- 239000005017 polysaccharide Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 229920002488 Hemicellulose Polymers 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 238000002835 absorbance Methods 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004332 deodorization Methods 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 150000004804 polysaccharides Chemical class 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229920003043 Cellulose fiber Polymers 0.000 description 6
- 229920001131 Pulp (paper) Polymers 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 230000002633 protecting effect Effects 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- 229910021532 Calcite Inorganic materials 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 241000199919 Phaeophyceae Species 0.000 description 5
- 230000000843 anti-fungal effect Effects 0.000 description 5
- 244000052616 bacterial pathogen Species 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000005416 organic matter Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 241000512259 Ascophyllum nodosum Species 0.000 description 4
- 239000005749 Copper compound Substances 0.000 description 4
- 241001529734 Ocimum Species 0.000 description 4
- 235000010676 Ocimum basilicum Nutrition 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000000783 alginic acid Substances 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229960001126 alginic acid Drugs 0.000 description 4
- 150000004781 alginic acids Chemical class 0.000 description 4
- 230000003373 anti-fouling effect Effects 0.000 description 4
- 229940121375 antifungal agent Drugs 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001880 copper compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000645 desinfectant Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 235000019645 odor Nutrition 0.000 description 4
- 238000006864 oxidative decomposition reaction Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 229920005594 polymer fiber Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241001260874 Sargassum horneri Species 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000004887 air purification Methods 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 229910052586 apatite Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000001877 deodorizing effect Effects 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000013076 target substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 229920001503 Glucan Polymers 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical group C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000011481 absorbance measurement Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 206010061592 cardiac fibrillation Diseases 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 230000002600 fibrillogenic effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 235000012041 food component Nutrition 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000005802 health problem Effects 0.000 description 2
- 230000036074 healthy skin Effects 0.000 description 2
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 230000009965 odorless effect Effects 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000001443 photoexcitation Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000002374 sebum Anatomy 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 239000001648 tannin Substances 0.000 description 2
- 229920001864 tannin Polymers 0.000 description 2
- 235000018553 tannin Nutrition 0.000 description 2
- 230000009967 tasteless effect Effects 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000011345 viscous material Substances 0.000 description 2
- 239000002025 wood fiber Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- XDIYNQZUNSSENW-UUBOPVPUSA-N (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O XDIYNQZUNSSENW-UUBOPVPUSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000252229 Carassius auratus Species 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 241000191368 Chlorobi Species 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 108010053229 Lysyl endopeptidase Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 241001291091 Mimivirus Species 0.000 description 1
- 102100029083 Minor histocompatibility antigen H13 Human genes 0.000 description 1
- 241000588621 Moraxella Species 0.000 description 1
- 241001478294 Moraxella osloensis Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241001263478 Norovirus Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 101710177166 Phosphoprotein Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108090000233 Signal peptidase II Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241001261506 Undaria pinnatifida Species 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- DQPBABKTKYNPMH-UHFFFAOYSA-M amino sulfate Chemical compound NOS([O-])(=O)=O DQPBABKTKYNPMH-UHFFFAOYSA-M 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940124350 antibacterial drug Drugs 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000011681 asexual reproduction Effects 0.000 description 1
- 238000013465 asexual reproduction Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- HHSPVTKDOHQBKF-UHFFFAOYSA-J calcium;magnesium;dicarbonate Chemical compound [Mg+2].[Ca+2].[O-]C([O-])=O.[O-]C([O-])=O HHSPVTKDOHQBKF-UHFFFAOYSA-J 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 239000005516 coenzyme A Substances 0.000 description 1
- 229940093530 coenzyme a Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 108010034748 copper-binding protein Proteins 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- KDTSHFARGAKYJN-UHFFFAOYSA-N dephosphocoenzyme A Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 KDTSHFARGAKYJN-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical class OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- AAQNGTNRWPXMPB-UHFFFAOYSA-N dipotassium;dioxido(dioxo)tungsten Chemical compound [K+].[K+].[O-][W]([O-])(=O)=O AAQNGTNRWPXMPB-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000531 effect on virus Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000007337 electrophilic addition reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 210000000474 heel Anatomy 0.000 description 1
- 241000411851 herbal medicine Species 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940126601 medicinal product Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 244000309711 non-enveloped viruses Species 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229940127234 oral contraceptive Drugs 0.000 description 1
- 239000003539 oral contraceptive agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 108010031009 signal peptide peptidase Proteins 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- DVQHRBFGRZHMSR-UHFFFAOYSA-N sodium methyl 2,2-dimethyl-4,6-dioxo-5-(N-prop-2-enoxy-C-propylcarbonimidoyl)cyclohexane-1-carboxylate Chemical compound [Na+].C=CCON=C(CCC)[C-]1C(=O)CC(C)(C)C(C(=O)OC)C1=O DVQHRBFGRZHMSR-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Cosmetics (AREA)
- Catalysts (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は光触媒活性塗擦(殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ)と銅イオンおよび銅水溶液による抗菌およびナノセルロース等の保湿・保護・速乾性を利用した手肌および繊維の塗擦保護材に関する。 The present invention uses photocatalytic active rubbing (sterilization, antibacterial, antivirus, sterilization, deodorization, antifungal), antibacterial use of copper ions and copper aqueous solution, and moisturizing, protection, and quick-drying of nanocellulose, etc. Regarding protective materials.
抗菌剤や消毒剤として使用されている物として、アルコールや次亜塩素酸等、数多くあるが、その中でも光触媒は有害な薬品を使用することなく太陽光や可視光の光を当てるだけで種々の有害有機物質の分解等の化学反応を起こし、水質浄化や空気浄化・脱臭・抗菌・抗ウイルス・防かび・防汚など環境分野での広範囲の応用が可能であるため環境浄化の切り札として利用されている。光触媒で最も使用されているのが歯磨き粉や化粧品にも使用され、食品添加物としても認められている安全無毒な物質である酸化チタンであり、水分中に光を当てても自己溶解現象が起こらず、非常に安定で特異な物質で、触媒(光触媒)として働くだけで自分は変化しないため、原理的には光があれば効き目が半永久的に使用でき、生物に有害なほどエネルギーの高い光は必要とせず、LEDや蛍光灯の中に含まれる比較的長波長側の近紫外線で反応が進行し、水処理や大気浄化、脱臭VOC処理、抗菌、防カビ、抗ウイルス、セルフクリーニング・防汚、ぬめり防止などの幅広い応用が可能であり、安価で耐久性に優れた数多くの利点を持っている。 There are many substances used as antibacterial agents and disinfectants, such as alcohol and hypochlorite, but among them, photocatalysts are various without using harmful chemicals, just by exposing them to sunlight or visible light. It is used as a key to environmental purification because it causes chemical reactions such as decomposition of harmful organic substances and can be widely applied in the environmental field such as water purification, air purification, deodorization, antibacterial, antivirus, antifungal, and antifouling. ing. The most used photocatalyst is titanium oxide, which is a safe and non-toxic substance that is also used in toothpaste and cosmetics and is also recognized as a food additive. However, it is a very stable and peculiar substance, and since it only works as a catalyst (photocatalyst) and does not change itself, in principle, if there is light, the effect can be used semi-permanently, and light with high energy that is harmful to living organisms. The reaction proceeds with near-ultraviolet rays on the relatively long wavelength side contained in LEDs and fluorescent lamps, and water treatment, air purification, deodorizing VOC treatment, antibacterial, antifungal, antiviral, self-cleaning / prevention It can be widely applied to prevent stains and slime, and has many advantages such as low cost and excellent durability.
また、酸化チタンに光を当てると活性酸素が生じ、特にOHラジカルは、消毒や殺菌に広く使われている塩素や次亜塩素酸、過酸化水素、オゾンなどよりはるかに強い酸化力を持ち、炭酸ガスなどの無毒な物質に変える他、菌の細胞内のコエンザイムAなどの補酵素や呼吸系に作用する酵素や癌細胞などを破壊し、有機物の分解、菌やカビの出す毒素の分解、ウイルスの分解を行い、抗菌・抗ウイルス作用を発揮して菌やかびの繁殖、ウイルスの付着を止める事も出来る。これらの作用により、種々の有害な化学物質や悪臭物質のような空気中の化学物質や、繊維・人体に付着する細菌、ウイルス等、ほぼ全ての有害有機物質を光の照射によって簡単に分解・無害化することができる。 In addition, when titanium oxide is exposed to light, active oxygen is generated, and in particular, OH radicals have much stronger oxidizing power than chlorine, hypochlorite, hydrogen peroxide, ozone, etc., which are widely used for disinfection and sterilization. In addition to converting to non-toxic substances such as carbon dioxide, it destroys coenzymes such as coenzyme A in the cells of bacteria, enzymes that act on the respiratory system, cancer cells, etc., and decomposes organic substances, decomposition of toxins produced by bacteria and mold, It can also decompose viruses and exert antibacterial and antiviral effects to stop the growth of bacteria and molds and the adhesion of viruses. By these actions, almost all harmful organic substances such as various harmful chemical substances and chemical substances in the air such as malodorous substances, bacteria and viruses adhering to fibers and human body are easily decomposed by irradiation with light. It can be detoxified.
さらに、銅イオンは[非特許文献10]でも示されているが、抗菌・防汚剤・殺菌剤として古くから生活の中でも広く使われる上、今日では酸化チタンや酸化タングステンに担持させ可視光応答型光触媒の材料としても有用であることが公知されている。 Furthermore, although copper ions are also shown in [Non-Patent Document 10], they have been widely used in daily life as antibacterial, antifouling agents, and bactericides, and today they are supported on titanium oxide or tungsten oxide to respond to visible light. It is known to be useful as a material for type photocatalysts.
しかしながら、特許文献1~6に示される光触媒溶液や無光触媒溶液では、一般的に基板を想定した壁や床、住宅用や工業用途等であり、手肌や繊維を想定した光触媒は改良の余地がある他、紫外線や可視光の照射量により酸化チタンや酸化タングステン等を使用する光触媒の効果に影響を及ぼす。酸化チタンは強力な酸化分解力・殺菌力を示すため、手肌に付着し、外からの侵入菌の増殖を防いでくれる常在細菌や、紫外線から守り健康な肌を作り出す常在菌(善玉常在菌)をも分解・殺菌してしまう他、対象物質が表面に来なければ、分解などの反応を起こすことができない事や、ほぼ全ての有害有機物質を分解するため、光触媒作用で分解されてしまう繊維等への適用が不可能であると言われていた。さらに、光触媒は光が当たらないと殺菌・抗菌・抗ウイルス作用を生じる事が無く、光の照射によってOHラジカルなどの活性酸素は寿命が短く、菌が酸化チタンの近傍に来ないと抗菌効果が発揮されないため、酸化チタンが担体やバインダなどの中に埋もれていると、光が当たりにくく菌が接近しにくく、抗菌効果は低くなる事から、酸化チタン光触媒を繊維や手肌に被膜させることが必要不可欠である。光触媒反応は対象物質が表面に来なければ分解などの反応を起こすことが出来ないという難点を持ち、対象物質を吸着によって吸い寄せ、それを光触媒で分解させる等、光触媒と活性炭などの吸着剤とのハイブリッド化も行われているが、活性炭は光を透過しないため光触媒が活性炭の陰にあると反応が起こらないという欠点があった。さらに、[非特許文献2]に示されているが、酸化タングステンは可視光下で光触媒活性能を発現する可視光応答型光触媒として知られ、光照射によって励起された電子によって自己還元され、タングステンイオンの価数が6価から5価へと変化することにより光触媒活性が低下するため、揮発性有機化合物の完全分解は困難であることが問題となる他、酸化タングステンの高活性化のため、白金やパラジウムを担持した酸化タングステンが作製され、揮発性有機化合物の完全分解への試みがなされているが、高活性化のための貴金属による高コスト化が問題となる。また、一般的な消毒剤や抗菌剤は刺激臭が伴う物が多く、塩素系やアルコール類は脱水作用もあるため、頻繁に使用してしまうと、皮膚表面の皮脂と水分の両方を奪ってしまう脱脂を行ってしまうことになり、手荒れが起こりやすく、病原菌を増殖させることにも繋がり、細菌繁殖の温床となってしまう。また、手肌クリームを塗布すると保湿性は保持できるが、殺菌・抗菌・抗ウイルス作用が弱くなる問題もあった。 However, the photocatalytic solutions and non-photocatalytic solutions shown in
本発明の課題は、以上のような問題点に鑑み、消費者の使用環境に対応するため、殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ作用がある光触媒溶液に紫外線及び可視光の他、使用する環境に左右されず効果を持続させる銅イオンと銅水溶液、電導性のある保湿・保護作用のあるナノセルロースとパルプおよび糖類または海藻類、藻類と配合し、手肌や繊維の隙間へ入り込む光触媒の剥離性と、内側(手肌、繊維側・以後バルク側)と表面側(以後表面)には分子間力が働き、バルク側の分子密度が圧倒的に高いため、表面に存在する分子は常にバルク側に引き込まれる現象を指す界面活性剤の1つである界面張力によるパルプ微粉末を利用した塗擦で、光触媒作用による汚れと細菌、ウイルスの剥離と、使用環境に左右されずに抗菌・殺菌作用が得られる銅イオンや銅水溶液の他、ナノセルロースや非親水性のパルプによる手肌の乾燥時間を早めて塗擦させることで、塗擦後の保湿と保護と同時に、殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ作用効果を常態持続させ、肌荒れ防止の他、繊維に塗布または噴霧により殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ作用効果も持続させる塗擦保護材を提供する。 In view of the above problems, the subject of the present invention is to apply ultraviolet rays and visible light to a photocatalyst solution having bactericidal, antibacterial, antiviral, sterilizing, deodorizing, and antifungal effects in order to cope with the usage environment of consumers. In addition, copper ions and copper aqueous solution that maintain the effect regardless of the environment in which it is used, nanocellulose with conductive moisturizing and protective effects and pulp and saccharides or seaweeds and algae are blended to create gaps in the skin and fibers. It exists on the surface because the peelability of the photocatalyst that penetrates into the skin and the intermolecular force acts on the inside (hand skin, fiber side / subsequent bulk side) and the surface side (hereinafter surface), and the molecular density on the bulk side is overwhelmingly high. It is a rubbing using pulp fine powder due to interfacial tension, which is one of the surfactants that is always drawn into the bulk side. In addition to copper ions and aqueous copper solutions that provide antibacterial and bactericidal effects, nanocellulose and non-hydrophilic pulp are used to accelerate the drying time of the skin by rubbing it, thereby moisturizing and protecting the skin after rubbing, as well as sterilizing and antibacterial.・ Anti-virus, sterilization, deodorization, and anti-mold effect are maintained normally, and in addition to preventing rough skin, sterilization, antibacterial, anti-virus, sterilization, deodorization, and anti-mold effect are also maintained by applying or spraying on fibers. Provide materials.
そこで、本発明は上記課題を解決するために、親水性の植物性ナノセルロースに混和させた非親水性のパルプ微粉末摩擦による塗擦方法を用い、超親水性の光触媒溶液が手肌の隙間に入り込み、光触媒活性により手肌等に付着する菌やウイルス等を剥離分解させ、殺菌・分解による菌やウイルスの死滅作用で簡易に取り除かれる塗擦漂白および菌の付着・増殖の発生し難い環境と衛生的に保つ事による殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ(以下塗擦作用)と、それらの活性が得難い環境でも銅イオン水や銅水溶液による抗菌・殺菌力効果と同時に、無味無臭で安全な親水性の植物性ナノセルロースおよびパルプ、糖類、海藻類、藻類による手肌の保湿・保護効果と速乾性が得られる手肌塗擦保護材(以下塗擦保護材)と、繊維の塗擦作用による殺菌・抗菌・抗ウイルス・除菌・防臭・防カビ(以下塗擦加工)をする布帛繊維塗擦保護材(以下塗擦保護材)を目的としている。 Therefore, in order to solve the above problems, the present invention uses a rubbing method using non-hydrophilic pulp fine powder rubbing mixed with hydrophilic vegetable nanocellulose, and a super-hydrophilic photocatalyst solution is applied to the gaps of the skin. Environment and hygiene where bacteria and viruses that enter and adhere to the skin, etc. are exfoliated and decomposed by photocatalytic activity, and are easily removed by the killing action of bacteria and viruses by sterilization and decomposition. Sterilization, antibacterial, anti-virus, sterilization, deodorization, anti-mold (hereinafter referred to as "rubbing action"), and even in an environment where it is difficult to obtain their activities, the antibacterial and bactericidal effects of copper ion water and copper aqueous solution, as well as tasteless and odorless Safe and hydrophilic vegetable nanocellulose and pulp, sugar, seaweed, algae moisturize and protect the hand skin and quick-drying hand skin rubbing protective material (hereinafter referred to as rubbing protective material) and fiber rubbing action The purpose is a cloth fiber rubbing protective material (hereinafter referred to as rubbing protective material) for sterilization, antibacterial, antivirus, sterilization, deodorization, and antifungal (hereinafter referred to as rubbing processing).
