JP2022020932A - Method for predicting shape change of press-molded product - Google Patents

Method for predicting shape change of press-molded product Download PDF

Info

Publication number
JP2022020932A
JP2022020932A JP2020124218A JP2020124218A JP2022020932A JP 2022020932 A JP2022020932 A JP 2022020932A JP 2020124218 A JP2020124218 A JP 2020124218A JP 2020124218 A JP2020124218 A JP 2020124218A JP 2022020932 A JP2022020932 A JP 2022020932A
Authority
JP
Japan
Prior art keywords
press
molded product
residual stress
shape
springback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124218A
Other languages
Japanese (ja)
Other versions
JP7298564B2 (en
Inventor
遼 揚場
Ryo Ageba
祐輔 藤井
Yusuke Fujii
正樹 卜部
Masaki Urabe
隼佑 飛田
Shunsuke Tobita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020124218A priority Critical patent/JP7298564B2/en
Publication of JP2022020932A publication Critical patent/JP2022020932A/en
Application granted granted Critical
Publication of JP7298564B2 publication Critical patent/JP7298564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a method for predicting a shape change of a press-molded product which predicts a shape change due to lapse of time of a press-molded product curved in a convex shape in a side view.SOLUTION: A method for predicting a shape change of a press-molded product predicts a shape change due to stress relaxation with lapse of time after springing back at the moment of mold release with respect to a press-molded product having a top plate part and a vertical wall part and including a shape curved in a convex shape on the top plate part side in a side view. The method includes: a process (S1) in which a shape and a residual stress of the press-molded product immediately after springing back is acquired by spring back analysis; a process (S3) in which a value of a residual stress, which is further relaxed and reduced than the residual stress immediately after springing back, is set to at least the top plate part of the press-molded product immediately after springing back; and a process (S5) in which a shape with the balanced moment of force is determined with respect to the press-molded product to which the value of the relaxed and reduced residual stress is set.SELECTED DRAWING: Figure 1

Description

本発明は、プレス成形品の形状変化予測方法に関し、特に、天板部と縦壁部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、金型から離型してスプリングバックした後の時間経過に伴って生じる形状変化を予測するプレス成形品の形状変化予測方法に関する。 The present invention relates to a method for predicting a shape change of a press-molded product, and more particularly to a press-molded product having a top plate portion and a vertical wall portion and including a shape that is convexly curved toward the top plate portion in a side view. The present invention relates to a method for predicting a shape change of a press-molded product that predicts a shape change that occurs with the passage of time after the mold is released from the mold and springed back.

プレス成形は金属部品を低コストかつ短時間に製造することができる製造方法であり、多くの自動車部品の製造に用いられている。近年では、自動車の衝突安全性と車体の軽量化を両立するため、より高強度な金属板が自動車部品のプレス成形に利用されている。 Press molding is a manufacturing method capable of manufacturing metal parts at low cost and in a short time, and is used for manufacturing many automobile parts. In recent years, higher-strength metal plates have been used for press molding of automobile parts in order to achieve both collision safety of automobiles and weight reduction of automobile bodies.

高強度な金属板をプレス成形する場合の主な課題の一つにスプリングバックによる寸法精度の低下がある。プレス成形により金属板を変形させる際にプレス成形品に発生した残留応力が駆動力となり、金型から離型したプレス成形品がプレス成形前の金属板の形状にバネのように瞬間的に戻ろうとする現象をスプリングバックと呼ぶ。 One of the main problems in press forming a high-strength metal plate is a decrease in dimensional accuracy due to springback. The residual stress generated in the press-molded product when deforming the metal plate by press molding becomes the driving force, and the press-molded product released from the mold momentarily returns to the shape of the metal plate before press molding like a spring. The phenomenon of trying is called springback.

プレス成形時に発生する残留応力は高強度な金属板(例えば、高張力鋼板)ほど大きくなるため、スプリングバックによる形状変化も大きくなる。したがって高強度な金属板ほどスプリングバック後の形状を規定の寸法内におさめることが難しくなる。そこでスプリングバックによるプレス成形品の形状変化を精度良く予測する技術が重要となる。 Since the residual stress generated during press forming increases as the strength of the metal plate (for example, high-strength steel plate) increases, the shape change due to springback also increases. Therefore, the higher the strength of the metal plate, the more difficult it is to keep the shape after springback within the specified dimensions. Therefore, a technique for accurately predicting the shape change of the press-molded product due to springback is important.

スプリングバックによる形状変化の予測には、有限要素法によるプレス成形シミュレーションの利用が一般的である。当該プレス成形シミュレーションにおける手順としては、まず、金属板を成形下死点までプレス成形する過程のプレス成形解析を行い、プレス成形下死点での残留応力を予測する第1段階(例えば特許文献1)と、金型から離型した(取り出した)プレス成形品がスプリングバックにより形状が変化する過程のスプリングバック解析を行い、離型したプレス成形品における力のモーメントと残留応力との釣り合いがとれる形状を予測する第2段階(例えば特許文献2)に分けられる。 Press forming simulation by the finite element method is generally used to predict the shape change by springback. As a procedure in the press forming simulation, first, a press forming analysis in the process of press forming a metal plate to the forming bottom dead point is performed, and a first step of predicting a residual stress at the press forming bottom dead point (for example, Patent Document 1). ), Springback analysis is performed on the process in which the shape of the press-formed product released (taken out) from the die changes due to springback, and the moment of force and residual stress in the released press-formed product can be balanced. It is divided into a second stage (for example, Patent Document 2) of predicting the shape.

特許5795151号公報Japanese Patent No. 5795151 特許5866892号公報Japanese Patent No. 5866892 特開2013-113144号公報Japanese Unexamined Patent Publication No. 2013-11344

これまでに、前述した第1段階のプレス成形解析と第2段階のスプリングバック解析とを統合したプレス成形シミュレーションを行うことにより、金型から離型してスプリングバックしたプレス成形品の形状が予測されてきた。
しかしながら、発明者らは、プレス成形シミュレーションにより予測されたプレス成形品の形状と実際にプレス成形されたプレス成形品の形状とを比較した際、プレス成形シミュレーションによる形状予測精度が低くなるプレス成形品があることに気づいた。
By performing a press forming simulation that integrates the above-mentioned first-stage press-forming analysis and second-stage springback analysis, the shape of the press-formed product that has been separated from the die and spring-backed has been predicted. It has been.
However, when the inventors compare the shape of the press-molded product predicted by the press-form simulation with the shape of the press-molded product actually press-molded, the shape prediction accuracy by the press-form simulation becomes low. I noticed that there is.

そこで、プレス成形シミュレーションによる形状予測精度が低くなるプレス成形品とその原因を調査したところ、一例として図8に示すような、天板部3と縦壁部5とフランジ部7とを有してなる断面ハット形状であり、側面視で天板部3側に凸状に湾曲したプレス成形品1においては、離型して数日経過した後では、プレス成形品1における長手方向の端部側が天板部3側に変形(以下、このような変形を「キャンバーバック」という。)が生じてしまい、プレス成形直後と数日経過後とではプレス成形品1の形状が異なることを発見した。 Therefore, as a result of investigating a press-formed product having a low shape prediction accuracy by a press-forming simulation and its cause, it has a top plate portion 3, a vertical wall portion 5, and a flange portion 7 as shown in FIG. 8 as an example. In the press-molded product 1 which has a cross-sectional hat shape and is curved convexly toward the top plate portion 3 in a side view, the end side in the longitudinal direction of the press-molded product 1 is formed several days after the mold is released. It was discovered that deformation (hereinafter, such deformation is referred to as "camberback") occurs on the top plate portion 3 side, and the shape of the press-molded product 1 is different immediately after press molding and after several days have passed.

このようなプレス成形品の時間単位の経過に伴う経時変化は、クリープ現象のように外部から高い荷重を受け続ける構造部材が徐々に変形する現象(例えば、特許文献3)と類似しているように思われるが、外部から荷重を受けていないプレス成形品において起こる形状の変化はこれまでに知られていなかった。 The time-dependent change of such a press-molded product over time seems to be similar to a phenomenon in which a structural member that continues to receive a high load from the outside is gradually deformed (for example, Patent Document 3), such as a creep phenomenon. However, the change in shape that occurs in the press-molded product that is not subjected to external load has not been known so far.