光触媒溶液に使用する酸化チタンはバンドキャップ3.2eV、波長換算で約388nmの光触媒活性の高い天然のアナターゼ型酸化チタン(以下光触媒溶液)またはブルッカイト型酸化チタン(以下光触媒溶液)を利用する。光触媒溶液は不導体被膜を作る特性があり、これは耐食性に優れ、密着性も十分得られる。その上、光触媒酸化チタンの強い酸化力は、表面の汚れを分解・除去する事だけではなく、モラクセラ菌を含めた細菌やウイルス・糸状菌・ガン細胞等を不活性化できることも報告されており、特定の細菌に限定されることがない酸化チタンの抗微生物特性に着目した医学・医療・衛生材料分野への応用も活発に行われている。この効果は光触媒反応を活用するので、コーティングの基本的な考え方は分解活性を主に活用したセルフクリーニング用途と同様となるが、[非特許文献1]に示されている通り、光触媒には殺菌や抗菌・抗ウイルスが可能であると公知されており、酸化チタンは硝酸やクロム配に強い特徴を有し、酸化腐敗や手肌の隙間への薄い被膜を形成する事に特化できるもので、これにより十分な効果を示し、同時に付着した汚れの隙間に入り込む表面張力のエネルギーも加わり、菌やウイルスを殺菌や剥離分解し不要な物質を排除できる事により強い効果が得られる塗擦保護材となる。 As the titanium oxide used for the photocatalytic solution, natural anatase-type titanium oxide (hereinafter referred to as photocatalytic solution) or brookite-type titanium oxide (hereinafter referred to as photocatalytic solution) having a band cap of 3.2 eV and a wavelength equivalent of about 388 nm and having high photocatalytic activity is used. The photocatalytic solution has the property of forming a non-conductive film, which has excellent corrosion resistance and sufficient adhesion. In addition, it has been reported that the strong oxidizing power of photocatalytic titanium oxide can not only decompose and remove stains on the surface, but also inactivate bacteria including Moraxella, viruses, filamentous fungi, cancer cells, etc. The application to the fields of medicine, medical treatment, and sanitary materials focusing on the anti-microbial properties of titanium oxide, which is not limited to specific bacteria, is also being actively carried out. Since this effect utilizes a photocatalytic reaction, the basic concept of coating is the same as that for self-cleaning applications that mainly utilize decomposition activity, but as shown in [Non-Patent Document 1], the photocatalyst is sterilized. It is known that antibacterial and antiviral properties are possible, and titanium oxide has strong characteristics against nitric acid and chromium, and can be specialized in oxidative rot and forming a thin film in the gaps of the skin. As a result, it shows a sufficient effect, and at the same time, the energy of the surface tension that enters the gaps of the adhered dirt is added, and it is possible to sterilize and exfoliate and decompose bacteria and viruses and eliminate unnecessary substances, so that a strong effect can be obtained. Become.
また、太陽光には、紫外線は3~4%しか含まれておらず、蛍光灯では紫外線がわずかしか含まれていないため、室内用途で光触媒を効率良く利用するためには、可視光で働く光触媒が不可欠であり、可視光で働く光触媒として、酸素欠陥型や窒素ドープ型など様々な考案が為されており、本発明の塗擦保護材で使用する光触媒溶液の1つとして使用するが、これに限定しない。 In addition, since sunlight contains only 3 to 4% of ultraviolet rays and fluorescent lamps contain only a small amount of ultraviolet rays, it works with visible light in order to efficiently use the photocatalyst for indoor applications. A photocatalyst is indispensable, and various devices such as an oxygen defect type and a nitrogen-doped type have been devised as a photocatalyst that works with visible light, and it is used as one of the photocatalyst solutions used in the rubbing protective material of the present invention. Not limited to.
本発明に使用する酸化チタンは光触媒活性の高い天然のアナターゼ型酸化チタンまたはブルッカイト型酸化チタン。 The titanium oxide used in the present invention is natural anatase-type titanium oxide or brookite-type titanium oxide having high photocatalytic activity.
本発明に使用するナノセルロースは濃度約6%以下の微粒子または液体であるが6%に限定はしない。 The nanocellulose used in the present invention is a fine particle or a liquid having a concentration of about 6% or less, but is not limited to 6%.
本発明に使用するナノセルロースは平均繊維径(D)が3nm~100nmであるセルロース系高分子ファイバーと保湿液とを、セルロース系高分子ファイバー:保湿液=1:1~1:20の重量比で含有しているが、重量比は限定しない。 The nanocellulose used in the present invention is a cellulosic polymer fiber having an average fiber diameter (D) of 3 nm to 100 nm and a moisturizing solution, and a weight ratio of cellulosic polymer fiber: moisturizing solution = 1: 1 to 1:20. However, the weight ratio is not limited.
本発明に使用するナノセルロースは、セルロース系高分子ファイバーを構成する高分子が、グルカン構造を有する多糖類、高等植物由来のセルロース、天然セルロース繊維、動物由来のセルロース、バクテリア由来のセルロース、化学的に合成されたセルロースからなるセルロース・ナノセルロース、キチン、キトサンから選ばれた少なくとも1種から2種以上であるが限定しない。 In the nanocellulose used in the present invention, the polymers constituting the cellulosic polymer fiber are polysaccharides having a glucan structure, cellulose derived from higher plants, natural cellulose fiber, cellulose derived from animals, cellulose derived from bacteria, and chemicals. At least one to two or more kinds selected from cellulose / nanocellulose, chitin, and chitosan composed of cellulose synthesized in the above, but not limited to.
本発明の塗擦保護剤は、例えば、セルロース繊維を分離抽出した紙パルプのマイクロサイズの微粉末、シクロデキストリン、グルコース、フルクトース、スクロース、マルトース、ラクトースおよびグリセリン、ジプロピレングリコール、ポリエチレングリコール(例えば、数平均分子量120~20000)、ポリグリセリン(例えば、数平均分子量が120~20000)やブチレングリコール等のグリコール系溶媒、キシリトール・マルチトールなどの多価アルコール類、コンドロイチン硫酸・ヒアルロン酸などの多糖類、コラーゲンなどの蛋白質類、ヒドロキシジステアレートなどのステロールエステル類、乳酸ナトリウムなどの有機酸塩類及びジグリセリン付加物等が挙げられ、これらの中から一種または二種以上を組み合せて使用しても良い。これらの中でも多価アルコール類や、皮膚への親水性が強いナノセルロースに対し、マイクロサイズのパルプを含有させる事で、保湿剤が噴霧箇所だけに局所浸潤させる事を防ぎ、手を擦り合わせると全体に保湿剤を行き渡らせるようにするのが好ましく、それらから選ばれる一種または二種以上が好適である。 The rub protection agent of the present invention is, for example, micro-sized fine powder of paper pulp separated and extracted from cellulose fibers, cyclodextrin, glucose, fructose, sucrose, maltose, lactose and glycerin, dipropylene glycol, polyethylene glycol (for example, number). Average molecular weight 120 to 20000), glycolic solvents such as polyglycerin (for example, number average molecular weight 120 to 20000) and butylene glycol, polyhydric alcohols such as xylitol / martitol, polysaccharides such as chondroitin sulfate / hyaluronic acid, Examples thereof include proteins such as collagen, sterol esters such as hydroxydistearate, organic acid salts such as sodium lactate, and diglycerin adducts, and one or a combination of two or more of these may be used. .. Among these, polyhydric alcohols and nanocellulose, which has strong hydrophilicity to the skin, are contained in micro-sized pulp to prevent the moisturizer from locally infiltrating only the sprayed area, and when the hands are rubbed together. It is preferable to spread the moisturizer throughout, and one or more selected from them is preferable.
本発明に使用する海藻類・藻類は、例えばアカモク、モズクの粉体または液体の少なくても1種以上であるが限定しない。 The seaweed / algae used in the present invention is, for example, at least one kind of powder or liquid of Sargassum horneri or mozuku, but is not limited.
本発明の塗擦保護材に混合する無光触媒液はリン酸チタン、リン酸チタニア、酸化チタン、二価金属および四価金属のリン酸塩等の1種以上であるが限定しない。また、一般に製造販売されている無光触媒液でも良く、限定しない。 The non-photocatalyst solution to be mixed with the rubbing protective material of the present invention is not limited to one or more such as titanium phosphate, titania phosphate, titanium oxide, divalent metal and tetravalent metal phosphate. Further, a non-photocatalyst solution that is generally manufactured and sold may be used, and is not limited thereto.
本発明の塗擦保護材に使用する酸化チタン、酸化タングステンは、一般に製造販売されている光触媒溶液でも良く、1種以上であるが限定しない。 The titanium oxide and tungsten oxide used in the rubbing protective material of the present invention may be a photocatalytic solution generally manufactured and sold, and may be one or more, but is not limited.
本発明の塗擦保護材は酸化チタン、酸化タングステン、チタン酸ストロンチウム、酸化亜鉛、酸化鉄、ジルコニア、硫化亜鉛、硫化カドミウム、硫化水銀等の1種以上であるが限定しない。また、一般に製造販売されている光触媒液でも良く、限定しない。 The rubbing protective material of the present invention is not limited to one or more of titanium oxide, tungsten oxide, strontium titanate, zinc oxide, iron oxide, zirconia, zinc sulfide, cadmium sulfide, mercury sulfide and the like. Further, the photocatalyst solution that is generally manufactured and sold may be used, and is not limited thereto.
本発明の塗擦保護材に使用するリン酸類は、リン酸塩、リン酸カルシウムであるが、一般に製造販売されている光触媒溶液中のリン酸類を使用しても良く、限定しない。 The phosphoric acids used in the rub protection material of the present invention are phosphate and calcium phosphate, but phosphoric acids in a photocatalyst solution generally manufactured and sold may be used and are not limited.
本発明の塗擦保護材は、手肌以外の人体、例えば足の踵、口腔内等に塗布または噴霧しても良く、使用部位に対しての限定はしない。ただし、頭髪、眼球以外とし、口腔内で使用する場合、光触媒の含有量は0.004%以下とすることが好ましい。 The rubbing protective material of the present invention may be applied or sprayed to a human body other than the hand skin, for example, the heel of the foot, the oral cavity, etc., and is not limited to the site of use. However, when it is used in the oral cavity other than the hair and the eyeball, the content of the photocatalyst is preferably 0.004% or less.
本発明の塗擦保護材を塗布または噴霧して使用する繊維は、木や天然繊維の例えば植物繊維(セルロース高分子)、動物繊維(タンパク質高分子)、鉱物繊維や化学繊維の例えば無機繊維、精製繊維(天然高分子)、再生繊維(天然高分子)、半合成繊維(半合成高分子)、合成繊維(合成高分子)の(以後、繊維)素材および、それらで製造された製品や商品であるが、それらに限定しない。 The fibers used by applying or spraying the rubbing protective material of the present invention include wood and natural fibers such as plant fibers (cellulose polymer), animal fibers (protein polymers), mineral fibers and chemical fibers such as inorganic fibers, and purified fibers. Fiber (natural polymer), regenerated fiber (natural polymer), semi-synthetic fiber (semi-synthetic polymer), synthetic fiber (synthetic polymer) (hereinafter referred to as fiber) material, and products and products manufactured from them. Yes, but not limited to them.
本発明の塗擦保護材を塗布または噴霧する物の使用例としては、口腔ケア用品、例えば歯ブラシ・歯間ブラシ等や金属類、例えば鍵や硬貨等、紙製品、例えば紙幣、新聞紙、文房具等、食器類、例えば箸やコップ等、住宅関連類、例えばドアノブ、トイレ、浴室、寝具等、オーディオ類、例えばCD、DVD等であるがそれらに限定しない。それらの実施例の1つとして、画像のブレや音の変調が生じているCDおよびDVDのディスク表面に塗擦保護材を塗布した後、拭き取ると画像や音の変調が無くなり視聴する事が可能となった。 Examples of the use of the object to which the rubbing protective material of the present invention is applied or sprayed include oral care products such as toothbrushes and interdental brushes and metals such as keys and coins, paper products such as banknotes, newspapers and stationery. Tableware, such as chopsticks and cups, housing-related items, such as door knobs, toilets, bathrooms, bedding, and audio, such as CDs and DVDs, but are not limited thereto. As one of those examples, after applying a rubbing protective material to the disc surface of a CD or DVD in which image blurring or sound modulation occurs, it is possible to view the image or sound without modulation by wiping it off. became.
さらに[非特許文献11]で示された通り、無性生殖で増える単細胞生物は事故とも言える何らかの外傷がない限り無限増殖を繰り返すが、光触媒による有機物の酸化分解は、分解対象の選択性が無いのは公知であり、エンベローブの有無があるウイルスにも、当然、その種類に関わらず効果の発揮を求められている。インフルエンザやノロウイルス等のウイルスに対し、光触媒作用により発生した活性化酸素種がウイルスの外膜であるエンベローブやカプシドを酸化分解する事で、ウイルス活性を抑制する。さらに、抗ウイルス作用は光触媒表面で起こり、気中で光触媒表面に接触したウイルスについて不活化作用が得られることが実験等で報告されている事から、本発明の光触媒とナノセルロースの塗擦保護材を使用する事により塗擦作用が可能になる。 Furthermore, as shown in [Non-Patent Document 11], unicellular organisms that increase by asexual reproduction repeat infinite proliferation unless there is some kind of trauma that can be said to be an accident, but oxidative decomposition of organic matter by a photocatalyst has no selectivity for decomposition targets. Is well known, and it is naturally required that viruses with or without envelopes be effective regardless of their type. For viruses such as influenza and norovirus, activated oxygen species generated by photocatalytic action suppress the virus activity by oxidatively decomposing the envelope and capsid, which are the outer membranes of the virus. Furthermore, since it has been reported in experiments and the like that the antiviral action occurs on the surface of the photocatalyst and the inactivating action is obtained for the virus that comes into contact with the surface of the photocatalyst in the air, the photocatalyst of the present invention and the nanocellulose rubbing protective material By using, the rubbing action becomes possible.
また、銅イオンの細菌細胞壁の抗菌反応として、グラム陰性菌細胞壁、外膜における抗菌反応では細菌細胞はCu2+に対して高い親和性を示し、Cu2+の大部分が細胞表面タンパク質のアミノ酸残基に結合していることが見出され、Cu2+が外膜タンパク質に結合する他、ラクタマーゼ酵素と結合することで、銅-タンパク質複合体を形成しタンパク質合成を阻害する。Cu2+は細菌細胞表層で硫黄、窒素、酸素などの電子密度が高い官能基と反応して、溶解度の小さい塩や銅錯体を形成する。特に呼吸系酵素群には-SH基を含む酵素が存在するため、Cu2+はこれらの-SH基を酸化することで失活させ、細胞を損傷する。
その上、外膜主要タンパク質の生合成とCu2+の外膜透過として、外膜主要リポタンパク質形成は、リポタンパク質シグナルペプチダーゼによるシグナルペプチドの切断の第一酵素と、シグナルペプチドペプチダーゼ(プロテアーゼIV)による分解の第二酵素によって促進され、切断されたシグナルペプチドの分解は細胞にとって必須であり、この分解酵素を阻害することで細胞の殺菌作用を起こすと考えられる。Cu2+はリポ多糖LPSのLipid A通路を通りにくいため、大腸菌外膜における受動的透過をしにくいと考察されている。外膜は比較的大きな分子に対しては透過障壁として働き、外膜のリン脂質二重層を物質が透過する際には能動的に輸送するポーリンタンパク質が作用し、大腸菌で金属カチオンを選択するポーリンはOmpD、NmpC、タンパク質Pであり、銅イオンが外膜上で銅結合タンパク質を形成しても、外膜形成の崩壊には至らない。一方、能動的輸送により大腸菌のペリプラズム空間とPGN層へと輸送された銅イオンの量は比較的多いと考えられる事から、銅イオンは外膜とペリプラズム空間に多く集積され、その結果、銅イオンは外膜の合成分解や銅タンパク質の生成およびPGN形成および分解の反応に多く費やされるようになる。 Moreover, as the biosynthesis of the outer membrane major protein and the outer membrane permeation of Cu2 +, the outer membrane major lipoprotein formation is degraded by the first enzyme of signal peptide cleavage by the lipoprotein signal peptidase and by the signal peptide peptidase (protease IV). Degradation of the signal peptide promoted and cleaved by the second enzyme of the above is essential for cells, and it is considered that inhibition of this degrading enzyme causes a bactericidal action of cells. It is considered that Cu2 + is difficult to pass through the Lipid A passage of lipopolysaccharide LPS, so that it is difficult to pass passively through the outer membrane of E. coli. The outer membrane acts as a permeation barrier for relatively large molecules, and when a substance permeates the phospholipid bilayer of the outer membrane, a pollin protein that actively transports it acts to select a metal cation in Escherichia coli. Are OppD, NmpC, and protein P, and even if copper ions form a copper-binding protein on the outer membrane, the formation of the outer membrane is not disrupted. On the other hand, since the amount of copper ions transported to the periplasmic space and PGN layer of Escherichia coli by active transport is considered to be relatively large, a large amount of copper ions are accumulated in the outer membrane and the periplasmic space, and as a result, copper ions are accumulated. Will be heavily spent on the synthetic degradation of the adventitia, the production of copper proteins and the reactions of PGN formation and degradation.
また、銅イオンや銅水溶液は分子(非乖離)型とイオン型の物質で存在し、このイオン型の物質は、微生物の細胞を構成しているリン脂質を透過できないのに対して、分子型の物質は細胞内部に浸透し、微生物の細胞内にある酵素タンパク質やDNAなどの化学結合を破壊することによって遺伝子の活動を停止させ、その結果として強い殺菌効果を表す。分子型は瞬間的な殺菌力は弱いが、その一方で有機物が存在する環境下でも安定した殺菌力を発揮し、長期間この殺菌力が持続し、周囲に汚れが存在している環境下でも、ターゲットである微生物類に長時間接触することで殺菌が可能になる。 In addition, copper ions and aqueous copper solutions exist as molecular (non-dissociated) and ionic substances, and these ionic substances cannot permeate the phospholipids that make up the cells of microorganisms, whereas they are molecular. The substance permeates the inside of the cell and stops the activity of the gene by breaking the chemical bonds such as enzyme proteins and DNA in the cell of the microorganism, and as a result, exhibits a strong bactericidal effect. The molecular type has a weak instantaneous bactericidal activity, but on the other hand, it exhibits stable bactericidal activity even in an environment where organic substances are present, and this bactericidal activity is maintained for a long period of time, even in an environment where dirt is present around it. Sterilization becomes possible by long-term contact with the target microorganisms.
また、光触媒溶液にナノセルロースを配合させ使用するが、混合物質の許容濃度として、この数値は当該物質が単独で空気中に存在する場合のものであり、2種またはそれ以上の物質に曝露される場合には個々の物質の許容濃度のみによって判断してはならないとなっており、現実的には相加が成り立たない事を示す証明がない場合には、2種またはそれ以上の物質の毒性は相加されると想定し、次式によって計算されるIの値が1を越える場合に許容濃度を越える曝露と判断するのが適当であると示されている。
また、銅イオン水や銅水溶液は強い殺菌力で安定して殺菌効果を持続することができ、有機物が多く存在する汚れた環境下でも持続的に殺菌効果を発揮し、殺菌しにくく困難を要してきた耐性菌(芽胞を形成することで抵抗力が高まる耐熱性菌や抗生物質が効かなくなった薬剤耐性菌)、カビや酵母などの真菌類、さらにはウイルス類(ノンエンベローブウイルス含む)の不活化効果が期待できる。 In addition, copper ionized water and copper aqueous solution can stably maintain the bactericidal effect with strong bactericidal power, and even in a dirty environment where many organic substances are present, the bactericidal effect is continuously exerted, and it is difficult to sterilize. Non-resistant bacteria (heat-resistant bacteria whose resistance increases by forming buds and drug-resistant bacteria for which antibiotics are no longer effective), fungi such as mold and yeast, and viruses (including non-enveloped virus) A revitalizing effect can be expected.
さらに、本発明で使用するnmサイズ~μmサイズの微粒子パルプは、非親水性の水に馴染まない特性を活かし、液状にした親水性のナノセルロースや超親水性の光触媒溶液を吸収し、混和した状態では良く浸潤されているが、塗布や噴霧される際にはパルプの微粒子は親水成分から解放され本来の非親水性パルプ微粒子の働きをする為、液体垂れを防止し、手肌の使用時の手指による擦り合わせにより微粒子パルプが光触媒溶液の塗擦作用の水分を吸収しながら乾燥させる塗擦方法を用いる。即ち、非親水性のパルプは分解・破壊をしたい細菌やウイルス等を吸着させるための担体であり、それを塗擦により分離・破壊させる為の重要な役割となる。 Further, the nm size to μm size fine particle pulp used in the present invention absorbs and mixes liquefied hydrophilic nanocellulose and superhydrophilic photocatalytic solution by taking advantage of the property of being incompatible with non-hydrophilic water. It is well infiltrated in the state, but when applied or sprayed, the fine particles of the pulp are released from the hydrophilic component and act as the original non-hydrophilic pulp fine particles, preventing liquid dripping and when using the skin. A rubbing method is used in which the fine particle pulp is dried while absorbing the water content of the rubbing action of the photocatalyst solution by rubbing with the fingers. That is, non-hydrophilic pulp is a carrier for adsorbing bacteria and viruses that are desired to be decomposed and destroyed, and plays an important role in separating and destroying it by rubbing.
本発明の塗擦保護材は、刺激臭が伴う一般的な消毒剤または除菌・抗菌剤や、皮膚表面の皮脂と水分の両方を奪ってしまう脱脂による手荒れで、病原菌を増殖させることにも繋がり、細菌繁殖の温床となる可能性が高い塩素系・アルコール類を使用する事無く、強い酸化力で菌やウイルスを殺菌・分解をさせる超親水性の光触媒溶液を手肌や布帛繊維に使用した場合、非親水性のパルプ微粉末による塗擦方法を用い、光触媒溶液が手肌や繊維の隙間に入り込み、光触媒活性により手肌や繊維等に付着する菌やウイルス等を殺菌・分解による塗擦作用で簡易に取り除かれる漂白および菌の付着・増殖の発生し難い環境と衛生的に保つ事による塗擦加工と同時に、親水性で無味無臭の安全な植物性ナノセルロースおよび非親水性のパルプ、糖類または海藻類、藻類による手肌の保湿・保護効果と速乾性が得られる手肌塗擦保護材と、繊維の塗擦加工をする繊維塗擦保護材となる。但し、常にヒトに住みつき、外からの侵入菌の増殖を防いでくれる常在細菌や紫外線から守り健康な肌を作り出す善玉常在菌は、健康であれば悪玉常在菌の増殖を防ぎ感染源にはならないが、抵抗力が落ちた状態では感染を起こすこともある事から、光触媒活性でそれらを死滅させたとしても、塗擦作用と保湿・保護作用が同時に得られる塗擦保護材は体調に関係なく働くため、より安全で安定的な使用が可能になる。 The rubbing protective material of the present invention is a general disinfectant or disinfectant / antibacterial agent with a pungent odor, and rough hands caused by degreasing that deprives both skin oil and water on the skin surface, which also leads to the growth of pathogenic bacteria. , A super-hydrophilic photocatalyst solution that sterilizes and decomposes bacteria and viruses with strong oxidizing power without using chlorine-based alcohols, which are highly likely to be a hotbed for bacterial growth, was used for the skin and fabric fibers. In this case, a non-hydrophilic pulp fine powder rubbing method is used, and the photocatalyst solution enters the gaps between the skin and fibers, and the bacteria and viruses that adhere to the skin and fibers due to the photocatalyst activity are sterilized and decomposed. Hydrophilic, tasteless, odorless and safe vegetable nanocellulose and non-hydrophilic pulp, sugar or seaweed It is a hand skin rubbing protective material that can obtain the moisturizing / protecting effect and quick-drying property of the hand skin by the same kind and algae, and a fiber rubbing protective material that rubs the fibers. However, indigenous bacteria that always live in humans and prevent the growth of invading bacteria from the outside and good indigenous bacteria that protect healthy skin from ultraviolet rays prevent the growth of bad indigenous bacteria if they are healthy and are the source of infection. However, since infection may occur when the resistance is reduced, even if they are killed by photocatalytic activity, the rubbing protective material that can obtain both rubbing action and moisturizing / protecting action at the same time is related to physical condition. It works without any problems, which enables safer and more stable use.
また、本発明に使用される光触媒溶液の1つである酸化チタンは無害成分であるが、生産現場工場等での空気中飛沫微粉末に対しては、健康障害等の予防にも万全な対策を講じ、事故の報告も当然なく、塗擦保護材が手肌の皮膚膜への浸潤や、室内空間、繊維塗布等の液体塗布や噴霧に対しても、安全に利用が出来る。 Titanium oxide, which is one of the photocatalytic solutions used in the present invention, is a harmless component, but it is a perfect measure to prevent health problems, etc. against airborne fine powder at production sites and factories. As a matter of course, there are no reports of accidents, and the rubbing protective material can be safely used for infiltration of the skin of the hands into the skin membrane, indoor space, liquid application such as fiber application, and spraying.
さらに、[非特許文献3]では、酸化チタン不織布の光触媒反応によるウイルス不活性化についても開発実験の結果で、一部で有効性も認められている中で、確定的な報告は検討中とされているが、本発明の液状化した塗擦保護材を、衣類やマスク等の表面に塗布または噴霧させる他、手指等に付着させて使用する事で塗擦効果を遷移固定化させ、光触媒作用により菌やウイルス等の抑制が期待出来る。 Furthermore, in [Non-Patent Document 3], the virus inactivation by photocatalytic reaction of titanium oxide non-woven fabric was also confirmed to be effective in some development experiments, and a definitive report is under consideration. However, the liquefied rubbing protective material of the present invention is applied or sprayed on the surface of clothing, masks, etc., and the rubbing effect is transition-fixed by adhering it to fingers, etc., and by photocatalytic action. It can be expected to suppress bacteria and viruses.
また、銅イオン水と銅酸化物である銅水溶液は、光触媒溶液の活性化を促す紫外線や可視光等の使用する環境に左右されずに抗菌・殺菌力が得られる事から、光触媒溶液に混入させ使用する事で、光触媒の活性が得られない環境でも銅イオン水と銅水溶液による殺菌・抗菌作用が得られる。 In addition, copper ionized water and an aqueous solution of copper, which is a copper oxide, are mixed in the photocatalyst solution because antibacterial and bactericidal power can be obtained regardless of the environment in which they are used, such as ultraviolet rays and visible light that promote activation of the photocatalyst solution. By using it together, the bactericidal and antibacterial action of copper ionized water and copper aqueous solution can be obtained even in an environment where the activity of the photocatalyst cannot be obtained.
さらに、酸化タングステン単独では光触媒活性が極めて低いことが知られ、銅化合物や銅イオンを触媒活性促進剤とする事で、可視光応答型光触媒材料として有用であることが公知されており、酸化タングステンは、特に銅化合物と組み合わせることにより、有効な可視光応答型光触媒材料にもなる。銅化合物と酸化タングステンを組み合わせる方法としては、[特許文献8]に示されているが、例えば酸化タングステン粉末に対して、CuO粉末を1~5質量%程度混合する、あるいは酸化タングステン粉末に、銅二価塩(塩化銅、酢酸銅、硫酸銅、硝酸銅など)を含む極性溶媒溶液を加え混合して、乾燥処理後、500~600℃程度の温度で焼成し、酸化タングステン表面に銅イオンを担持させる方法等がある。この様に、銅化合物を担持させる事も酸化タングステンの触媒活性剤となるが、本発明では銅イオン水および銅水溶液を含有させ、酸化チタンや酸化タングステンの触媒活性以外でも、[0026]に示したように銅イオン水および銅水溶液による抗菌・抗ウイルスを可能とした。 Furthermore, it is known that the photocatalytic activity of tungsten oxide alone is extremely low, and it is known that it is useful as a visible light responsive photocatalytic material by using a copper compound or copper ion as a catalytic activity accelerator. Can also be an effective visible light responsive photocatalytic material, especially in combination with copper compounds. A method for combining a copper compound and tungsten oxide is shown in [Patent Document 8]. For example, CuO powder is mixed in an amount of about 1 to 5% by mass with tungsten oxide powder, or copper is mixed with tungsten oxide powder. A polar solvent solution containing a divalent salt (copper chloride, copper acetate, copper sulfate, copper nitrate, etc.) is added, mixed, dried, and then fired at a temperature of about 500 to 600 ° C. to form copper ions on the surface of tungsten oxide. There is a method of carrying it. As described above, supporting a copper compound also serves as a catalytic activator for tungsten oxide. However, in the present invention, copper ionized water and a copper aqueous solution are contained, and other than the catalytic activity of titanium oxide and tungsten oxide, it is shown in [0026]. As described above, antibacterial and antivirus by copper ionized water and copper aqueous solution became possible.
また、パルプの特徴である非親水性を活かしたnmサイズ~μmサイズの微粒子パルプは、液状にした親水性のナノセルロースや超親水性の光触媒溶液と混和した際には液中で浸潤され液体垂れを防止させ、塗布や噴霧でパルプの微粒子は親水成分から解放され、手肌に付着した塗擦保護材を手指により擦り合わせると、光触媒溶液成分を被膜させながら非親水性の微粒子パルプが光触媒溶液の塗擦作用をした水分を吸収し乾燥させる塗擦方法により、塗擦保護材をハンカチやタオル等の繊維物で拭き取る必要も無いため、衛生的な上、どこでも使用が可能である。勿論、パルプ微粒子はnmサイズ~μmサイズの為、擦り合わせてもパルプ成分が目に見える形とは成り得ないが、非親水性のパルプは分解・破壊をしたい細菌やウイルス等を吸着させるための担体となり、手肌や繊維の塗擦により分離・破壊させ、抗菌、抗ウイルスとなる。 In addition, nm-sized to μm-sized fine particle pulp that takes advantage of the non-hydrophilicity that is a characteristic of pulp is infiltrated in the liquid when mixed with liquefied hydrophilic nanocellulose or super-hydrophilic photocatalyst solution. It prevents dripping, and the fine particles of the pulp are released from the hydrophilic component by application or spraying, and when the rubbing protective material attached to the hand skin is rubbed with the fingers, the non-hydrophilic fine particle pulp is coated with the photocatalyst solution component and becomes a photocatalyst solution. Since it is not necessary to wipe off the rubbing protective material with a fiber such as a handkerchief or a towel by the rubbing method of absorbing and drying the rubbing action of the above, it can be used anywhere in terms of hygiene. Of course, since the pulp fine particles are nm size to μm size, the pulp components cannot be visible even if they are rubbed together, but non-hydrophilic pulp adsorbs bacteria and viruses that want to be decomposed and destroyed. It becomes an antibacterial and anti-virus by separating and destroying it by rubbing the skin and fibers.