さらに、従来のプレス成形シミュレーションにおける第2段階(スプリングバック解析)は、金型から取り出した瞬間に生じるスプリングバックした直後のプレス成形品の形状を予測するものである。そのため、本願が目的とするスプリングバックしたプレス成形品について、例えば数日経過した後の形状変化を予測することに関しては、これまでに何ら検討されていなかった。
その上、スプリングバックしたプレス成形品の時間単位の経過による形状変化は、前述したように、外部からの荷重を受けずに生じるものである。そのため、プレス成形品の時間単位の経過による形状変化の予測を試みたとしても、クリープ現象による形状変化を取り扱う解析手法を適用することはできなかった。
Further, the second stage (springback analysis) in the conventional press molding simulation predicts the shape of the press molded product immediately after springback that occurs at the moment of taking out from the die. Therefore, for the spring-backed press-molded product, which is the object of the present application, for example, the prediction of the shape change after several days has not been studied.
Moreover, the shape change of the spring-backed press-molded product over time occurs without receiving an external load, as described above. Therefore, even if an attempt was made to predict the shape change of the press-molded product over time, it was not possible to apply an analysis method that handles the shape change due to the creep phenomenon.

本発明は、上記のような課題を解決するためになされたものであり、側面視で凸状に湾曲したプレス成形品について、金型から離型した瞬間にスプリングバックした後の時間単位の経過による前記プレス成形品の形状変化を予測するプレス成形品の形状変化予測方法を提案することを目的とする。 The present invention has been made to solve the above-mentioned problems, and the time unit elapsed after springing back at the moment of releasing the mold from the press-molded product which is curved in a convex shape in a side view. It is an object of the present invention to propose a method for predicting a shape change of a press-molded product for predicting a shape change of the press-molded product.

(1)本発明に係るプレス成形品の形状変化予測方法は、天板部と該天板部から連続する縦壁部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、金型から離型した瞬間にスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測するものであって、
前記プレス成形品のスプリングバック解析により、スプリングバックした直後の前記プレス成形品の形状及び残留応力を取得するスプリングバック直後の形状・残留応力取得工程と、
スプリングバックした直後の前記プレス成形品の少なくとも前記天板部に対し、スプリングバックした直後の残留応力よりも緩和減少した残留応力の値を設定する残留応力緩和減少設定工程と、
残留応力の値を緩和減少設定した前記プレス成形品について力のモーメントが釣り合う形状を求める残留応力緩和形状解析工程と、を含むことを特徴とするものである。
(1) The method for predicting a shape change of a press-molded product according to the present invention has a top plate portion and a vertical wall portion continuous from the top plate portion, and is curved convexly toward the top plate portion in a side view. For press-molded products including shapes, it predicts shape changes due to stress relaxation over time after springing back at the moment of mold release from the mold.
The shape / residual stress acquisition process immediately after springback to acquire the shape and residual stress of the press-molded product immediately after springback by the springback analysis of the press-molded product, and the process of acquiring the shape / residual stress immediately after springback.
A residual stress relaxation reduction setting step for setting a value of residual stress that is relaxed and reduced from the residual stress immediately after springback with respect to at least the top plate portion of the press-formed product immediately after springback.
It is characterized by including a residual stress relaxation shape analysis step of obtaining a shape in which the moments of force are balanced for the press-molded product in which the value of the residual stress is relaxed and reduced.

(2)本発明に係るプレス成形品の形状変化予測方法は、天板部と該天板部から連続する縦壁部と該縦壁部から連続するフランジ部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、金型から離型した瞬間にスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測するものであって、
前記プレス成形品のスプリングバック解析により、スプリングバックした直後の前記プレス成形品の形状及び残留応力を取得するスプリングバック直後の形状・残留応力取得工程と、
スプリングバックした直後の前記プレス成形品の少なくとも前記天板部及び/又は前記フランジ部に対し、スプリングバックした直後の残留応力よりも緩和減少した残留応力の値を設定する残留応力緩和減少設定工程と、
残留応力の値を緩和減少設定した前記プレス成形品について力のモーメントが釣り合う形状を求める残留応力緩和形状解析工程と、を含むことを特徴とするものである。
(2) The method for predicting a shape change of a press-molded product according to the present invention has a top plate portion, a vertical wall portion continuous from the top plate portion, and a flange portion continuous from the vertical wall portion, and is described in a side view. For press-molded products that include a shape that is convexly curved toward the top plate, shape changes due to stress relaxation over time after springing back at the moment of mold release are predicted.
The shape / residual stress acquisition process immediately after springback to acquire the shape and residual stress of the press-molded product immediately after springback by the springback analysis of the press-molded product, and the process of acquiring the shape / residual stress immediately after springback.
A residual stress relaxation reduction setting step of setting a value of residual stress that is relaxed and reduced from the residual stress immediately after springback with respect to at least the top plate portion and / or the flange portion of the press-formed product immediately after springback. ,
It is characterized by including a residual stress relaxation shape analysis step of obtaining a shape in which the moments of force are balanced for the press-molded product in which the value of the residual stress is relaxed and reduced.

(3)上記(1)又は(2)に記載のものにおいて、
前記残留応力緩和減少設定工程において、スプリングバックした直後の残留応力よりも5%以上緩和減少した残留応力の値を設定することを特徴とするものである。
(3) In the above-mentioned (1) or (2),
In the residual stress relaxation reduction setting step, it is characterized in that the value of the residual stress whose relaxation is reduced by 5% or more from the residual stress immediately after springback is set.

(4)上記(1)乃至(3)のいずれかに記載のものにおいて、
前記プレス成形品のプレス成形に供するブランクは、引張強度が150MPa級以上2000MPa級以下の金属板であることを特徴とするものである。
(4) In any of the above (1) to (3),
The blank used for press molding of the press-molded product is characterized by being a metal plate having a tensile strength of 150 MPa class or more and 2000 MPa class or less.

本発明においては、天板部と該天板部から連続する縦壁部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、該プレス成形品のスプリングバック解析により、スプリングバックした直後の前記プレス成形品の形状及び残留応力を取得するスプリングバック直後の形状・残留応力取得工程と、該取得したスプリングバックした直後のプレス成形品の少なくとも前記天板部に対し、スプリングバックした直後の残留応力よりも緩和減少した残留応力の値を設定する残留応力緩和減少設定工程と、前記残留応力の値を緩和減少設定した前記プレス成形品について力のモーメントが釣り合う形状を求める残留応力緩和形状解析工程と、を含むことにより、金型から離型してスプリングバックした後の時間経過に伴う前記プレス成形品の形状変化を精度良く予測することができる。その結果、自動車部品や車体等の製造工程において、従来よりさらに寸法精度の優れたプレス成形品を得て、製造能率を大幅に向上できる。 In the present invention, the press-molded product has a top plate portion and a vertical wall portion continuous from the top plate portion, and includes a shape that is convexly curved toward the top plate portion in a side view. The shape / residual stress acquisition step immediately after springback to acquire the shape and residual stress of the press-molded product immediately after springback, and at least the above-mentioned heaven of the acquired press-molded product immediately after springback by the springback analysis of. The moment of force for the residual stress relaxation reduction setting step in which the residual stress value relaxed and reduced compared to the residual stress immediately after springback is set for the plate portion, and the press-molded product in which the residual stress value is relaxed and reduced. By including a residual stress relaxation shape analysis step for determining a shape in which the stress is balanced, it is possible to accurately predict the shape change of the press-molded product with the passage of time after the mold is separated from the mold and springed back. As a result, in the manufacturing process of automobile parts, car bodies, and the like, a press-molded product having higher dimensional accuracy than before can be obtained, and the manufacturing efficiency can be significantly improved.