光触媒は太陽光からの紫外線照射により作用する事は既に公知され、光触媒の反応の速さは、光強度×吸収強度×反応効率である。現在では[特許文献6]に示されたように可視光応答型でも様々な開発が為され、光触媒作用が認められている。その中の光触媒材料の1つとして、酸化タングステンは可視光化で光触媒活性能を発現する可視応答型光触媒として知られているのは公知であるが、光照射により励起された電子で自己還元され、タングステンイオンの価数が6価から5価へと変化する事で、光触媒活性が低下する為、揮発性有機化合物の完全分解は困難となる。酸化タングステン高活性化をさせる方法として、[非特許文献2]に記載のとおり、植物から作製される植物灰の添加による酸化タングステンの揮発性有機化合物分解性能への影響を考え、植物灰としてバジル葉を燃焼し酸化タングステン粉末に混合し、アセトアルデヒドを用いた光触媒活性実験をした結果、酸化タングステン単独では難しい完全分解を、可視光照射4時間後にはアセトアルデヒドの完全分解に成功し、バジル灰の添加量の最適化を求めたところ、2.5wt%添加したものが最も高活性であった為、その理由を明らかにするよう、バジル灰の主成分を粉末X線回析した結果、主にCa(OH)2、MgO、KHCO3である事から、酸化タングステンにそれぞれを添加した結果、MgOは低活性、Ca(OH)2とKHCO3の両方は高活性化し、アセトアルデヒドは完全分解されたが、KHCO3もしくはCa(OH)2の片方の場合は高活性化が見られず、両方の成分が必要である事は証明された。したがって、植物灰に含有されるCa(OH)2とKHCO3が、酸化タングステン表面を塩基処理し、タングステン酸カルシウムまたはタングステン酸カリウム等の薄い層が形成され、光触媒活性向上につながったと推察されるとの検証報告から、塗擦保護材では、植物灰を添加した酸化タングステンを利用し、より光触媒効果が高活性化するようにした。ただし、添加する植物灰に利用する植物についてはバジル葉の他、南天葉等での実験で考察中であり、植物灰の種類は限定しない。It is already known that a photocatalyst acts by irradiation with ultraviolet rays from sunlight, and the reaction speed of the photocatalyst is light intensity × absorption intensity × reaction efficiency. At present, as shown in [Patent Document 6], various developments have been made even for the visible light responsive type, and the photocatalytic action is recognized. As one of the photocatalytic materials among them, tungsten oxide is known as a visible responsive photocatalyst that expresses photocatalytic activity by visible light, but it is self-reduced by electrons excited by light irradiation. As the valence of tungsten ions changes from hexavalent to pentavalent, the photocatalytic activity decreases, which makes it difficult to completely decompose volatile organic compounds. As a method for highly activating tungsten oxide, as described in [Non-Patent Document 2], considering the effect of the addition of plant ash produced from plants on the decomposition performance of volatile organic compounds of tungsten oxide, basil as plant ash. As a result of a photocatalytic activity experiment using acetaldehyde after burning the leaves and mixing them with tungsten oxide powder, we succeeded in complete decomposition of acetaldehyde 4 hours after irradiation with visible light, which was difficult with tungsten oxide alone, and added basil ash. When the amount was optimized, 2.5 wt% was the most active, and as a result of powder X-ray diffraction of the main component of basil ash to clarify the reason, mainly Ca. Since it is (OH) 2 , MgO, and KHCO 3 , as a result of adding each to tungsten oxide, MgO has low activity, both Ca (OH) 2 and KHCO 3 have high activity, and acetaldehyde has been completely decomposed. , KHCO 3 or Ca (OH) 2 did not show high activation, demonstrating the need for both components. Therefore, it is presumed that Ca (OH) 2 and KHCO 3 contained in the plant ash base-treated the surface of tungsten oxide to form a thin layer such as calcium tungstate or potassium tungstate, which led to an improvement in photocatalytic activity. From the verification report, we used tungsten oxide with vegetable ash added to the rubbing protective material to further activate the photocatalytic effect. However, the plants used for the added plant ash are under consideration in experiments with basil leaves and southern leaves, and the type of plant ash is not limited.
さらに、[非特許文献8]で示されているが、光触媒では塗擦効果が室内の可視光でも有効に効く材料の開発がされた。感染症を引き起こす細菌とウイルスの大きさは、細菌が1~10μm、ウイルスは0.02~0.2μmであり、大きな違いがある。細菌は単細胞の微生物で自己増殖し、ウイルスは核酸とそれを包む膜というシンプルな構造の他、ミミウイルスの様な糖タンパク質を主成分とした表面繊維と呼ばれる繊維状の物質もあり、人体を含む他の生物(借宿)に寄生して自己繁殖する。これらのウイルス表面にあるタンパク質のヘマグルチニン(HA)が人体(宿主)細胞に吸着、侵入、脱殻、合成、成熟、放出する繰り返しにより体内で増殖するが、光触媒反応の酸化分解効果により、ウイルス表面のタンパク質に変性が起こるため吸着出来なくなり、人体(宿主)に侵入し核酸を増殖する事も無い。したがって、この段階でウイルスが光触媒反応によって、ウイルスの不活化(感染が出来ない状態)がされる。その上、図2のように光触媒反応は、ウイルスの膜構造を分解し、中に入っている遺伝情報である核酸(RNA)にも損傷を与え、最終的にはウイルス由来の有機物は完全分解に至る他、ウイルスの10倍以上の大きさのある細菌に対しても光触媒の強い酸化分解力により、菌が不活化されるだけでなく、最終的には有機物として完全分解される。例えば、薬剤耐性菌に対し、光触媒反応による不活化効果を調べると、10分~2時間以内には何れも検出限界近くまで減少した結果から、可視光応答型の光触媒によって得られたものであり、太陽光の届かない室内環境における光触媒活用の重要性を示した。上述の通り、光触媒の反応機構は、他の除菌・抗菌・抗ウイルス剤と異なり、図4に示した大腸菌を例えたように、細菌・ウイルス等、相手を選ばない非選択性で効果を得て、結果として耐性菌の出来難さにも繋がる事から、光触媒溶液を使用した本発明の塗擦保護材は、塗擦作用に対し有効且つ、ナノセルロースやパルプ、糖類により、手肌に光触媒溶液の蒸着や保湿保護を可能とした。 Further, as shown in [Non-Patent Document 8], a material has been developed in which the rubbing effect of a photocatalyst is effective even with visible light in a room. The sizes of bacteria and viruses that cause infectious diseases are 1 to 10 μm for bacteria and 0.02 to 0.2 μm for viruses, and there is a big difference. Bacteria are unicellular microorganisms that self-proliferate, and viruses have a simple structure of nucleic acids and a membrane that encloses them, as well as fibrous substances called surface fibers that are mainly composed of glycoproteins such as mimivirus. It parasitizes other organisms (rental dormitories) including it and self-propagates. Hemaglutinin (HA), a protein on the surface of these viruses, proliferates in the body by repeatedly adsorbing, invading, unshelling, synthesizing, maturing, and releasing into human body (host) cells. Since the protein is denatured, it cannot be adsorbed and does not invade the human body (host) and proliferate nucleic acid. Therefore, at this stage, the virus is inactivated (infectious state) by the photocatalytic reaction. Moreover, as shown in FIG. 2, the photocatalytic reaction decomposes the membrane structure of the virus, damages the nucleic acid (RNA) which is the genetic information contained therein, and finally completely decomposes the organic matter derived from the virus. In addition to this, the strong oxidative decomposition power of the photocatalyst not only inactivates bacteria, but also completely decomposes them as organic substances, even for bacteria that are 10 times larger than viruses. For example, when the inactivation effect of a photocatalytic reaction on drug-resistant bacteria was investigated, the results decreased to near the detection limit within 10 minutes to 2 hours, and the results were obtained by a visible light responsive photocatalyst. , Showed the importance of utilizing photocatalysts in indoor environments where sunlight does not reach. As described above, the reaction mechanism of the photocatalyst is different from other eradication / antibacterial / antiviral agents, and as in the case of Escherichia coli shown in FIG. As a result, it leads to difficulty in forming resistant bacteria. Therefore, the coating protective material of the present invention using a photocatalytic solution is effective against the rubbing action and is a photocatalytic solution on the skin by nanocellulose, pulp and saccharides. Enables vapor deposition and moisturizing protection.
また、ウイルスの飛沫は屋内外の床にも付着し、足裏や靴により感染をする場合も考えられるが、スプレー等で噴霧された塗擦保護材は重量により床等に着床し、その微粉末は床材に対し半永久的に抗菌性を保持する事で、ウイルスに対しての滅菌性も失われず発揮する。既に光触媒としては、住宅のタイルや壁面、ガラスでも多く活用され、菌由来の汚れに対しての防汚効果、病院での手術室では表面の細菌以外にも空中に浮遊する菌の数まで激減し、細菌数やアンモニア量が90%以上抑制維持され、塗擦効果があり、光触媒ガラスについては、銅酸化物を用いて有機物分解活性に加え、可視光応答性、高い抗ウイルス性を示している。この様に室内空間でも光触媒の塗擦作用は認められており、塗擦保護材についても、手肌に限定せずに室内の壁や寝具等に噴霧または塗布して使用する事で、光触媒活性が得られる。 In addition, the virus droplets may adhere to the floor indoors and outdoors and be infected by the soles of the feet and shoes. The powder retains its antibacterial properties semi-permanently against the floor material, so that it exhibits sterility against viruses without losing its sterility. As a photocatalyst, it is already widely used in tiles, walls, and glass of houses, and it has an antifouling effect against bacteria-derived stains. However, the number of bacteria and the amount of ammonia are suppressed and maintained by 90% or more, and there is a rubbing effect. For the photocatalytic glass, in addition to the organic matter decomposition activity using copper oxide, it shows visible light responsiveness and high antiviral property. .. In this way, the photocatalytic action of the photocatalyst is recognized even in the indoor space, and the photocatalytic activity can be obtained by spraying or applying the photocatalytic protective material not only to the skin of the hands but also to the walls and bedding in the room. Bedding.
その上、酸化チタンの粒子形状を金平糖型等にした上で、骨や歯を構成している物質で生体親和性に優れ、表面に光触媒活性を持たないアパタイトを金平糖のツノのようにつけて被覆させ、この金平糖型の粒子は、人間の体液に近い組成を持つ疑似体液に酸化チタン粒子を浸漬し、体温に近い温度に保つことにより酸化チタンの表面に骨や歯ができるようにアパタイトが自然に生成して調製される光触媒溶液を利用する事で、可視光の環境でも塗擦保護材を使用出来る。 In addition, the particle shape of titanium oxide is made into a golden flat sugar type, etc., and then apatite, which is a substance constituting bones and teeth and has excellent biocompatibility and has no photocatalytic activity, is attached to the surface like a golden flat sugar vine. In this gold-flat sugar type particle, titanium oxide particles are immersed in a pseudo-body fluid having a composition similar to that of human body fluid, and by keeping the temperature close to the body temperature, apatite is naturally formed so that bones and teeth are formed on the surface of titanium oxide. By using the photocatalytic solution produced and prepared in, the rubbing protective material can be used even in an environment of visible light.
一般的な除菌・抗菌剤および殺菌剤は、薬効成分を溶出などによって放出して菌の発育を阻止あるいは死滅させているのに対し、光触媒反応は表面で反応がおこり、表面積が大きいほど効率が向上する事に着目し、粒子径が小さくて表面積の大きな超微粒子の高活性化チタン光触媒も開発されており、塗擦保護材は、繊維や手肌に塗布・噴霧して表面が全て光触媒溶液として、接触してくる化学物質を効率良く分解させる事で、塗擦作用が得られる。 While general sterilizing / antibacterial agents and bactericidal agents release medicinal components by elution to prevent or kill the growth of bacteria, photocatalytic reactions occur on the surface, and the larger the surface area, the more efficient it is. A highly activated titanium photocatalyst of ultrafine particles with a small particle size and a large surface area has also been developed, focusing on the improvement of the photocatalyst. As a result, a rubbing action can be obtained by efficiently decomposing the chemical substances that come into contact with it.
また、反応性の高い求電子付加反応(電子を奪う酸化反応)は、試験室や研究室などのクリーンな環境下では瞬時に高い殺菌効果を得られるが、実際の現場などの有機物が多く存在している汚れが酷い環境下では、有機物が速やかに反応し殺菌力が消失する可能性もあり、その結果、各種微生物に対する殺菌効果は十分に発揮されずに効果を得られない場合や殺菌処理を施したにも関わらず、二次感染による感染症が発生する原因にもなる事から、瞬間的な殺菌力より長期的に殺菌力が持続する銅イオン水や銅水溶液が有用である。 In addition, the highly reactive electrophilic addition reaction (oxidation reaction that robs electrons) can instantly obtain a high bactericidal effect in a clean environment such as a laboratory or laboratory, but there are many organic substances in actual sites. In an environment with severe stains, organic substances may react quickly and the bactericidal activity may be lost. As a result, the bactericidal effect against various microorganisms may not be sufficiently exerted or the bactericidal treatment may not be obtained. It is useful to use copper ionized water or an aqueous solution of copper, which has a long-term bactericidal activity rather than a momentary bactericidal activity, because it may cause an infectious disease due to a secondary infection.
さらに、図1は、紫外線のみと、酸化チタンによる光触媒反応時にウイルスの減少を示したが、ウイルスの大きさは菌に対して1桁小さく、菌より小さいウイルスを殺すことは光触媒にとり簡単ではあるが、0.4mW/cm2の紫外線でウイルスを分解するのに1~2分かかるため、室内では更に時間のかかる可能性がある。これらの事から、光触媒溶液に酸化チタンの他、酸化タングステンやリン酸類を使用する事で、室内の可視光でも紫外線と同様に効果を求められる補助的役割となり、塗擦保護材は屋内外の場所を限定する事無く、使用が出来る。Furthermore, FIG. 1 shows a decrease in the virus during the photocatalytic reaction with only ultraviolet light and titanium oxide, but the size of the virus is an order of magnitude smaller than that of the bacterium, and it is easy for the photocatalyst to kill the virus smaller than the bacterium. However, since it takes 1 to 2 minutes to decompose the virus with ultraviolet rays of 0.4 mW / cm 2 , it may take more time indoors. For these reasons, by using titanium oxide, tungsten oxide, and phosphoric acids as the photocatalyst solution, it becomes an auxiliary role that is required to have the same effect as ultraviolet rays even in indoor visible light, and the rubbing protective material is used in indoor and outdoor places. Can be used without limitation.
また、常温の空気中で比較的容易に揮発するVOCとしてトルエン、キシレン、エチルベンゼン、ホルムアルデヒド、アセトアルデヒド、酢酸エチルなど様々な化合物があげられ、これらは溶剤またはプラスチック合成の原料や添加物などとして使用されている、種々の産業活動や生活に関連する代表的な環境化学物質であり、規制値は1m3あたり300μg~3000μgである。この条件下での光触媒の効果は、300μg/m3は、濃度では2ppmで、例えばホルムアルデヒドで計算すると、分子量は1モルあたり30gで、8畳部屋(30m3)を仮定すると30m3にホルムアルデヒドが2ppmある時、粒子の数は10の21乗個になる。分解の反応式としては、HCHO+H2O+4h+→CO2+4H+で示され、ホルムアルデヒドが分解して二酸化炭素になる為には4個の正孔(光)が必要で効率では30%、これらを反応式に当てはめると8畳の空中の2ppmホルムアルデヒドを分解出来るのは、10の22乗個の光となる。これを室内光のみの場合、1μW/cm2、光の数は1秒間に1m34あたり10の16乗個となる。これらの数値から、分解に必要な時間は、1022/1017=105秒、約1日になるが、上述した事はあくまでも部屋の中にあるホルムアルデヒドで計算した。さらに、トルエンで計算式に当てはめると、C6H5CH3+14H2O+36h+→7CO2+36H+、ホルムアルデヒドと比較すると光触媒反応の効率は1/10倍で、分解に必要な光の数は30倍になるが、窓からの紫外線を含めると、ホルムアルデヒドは20分、トルエンは10時間で光触媒分解が出来る事になり、これらを考察すると、室内にある光だけでは効果は少ないが、外から入ってくる紫外線を利用出来る環境作りも一考である。In addition, various compounds such as toluene, xylene, ethylbenzene, formaldehyde, acetaldehyde, and ethyl acetate are examples of VOCs that volatilize relatively easily in air at room temperature, and these are used as raw materials and additives for solvent or plastic synthesis. It is a typical environmental chemical substance related to various industrial activities and daily life, and the regulated value is 300 μg to 3000 μg per 1 m 3 . The effect of the photocatalyst under this condition is that 300 μg / m 3 has a concentration of 2 ppm, for example, when calculated with formaldehyde, the molecular weight is 30 g per mole, and assuming an 8 tatami room (30 m 3 ), formaldehyde is in 30 m 3 . At 2 ppm, the number of particles is 10 to the 21st power. The reaction formula for decomposition is HCHO + H 2 O + 4h + → CO 2 + 4H + , and 4 holes (light) are required for formaldehyde to decompose into carbon dioxide, and the efficiency is 30%. When applied to the reaction formula, it is 10 to the 22nd power of light that can decompose 2ppm formaldehyde in the air of 8 tatami mats. In the case of indoor light only, the number of lights is 1 μW / cm 2 , and the number of lights is 10 to the 16th power per 1 m 3 4 per second. From these figures, the time required for decomposition is 10 22/10 17 = 105 seconds, which is about 1 day, but the above was calculated using formaldehyde in the room. Furthermore, when applied to the calculation formula with toluene, C 6 H 5 CH 3 + 14H 2 O + 36h + → 7CO 2 + 36H + , the efficiency of the photocatalytic reaction is 1/10 times that of formaldehyde, and the number of light required for decomposition is 30. Although it doubles, if the ultraviolet rays from the window are included, formaldehyde can be decomposed into photocatalysts in 20 minutes and toluene in 10 hours. Considering these, the light in the room alone is not effective, but it enters from the outside. Creating an environment where the coming ultraviolet rays can be used is also a consideration.