本発明の実施の形態に係るプレス成形品の形状変化予測方法の処理の流れを示すフロー図である。It is a flow chart which shows the flow of the process of the shape change prediction method of the press-molded article which concerns on embodiment of this invention. 本発明の実施の形態及び実施例1で対象とした側面視で凸状に湾曲したハット型断面形状のプレス成形品を示す斜視図である。FIG. 3 is a perspective view showing a press-molded product having a hat-shaped cross-sectional shape that is convexly curved in a side view, which is the object of the embodiment of the present invention and the first embodiment. ひずみを付与した後に一定に保持した状態で時間の経過とともに応力が緩和して減少する応力緩和減少を説明する図である。It is a figure explaining the stress relaxation decrease that the stress relaxes and decreases with the passage of time in the state of holding it constant after applying strain. 側面視で凸状に湾曲したハット型断面形状のプレス成形品の天板部及びフランジ部における応力緩和による形状変化を説明する図である((a)プレス成形直後の成形下死点、(b)スプリングバック直後、(c)時間経過後)。It is a figure explaining the shape change by stress relaxation in the top plate part and the flange part of the press-molded product of the hat-shaped cross-sectional shape curved convexly in the side view ((a) the bottom dead center of molding immediately after press molding, (b). ) Immediately after springback, (c) after time has passed). 実施例2で対象としたコ字型断面形状のプレス成形品と、該プレス成形品をプレス成形しスプリングバックした後に生じる形状変化(キャンバーバック)を説明する斜視図である。FIG. 3 is a perspective view illustrating a press-molded product having a U-shaped cross-sectional shape, which is the target of the second embodiment, and a shape change (camberback) that occurs after the press-molded product is press-molded and spring-backed. 実施例3で対象としたZ字型断面形状のプレス成形品と、該プレス成形品をプレス成形しスプリングバックした後に生じる形状変化(キャンバーバック)を説明する斜視図である。It is a perspective view explaining the press-molded product of the Z-shaped cross-sectional shape targeted in Example 3, and the shape change (camber back) that occurs after the press-molded product is press-molded and spring-backed. 実施例4で対象としたプレス成形品を示す図である((a)上面図、(b)斜視図)。It is a figure which shows the press-molded article which was targeted in Example 4 ((a) top view, (b) perspective view). 側面視で凸状に湾曲したハット型断面形状のプレス成形品をプレス成形しスプリングバックした後に生じる形状変化(キャンバーバック)を説明する図である。It is a figure explaining the shape change (camberback) which occurs after press-molding and spring-backing the press-molded product of the hat type cross-sectional shape which was curved convexly in the side view.

<発明に至るまでの検討>
発明者らは、前述の課題を解決するために、図2に一例として示すプレス成形品1について、金型から離型した瞬間にスプリングバックした後のさらなる時間経過に伴う応力緩和による形状変化を予測する手法を確立するために、その前段階として、プレス成形品1の形状が時間経過に伴って変化する原因について検討した。
<Examination leading up to the invention>
In order to solve the above-mentioned problems, the inventors have made a change in the shape of the press-molded product 1 shown as an example in FIG. In order to establish a prediction method, as a preliminary step, the cause of the change in the shape of the press-molded product 1 with the passage of time was examined.

検討の対象としたプレス成形品1は、図2に一例を示すように、天板部3と縦壁部5と、縦壁部5とフランジ部7とを有してなるハット型断面形状であり、天板部3と縦壁部5とはパンチ肩部9を介して連続し、縦壁部5とフランジ部7とはダイ肩部11を介して連続する。 As an example shown in FIG. 2, the press-molded product 1 to be examined has a hat-shaped cross-sectional shape having a top plate portion 3, a vertical wall portion 5, a vertical wall portion 5, and a flange portion 7. The top plate portion 3 and the vertical wall portion 5 are continuous via the punch shoulder portion 9, and the vertical wall portion 5 and the flange portion 7 are continuous via the die shoulder portion 11.

そして、このようなプレス成形品1について上記を検討した結果、発明者らは、図3の応力―ひずみ線図に示すように、ひずみを付与した後に一定に保持したまま時間の経過とともに応力が徐々に緩和する応力緩和現象に着目した。そして、スプリングバックした後のプレス成形品1においても、天板部3とフランジ部7の残留応力が時間の経過とともに徐々に緩和されることで、プレス成形品1の力のモーメントと釣り合う形状が変化することを突き止めた。 Then, as a result of examining the above for such a press-molded product 1, the inventors, as shown in the stress-strain diagram of FIG. 3, stress is applied with the passage of time while being kept constant after the strain is applied. We focused on the stress relaxation phenomenon that gradually relaxes. Even in the press-molded product 1 after springback, the residual stress of the top plate portion 3 and the flange portion 7 is gradually relaxed with the passage of time, so that the shape is balanced with the force moment of the press-molded product 1. I found out that it would change.

プレス成形品1における残留応力の緩和による形状変化について、図4に示す模式図を用いて説明する。 The shape change due to the relaxation of the residual stress in the press-molded product 1 will be described with reference to the schematic diagram shown in FIG.

プレス成形品1のプレス成形において、金属板(ブランク)は図2に示すように側面視で凸状に湾曲した形状に曲げられるため、成形下死点では、図4(a)に示すように、側面視において曲げ外側となる天板部3では引張応力が、曲げ内側となるフランジ部7では圧縮応力が発生する。 In the press molding of the press-molded product 1, the metal plate (blank) is bent into a convexly curved shape in the side view as shown in FIG. 2, and therefore, the bottom dead center of molding is as shown in FIG. 4 (a). In the side view, tensile stress is generated in the top plate portion 3 which is the outer side of the bend, and compressive stress is generated in the flange portion 7 which is the inner side of the bend.

次に、金型からプレス成形品1を取り外すと、プレス成形時に発生した残留応力を駆動力としてスプリングバックが生じ、前述した図8に示すようなキャンバーバックが発生する。このキャンバーバックによって、プレス成形品1は、湾曲の曲率半径が大きくなる形状に変形する。そして、図4(b)に示すように、離型したプレス成形品1は、成形下死点における残留応力(図4(a))とは逆向きの残留応力が発生した状態でのモーメントが釣り合うような形状となる。なお、図4(b)中の破線は、成形下死点におけるプレス成形品1の形状(図4(a))である。 Next, when the press-molded product 1 is removed from the die, springback occurs using the residual stress generated during press molding as a driving force, and camberback as shown in FIG. 8 described above occurs. By this camber back, the press-molded product 1 is deformed into a shape having a large radius of curvature of the curve. Then, as shown in FIG. 4 (b), the released press-molded product 1 has a moment in a state where a residual stress in the opposite direction to the residual stress at the bottom dead center of molding (FIG. 4 (a)) is generated. The shape is balanced. The broken line in FIG. 4B is the shape of the press-molded product 1 at the bottom dead center of molding (FIG. 4A).

その後、天板部3における圧縮応力とフランジ部7における引張応力は、図4(b)から図4(c)に示すように、時間経過とともに外部からの強制を受けないまま緩和して減少する。これにより、力のモーメントと釣り合う形状が変化するため、プレス成形品1においてはさらにキャンバーバックが発生し、成形下死点形状からの乖離はさらに増加する。なお、図4(c)中の破線は、スプリングバック直後のプレス成形品1の形状(図4(b))である。 After that, as shown in FIGS. 4 (b) to 4 (c), the compressive stress in the top plate portion 3 and the tensile stress in the flange portion 7 relax and decrease with the passage of time without being forced from the outside. .. As a result, the shape that balances with the moment of force changes, so that the press-molded product 1 further causes camber back, and the deviation from the bottom dead center shape of molding further increases. The broken line in FIG. 4 (c) is the shape of the press-molded product 1 immediately after springback (FIG. 4 (b)).

すなわち、成形下死点までプレス成形したプレス成形品1は、金型から離型して瞬間的にスプリングバックすると、その時点でのプレス成形品1に残留応力が生じるが、時間の経過に伴って残留応力は緩和されて減少し、湾曲外側の天板部3の残留応力と湾曲内側のフランジ部7の残留応力の差も減少する。その結果、プレス成形品1においては、スプリングバック直後の形状よりもさらに小さな残留応力で釣り合った形状へと変形する。 That is, when the press-molded product 1 press-molded to the bottom dead point of molding is momentarily springed back from the mold, residual stress is generated in the press-molded product 1 at that time, but with the passage of time. The residual stress is relaxed and reduced, and the difference between the residual stress of the top plate portion 3 on the outer side of the curve and the residual stress of the flange portion 7 on the inner side of the curve also decreases. As a result, the press-molded product 1 is deformed into a balanced shape with a smaller residual stress than the shape immediately after springback.

このように、側面視で天板部3側に凸状に湾曲した形状のプレス成形品1においては、プレス成形した後のさらなる時間の経過に伴って残留応力が緩和することに起因して、湾曲の両端側が湾曲の外側へと移動するキャンバーバックが発生し、成形下死点からさらに乖離した形状になるという知見が得られた。 As described above, in the press-molded product 1 having a shape that is convexly curved toward the top plate portion 3 in the side view, the residual stress is relaxed with the lapse of further time after the press molding. It was found that camber back occurs in which both ends of the curve move to the outside of the curve, resulting in a shape further deviated from the bottom dead center of molding.

そこで、発明者らは、上記の新たな知見に基づいて、例えば、図2に示すようなプレス成形品1のスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測する方法について検討をすすめた。その結果、前述したプレス成形シミュレーションの第2段階(スプリングバック解析)で得られるスプリングバックした直後のプレス成形品1の少なくとも天板部3及び/又はフランジ部7の残留応力を緩和させ、プレス成形品1の力のモーメントと釣り合う形状を求める第3段階の解析をさらに行うことで、前述したようなプレス成形品1の時間経過に伴う形状変化(キャンバーバック)を予測できるということを発見した。 Therefore, based on the above-mentioned new findings, the inventors have studied, for example, a method for predicting a shape change due to stress relaxation with the passage of time after springback of the press-molded product 1 as shown in FIG. I recommended it. As a result, at least the residual stress of the top plate portion 3 and / or the flange portion 7 of the press-formed product 1 immediately after springback obtained in the second stage (springback analysis) of the press-forming simulation described above is relaxed and press-formed. It was discovered that the shape change (camberback) with the passage of time of the press-formed product 1 as described above can be predicted by further performing the third-stage analysis for determining the shape that balances the force moment of the product 1.

さらに、当該形状変化予測方法によれば、図2に示すようなハット型断面形状のプレス成形品1に限らず、天板部と該天板部から連続する縦壁部とを有して側面視で天板部側に凸状に湾曲した形状を含むプレス成形品についても、スプリングバックした後の時間経過に伴う天板部の残留応力の緩和減少によるキャンバーバックを予測できるという知見が得られた。 Further, according to the shape change prediction method, not only the press-molded product 1 having a hat-shaped cross-sectional shape as shown in FIG. 2 but also a side surface having a top plate portion and a vertical wall portion continuous from the top plate portion. It was found that camberback can be predicted due to the relaxation and reduction of the residual stress of the top plate with the passage of time after springback, even for press-molded products containing a shape that is visually curved toward the top plate. rice field.

本発明は、このような検討及び知見に基づいてなされたものであり、以下に具体的な構成の一例を説明する。 The present invention has been made based on such studies and findings, and an example of a specific configuration will be described below.

<プレス成形品の形状変化予測方法>
本発明の実施の形態に係るプレス成形品の形状変化予測方法は、一例として図2に示すように、天板部3と天板部3から連続する縦壁部5と縦壁部5から連続するフランジ部7とを有するハット型断面形状であり側面視で天板部3側に凸状に湾曲した形状を含むプレス成形品1について、金型から離型した瞬間にスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測するものであって、図1に示すように、スプリングバック直後の形状・残留応力取得工程S1と、残留応力緩和減少設定工程S3と、残留応力緩和形状解析工程S5と、を備えるものである。以下、上記の各工程について説明する。
<Method for predicting shape change of press-molded products>
As an example, as shown in FIG. 2, the method for predicting a shape change of a press-molded product according to an embodiment of the present invention is continuous from a top plate portion 3 and a vertical wall portion 5 continuous from the top plate portion 3 and a vertical wall portion 5. The time after the press-molded product 1, which has a hat-shaped cross-sectional shape having the flange portion 7 and includes a shape that is convexly curved toward the top plate portion 3 in a side view, is springed back at the moment of being released from the mold. It predicts the shape change due to stress relaxation over time, and as shown in FIG. 1, the shape / residual stress acquisition step S1 immediately after springback, the residual stress relaxation reduction setting step S3, and the residual stress relaxation shape analysis. The process S5 and the like are provided. Hereinafter, each of the above steps will be described.

≪スプリングバック直後の形状・残留応力取得工程≫
スプリングバック直後の形状・残留応力取得工程S1は、プレス成形品1のスプリングバック解析により、スプリングバックした直後のプレス成形品1の形状及び残留応力を取得する工程である。
≪Shape and residual stress acquisition process immediately after springback≫
The shape / residual stress acquisition step S1 immediately after springback is a step of acquiring the shape and residual stress of the press-molded product 1 immediately after springback by the springback analysis of the press-molded product 1.

スプリングバックした直後のプレス成形品1の形状及び残留応力を取得する具体的な処理の一例としては、実際のプレス成形品1のプレス成形に用いる金型をモデル化した金型モデルを用いて、金属板を成形下死点までプレス成形する過程のプレス成形解析を行い、成形下死点におけるプレス成形品1を求める第1段階と、該求めた成形下死点におけるプレス成形品1を金型モデルから離型した後のプレス成形品1の力のモーメントの釣り合いが取れる形状及び残留応力を求めるスプリングバック解析を行う第2段階と、を有する有限要素法によるプレス成形シミュレーションが挙げられる。 As an example of a specific process for acquiring the shape and residual stress of the press-molded product 1 immediately after springback, a die model that models the mold used for the press molding of the actual press-molded product 1 is used. A press molding analysis is performed in the process of press-molding a metal plate to the bottom dead point of molding, and the first step of obtaining the press-molded product 1 at the bottom dead point of molding and the press-molded product 1 at the obtained bottom dead point of molding are molded. A press forming simulation by a finite element method having a second step of performing a springback analysis for obtaining a shape and residual stress in which the moment of force of the press formed product 1 after being removed from the model can be balanced and a residual stress can be mentioned.

≪残留応力緩和減少設定工程≫
残留応力緩和減少設定工程S3は、スプリングバック直後の形状・残留応力取得工程S1において取得したスプリングバックした直後のプレス成形品1の少なくとも天板部3及び/又はフランジ部7に対し、その残留応力よりも緩和減少させた残留応力の値を設定する工程である。
≪Residual stress relaxation reduction setting process≫
The residual stress relaxation reduction setting step S3 is performed on at least the top plate portion 3 and / or the flange portion 7 of the press-formed product 1 immediately after springback acquired in the shape / residual stress acquisition step S1 immediately after springback. This is the process of setting the value of the residual stress that has been relaxed and reduced.

残留応力緩和減少設定工程S3における残留応力とは、スプリングバックした直後のプレス成形品1に残留する引張応力及び圧縮応力のことをいう。
さらに、残留応力緩和減少設定工程S3において残留応力を緩和減少させた残留応力の値を設定するとは、スプリングバックした直後のプレス成形品1に残留する引張応力(正の値)及び圧縮応力(負の値)の絶対値を緩和減少させることをいう。
The residual stress in the residual stress relaxation reduction setting step S3 means the tensile stress and the compressive stress remaining in the press-formed product 1 immediately after springback.
Further, setting the value of the residual stress in which the residual stress is relaxed and reduced in the residual stress relaxation reduction setting step S3 means that the tensile stress (positive value) and the compressive stress (negative value) remaining in the press-formed product 1 immediately after springback are set. It means to relax and reduce the absolute value of).

≪残留応力緩和形状解析工程≫
残留応力緩和形状解析工程S5は、残留応力緩和減少設定工程S3で残留応力を緩和減少設定したプレス成形品1について力のモーメントが釣り合う形状を求める解析を行う工程である。
≪Residual stress relaxation shape analysis process≫
The residual stress relaxation shape analysis step S5 is a step of performing an analysis for obtaining a shape in which the moments of force are balanced for the press-formed product 1 for which the residual stress is relaxed and reduced in the residual stress relaxation reduction setting step S3.

残留応力緩和形状解析工程S5における解析には、スプリングバック直後の形状・残留応力取得工程S1におけるスプリングバック解析と同様の解析手法を適用することにより、残留応力を緩和減少した後のプレス成形品1の形状を得ることができる。 The press-formed product 1 after the residual stress is relaxed and reduced by applying the same analysis method as the springback analysis in the shape / residual stress acquisition step S1 immediately after the springback to the analysis in the residual stress relaxation shape analysis step S5. Shape can be obtained.

このように、本実施の形態に係るプレス成形品の形状変化予測方法によれば、スプリングバック解析により取得した、スプリングバックした直後のプレス成形品1の少なくとも天板部及び/又はフランジ部に対し、その残留応力よりも緩和減少した残留応力の値を設定し、該残留応力の値を緩和減少設定したプレス成形品1について力のモーメントと釣り合う形状を求める解析を行うことで、実際のプレス成形品1における時間経過による応力緩和と形状変化を模擬し、金型から離型してスプリングバックした後のプレス成形品1の時間経過に伴う形状変化(キャンバーバック)を予測することができる。 As described above, according to the method for predicting the shape change of the press-formed product according to the present embodiment, at least the top plate portion and / or the flange portion of the press-formed product 1 immediately after springback obtained by the springback analysis. By setting the value of the residual stress that is relaxed and reduced from the residual stress, and performing the analysis to obtain the shape that balances the moment of force with respect to the press-formed product 1 for which the value of the residual stress is set to be relaxed and reduced, the actual press molding is performed. By simulating stress relaxation and shape change with the passage of time in the product 1, it is possible to predict the shape change (camberback) with the passage of time of the press-formed product 1 after the die is removed from the mold and springed back.