コロナウイルス等が流行している現在、バクテリアが炭酸塩を形成するメカニズムとして、いくつかの種においては完全にではないが、炭酸塩を形成するメカニズムがわかっており、例えば緑色硫黄 細菌・紅色硫黄細菌などの光合成細菌や藍菌(藍藻)は二酸化炭素を消費し光合成を行うが、その際、環境水に含まれる重炭酸イオンを炭素源として使用すると、OH-が生じpHが上昇するがHCO3-→CO2+OH-、以下はそれぞれを計算式で示す。
このOH-が更に重炭酸イオンと反応すると、炭酸イオンが生じる。
環境水中にカルシウムイオンが存在した場合、炭酸カルシウムを沈殿させることが知られている。
When this OH- further reacts with bicarbonate ion, carbonate ion is generated.
It is known that calcium carbonate is precipitated when calcium ions are present in the environmental water.
また、バクテリアが形成する炭酸塩種は、炭酸塩とひと言でいっても、様々な種類があり、例えば石灰石である炭酸カルシウム(CaCO3)、研磨剤や滑り止めに使われる炭酸マグネシウム(MgCO3)、菱鉄鉱であるシデライト(FeCO3)などがあり、更に炭酸カルシウム(CaCO3)の中にも、同じ化学式を持つが結晶構造の異なるカルサイト(方解石)、アラゴナイト(霰石)、ヴァテライトなどがある。地球上に存在する炭酸塩岩ほとんどはカルサイト、アラゴナイト、そしてマグネシウムが含まれる炭酸カルシウムであるドロマイト(CaMg(CO3)2)の3種で占められると言われ、環境中で無機的にどの炭酸塩種が形成されるのかは、塩分・温度・種々のイオン濃度などにより決定されることが明らかになっているので、これらについても、光触媒溶液の有効性とあわせて使用する事が出来る。 In addition, there are various types of carbonates formed by bacteria, even if they are called carbonates. For example, calcium carbonate (CaCO3), which is calcite, magnesium carbonate (MgCO3), which is used as an abrasive and anti-slip, and so on. There are sidelite (FeCO3), which is a rhombic iron ore, and calcium carbonate (CaCO3) also includes calcite (calcite), aragonite (calcite), and vatelite, which have the same chemical formula but different crystal structures. It is said that most of the carbonate rocks existing on the earth are composed of calcite, aragonite, and dolomite (CaMg (CO3) 2), which is a calcium carbonate containing magnesium, and which carbonic acid is inorganic in the environment. Since it has been clarified that whether or not a salt species is formed is determined by the salt content, temperature, various ion concentrations, etc., these can also be used together with the effectiveness of the photocatalyst solution.
さらに、銅は水分と反応し、強い酸化力をもつ活性酸素分子種が生成し、細菌種により抗菌性能の強弱はあるが細菌等の分子を分解し、抗菌性試験で実証された抗菌効果としてやレジオネラ菌やクリプトスポリジウム、O-157の他、銅に接触したウイルスも感染性が不活化される。その上、銅は人の体内にも70~100mg含まれ、健康に不可欠な栄養成分でもあり、新生児の粉ミルクに添加されているほど安全である為、本発明で使用する銅イオン水や銅水溶液を含有した塗擦保護剤を人体に使用しても無害で抗菌、抗ウイルスの効果が得られ、高価な装置を購入する必要も、酸を併用して使用時に調整する必要もなく殺菌力や消毒・消臭効果を持ち、効率良くしかも安全に利用できる。 Furthermore, copper reacts with water to generate active oxygen molecular species with strong oxidizing power, and although there are strengths and weaknesses in antibacterial performance depending on the bacterial species, it decomposes molecules such as bacteria, and as an antibacterial effect demonstrated in antibacterial tests. In addition to Legionella, cryptospolidium, and O-157, viruses that come into contact with copper also inactivate their infectivity. In addition, copper is contained in the human body in an amount of 70 to 100 mg, which is an essential nutritional component for health and is safe enough to be added to powdered milk of newborns. Therefore, the copper ionized water or copper aqueous solution used in the present invention is used. It is harmless even if a rubbing protective agent containing copper is used on the human body, and antibacterial and antiviral effects can be obtained. -Has a deodorizing effect and can be used efficiently and safely.
また、ウイルスにはタンパク質の殻の中にカプシドを有する核酸があるが、そのタンパク質の一部を破壊する事でウイルスを不活化する事から、光触媒の強い酸化・還元力によってウイルス膜タンパク質の一部に損傷を与え、感染力を低下させることが重要である。紫外線や可視光により光触媒液活性をさせ、ウイルスが細胞に吸着することが出来なくさせ、宿主への細胞に感染する能力を失うが、銅イオン水や酸化銅水溶液による抗ウイルス効果でウイルスを不活化させる事も可能となる。 In addition, the virus has a nucleic acid having a capsid in the shell of the protein, but since the virus is inactivated by destroying a part of the protein, it is one of the virus membrane proteins due to the strong oxidizing and reducing power of the photocatalyst. It is important to damage the area and reduce its infectivity. The photocatalytic solution is activated by ultraviolet rays or visible light, which makes it impossible for the virus to be adsorbed to the cells and loses the ability to infect the cells to the host. It is also possible to activate it.
さらに、塗擦保護材の光触媒溶液に、酸化タングステンやリン酸類を混合する事で蛍光光源等も増加するが、使用する環境を考慮すると、銅イオン水や銅水溶液により抗菌・抗ウイルス作用があるため必ずしも強い光源は必要としない。ただし、無光触媒溶液を使用した場合は、光源の必要も無く、光触媒同様の効力を有する。 Furthermore, by mixing tungsten oxide and phosphoric acids with the photocatalytic solution of the rubbing protective material, the number of fluorescent light sources and the like increases, but considering the environment in which it is used, copper ion water and copper aqueous solution have antibacterial and antiviral effects. It does not necessarily require a strong light source. However, when a non-photocatalyst solution is used, there is no need for a light source, and the effect is similar to that of a photocatalyst.
一方、木材にあるリグニンは通常、木質バイオマスの20~35%を占める主成分の1つで、化学的には芳香核(ベンゼン環)を持つ化合物が結合して巨大化した化合物であり、その存在量は多大で、地上で2番目に多量に存在する有機化合物と言われている。リグニンという言葉は、ラテン語で木材をいみするリグナムに語源を持ち、木質を木質たらしめている成分そのものとしての「木質素」という意味を持ち、木材からリグニンを抜くと木材としての物性を失い、繊維である紙パルプが残り、これが製紙産業で行われる蒸解と呼ばれる工程になる。パルプを取った残りのリグニンは焼却して熱源として利用している。パルプの蒸解度即ちリグニン含有の除去をすることは難しく、適当量において強度の最高値が存在するということが認められ、リグニンはセルロース又はヘミセルロースと或る程度結合して中間層又は第1次層の様な繊維組織の皮殻物質を成している。従ってリグニン合量の多い場合には親水性の強いヘミセルロースの膨潤を妨げ、叩解してもフィブリル化も、可塑性も進展しないので繊維結合が弱い。二酸化塩素等による脱リグニンの如く、セルロースやヘミセルロースを殆んど崩壊することなくパルプ中のリグニンを除去した場合にはリグニン含量の少ない程、強度が上がる事は紙製造に携わる業界では公知である。 On the other hand, lignin in wood is usually one of the main components occupying 20 to 35% of woody biomass, and is chemically a compound having an aromatic nucleus (benzene ring) bonded to it and becomes huge. The abundance is large, and it is said to be the second most abundant organic compound on the ground. The word lignin has its origin in the Latin word lignum, which means wood, and has the meaning of "wooden element" as the component that makes wood woody. When lignin is removed from wood, it loses its physical properties as wood and is a fiber. The paper pulp remains, which is a process called liquefaction performed in the paper industry. The remaining lignin from which the pulp has been removed is incinerated and used as a heat source. It is difficult to remove the degree of cooking of pulp, that is, the content of lignin, and it is recognized that the highest value of strength exists in an appropriate amount, and lignin binds to cellulose or hemicellulose to some extent to form an intermediate layer or a primary layer. It is made of hemicellulose with a fibrous structure such as. Therefore, when the amount of lignin is large, the swelling of highly hydrophilic hemicellulose is hindered, and even if the hemicellulose is beaten, neither fibrillation nor plasticity progresses, so that the fiber bond is weak. It is well known in the paper manufacturing industry that when lignin in pulp is removed without disintegrating cellulose or hemicellulose, the strength increases as the lignin content decreases, as in the case of delignin due to chlorine dioxide or the like. ..
また、ナノセルロースは乳状で粘性があり、乳剤的な役割と水溶性でもあることから手肌に浸潤し易く、保湿・保護材の役割を果たす効果が大きい事は、ナノセルロースの混入有無の実施試験でも認められている。その上、木材由来からなるナノセルロースとパルプの相性は非常に良く有効となる。 In addition, nanocellulose is milky and viscous, and because it has an emulsion-like role and is also water-soluble, it easily infiltrates the skin of the hands and has a great effect as a moisturizing / protective material. It is also accepted in the test. Moreover, the compatibility of wood-derived nanocellulose with pulp is very good and effective.
さらに、セルロースシングルナノファイバーを使うとゲルの調製が出来、塗擦保護材が液体の場合、スプレー等で付着性向上等の効果が期待され、スプレー容器に充填した場合、逆さまにしても使用出来るという効果もあり、価格的にも圧倒的に安価である。 Furthermore, gels can be prepared by using cellulose single nanofibers, and if the rubbing protective material is a liquid, it is expected to have the effect of improving adhesion by spraying, etc., and if it is filled in a spray container, it can be used even if it is turned upside down. It is effective and overwhelmingly cheap in terms of price.
セルロース系高分子ファイバーを構成するセルロース系高分子としては、β-1,4-グルカン構造を有する多糖類である限り特に制限されず、例えば、高等植物由来のセルロース、例えば、杉等の木材繊維(針葉樹、広葉樹などの木材パルプ等)の天然セルロース繊維(パルプ繊維)や動物由来のセルロース、バクテリア由来のセルロース、化学的に合成されたセルロース(再生セルロース;誘導体含む)などのセルロース・ナノセルロース、キチン、キトサンなどが挙げられる。なお、前記セルロースは、用途に応じてα-セルロース含有量の高い高純度セルロース、例えば、α-セルロース含有量70~100wt%程度であってもよい。前記セルロースは、単独又は二種以上組み合わせて使用してもよく、セルロース系高分子のうち、木材繊維(針葉樹、広葉樹などの木材パルプなど)コットンリンターなどの種子毛繊維などが好ましい。 The cellulosic polymer constituting the cellulosic polymer fiber is not particularly limited as long as it is a polysaccharide having a β-1,4-glucan structure, and for example, cellulosic derived from higher plants, for example, wood fiber such as cedar. Natural cellulose fibers (pulp fibers) such as (wood pulp such as coniferous trees and broadleaf trees), cellulose derived from animals, cellulose derived from bacteria, cellulose nanocellulose such as chemically synthesized cellulose (regenerated cellulose; including derivatives), Examples include chitin and chitosan. The cellulose may be high-purity cellulose having a high α-cellulose content, for example, an α-cellulose content of about 70 to 100 wt%, depending on the intended use. The cellulose may be used alone or in combination of two or more, and among the cellulosic polymers, wood fibers (wood pulp such as conifers and hardwoods) and seed hair fibers such as cotton linters are preferable.
原料繊維のミクロフィブリル化は、原料繊維を、慣用の方法、例えば、叩解処理・ホモジナイズ処理することなどにより行うことができ、ナノセルロースは、セルロース繊維をnmオーダの幅まで細くファイバー化させるためにセルロースミクロフィブリル1本~数十本の繊維単位にまでほぐし得ることができる。 Microfibrillation of raw material fibers can be performed by conventional methods such as beating and homogenizing the raw material fibers, and nanocellulose is used to make the cellulose fibers finer to the width of the nm order. Cellulose microfibrils can be loosened into fiber units of one to several tens.
また、一般的なパルプの利用は紙での使用が多く、これはパルプの軽くて一定の強度が保てる事が1つの理由とも言える。そのパルプを微粉体にして、指先で擦り合わせると指紋の中に入り込み指先同士で動かしてもパルプ微粉体の微分がぶつかり合い、指先は滑らなくなる程の抵抗力である事から、塗擦保護材の微粒子パルプは、ナノセルロースや光触媒溶液を手指の摩擦により手肌の角質に擦り込ませ、被膜して塗擦作用をすると同時にナノセルロースの保湿成分も浸潤させる事をパルプ微粒子による塗擦方法とした。しかも、塗擦保護材がスプレーボトル等に水溶液状で充填された場合、上部から中間部に浮遊しているパルプ微粒子はスプレーポンプで吸い込まれやすく、噴霧時の手肌等に必ず塗布され摩擦効果が安定的に得られる事となる。 In addition, the general use of pulp is often on paper, which can be said to be one reason that the pulp is light and can maintain a certain strength. When the pulp is made into fine powder and rubbed with the fingertips, it enters the fingerprint and even if the fingertips are moved with each other, the differentials of the pulp fine powder collide with each other, and the fingertips have resistance enough to prevent slipping. For fine pulp, nanocellulose or a photocatalyst solution is rubbed against the keratin of the skin by rubbing the fingers, and a film is applied to perform the rubbing action, and at the same time, the moisturizing component of nanocellulose is also infiltrated as a rubbing method using pulp fine particles. Moreover, when the rubbing protective material is filled in a spray bottle or the like in the form of an aqueous solution, the pulp fine particles floating from the upper part to the middle part are easily sucked by the spray pump, and are always applied to the hand skin at the time of spraying to have a friction effect. It will be obtained stably.
また、パルプ微粉末を添加することにより、塗擦保護材の塗擦性能、特に二次塗擦性能に対するセルラーゼの作用を向上させることである。パルプ粒子は、少なくとも部分的に機械圧力により得られる圧縮で破断、次いで顆粒化形態で好ましくはセルロースを含有し、特に微小な物質として形づくられ、塗擦性能に対するセルラーゼの作用を刺激するためにパルプ粒子を含有するが、当然、パルプ粒子のサイズは小さい事が適しており塗擦保護材のパルプ粒子はμm以下とする。 Further, by adding the pulp fine powder, the action of cellulase on the rubbing performance of the rubbing protective material, particularly the secondary rubbing performance, is improved. The pulp particles are at least partially broken by compression obtained by mechanical pressure, then preferably in a granulated form, preferably containing cellulose, formed as a particularly microscopic substance, to stimulate the action of cellulase on the rubbing performance. However, as a matter of course, it is suitable that the size of the pulp particles is small, and the pulp particles of the rubbing protective material should be μm or less.