なお、上記の説明において、残留応力緩和減少設定工程S3は、プレス成形品1における少なくとも天板部3及び/又はフランジ部7に対し、それら各部位の残留応力を緩和減少させた残留応力の値を設定するものであった。 In the above description, in the residual stress relaxation reduction setting step S3, the residual stress value obtained by relaxing and reducing the residual stress of each portion with respect to at least the top plate portion 3 and / or the flange portion 7 in the press-formed product 1. Was to set.

もっとも、本発明は、プレス成形品1における天板部3やフランジ部7以外の他の部位に対しても残留応力を緩和減少させるものであってもよいし、プレス成形品1の全部に対して残留応力を緩和減少させた値を設定してもよい。
さらには、天板部3やフランジ部7等の部位ごとに残留応力を緩和減少させる割合や値を変えてもよい。
However, according to the present invention, the residual stress may be relaxed and reduced with respect to parts other than the top plate portion 3 and the flange portion 7 in the press-molded product 1, or the entire press-molded product 1 may be subjected to the present invention. The residual stress may be relaxed and reduced.
Further, the ratio or value of relaxing and reducing the residual stress may be changed for each portion such as the top plate portion 3 and the flange portion 7.

また、上記の説明は、ハット型断面形状のプレス成形品1を対象としたものであったが、本発明は、天板部と該天板部から連続する縦壁部とを有し側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品であれば適用することができる。このようなプレス成形品としては、図5に例示するような天板部23と天板部23から連続する縦壁部25とを有してなるコ字型断面形状のプレス成形品21やL字型断面形状のプレス成形品(図示なし)、図6に例示するような、天板部33と天板部33から連続する縦壁部35と縦壁部35から連続するフランジ部37とを有してなるZ字型断面形状のプレス成形品31、等が挙げられる。 Further, the above description was intended for the press-molded product 1 having a hat-shaped cross-sectional shape, but the present invention has a top plate portion and a vertical wall portion continuous from the top plate portion, and is viewed from the side. This can be applied to any press-molded product containing a shape that is convexly curved toward the top plate portion. Examples of such a press-molded product include a U-shaped cross-sectional shape press-molded product 21 and L having a top plate portion 23 and a vertical wall portion 25 continuous from the top plate portion 23 as illustrated in FIG. A press-molded product having a character-shaped cross section (not shown), a vertical wall portion 35 continuous from the top plate portion 33 and the top plate portion 33, and a flange portion 37 continuous from the vertical wall portion 35, as illustrated in FIG. Examples thereof include a press-molded product 31 having a Z-shaped cross-sectional shape.

なお、上記の説明は、長手方向の全長にわたって側面視で凸状に湾曲した形状のプレス成形品を対象とするものであったが、本発明は、側面視で凸状に湾曲した形状の部位を有するプレス成形品であればよく、例えば、湾曲した湾曲部と、該湾曲部の湾曲の端から長手方向の外方の両側又は片側に直線状に延出する辺部とを含むプレス成形品を対象とすることができる。 The above description is intended for a press-molded product having a shape that is convexly curved in a side view over the entire length in the longitudinal direction, but the present invention is a portion having a shape that is convexly curved in a side view. The press-molded product may be any press-molded product having, for example, a curved portion and a side portion extending linearly from the curved end of the curved portion to both sides or one side in the longitudinal direction. Can be targeted.

また、本発明は、残留応力緩和減少設定工程において、スプリングバックした直後の残留応力よりも5%以上緩和減少させることにより、時間経過した後の形状変化を良好に予測できて好ましい。 Further, it is preferable that the present invention can satisfactorily predict the shape change after the lapse of time by reducing the residual stress by 5% or more from the residual stress immediately after springback in the residual stress relaxation reduction setting step.

なお、様々な形状のプレス成形品に本発明を適用し、残留応力を緩和減少させる割合を変化させて形状変化を予測したときの精度については、後述する実施例1~実施例4にて検証した。 The accuracy when the present invention is applied to press-molded products having various shapes and the shape change is predicted by changing the ratio of relaxing and reducing the residual stress is verified in Examples 1 to 4 described later. did.

また、本発明に係るプレス成形品の形状変化予測方法において、プレス成形に供するブランク(金属板)や、プレス成形品の形状、種類には特に制限はないが、プレス成形品の残留応力が高くなる金属板を用いてプレス成形した自動車部品に対してより効果がある。 Further, in the method for predicting the shape change of a press-molded product according to the present invention, the shape and type of the blank (metal plate) to be used for press molding and the shape and type of the press-molded product are not particularly limited, but the residual stress of the press-molded product is high. It is more effective for automobile parts press-molded using the metal plate.

具体的には、ブランクの板厚については、0.5mm以上4.0mm以上であることが好ましい。
また、ブランクの引張強度については、150MPa級以上2000MPa級以下であることが好ましく、440MPa級以上1470MPa級以下であることがより好ましい。
Specifically, the thickness of the blank is preferably 0.5 mm or more and 4.0 mm or more.
The tensile strength of the blank is preferably 150 MPa class or more and 2000 MPa class or less, and more preferably 440 MPa class or more and 1470 MPa class or less.

引張強度が150MPa級未満の金属板は、プレス成形品に利用されることが少ないため、本発明に係るプレス成形品の形状変化予測方法を用いる利点が少ない。引張強度150MPa級以上の金属板を用いた自動車の外板部品等の剛性が低いものについては、残留応力の変化による形状変化を受けやすいため、本発明を適用する利点が多くなるので本発明を好適に適用できる。 Since a metal plate having a tensile strength of less than 150 MPa class is rarely used for a press-molded product, there is little advantage in using the method for predicting a shape change of a press-molded product according to the present invention. The present invention has many advantages to apply the present invention because the outer plate parts of automobiles using metal plates with a tensile strength of 150 MPa class or higher and having low rigidity are susceptible to shape changes due to changes in residual stress. It can be suitably applied.

一方、引張強度が2000MPa級を超える金属板は延性が乏しいため、例えば、図2に示すようなハット型断面形状のプレス成形品1のプレス成形過程においてはパンチ肩部9やダイ肩部11で割れが発生しやすく、プレス成形することができない場合がある。 On the other hand, since a metal plate having a tensile strength exceeding 2000 MPa class has poor ductility, for example, in the press forming process of the press-formed product 1 having a hat-shaped cross-sectional shape as shown in FIG. 2, the punch shoulder portion 9 and the die shoulder portion 11 are used. Cracks are likely to occur and press molding may not be possible.

さらに、プレス成形品の種類としては、フロントピラーアッパーやルーフレール等の骨格部品といった自動車部品を対象とすることが好ましいが、側面視で天板部側に凸状に湾曲した形状を含み、プレス成形した後の時間経過によりキャンバーバックが発生する自動車部品であれば本発明を広く用いることができる。 Further, as the type of the press-molded product, it is preferable to target automobile parts such as skeleton parts such as front pillar uppers and roof rails, but the press-molded products include a shape that is convexly curved toward the top plate portion in a side view. The present invention can be widely used as long as it is an automobile part in which camber back occurs due to the passage of time after the skeleton.

なお、本発明で対象とするプレス成形品のプレス工法についても、曲げ成形、フォーム成形又はドロー成形等、特に問わない。 The press method for the press-molded product, which is the subject of the present invention, is not particularly limited to bending molding, foam molding, draw molding, and the like.

<ハット型断面形状のプレス成形品>
実施例1では、まず、金属板として以下の表1に一例を示す機械的特性を持つ鋼板Aを用い、図2に示す、側面視で凸状に湾曲したハット型断面形状のプレス成形品1のプレス成形を行った。プレス成形品1の成形下死点形状は、湾曲の曲率半径を170mm、プレス成形方向における縦壁部5の縦壁高さを40mmとした。
<Press-molded product with a hat-shaped cross-sectional shape>
In the first embodiment, first, a steel plate A having the mechanical properties shown in Table 1 below is used as the metal plate, and the press-formed product 1 having a hat-shaped cross-sectional shape that is curved convexly in a side view as shown in FIG. Was press-molded. The shape of the bottom dead center of the press-molded product 1 is such that the radius of curvature of the curve is 170 mm and the height of the vertical wall portion 5 in the press-molding direction is 40 mm.

Figure 2022020932000002
Figure 2022020932000002

そして、成形下死点までプレス成形したプレス成形品1を金型から離型し、2日経過した後のプレス成形品1の形状を測定した。 Then, the press-molded product 1 press-molded to the bottom dead center of molding was removed from the mold, and the shape of the press-molded product 1 after 2 days had passed was measured.

次に、プレス成形品1の形状変化を予測する解析を行った。
解析では、まず、プレス成形に用いる金型をモデル化した金型モデルを用いて、鋼板Aを成形下死点までプレス成形する過程のプレス成形解析を行い、成形下死点におけるプレス成形品1の残留応力を求めた。
Next, an analysis was performed to predict the shape change of the press-molded product 1.
In the analysis, first, a press molding analysis in the process of press forming the steel plate A to the bottom dead point of molding is performed using a die model that models the mold used for press molding, and the press molded product 1 at the bottom dead point of molding is performed. Residual stress was calculated.

続いて、成形下死点におけるプレス成形品1を金型モデルから離型した直後のプレス成形品1の形状及び残留応力を求めるスプリングバック解析を行った。 Subsequently, a springback analysis was performed to determine the shape and residual stress of the press-molded product 1 immediately after the press-molded product 1 at the bottom dead center of molding was released from the die model.

さらに、スプリングバック解析により求めた、スプリングバックした直後のプレス成形品1の天板部3及び/又はフランジ部7に対し、残留応力の絶対値を所定の割合低下させた残留応力の値を設定した。
そして、残留応力を低下させたプレス成形品1について力のモーメントが釣り合う形状を求める解析を行った。
Further, the residual stress value obtained by reducing the absolute value of the residual stress by a predetermined ratio is set for the top plate portion 3 and / or the flange portion 7 of the press-formed product 1 immediately after springback, which is obtained by springback analysis. did.
Then, an analysis was performed to obtain a shape in which the moments of force were balanced for the press-molded product 1 having the reduced residual stress.

実施例1では、スプリングバック解析により取得したプレス成形品1の天板部、又は、天板部3及びフランジ部7に対し、スプリングバックした直後の残留応力を所定の割合(残留応力の緩和率)で低下した残留応力の値を設定したものを発明例1~発明例3とした。 In Example 1, the residual stress immediately after springback is set to a predetermined ratio (relaxation rate of residual stress) to the top plate portion, the top plate portion 3 and the flange portion 7 of the press-formed product 1 acquired by springback analysis. ) Is set as the value of the residual stress lowered in ), and is designated as Invention Example 1 to Invention Example 3.

また、比較対象として、発明例1~発明例3と同様にプレス成形品1のプレス成形解析及びスプリングバック解析を行い、力のモーメントが釣り合う形状を求める解析を行わなかったものを比較例1、あるいは、スプリングバック解析を行った後、プレス成形品1に天板部3及びフランジ部7のいずれについても残留応力を低下させずに力のモーメントが釣り合う形状を求める解析を行ったものを比較例2とした。 Further, as a comparison target, the press-molded product 1 was subjected to the press-molding analysis and the springback analysis in the same manner as in the inventions 1 to 3, and the analysis for obtaining the shape in which the force moments were balanced was not performed. Alternatively, a comparative example is obtained in which a springback analysis is performed and then an analysis is performed to obtain a shape in which the moments of force are balanced without reducing the residual stress for both the top plate portion 3 and the flange portion 7 of the press-molded product 1. It was set to 2.

発明例1~発明例3及び比較例1、比較例2のそれぞれについて、プレス成形品1の天板部3における長手方向先端(評価点a)における成形下死点でのプレス成形品1の形状からの成形高さ方向の乖離量を算出した。
表2に、発明例1~発明例3及び比較例1、比較例2において残留応力の緩和率と評価点aの乖離量の結果をまとめて示す。
For each of Invention Example 1 to Invention Example 3, Comparative Example 1 and Comparative Example 2, the shape of the press-molded product 1 at the bottom dead center of molding at the longitudinal tip (evaluation point a) of the top plate portion 3 of the press-molded product 1. The amount of deviation in the molding height direction from the above was calculated.
Table 2 summarizes the results of the relaxation rate of the residual stress and the amount of deviation of the evaluation point a in Invention Example 1 to Invention Example 3, Comparative Example 1, and Comparative Example 2.

Figure 2022020932000003
Figure 2022020932000003

表2において、予測値Dcは、発明例1~発明例3及び比較例1~比較例2における評価点aの乖離量、実験値Deは、実際にプレス成形したプレス成形品1の2日経過した後の評価点aの乖離量(=25.4mm)である。また、実験値に対する予測値の差分及び誤差は、それぞれ、下式により算出したものである。
実験値と予測値との差分(mm)=De-Dc ・・・(1)
予測値の誤差(%)=(De-Dc)÷De×100 ・・・(2)
In Table 2, the predicted value D c is the amount of deviation of the evaluation points a in Invention Examples 1 to 3 and Comparative Examples 1 to 2, and the experimental value D e is 2 of the press-molded product 1 actually pressed. It is the amount of deviation (= 25.4 mm) of the evaluation point a after the lapse of days. Further, the difference and the error of the predicted value with respect to the experimental value are calculated by the following formulas, respectively.
Difference between experimental value and predicted value (mm) = De-D c ... (1)
Predicted value error (%) = (D e -D c ) ÷ D e × 100 ・ ・ ・ (2)

比較例1と比較例2における評価点aの乖離量は等しく、実験値と予測値との差分は3.5mm、予測値の誤差は13.8%であった。 The amount of deviation of the evaluation points a in Comparative Example 1 and Comparative Example 2 was the same, the difference between the experimental value and the predicted value was 3.5 mm, and the error of the predicted value was 13.8%.

発明例1は、天板部3に対して残留応力を5%低下させた残留応力の値を設定したものであり、実験値と予測値との差分は1.5mm、予測値の誤差は5.9%となり、比較例1及び比較例2と比べて改善した。
発明例2は、天板部3及び縦壁部5に対してそれらの残留応力をそれぞれ10%低下させた残留応力の値を設定したものであり、実験値と予測値との差分は0.3mm、予測値の誤差は1.2%となり、比較例1及び比較例2と比べて改善し、発明例1よりも良好な結果であった。
発明例3は、天板部3及び縦壁部5に対してそれらの残留応力をそれぞれ20%低下させた残留応力の値を設定したものであり、実験値と予測値との差分は-0.4mm、予測値の誤差は-1.6%となり、いずれも負の値であるが、絶対値で比較すると比較例1及び比較例2と比べて改善した。
In Invention Example 1, the residual stress value obtained by reducing the residual stress by 5% with respect to the top plate portion 3 is set, the difference between the experimental value and the predicted value is 1.5 mm, and the error of the predicted value is 5.9%. It was improved as compared with Comparative Example 1 and Comparative Example 2.
In Invention Example 2, the residual stress values of the top plate portion 3 and the vertical wall portion 5 are set by reducing their residual stresses by 10%, respectively, and the difference between the experimental value and the predicted value is 0.3 mm. The error of the predicted value was 1.2%, which was improved as compared with Comparative Example 1 and Comparative Example 2, and the result was better than that of Invention Example 1.
In the third invention example, the residual stress values obtained by reducing the residual stresses of the top plate portion 3 and the vertical wall portion 5 by 20% are set, and the difference between the experimental value and the predicted value is −0.4. The error between mm and the predicted value was -1.6%, both of which were negative values, but when compared by absolute value, it was improved as compared with Comparative Example 1 and Comparative Example 2.

<コ字型断面形状のプレス成形品>
実施例2では、まず、前述した実施例1と同様に表1に示す機械的特性を持つ鋼板Aを用い、図5に示すコ字型断面形状のプレス成形品21をプレス成形した。プレス成形品21は、天板部23と天板部23から連続する縦壁部25とを有してなるコ字型断面形状であり、側面視で天板部23側に凸状に湾曲している。そして、プレス成形品21は、成形下死点において湾曲の曲率半径が170mm、プレス成形方向における縦壁部25の縦壁高さが35mmである。
<Press-molded product with U-shaped cross section>
In Example 2, first, the steel plate A having the mechanical properties shown in Table 1 was used in the same manner as in Example 1 described above, and the press-molded product 21 having a U-shaped cross-sectional shape shown in FIG. 5 was press-molded. The press-molded product 21 has a U-shaped cross-sectional shape having a top plate portion 23 and a vertical wall portion 25 continuous from the top plate portion 23, and is curved convexly toward the top plate portion 23 in a side view. ing. The press-molded product 21 has a radius of curvature of 170 mm at the bottom dead center of molding, and the vertical wall height of the vertical wall portion 25 in the press-molding direction is 35 mm.

続いて、成形下死点までプレス成形したプレス成形品21を金型から離型し、2日経過した後のプレス成形品21の形状を測定した。 Subsequently, the press-molded product 21 press-molded to the bottom dead center of molding was removed from the mold, and the shape of the press-molded product 21 after 2 days had passed was measured.