塗擦保護材に使用するナノセルロースは,全ての植物の基本骨格物質であり,セルロース繊維を微細化することで得られ、一般的にサイズとしては直径が100nm以下,アスペクト比100以上のファイバーと言われている。木材の断面の一部を電子顕微鏡で1,000倍に拡大してチップ断面として観察し,更にチップから取り出した幅20μm程度のパルプを2,500倍で観察すると、このパルプは,セルロース分子鎖、ミクロフィブリル、フィブリルと階層的に構築された構造を有し、幅10nmのセルロースナノファイバーの場合、数本のミクロフィブリルが集合した状態まで微細化された状態のものを指す。パルプの繊維からセルロースナノファイバーまで1,000分の1のダウンサイジングであり、電子顕微鏡(SEM)写真では、パルプ繊維の表面を観察したものでセルロースナノファイバーが集まってできている沢山の繊維のヒダがわかる。代表的なナノテク素材のカーボンナノチューブでは,ファンデルワールス力によって複数本凝縮してしまうが、セルロースナノファイバーではセルロース分子が6本×6本程度集まって3~4nm径のナノセルロースを形成し、この場合セルロース分子間の結合は主として水素結合によるものでミクロフィブリル、フィブリルと太く成るにしたがってフォンデルワールス力やリグニンによる接着剤効果が効いてくる。カーボンナノチューブの場合,分散されたナノチューブは放っておくと互いにくっついてしまって使い物にならなくなってしまうが,セルロースナノファイバーの場合は解繊して水中に入れておいても直ぐには接着せず、繊維をほぐして微細化する技術と共にできたセルロースナノファイバーを如何にして規則正しく並べるか、あるいは別の材料に如何にして分散して混合させるかの加工利用技術も世界中で開発されている。一般的に使用する様々な材料にもナノ化は必然となりつつあり、塗擦保護材は石鹸に混合している重曹塩等も考慮する事も必要である。 Nanocellulose used as a protective material for rubbing is a basic skeletal substance of all plants, and is obtained by refining cellulose fibers. Generally, it is said that the size of the fibers is 100 nm or less and the aspect ratio is 100 or more. It has been. A part of the cross section of the wood is magnified 1,000 times with an electron microscope and observed as a chip cross section, and when the pulp with a width of about 20 μm taken out from the chip is observed at 2,500 times, this pulp is a cellulose molecular chain. In the case of cellulose nanofibers having a structure hierarchically constructed with microfibrils and fibrils and having a width of 10 nm, it refers to a state in which several microfibrils are aggregated. It is a 1/1000 downsizing from pulp fibers to cellulose nanofibers, and in the electron microscope (SEM) photograph, the surface of the pulp fibers is observed, and many fibers made up of cellulose nanofibers are gathered together. I understand the folds. In carbon nanotubes, which are typical nanotech materials, multiple fibers are condensed by van der Waals force, but in cellulose nanofibers, about 6 × 6 cellulose molecules gather to form nanocellulose with a diameter of 3 to 4 nm. In the case, the bonds between cellulose molecules are mainly due to hydrogen bonds, and as the thickness increases from microfibrils to fibrils, the van der Waals force and the adhesive effect of lignin become effective. In the case of carbon nanotubes, if the dispersed nanotubes are left alone, they will stick to each other and become unusable, but in the case of cellulose nanofibers, even if they are defibrated and placed in water, they will not adhere immediately. Processing and utilization technology has been developed all over the world on how to regularly arrange cellulose nanofibers formed together with the technology for loosening and refining fibers, or how to disperse and mix them with other materials. Nano-ization is inevitable for various materials that are generally used, and it is also necessary to consider baking soda salt and the like mixed in soap as the rubbing protective material.
木材は炭素50%、水素6%、酵素44%からなり、ブドウ糖などの多糖類であるセルロース・ヘミセルロースとベンゼン環を有し疎水性で複雑な構造のリグニンの3つの主成分からなり、セルロースは主成分の約50%以上を占め、セルロースミクロフィブリルはさらに集合してフィブリルの束を形成し、幅0.02~0.04mmで、長さ数mmの植物繊維を形成している。植物繊維間はリグニンによって強固に接着され、植物繊維集合体を形成している繊維がパルプであり紙の原料となる。植物繊維は中心が空洞の微小なパイプのような構造で、根から吸収した水を、このパイプを通し重力に逆らって樹木の先端の葉まで送り二酸化炭素を吸収して光合成し酸素を放出するが、樹木の細胞壁はリグニンの疎水性と、鉄筋のような高強度ナノファイバーであるセルロースミクロフィブリル、セルロースミクロフィブリルとリグニンの間隙を埋める非晶性のヘミセルロース成分によってセルロースミクロフィブリル単位、あるいはその集合体として幅が数十nm以下にまで分離・分散した植物由来のナノ素材である。また、セルロースは紙製品の他、食品や化粧品および医薬品でも使用され、有効成分を含む錠剤が体内で崩壊するための成形剤としても広く使用されている。 Wood consists of 50% carbon, 6% hydrogen, and 44% enzyme, and consists of three main components: cellulose / hemicellulose, which is a polysaccharide such as glucose, and lignin, which has a benzene ring and has a hydrophobic and complicated structure. Cellulose microfibrils, which occupy about 50% or more of the main component, further aggregate to form a bundle of fibrils, forming a plant fiber having a width of 0.02 to 0.04 mm and a length of several mm. The plant fibers are firmly adhered to each other by lignin, and the fibers forming the plant fiber aggregate are pulp, which is a raw material for paper. Plant fibers have a structure like a minute pipe with a hollow center, and water absorbed from the roots is sent through this pipe to the leaves at the tip of the tree against gravity, absorbs carbon dioxide, photosynthesizes, and releases oxygen. However, the cell wall of the tree is a cellulose microfibril unit or an assembly thereof due to the hydrophobicity of lignin and the cellulose microfibrils which are high-strength nanofibers such as reinforcing bars, and the amorphous hemicellulose component which fills the gap between the cellulose microfibrils and lignin. It is a plant-derived nanomaterial separated and dispersed to a width of several tens of nm or less as a body. In addition to paper products, cellulose is also used in foods, cosmetics and pharmaceuticals, and is widely used as a molding agent for tablets containing active ingredients to disintegrate in the body.
また、パルプやセルロース繊維に対する様々な前処理方法や多くの優れた特性が見出され、ナノテクノロジーの発展に伴い、バイオマス由来のナノ素材として注目されているが、ナノセルロースには形状に基づき、長さ150nm以下の棒状あるいは紡錘形をしたセルロースナノクリスタル(CNC、あるいはナノ結晶性セルロースNCC)と、ミクロンレベルの長さを含む繊維状のセルロースナノファイバー(あるいはセルロースナノフィブリルCNF、またはナノフィブリル化セルロースNFC)に大別される。 In addition, various pretreatment methods for pulp and cellulose fibers and many excellent properties have been found, and with the development of nanotechnology, they are attracting attention as nanomaterials derived from biomass. Rod-shaped or spindle-shaped cellulose nanocrystals (CNC or nanocrystalline cellulose NCC) with a length of 150 nm or less and fibrous cellulose nanofibers (or cellulose nanofibril CNF, or nanofibrillated cellulose) containing micron-level lengths. It is roughly divided into NFC).
木材パルプの水分散液を処理して得られる微細化された繊維、ミクロフィブリル化セルロースの処理条件の概要は、原料スラリー濃度4~7%、オリフィス径0.4~6mm、処理圧力34,450~55,120kPa(オリフィス通過線速約750km/h)、オリフィス通過回数1~80回となり、この処理によって繊維径6~100μm、繊維長1~4mmの木材パルプは微細化され、繊維径0.02~0.06μm(20~60nm)、繊維長数μm(数千nm)のMFCが得られるが、セルロースのフィブリル化の程度に依存することがわかっており、例えば、填料の歩留り向上効果や透気度の増加効果は、フィブリル化を進めたセルロースほど効果が大きくなることが報告されている。 The outline of the treatment conditions for the finely divided fibers and microfibrillated cellulose obtained by treating the aqueous dispersion of wood pulp is as follows: raw material slurry concentration 4 to 7%, orifice diameter 0.4 to 6 mm, treatment pressure 34,450. The fiber diameter is ~ 55,120 kPa (oriental passage line speed is about 750 km / h) and the number of times of passage through the orifice is 1 to 80 times. By this treatment, wood pulp having a fiber diameter of 6 to 100 μm and a fiber length of 1 to 4 mm is made finer, and the fiber diameter is 0. MFCs with a fiber length of 02 to 0.06 μm (20 to 60 nm) and a fiber length of several μm (thousands of nm) can be obtained, but it is known that it depends on the degree of fibrillation of cellulose. It has been reported that the effect of increasing the air permeability becomes greater as the cellulose is fibrillated.
また、塗擦保護材に使用するナノセルロースは特に限定はしていないが、国立森林総合研究所より1.6%および6%液体を提供され実施例とし2016年より実験を重ねた。 The nanocellulose used for the rubbing protective material is not particularly limited, but 1.6% and 6% liquids were provided by the National Forest Research Institute, and experiments were repeated from 2016 as examples.
さらに、塗擦保護材の成分構成例として、パルプ粒子15%、ナノセルロース25%、光触媒酸化チタン2.5%、砂糖9%を精製水30%で70~80℃で溶解した。溶液が得られた後、冷却して脂肪酸ナトリウム1%を加え混合した。溶液中41%をセルロースとし、全ての原材料が天然由来とした塗擦保護材となる。但し、あくまでも実験での数値設定であり、これらに限定する事は無く、実施例の1つとして示した。当然、仕上げの際は、濾過する事により、溶液を作る為の数値であり%程度の誤差は生じる。 Further, as an example of the composition of the components of the rubbing protective material, 15% of pulp particles, 25% of nanocellulose, 2.5% of photocatalytic titanium oxide, and 9% of sugar were dissolved in 30% of purified water at 70 to 80 ° C. After the solution was obtained, it was cooled and 1% sodium fatty acid was added and mixed. 41% of the solution is cellulose, and all raw materials are naturally derived rubbing protective materials. However, it is only an experimental numerical setting, and is not limited to these, and is shown as one of the examples. Of course, at the time of finishing, it is a numerical value for making a solution by filtering, and an error of about% occurs.
図3に示したが、マスクやハンカチ等の布帛繊維には、光触媒溶液である酸化チタンは表面精が小さい緻密で平滑な表面より、凹凸があり表面積が大きいホーラスな表面であり吸着量が多い事から、塗擦保護材を塗布・噴霧する事で塗擦作用が有効となる。 As shown in FIG. 3, for fabric fibers such as masks and handkerchiefs, titanium oxide, which is a photocatalytic solution, has a horrifying surface with irregularities and a large surface area, and a large amount of adsorption, rather than a dense and smooth surface with a small surface precision. Therefore, the rubbing action becomes effective by applying and spraying the rubbing protective material.
一方、光触媒酸化チタンは、日本曹達製酸化チタンコーティング材であるビストレイタH2:アナターゼ型酸化チタンで造られている他、圧倒的多数の石原産業(株)製コーティング剤の光触媒で、その導因はナノセルロースの増粘性を混成させる事である。しかも、手洗いや水分を拭き取っても施しても、同時に塗擦保護材の強酸性が物理的・化学的に固定化され、光触媒活性により手肌や繊維に付着する菌やウイルス等が反応し、殺菌・分解による塗擦作用で簡易に取り除かれる他、新たな菌やウイルスの付着・増殖の発生し難い環境と衛生的に保つ塗擦効果が期待出来る。本発明は、数多くの臨床試験データを待つ事が必要なため試験を継続中である。On the other hand, the photocatalytic titanium oxide is made of Vistrateer H2: anatase - type titanium oxide, which is a titanium oxide coating material manufactured by Nippon Soda, and is the photocatalyst of the overwhelming majority of coating agents manufactured by Ishihara Sangyo Co., Ltd. Is to mix the thickening of nanocellulose. Moreover, the strong acidity of the rubbing protective material is physically and chemically immobilized at the same time regardless of whether it is hand-washed or wiped off with water, and the photocatalytic activity causes bacteria and viruses adhering to the skin and fibers to react and sterilize. -In addition to being easily removed by the rubbing action of decomposition, it can be expected to have a rubbing effect that keeps the environment and hygiene where new bacteria and viruses are less likely to adhere and multiply. The present invention is in the process of being tested because it is necessary to wait for a large amount of clinical trial data.
また、光触媒は有機物であれば相手を選ばず最終的には二酸化炭素を水にまで分解してしまう非選択的性の反応であり、多機能、酸化分解力以外にも超親水性という性質がある事から、例えば[特許文献7]の洗濯物の衣類等に遷移・固定化された親水性の高い光触媒ナノセルロース洗剤や添加剤は、光や紫外線、可視光線の照射で必ずしもバインダを必要とせず光触媒が浸透すると殺菌性を発生させる事を知見し、菌の発生の原因を作らない事により可能とした。一般的に洗濯後は雑菌やウイルス等が洗い流されているが、悪天候や湿気の多い部屋内での乾燥等の条件や環境により、モラクセラ・オスロエンシス菌が洗濯物に付着・増殖後、水分や皮脂等を栄養分にして糞のようなものを出し、この糞が所謂、雑巾のような悪臭を発する事から、それを抑止する1つの選択肢として[特許文献7]の光触媒ナノセルロース洗剤や添加剤を既成洗剤に混入し洗濯をする方法が好ましい。但し、洗濯機内の雑菌により洗濯直後でも菌の増殖を招く場合もある為、光触媒溶液や塗擦保護材を噴霧または塗布する事で、それらの殺菌も可能となる。 In addition, if the photocatalyst is an organic substance, it is a non-selective reaction that eventually decomposes carbon dioxide into water regardless of the partner. For this reason, for example, highly hydrophilic photocatalytic nanocellulose detergents and additives that have been transitioned to and immobilized on laundry clothes of [Patent Document 7] do not necessarily require a binder when irradiated with light, ultraviolet rays, or visible light. It was found that when the photocatalyst permeates, bactericidal activity is generated, and it is possible by not creating the cause of the outbreak of bacteria. Generally, germs and viruses are washed away after washing, but depending on the conditions and environment such as bad weather and drying in a humid room, Moraxella osloensis bacteria adhere to and multiply on the laundry, and then water and moisture The photocatalyst nanocellulose detergent and additives of [Patent Document 7] are one option to suppress the odor of so-called rags, which is produced by using sebum as a nutrient to produce something like feces. Is preferably mixed with a ready-made detergent and washed. However, since germs in the washing machine may cause the growth of germs even immediately after washing, they can be sterilized by spraying or applying a photocatalyst solution or a rubbing protective material.
また、繊維や紙、プラチックなどに酸化チタンをほどよく触れるように使用する方法で公知された市販品の光触媒溶液を塗擦保護材で使用しても、光触媒反応による基材の分解反応を遅らせる又は短時間で済むと、汚れ落としに必要とする濃度で飽和し、防ぐ事が出来る。これは、材質の中や表面に浸透させる方法であり、液状の塗擦保護材を繊維の隙間に入り込ませる為、LEDライトの他、可視光線や紫外線について計算式で求められる事も併せて説明する。可視光線visibie(v)や紫外線Ultraviolet(UV)の光はX線、マイクロ波或は電波と同様に電場と磁場を繰り返しながら進行する波、即ち電磁波である。可視光以外では色の相違は見えないが波長wavelenght(λ)と振動数frequencynumber(ν)を持っており、波長によって単位はメートル(m)で表され、物質はその化学構造と関係して電子遷移に応じ紫外線から可視部の光を吸収する事が計算出来る。それにより、紫外可視吸光度測定法がある。電子遷移に伴う光の吸収を利用するもので、通常200nm~800nmの波長の光紫外線、可視光線を測定する方法である。図10に示した光が厚さのある布地繊維ιの層を通過する場合を仮に想定し、入射光の強さをIo、透過光の強さをIとした時、両者の比率を(I/Io)を透過度t(transmittance)で、これを100分率で透過率(Percenttransmission)T
これが比吸光度specificabsorptionで試料溶液の濃度が1%(w/v)の吸光度に相当する事になる。
This corresponds to the absorbance of the sample solution having a concentration of 1% (w / v) in the specific absorbance specific support.
また、酸化チタンに紫外線を照射すると強い酸化力を有するラジカルが発生し、有機化合物(例えば汚れ・悪臭ガス)の酸化・分解、無機化合物(例えばNOx・NH3等)の塗擦効果を発揮することから、環境浄化などに応用が進められている。太陽光の照射下では優れた光触媒能を発揮できるが、白熱灯、蛍光灯等における光源に含まれる紫外線量は4%程度と少なく、このような光源化では十分な光触媒能を発揮する事ができない。しかしながら、今日ではアパタイト被覆二酸化チタンで公知されている通り、可視光応答型の酸化タングステンやリン酸類の他、光があたらなくても銅イオン水や銅水溶液により、有害有機物質、臭いやカビ、ウイルス、細菌などの物質を分解して塗擦作用をする事も可能である。In addition, when titanium oxide is irradiated with ultraviolet rays, radicals having strong oxidizing power are generated, and the effect of oxidizing / decomposing organic compounds (for example, dirt / malodorous gas) and rubbing inorganic compounds (for example, NOx / NH 3 ) is exhibited. Therefore, it is being applied to environmental purification. Although it can exhibit excellent photocatalytic activity under sunlight irradiation, the amount of ultraviolet rays contained in the light source of incandescent lamps, fluorescent lamps, etc. is as small as about 4%, and it is possible to exhibit sufficient photocatalytic activity with such a light source. Can not. However, as is known today for apatite-coated titanium dioxide, in addition to visible light-responsive tungsten oxide and phosphoric acids, copper ionized water and copper aqueous solution can be used to prevent harmful organic substances, odors and molds even in the absence of light. It is also possible to decompose substances such as viruses and bacteria and perform a rubbing action.