次に、プレス成形品21のプレス成形解析とこれに続くスプリングバック解析を行い、さらに、スプリングバック直後のプレス成形品21における天板部23に対して所定の割合で残留応力を緩和減少させた残留応力の値を設定し、プレス成形品21について力のモーメントが釣り合う形状を求める解析を行ったものを発明例4及び発明例5とした。 Next, a press molding analysis of the press molded product 21 and a subsequent springback analysis were performed, and further, the residual stress was relaxed and reduced at a predetermined ratio with respect to the top plate portion 23 of the press molded product 21 immediately after the springback. The cases in which the residual stress value was set and the shape of the press-molded product 21 in which the moments of force were balanced were analyzed were referred to as Invention Example 4 and Invention Example 5.

また、比較対象として、発明例4及び発明例5と同様にプレス成形品21のプレス成形解析及びスプリングバック解析を行ったものの、残留応力を緩和減少した値を設定して力のモーメントが釣り合う形状を求める解析を行わなかったものを比較例3とした。 Further, as a comparison target, the press forming analysis and the springback analysis of the press molded product 21 were performed in the same manner as in the invention example 4 and the invention example 5, but the shape in which the moments of the forces are balanced by setting the value obtained by relaxing and reducing the residual stress. The case in which the analysis for obtaining the above was not performed was designated as Comparative Example 3.

そして、発明例4、発明例5及び比較例3それぞれについて、プレス成形品21の天板部23における長手方向の先端(評価点b)における成形下死点でのプレス成形品21の形状からの成形高さ方向の乖離量を算出した。
表3に、発明例4、発明例5及び比較例3において残留応力の緩和率と評価点bの乖離量の結果をまとめて示す。
Then, for each of Invention Example 4, Invention Example 5, and Comparative Example 3, from the shape of the press-molded product 21 at the bottom dead center of molding at the tip (evaluation point b) in the longitudinal direction of the top plate portion 23 of the press-molded product 21. The amount of deviation in the molding height direction was calculated.
Table 3 summarizes the results of the relaxation rate of the residual stress and the amount of deviation of the evaluation point b in Invention Example 4, Invention Example 5, and Comparative Example 3.

Figure 2022020932000004
Figure 2022020932000004

表3において、予測値Dcは、発明例4、発明例5及び比較例4における評価点bの乖離量、実験値Deは、実際にプレス成形したプレス成形品21の2日経過した後の評価点bの乖離量(=26.4mm)である。また、実験値と予測値との差分及び実験値に対する予測値の誤差は、それぞれ、前述した式(1)及び(2)により算出したものである。 In Table 3, the predicted value D c is the amount of deviation of the evaluation points b in Invention Example 4, Invention Example 5 and Comparative Example 4, and the experimental value D e is after 2 days of the press-molded product 21 actually press-molded. It is the amount of deviation (= 26.4 mm) of the evaluation point b of. Further, the difference between the experimental value and the predicted value and the error of the predicted value with respect to the experimental value are calculated by the above-mentioned equations (1) and (2), respectively.

比較例3は、実験値と予測値との差分は2.6mm、予測値の誤差は9.8%であった。
発明例4は、天板部23に対して残留応力を5%低下させたものであり、実験値と予測値との差分は1.2mm、予測値の誤差は4.5%であり、比較例4と比べて改善した。
発明例5は、天板部23に対して残留応力を10%低下させたものであり、実験値と予測値との差分は0.3mm、予測値の誤差は1.1%であり、比較例4と比べて改善し、発明例4よりも良好であった。
In Comparative Example 3, the difference between the experimental value and the predicted value was 2.6 mm, and the error of the predicted value was 9.8%.
In Invention Example 4, the residual stress is reduced by 5% with respect to the top plate portion 23, the difference between the experimental value and the predicted value is 1.2 mm, and the error of the predicted value is 4.5%, which is the same as that of Comparative Example 4. Improved in comparison.
In Invention Example 5, the residual stress is reduced by 10% with respect to the top plate portion 23, the difference between the experimental value and the predicted value is 0.3 mm, and the error of the predicted value is 1.1%, which is the same as that of Comparative Example 4. It was improved in comparison with and was better than that of Invention Example 4.

<Z字型断面形状のプレス成形品>
実施例3では、まず、前述した実施例1と同様に表1に示す機械的特性を持つ鋼板Aを用い、図6に示すプレス成形品31をプレス成形した。
プレス成形品31は、天板部33と天板部33から連続する縦壁部35と縦壁部35から連続するフランジ部37とを有してなるZ字型断面形状であり、側面視で天板部33側に凸状に湾曲している。そして、プレス成形品31は、成形下死点において湾曲の曲率半径が170mm、プレス成形方向における縦壁部35の縦壁高さが40mmである。
<Press-molded product with Z-shaped cross section>
In Example 3, first, the press-molded product 31 shown in FIG. 6 was press-molded using the steel plate A having the mechanical properties shown in Table 1 in the same manner as in Example 1 described above.
The press-molded product 31 has a Z-shaped cross-sectional shape having a top plate portion 33, a vertical wall portion 35 continuous from the top plate portion 33, and a flange portion 37 continuous from the vertical wall portion 35, and has a side view. It is curved convexly toward the top plate 33 side. The press-molded product 31 has a radius of curvature of 170 mm at the bottom dead center of molding, and the vertical wall height of the vertical wall portion 35 in the press-molding direction is 40 mm.

続いて、成形下死点までプレス成形したプレス成形品31を金型から離型し、2日経過した後のプレス成形品31の形状変化を測定した。 Subsequently, the press-molded product 31 press-molded to the bottom dead center of molding was removed from the mold, and the shape change of the press-molded product 31 after 2 days had passed was measured.

次に、プレス成形品31のプレス成形解析とこれに続くスプリングバック解析を行い、さらに、スプリングバック直後のプレス成形品31における天板部33及びフランジ部37に対してそれらの残留応力を緩和減少させた残留応力の値を設定し、プレス成形品31について力のモーメントが釣り合う形状を求める解析を行ったものを発明例6及び発明例7とした。
また、比較対象として、発明例6及び発明例7と同様にプレス成形品31のプレス成形解析及びスプリングバック解析を行ったものの、残留応力を緩和減少した値を設定して力のモーメントが釣り合う形状を求める解析を行わなかったものを比較例4とした。
Next, the press molding analysis of the press molded product 31 and the subsequent springback analysis are performed, and further, the residual stresses of the top plate portion 33 and the flange portion 37 of the press molded product 31 immediately after the springback are relaxed and reduced. Invention Example 6 and Invention Example 7 were obtained by setting the value of the residual stress and performing an analysis to obtain a shape in which the moments of force are balanced with respect to the press-molded product 31.
Further, as a comparison target, the press forming analysis and the springback analysis of the press molded product 31 were performed in the same manner as in the invention example 6 and the invention example 7, but the shape in which the moments of the forces are balanced by setting the value in which the residual stress is relaxed and reduced is set. The case in which the analysis for obtaining the above was not performed was designated as Comparative Example 4.

そして、発明例6、発明例7及び比較例4それぞれについて、プレス成形品31の天板部33における長手方向の先端(評価点c)における成形下死点でのプレス成形品31の形状からの成形高さ方向の乖離量を算出した。
表4に、発明例6、発明例7及び比較例4において残留応力の緩和率と評価点cの乖離量の結果をまとめて示す。
Then, for each of Invention Example 6, Invention Example 7, and Comparative Example 4, from the shape of the press-molded product 31 at the bottom dead center of molding at the tip (evaluation point c) in the longitudinal direction of the top plate portion 33 of the press-molded product 31. The amount of deviation in the molding height direction was calculated.
Table 4 summarizes the results of the relaxation rate of the residual stress and the amount of deviation of the evaluation point c in Invention Example 6, Invention Example 7, and Comparative Example 4.

Figure 2022020932000005
Figure 2022020932000005

表4において、予測値Dcは、発明例6、発明例7及び比較例4における評価点cの乖離量、実験値Deは、実際にプレス成形したプレス成形品31の2日経過した後の評価点dの乖離量(=26.5mm)である。また、実験値に対する予測値の差分及び誤差は、それぞれ、前述した式(1)及び(2)により算出したものである。 In Table 4, the predicted value D c is the amount of deviation of the evaluation points c in Invention Example 6, Invention Example 7, and Comparative Example 4, and the experimental value D e is after 2 days of the press-molded product 31 actually press-molded. It is the amount of deviation (= 26.5 mm) of the evaluation point d of. Further, the difference and the error of the predicted value with respect to the experimental value are calculated by the above-mentioned equations (1) and (2), respectively.