さらに、酸化チタンに紫外光が照射されると、その表面では「光誘起分解反応」と「光誘起親水化反応」の2種類の反応が進行する。これらの光触媒反応は、酸化チタンを構成している電子が励起されるところから進行していき、アナターゼ型の酸化チタンのバンドキャップは3.2eVであるので、波長380nm以下の紫外光が照射されれば、電子は伝導体へ励起され価電子帯には電子の抜殻である正孔(ホール、h+)が生成する。この生成した正孔と電子が酸化チタンには効率よく拡散する事が出来、空気中や水中などの反応場所に存在する酸素や水と共に光触媒反応を進行させる。この光触媒反応での特徴は、微弱光であれ、酸化チタンを励起できる光りが照射されてつまり、この光照射が重要でバインダは結果的に光触媒の効果を安定的に供給する為の補助であり、布等に付着した汚れや塗擦するその場の数分のわずかな時間での効果を促す目的性の場合はホール・電子対は連続的に生成している。この連続的に生成する電子・ホールによって、酸化チタン表面に吸着している分子は酸化分解を受け、この光誘起分解反応を利用し防汚効果を狙い抗菌効果でNOx分解を意図する汚れが酸化分解されるため、汚れが付着しない。このように、汚れが分解でき、外観をきれいに保つという効果に大きく働くものである酸化チタン光触媒は、細菌に対して広い抗菌スペクトルを持っているばかりか、他の微生物に対しても非常に広範囲に効果を現し、これは酸化チタン自身が抗菌剤ではないためと考えられる。他の抗菌剤はそれ自身が細菌を殺菌したり増殖を抑制したりする作用を有するものであるのに対し、酸化チタンの場合は、酸化チタン自身が抗菌剤でなくあくまでも光励起されることで生成する電子・ホール対、或はそれから派生する活性種が細菌をアタックして抗菌活性を与える。酸化チタン自身は光触媒であり、広い抗微生物活性を持つ要因と考えられる。また、室内光など微弱な紫外光下でも抗菌効果を得ようと、今日では光触媒反応と銅や銀イオンが持つ抗菌効果が相乗して得られる事もわかった。よって、微弱光下でも銅や銀の耐性菌に対して抗菌効果が得られる事となり、それも一つの抗菌効果の特徴となっている。さらに、光励起によって生成するホール・電子対からの有機物分解が抗菌効果の原動力であるので、殺菌された後も光が照射されていれば有機物分解は続き、殺菌された細菌の死骸が分解していく。このように、酸化チタン光触媒反応による抗菌効果は、他の抗菌剤にない特徴を持つが、その一例としては空気浄化に対しての空気清浄機で製品化されている。Furthermore, when titanium oxide is irradiated with ultraviolet light, two types of reactions, a "photo-induced decomposition reaction" and a "photo-induced hydrophilization reaction", proceed on the surface thereof. These photocatalytic reactions proceed from the place where the electrons constituting titanium oxide are excited, and since the anatase-type titanium oxide bandgap is 3.2 eV, it is irradiated with ultraviolet light having a wavelength of 380 nm or less. Then, the electrons are excited to the conductor, and holes (holes, h + ), which are shells of electrons, are generated in the valence band. The generated holes and electrons can be efficiently diffused into titanium oxide, and the photocatalytic reaction proceeds together with oxygen and water existing in the reaction place such as air or water. The feature of this photocatalytic reaction is that it is irradiated with light that can excite titanium oxide, even if it is faint light. In the case of dirt adhering to cloth or the like, or for the purpose of promoting the effect in a short time of a few minutes of rubbing, holes / electron pairs are continuously generated. Molecules adsorbed on the surface of titanium oxide undergo oxidative decomposition by these continuously generated electrons and holes, and the stains intended for NOx decomposition are oxidized by the antifouling effect aiming at the antifouling effect by utilizing this photoinduced decomposition reaction. Since it is disassembled, it does not get dirty. In this way, the titanium oxide photocatalyst, which can decompose stains and has a great effect on keeping the appearance clean, not only has a wide antibacterial spectrum against bacteria, but also has a very wide range against other microorganisms. This is thought to be because titanium oxide itself is not an antibacterial agent. While other antibacterial agents themselves have the effect of killing bacteria and suppressing their growth, in the case of titanium oxide, titanium oxide itself is not an antibacterial agent and is produced by photoexcitation. An electron-hole pair, or an active species derived from it, attacks the bacterium and imparts antibacterial activity. Titanium oxide itself is a photocatalyst and is considered to be a factor with a wide range of antimicrobial activity. It was also found that the photocatalytic reaction and the antibacterial effect of copper and silver ions are synergistically obtained today in order to obtain the antibacterial effect even under weak ultraviolet light such as indoor light. Therefore, an antibacterial effect can be obtained against copper and silver resistant bacteria even under weak light, which is also one of the characteristics of the antibacterial effect. Furthermore, since the decomposition of organic matter from holes and electron pairs generated by photoexcitation is the driving force of the antibacterial effect, if light is irradiated even after sterilization, the decomposition of organic matter continues and the sterilized dead bacteria are decomposed. go. As described above, the antibacterial effect of the titanium oxide photocatalytic reaction has characteristics that other antibacterial agents do not have, and as an example, it has been commercialized as an air purifier for air purification.
また、酸化タングステンは酸化チタンと同様の特徴を有しつつ、バンドギャップエネルギーが2.8eV(約460nm)程度であるため可視光応答型光触媒として期待されるが,価電子帯端位置が酸化チタンよりも卑であるため酸化能が劣る。このため、貴金属や他の半導体による表面修飾、各種金属との合金化、ナノチューブ構造などによる光触媒特性の改善による表面活性向上が為され、光触媒として有用な潜在力を有する酸化タングステンの光触媒特性を向上させる助触媒として微量の銅による酸化物表面修飾を用いて効率のよい光触媒となる。 Titanium oxide has the same characteristics as titanium oxide, but has a bandgap energy of about 2.8 eV (about 460 nm), so it is expected to be a visible light responsive photocatalyst. It is inferior in oxidizing ability because it is more base than. Therefore, the surface activity is improved by surface modification with noble metals and other semiconductors, alloying with various metals, and improvement of photocatalytic properties by nanotube structure, etc., and the photocatalytic properties of tungsten oxide, which has the potential to be useful as a photocatalyst, are improved. An efficient photocatalyst is obtained by using an oxide surface modification with a small amount of copper as a co-catalyst.
さらに、塗擦保護材は、光触媒溶液により手指等の摩擦時に菌やウイルス等の中にナノサイズの微粒子が潜り込み、飛躍的な塗擦作用が可能になる。但し、摩擦時に菌やウイルス等の塗擦作用をするが、皮膚や粘膜等の摩耗はナノセルロースやパルプ微粒子、糖類により保護される。また、その他の雑菌に対しても、光触媒の働きによりそれらを殺菌する効力を持つ事は公知されている。 Further, in the rubbing protective material, nano-sized fine particles sneak into bacteria, viruses, etc. when rubbing fingers or the like with a photocatalytic solution, enabling a dramatic rubbing action. However, although it acts as a rubbing agent for bacteria and viruses during rubbing, wear on the skin and mucous membranes is protected by nanocellulose, pulp fine particles, and sugars. It is also known that it has the effect of sterilizing other germs by the action of a photocatalyst.
さらに、光触媒の毒性・無害性については既に詳細は公知されおり、塗擦保護材はその範囲で製造するが、例えば、金魚や熱帯魚等を入れたまま飼育槽内に光触媒溶液を挿入すると、槽内に繁茂する苔や藻類は死滅し、金魚や熱帯魚等には影響を与えない事等も安全性の証明と言える。一方で、光触媒は一般的に壁などの固定物であり固体物に対し有効とされてきたが、現在では手術等にも使用されている体内差し込みカテーテルチューブや歯科治療にも光触媒が使用され公知となっている事から、本発明の塗擦保護材についても同様の効果が得られる。 Furthermore, the details of the toxicity and harmlessness of the photocatalyst are already known, and the rubbing protective material is manufactured within that range. It can be said that the safety is proved that the moss and algae that thrive in the area are killed and do not affect goldfish and tropical fish. On the other hand, photocatalysts are generally fixed objects such as walls and have been considered to be effective for solid objects. Therefore, the same effect can be obtained with the rubbing protective material of the present invention.
また、酸化チタンに代表される光触媒溶液は、物理的には光伝導性物質の一種で、通常は電気を通さず光があたると導電性が生じ、光を吸収して触媒となるが、光触媒溶液はナノミクロの粒子である為、吸着量が多く効果も大きく、人体の一部である手肌や繊維に塗擦保護材の被膜をコーティング形成するようになるが、手洗い後等でも塗擦保護材のコーティング作用は継続される。 A photocatalytic solution typified by titanium oxide is physically a kind of photocatalytic substance. Normally, when it is exposed to light without conducting electricity, it becomes conductive and absorbs light to become a catalyst. Since the solution is nano-micro particles, the amount of adsorption is large and the effect is great, and a coating of the rubbing protective material is formed on the skin and fibers that are part of the human body. The coating action continues.
さらに、抗生物質も効かないようなバクテリアを死滅させ且つ安全で無害な殺菌技術としては光触媒以外に候補が無く、多くの病院の手術室で光触媒が試され、その効果が実証された事から、この後種々の商品分野への展開が進み、その意味で健康医療技術は現在の光触媒の応用端緒であり、経口避妊薬等に用いられる人工女性ホルモン等の多くの化合物についても光触媒分解が試みられており、女性ホルモン活性を完全にゼロにするのを出来るのがわかっている事から、塗擦保護材は医薬部外品も視野に入れる。 Furthermore, there is no candidate other than photocatalyst as a safe and harmless sterilization technology that kills bacteria that antibiotics do not work on, and photocatalysts have been tried in many hospital operating rooms and their effects have been demonstrated. Since then, development into various product fields has progressed, and in that sense, health care technology is the beginning of the application of current photocatalysts, and photocatalytic decomposition of many compounds such as artificial female hormones used for oral contraceptives has been attempted. Since it is known that female hormone activity can be completely reduced to zero, we also consider non-medicinal products as a protective material for rubbing.
ただし、光触媒が短時間で効果が出ない或は出来難い場合を仮定しても、一般的な習慣として、手肌の水洗いは数分~数時間の定期的に行われるが、塗擦保護材をその都度利用しなくても被膜された光触媒の塗擦効果は保持される。ただし、保湿・保護性を重視する点を鑑みると水洗い後に塗擦保護材を使用する事は、結果として手肌の保湿・保護が得られる他、光触媒をより多く物理的、化学的刺激を働かせる事にもなる。 However, even assuming that the photocatalyst is ineffective or difficult to achieve in a short time, it is a general practice to wash the hands with water regularly for several minutes to several hours, but use a rubbing protective material. The rubbing effect of the coated photocatalyst is maintained even if it is not used each time. However, considering the importance of moisturizing and protecting, using a rubbing protective material after washing with water will result in moisturizing and protecting the skin of the hands, as well as using more photocatalyst to exert physical and chemical stimuli. It also becomes.
光触媒溶液は手肌や繊維に練り込むと、光触媒作用で分解されてしまうため、基板以外の手肌や繊維の適用に対し敬遠されていたが、これらもアパタイト被覆二酸化チタン等で、手肌や繊維への利用を可能とする防止剤または補助剤も公知されている製品を使用する事により解決している。その上、短時間の使用では、光触媒の反応速度や分解速度と併せ、ナノセルロースや非親水性のパルプ微粒子および糖類による手肌接触時の肌荒れを防ぐ保湿・保護構造で手指の擦り合わせる圧力等も付加されるため、手肌の適用も可能となる。 When the photocatalytic solution is kneaded into the hands and fibers, it is decomposed by the photocatalytic action, so it was avoided to apply the hands and fibers other than the substrate. Preventive agents or auxiliary agents that can be used for fibers are also solved by using known products. In addition, when used for a short period of time, in addition to the reaction rate and decomposition rate of the photocatalyst, the moisturizing and protective structure that prevents rough skin when contacting the hands with nanocellulose, non-hydrophilic pulp fine particles and sugars, etc. Is also added, so it is possible to apply it to the skin.
一方、糖類の塗擦能力は、糖類の持つ親和性に関係している。例えば抗菌性が公知されている砂糖はグルコース(ブドウ糖)とフルクトース(果糖)の2種類であるスクロースで構成され、主な成分は炭素と水素となり、油の成分である炭素と水素、酸素で構成されている事から類似した成分は混ざりやすく、皮膚よりも砂糖の成分が油に近いためこのような現象が起こるが、水との相性も良い事で効果的に作用し、手荒れの心配もない。また、砂糖はセルロースに比し、分子量が遥かに小さく、8つの水酸基を持ち水に良く溶け、化合物の分子内の小部分が変化した各種の誘導体を与える等、多様な化学的機能を持ち、優れた抗菌・防腐作用と細胞を回復させる作用があると臨床結果も出ている事から、塗擦保護材に混合させ可視光照度が極めて低い場所等で光触媒の塗擦効果を補助する役割が期待できる。 On the other hand, the rubbing ability of saccharides is related to the affinity of saccharides. For example, sugar whose antibacterial properties are known is composed of sucrose, which is two types of glucose (glucose) and fructose (fructose), and the main components are carbon and hydrogen, and the main components are carbon, hydrogen, and oxygen, which are oil components. Since similar ingredients are easily mixed, the sugar component is closer to oil than the skin, so this phenomenon occurs, but it works effectively because it is compatible with water, and there is no worry of rough hands. .. In addition, sugar has a much smaller molecular weight than cellulose, has eight hydroxyl groups, dissolves well in water, and has various chemical functions such as giving various derivatives with altered small parts in the molecule of the compound. Since clinical results have shown that it has excellent antibacterial and antiseptic effects and cell recovery effects, it can be expected to play a role in assisting the photocatalyst's rubbing effect in places where visible light illuminance is extremely low by mixing it with a rubbing protective material.
また、アカモクは褐藻類に属した海藻の1つであり、類似種にシダモクがあるが、気胞の形状がアカモクは円柱状でシダモクは球形から楕円体となり、葉は長さ7cmから幅1.5cmで生命力も強い事から日本各地および海外に分布し、葉の形状等は地域差がある。アカモクは強い粘りを持つことが特徴で、この粘性物質はフコースを主な構成糖とした硫酸多糖の1つであるフコイダンと海藻の構成糖として知られているアルギン酸である。中国では古くからアカモクを消炎用の漢方薬で利用されているが、フコイダンには抗腫瘍効果等、アルギン酸は整腸作用等の様々な機能を有する可能性が多く報告されている。例えば、福岡県宗像市で採取したアカモクと比較対象とした福岡県志摩町産・糸島町産、沖縄県久米島産のモズクを凍結乾燥させ粉砕機で粉末化した結果、アカモクのフコイダン量は約500から700mg程度あり、原藻と比較しても7割から5割もフコイダンを保持する事が明らかになった。さらに加工条件を検討する事で、塗擦保護材ではフコイダンをより多く保持させたフコイダンの微粉末を使用し、塗擦作用の他、ナノセルロースやパルプの補助的または代用として皮膚の保水性、弾力性維持、吸湿性等の美肌作用や保湿保護成分となる。但し、海藻類の消臭として次亜塩素酸を併用する場合もあるが、当然、次亜塩素酸は消臭の目的で使用する事を限定したものではない。 Sargassum horneri is one of the seaweeds belonging to brown algae, and similar species include Sargassum horneri. Since it is 5 cm and has strong vitality, it is distributed all over Japan and overseas, and the shape of leaves varies from region to region. Akamoku is characterized by its strong stickiness, and this viscous substance is fucoidan, which is one of the sulfate polysaccharides whose main constituent sugar is fucose, and alginic acid, which is known as a constituent sugar of seaweed. In China, akamoku has been used as an anti-inflammatory Chinese herbal medicine for a long time, but it has been reported that fucoidan has various functions such as antitumor effect and alginic acid has various functions such as intestinal regulation. For example, as a result of freezing and drying mozuku from Shima-cho and Itoshima-cho, Fukuoka, and Kumejima, Okinawa, which were compared with Akamoku collected in Munakata City, Fukuoka Prefecture, the amount of fucoidan in Akamoku was about. It is about 500 to 700 mg, and it has been clarified that it retains fucoidan by 70% to 50% even when compared with the original algae. By further examining the processing conditions, the fucoidan fine powder that retains more fucoidan is used as the rubbing protective material, and in addition to the rubbing action, the water retention and elasticity of the skin are used as an auxiliary or substitute for nanocellulose and pulp. It has a skin-beautifying effect such as maintenance and hygroscopicity, and is a moisturizing protective ingredient. However, hypochlorous acid may be used in combination as a deodorant for seaweeds, but of course, hypochlorous acid is not limited to being used for the purpose of deodorization.
さらに、アカモクの試料を加熱処理した場合、一般成分(水分・灰分、タンパク質、脂肪、炭水化物)は、アカモクの原藻との間には大差が認められず、第5訂日本食品成分表に記載されている他の褐藻類の一般成分と同程度の組成になることがわかり、炭水化物が豊富に含有しているのは、食物繊維のアルギン酸やフコイダン等が主成分と考えられる事から、微粉末化の加工をする場合、乾燥等により加熱処理を施しても塗擦保護材に使用するには問題が無い。また、ミネラルの供給源としても有用であるという結果から、有効性も含め、安定した材料であると考えられると同時に、その粘性を利用し、噴霧スプレー容器に充填した塗擦保護材の液垂れ防止にもなる。 Furthermore, when the sample of Akamoku was heat-treated, the general ingredients (moisture / ash, protein, fat, carbohydrate) were not significantly different from those of the original algae of Akamoku, and are listed in the 5th edition of the Japanese Food Ingredients Table. It was found that the composition is similar to that of other general components of brown algae, and the reason why it is rich in carbohydrates is that alginic acid and fucoidan, which are dietary fibers, are considered to be the main components, so it is a fine powder. In the case of chemical processing, there is no problem in using it as a rubbing protective material even if it is heat-treated by drying or the like. In addition, since it is also useful as a source of minerals, it is considered to be a stable material including its effectiveness, and at the same time, its viscosity is used to prevent dripping of the rubbing protective material filled in the spray spray container. It also becomes.
その上、熱水抽出物の抽出実験の結果、昆布属の海藻には水溶性アルギンがアカモクは1%以下、真昆布で4%、ホソメ昆布で9%を含有しており、熱水抽出で精製されたフコース含有量(以下フコイダン)に於いては粗影響されず、その構成成分を分析した結果フコイダンの他にウロン酸および硫酸根が含有され、フコダイン含有量は褐藻類で10%以上、最高値はアカモクの44.5%にもなる。また、精製により混在するアルギン酸を完全に除去してもウロン酸や硫酸根は含有されており、構成成分として考えられたフコイダン・ウロン酸・硫酸根をモル比で見ると、フコダインのみを構成糖とするフカン硫酸では、フコダインと硫酸根のモル比1:2と考えてよく、これ以上の場合にはフコダイン以外の構成糖を持っていなければならない。そこで、硫酸モル比が2以下を示す例はアカモクを含め4種類ありこれらはフカン硫酸と考えられるが、他の大部分はフコイダンとそれ以外の単糖で構成される多糖であると報告されている。それらを鑑みると、当然の事ながら褐藻類を含む海藻は熱処理を施しても組成に問題は無く、安全性も認められた原料と成り得、塗擦保護材として有効性を示している。 In addition, as a result of the hot water extract extraction experiment, the seaweed of the kelp genus contains water-soluble argin in 1% or less of Akamoku, 4% in true kelp, and 9% in Hosome kelp. The purified fucoidan content (hereinafter referred to as fucoidan) was not roughly affected, and as a result of analyzing its constituents, uronic acid and sulfate roots were contained in addition to fucoidan, and the fucoidan content was 10% or more in brown algae. The highest price is 44.5% of Akamoku. In addition, uronic acid and sulfate roots are contained even if the mixed alginic acid is completely removed by purification, and when looking at the fucoidan, uronic acid, and sulfate roots considered as constituents in terms of molar ratio, only fucoidan is a constituent sugar. In fucoidan sulfate, the molar ratio of fucoidan to sulfate root may be considered to be 1: 2, and in the case of more than this, it is necessary to have a constituent sugar other than fucoidan. Therefore, there are four types of examples showing a molar ratio of sulfuric acid of 2 or less, including Akamoku, which are considered to be fucoidan sulfate, but most of the others are reported to be polysaccharides composed of fucoidan and other monosaccharides. There is. In view of these, as a matter of course, seaweed containing brown algae has no problem in composition even if it is heat-treated, and can be a raw material whose safety has been confirmed, and has shown its effectiveness as a rubbing protective material.
さらに、アカモクは昆布やもずく、わかめ、ひじき等と同じ形成の褐藻類で、硫酸化多糖の一種で粘質物であるフコダインを多く含有している。このフコダインには抗酸化作用、アポトーシス誘導によるアレルギーを抑える等の抗菌作用があり、特にもずくフコダインの化学構造については、1996年に琉球大学農学部グループ等による報告で、4つのフコース、1つのグルクロン酸と2つの硫酸基からなる構造を一つの単位(分子量約1,000、5つの糖からなる)として繰り返し構造をしているとされ、高分子のもずくフコダインは分子量約10,000以上の多糖類である事から、塗擦保護材の糖類の1つとして褐藻類を含有させ、フコダイン成分を利用した粘着性で手肌や布帛繊維の保湿・保護を得る事が可能となる。 Furthermore, Akamoku is a brown alga with the same formation as kelp, mozuku seaweed, wakame seaweed, hijiki seaweed, etc., and contains a large amount of fucoidan, which is a type of sulfated polysaccharide and is a viscous substance. This fucoidan has antioxidative action and antibacterial action such as suppressing allergies due to induction of apoptosis. In particular, the chemical structure of fucoidan was reported by the Ryukyu University Faculty of Agriculture Group in 1996, and four fucose and one glucuronic acid. It is said that it has a repeating structure with a structure consisting of two sulfate groups as one unit (having a molecular weight of about 1,000 and five sugars), and the high molecular weight mozuku fucoidan is a polysaccharide having a molecular weight of about 10,000 or more. Therefore, it is possible to contain brown algae as one of the saccharides of the rubbing protective material and to obtain moisturizing and protection of the skin and cloth fibers by the adhesiveness using the fucoidan component.
また、光触媒の抗ウイルス効果は、ウイルス全般への効果を期待出来るが、すべてのウイルスあるいは特定のウイルスに対する効果や病気の予防や治療効果を保証するものではない。しかしながら、空気清浄器で光触媒を利用したインフルエンザ等の浮遊感染性ウイルスの不活化性は閉鎖空間で有効な手段となる可能性が高いことも多くの実験で報告されている事から、実施例として塗擦保護材を人体の手指、足指、踵、口腔内、繊維としてはマスク、衣類、寝具、カーテン、靴の中敷き、歯ブラシ、歯間ブラシ、爪楊枝等の口腔ケア用品、ドアノブ、照明器具、割箸、調理器具、装飾品等の木材や繊維に噴霧または塗布する事で、光触媒作用により、細菌やウイルスの働きを抑制、予防が期待できる。 In addition, the antiviral effect of the photocatalyst can be expected to have an effect on viruses in general, but it does not guarantee the effect on all viruses or specific viruses, or the preventive or therapeutic effect on diseases. However, since it has been reported in many experiments that the inactivation of airborne infectious viruses such as influenza using a photocatalyst in an air purifier is likely to be an effective means in a closed space, as an example. Protective material for human hands, toes, heels, oral cavity, masks for fibers, clothing, bedding, curtains, shoe insoles, toothbrushes, interdental brushes, oral care products such as toothpicks, door knobs, lighting equipment, split chopsticks By spraying or applying to wood and fibers such as cooking utensils and ornaments, it can be expected to suppress and prevent the action of bacteria and viruses by photocatalytic action.
一方、ゲル状の塗擦保護材の場合、スプレー容器や、スポンジキャップ付き容器、ローラキャップ付き容器等に充填させ、手肌へ極度に付着した菌やウイルスを剥離分解する際も、アルエーテルや硫酸エーテル等を添加しなくても、光触媒の濃度の数%を上げた溶液を使用し、より塗擦作用や保湿・保護力が高くなる。また、繊維に対してもゲル状にする事で塗擦作用が大きく上がる他、塗擦効果が多く得られる。 On the other hand, in the case of a gel-like rubbing protective material, it is filled in a spray container, a container with a sponge cap, a container with a roller cap, etc. Even if ether or the like is not added, a solution in which the concentration of the photocatalyst is increased by several percent is used, and the rubbing action and the moisturizing / protecting power are further enhanced. In addition, by making the fiber into a gel, the rubbing action is greatly improved and a lot of rubbing effect can be obtained.
なお、本発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変形可能であることは言うまでもない。 Although the present invention has been specifically described based on the examples, it is needless to say that the present invention is not limited to the above examples and can be variously modified without departing from the gist thereof.
Claims (3)
前記手指表面の塗擦性を向上させる前記光触媒成分、前記銅イオン水および銅水溶液と前記手指表面の保湿性、保護性速乾性を向上させ薄膜上に定着促進を含有した成分の前記ナノセルロース溶液であり、
前記光触媒は、紫外線及び可視光応答型光触媒または無光触媒の液体または粉末であり
前記銅イオン水および銅水溶液は液体または粉体でも良く、前記ナノセルロース溶液は、木材を主材料としたナノセルロースと、パルプ、糖類、藻類の液体または粉末の少なくとも1種以上であり、それらを100℃以上の蒸留水溶性液で液体化・ゲル化・ペースト化・固形化させ混合させる事を特徴とした手肌用塗擦保護材。A rubbing protective material for hand skin that is applied or sprayed on the surface of the fingers to fix the nanocellulose solution in a thin film by the activity of the photocatalytic solution, the antibacterial activity of copper ionized water and the copper aqueous solution, and the friction drying of the fingers.
With the nanocellulose solution of the photocatalytic component that improves the smearability of the finger surface, the copper ionized water and the copper aqueous solution, and the component that improves the moisturizing property and protective quick-drying property of the finger surface and promotes fixation on the thin film. can be,
The photocatalyst is a liquid or powder of an ultraviolet and visible light responsive photocatalyst or a non-photocatalyst, and the copper ionized water and the copper aqueous solution may be a liquid or powder, and the nanocellulose solution is a nanocellulose whose main material is wood. , Pulp, sugar, at least one of algae liquids or powders, characterized by liquefying, gelling, pasting, solidifying and mixing them with a distilled water-soluble liquid at 100 ° C or higher. Rubbing protective material for.
前記繊維表面の塗擦性を向上させる前記光触媒成分と前記繊維表面の抗菌性を向上させる前記銅イオン水および銅水溶液と前記繊維表面の保湿性、保護性速乾性を向上させ薄膜上に定着促進を含有した成分の前記ナノセルロース溶液であり、
前記光触媒は、紫外線及び可視光応答型光触媒または無光触媒の液体または粉末であり、前記銅イオン水および銅水溶液は液体または粉体でも良く、前記ナノセルロース溶液は、木材を主材料としたナノセルロースと、パルプ、糖類の液体または粉末の少なくとも1種以上であり、それらを100℃以上の蒸留水溶性液で液体化・ゲル化・ペースト化・固形化させ混合させる事を特徴とした繊維塗擦保護材。It is a fiber coating protective material for fixing the nanocellulose solution in a thin film by coating or spraying on the fiber surface and fixing the nanocellulose solution in a thin film by the activity of the photocatalytic solution, the antibacterial activity of copper ionized water and the copper aqueous solution, and the friction drying of the fingers.
The photocatalyst component that improves the rubbing property of the fiber surface, the copper ionized water and the copper aqueous solution that improve the antibacterial property of the fiber surface, and the moisturizing property and protective quick-drying property of the fiber surface are improved to promote fixing on the thin film. It is the nanocellulose solution of the contained component, and is
The photocatalyst is a liquid or powder of an ultraviolet and visible light responsive photocatalyst or a non-photocatalyst, the copper ionized water and the copper aqueous solution may be a liquid or a powder, and the nanocellulose solution is nanocellulose mainly made of wood. Fiber coating protection, which is at least one of a liquid or powder of pulp or saccharide, and is liquefied, gelled, pasted, solidified and mixed with a distilled water-soluble solution at 100 ° C. or higher. Material.
前記手指または繊維表面の塗擦性を向上させる前記光触媒成分、前記繊維表面の抗菌性を維持向上させる前記銅イオン水および銅水溶液と前記手指または繊維表面の保湿性、保護性速乾性を向上させ薄膜上に定着促進を含有した成分の前記ナノセルロース溶液であり
前記光触媒成分は、酸化チタン、酸化タングステン、リン酸類の少なくとも1種以上の紫外線及び可視光線型光触媒の溶液または粉末であり、
前記ナノセルロース溶液は、木材を主材料としたナノセルロースと、パルプ、糖類、海藻類、藻類、次亜塩素酸の液体または粉末の少なくとも1種以上であり、それらを100℃以上の蒸留水溶性液で液体化・ゲル化・ペースト化・固形化させ混合させる事を特徴とした塗擦保護材。A rubbing protective material that is applied and sprayed on the surface of fingers or fibers to fix the activity of photocatalytic solutions, the antibacterial activity of copper ion water and copper aqueous solution, and chloric acid water and the nanocellulose solution in a thin film.
The photocatalytic component that improves the rubbing property of the finger or fiber surface, the copper ionized water and copper aqueous solution that maintain and improve the antibacterial property of the fiber surface, and the thin film that improves the moisturizing property and protective quick-drying property of the finger or fiber surface. The nanocellulose solution is a component containing promotion of fixation above. The photocatalyst component is a solution or powder of at least one ultraviolet and visible light type photocatalyst of titanium oxide, tungsten oxide, and phosphoric acids.
The nanocellulose solution is at least one of nanocellulose made mainly of wood and liquid or powder of pulp, sugar, seaweed, algae, and hypochlorite, and is water-soluble in distillation at 100 ° C. or higher. A rubbing protective material characterized by being liquefied, gelled, pasted, solidified and mixed with a liquid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125805A JP2022022923A (en) | 2020-06-30 | 2020-06-30 | Paste protection material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125805A JP2022022923A (en) | 2020-06-30 | 2020-06-30 | Paste protection material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022022923A true JP2022022923A (en) | 2022-02-07 |
Family
ID=80225223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020125805A Pending JP2022022923A (en) | 2020-06-30 | 2020-06-30 | Paste protection material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022022923A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116751505A (en) * | 2023-06-28 | 2023-09-15 | 河南心兴化学材料有限公司 | Water-based weather-resistant antibacterial coiled material coating and preparation method thereof |
-
2020
- 2020-06-30 JP JP2020125805A patent/JP2022022923A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116751505A (en) * | 2023-06-28 | 2023-09-15 | 河南心兴化学材料有限公司 | Water-based weather-resistant antibacterial coiled material coating and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103190442B (en) | A kind of composite antibacterial anion air cleanser and preparation method thereof | |
Bhadauriya et al. | Synthesis of yeast-immobilized and copper nanoparticle-dispersed carbon nanofiber-based diabetic wound dressing material: simultaneous control of glucose and bacterial infections | |
WO2014203048A1 (en) | Photocatalytic composition for environmental purification and method thereof | |
KR101508438B1 (en) | a environment-friendly Functional wallpaper adhesive composite and manufacturing method | |
CN114831137B (en) | Deodorant with antibacterial effect | |
CN108391673A (en) | A kind of preparation method of nano silver/quaternary ammonium salt compound disinfectant | |
CN106811968A (en) | A kind of shitosan photo-catalytic antibacterial towel | |
JP2022022923A (en) | Paste protection material | |
WO2016088387A1 (en) | Activated sodium chlorite composition and bactericidal/deodorizing agent | |
CN108077324A (en) | A kind of deodorizing antibiotic agent of high stability | |
JP2022034488A (en) | Friction protective material composition and method for producing the same, and friction protective film obtained using the same | |
CN106421863A (en) | Preparation method for manufacturing sterile and purified air through terahertz household appliance | |
JP2021164621A (en) | Photocatalyst and cleaning protector of nanocellulose | |
JP4348327B2 (en) | Fiber cloth having photocatalytic function and method for producing the same | |
JP2001131018A (en) | Functional composition | |
JP2022064256A (en) | Inunction protective agent and protective film and inunction method thereof | |
JP2022109198A (en) | Inunction protective agent with photocatalyst activity form and inunction protective film | |
KR20220037887A (en) | High performance deodorization material using hydrogen peroxide and preparing method thereof | |
JP2021038368A (en) | Photocatalyst additive for detergent and natural detergent for cleaning or for tableware | |
JP2021138903A (en) | Organic detergent having mainly photocatalyst and nano cellulose, additive, and soap | |
KR100862991B1 (en) | The korean paper and its preparation method | |
JP2021187824A (en) | Humectant | |
KR100749138B1 (en) | Functional wet tissue | |
US20240157005A1 (en) | Odor and microbial mitigation solution | |
KR100507902B1 (en) | Somking material package of wormwood including nano material and smoke having germicidal and cleansing efficacy |