比較例4は、実験値と予測値との差分は2.5mm、予測値の誤差は9.4%であった。
発明例6は、天板部33に対し、その残留応力を5%低下させたものであり、実験値との差分は1.0mm、予測値の誤差は3.8%であり、比較例4と比べて改善した。
発明例7は、天板部33及びフランジ部37の双方に対し、それぞれの残留応力を10%低下させたものであり、実験値と予測値との差分は-0.4mm、予測値の誤差は-1.5%であり、いずれも負の値であるが、絶対値で比較すると比較例4と比べて改善し、発明例6よりも良好であった。
In Comparative Example 4, the difference between the experimental value and the predicted value was 2.5 mm, and the error of the predicted value was 9.4%.
In Invention Example 6, the residual stress of the top plate portion 33 is reduced by 5%, the difference from the experimental value is 1.0 mm, and the error of the predicted value is 3.8%, which is compared with Comparative Example 4. It has improved.
In Invention Example 7, the residual stress of each of the top plate portion 33 and the flange portion 37 is reduced by 10%, the difference between the experimental value and the predicted value is −0.4 mm, and the error of the predicted value is It was -1.5%, both of which were negative values, but when compared by absolute value, it was improved as compared with Comparative Example 4 and better than Invention Example 6.

<フロントピラーアッパー>
実施例4では、まず、前述した実施例1と同様に表1に示す機械的特性を持つ鋼板Aを用い、図7に示す自動車のフロントピラーアッパーであるプレス成形品41をプレス成形した。プレス成形品41は、天板部43と縦壁部45とフランジ部47とを有するハット型断面形状であり、側面視で天板部43側に凸状に湾曲した形状を含む。そして、プレス成形品41は、成形下死点における湾曲の曲率半径が1000mm、プレス成形方向における縦壁部45の縦壁高さが45mmである。
<Front pillar upper>
In Example 4, first, the press-molded product 41, which is the front pillar upper of the automobile shown in FIG. 7, was press-molded using the steel plate A having the mechanical properties shown in Table 1 as in Example 1 described above. The press-molded product 41 has a hat-shaped cross-sectional shape having a top plate portion 43, a vertical wall portion 45, and a flange portion 47, and includes a shape that is convexly curved toward the top plate portion 43 in a side view. The press-molded product 41 has a radius of curvature of the curve at the bottom dead center of molding of 1000 mm, and the height of the vertical wall portion 45 in the press-molding direction is 45 mm.

続いて、成形下死点までプレス成形したプレス成形品41を金型から離型し、2日経過した後のプレス成形品41の形状変化を測定した。 Subsequently, the press-molded product 41 press-molded to the bottom dead center of molding was removed from the mold, and the shape change of the press-molded product 41 after 2 days had passed was measured.

次に、プレス成形品41のプレス成形解析とこれに続くスプリングバック解析を行い、さらに、スプリングバック直後のプレス成形品41における天板部43及びフランジ部47に対してそれぞれの残留応力を緩和減少させた残留応力の値を設定し、プレス成形品41について力のモーメントが釣り合う形状を求める解析を行ったものを発明例8及び発明例9とした。
また、比較対象として、発明例8及び発明例9と同様にプレス成形品41のプレス成形解析及びスプリングバック解析を行ったものの、残留応力を緩和減少した値を設定して力のモーメントが釣り合う形状を求める解析を行わなかったものを比較例5とした。
Next, the press molding analysis of the press molded product 41 and the subsequent springback analysis are performed, and further, the residual stresses of the top plate portion 43 and the flange portion 47 of the press molded product 41 immediately after the springback are relaxed and reduced. Invention Example 8 and Invention Example 9 were analyzed by setting the value of the residual stress and determining the shape of the press-molded product 41 in which the moments of force are balanced.
Further, as a comparison target, although the press forming analysis and the springback analysis of the press molded product 41 were performed in the same manner as in the invention example 8 and the invention example 9, the shape in which the moment of force is balanced by setting the value in which the residual stress is relaxed and reduced is set. The case in which the analysis for obtaining the above was not performed was designated as Comparative Example 5.

そして、発明例8、発明例9及び比較例5それぞれについて、プレス成形品41の天板部43における長手方向の先端(評価点d)における成形下死点形状からの成形高さ方向の乖離量を算出した。
表5に、発明例8、発明例9及び比較例5において残留応力の緩和率と評価点dの乖離量の結果をまとめて示す。
Then, for each of Invention Example 8, Invention Example 9, and Comparative Example 5, the amount of deviation in the molding height direction from the shape of the bottom dead center of molding at the tip (evaluation point d) in the longitudinal direction of the top plate portion 43 of the press-molded product 41. Was calculated.
Table 5 summarizes the results of the relaxation rate of the residual stress and the amount of deviation of the evaluation point d in Invention Example 8, Invention Example 9, and Comparative Example 5.

Figure 2022020932000006
Figure 2022020932000006

表5において、予測値Dcは、発明例8及び比較例9における評価点dの乖離量、実験値Deは、実際にプレス成形したプレス成形品41の2日経過した後の評価点dの乖離量(=22.5mm)である。また、実験値と予測値との差分及び実験値に対する予測値の誤差は、それぞれ、前述した式(1)及び(2)により算出したものである。 In Table 5, the predicted value D c is the amount of deviation of the evaluation points d in Invention Example 8 and Comparative Example 9, and the experimental value D e is the evaluation point d after 2 days of the press-molded product 41 actually press-molded. The amount of deviation (= 22.5 mm). Further, the difference between the experimental value and the predicted value and the error of the predicted value with respect to the experimental value are calculated by the above-mentioned equations (1) and (2), respectively.

比較例5は、実験値と予測値との差分は2.2mm、予測値の誤差は9.8%であった。
発明例8は、天板部43に対し、その残留応力を5%低下させたものであり、実験値と予測値との差分は1.0mm、予測値の誤差は4.4%であり、比較例5と比べて改善した。
発明例9は、天板部43及びフランジ部47の双方に対し、それぞれ残留応力を10%低下させたものであり、実験値と予測値との差分は0.3mm、予測値の誤差は1.3%であり、比較例5と比べて改善し、発明例8よりも良好であった。
In Comparative Example 5, the difference between the experimental value and the predicted value was 2.2 mm, and the error of the predicted value was 9.8%.
In Invention Example 8, the residual stress of the top plate portion 43 is reduced by 5%, the difference between the experimental value and the predicted value is 1.0 mm, the error of the predicted value is 4.4%, and Comparative Example 5 Improved compared to.
In Invention Example 9, the residual stress is reduced by 10% for both the top plate portion 43 and the flange portion 47, the difference between the experimental value and the predicted value is 0.3 mm, and the error of the predicted value is 1.3%. It was improved as compared with Comparative Example 5 and better than Invention Example 8.

1 プレス成形品
3 天板部
5 縦壁部
7 フランジ部
9 パンチ肩部
11 ダイ肩部
21 プレス成形品
23 天板部
25 縦壁部
31 プレス成形品
33 天板部
35 縦壁部
37 フランジ部
41 プレス成形品
43 天板部
45 縦壁部
47 フランジ部
1 Press-molded product 3 Top plate part 5 Vertical wall part 7 Flange part 9 Punch shoulder part 11 Die shoulder part 21 Press-molded product 23 Top plate part 25 Vertical wall part 31 Press-molded product 33 Top plate part 35 Vertical wall part 37 Flange part 41 Press-molded product 43 Top plate part 45 Vertical wall part 47 Flange part

Claims (4)

天板部と該天板部から連続する縦壁部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、金型から離型した瞬間にスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測するプレス成形品の形状変化予測方法であって、
前記プレス成形品のスプリングバック解析により、スプリングバックした直後の前記プレス成形品の形状及び残留応力を取得するスプリングバック直後の形状・残留応力取得工程と、
スプリングバックした直後の前記プレス成形品の少なくとも前記天板部に対し、スプリングバックした直後の残留応力よりも緩和減少した残留応力の値を設定する残留応力緩和減少設定工程と、
残留応力の値を緩和減少設定した前記プレス成形品について力のモーメントが釣り合う形状を求める残留応力緩和形状解析工程と、を含むことを特徴とするプレス成形品の形状変化予測方法。
A press-molded product having a top plate portion and a vertical wall portion continuous from the top plate portion and having a shape that is convexly curved toward the top plate portion in a side view is springd at the moment when the mold is released from the mold. It is a method for predicting the shape change of a press-molded product that predicts the shape change due to stress relaxation with the passage of time after backing.
The shape / residual stress acquisition process immediately after springback to acquire the shape and residual stress of the press-molded product immediately after springback by the springback analysis of the press-molded product, and the process of acquiring the shape / residual stress immediately after springback.
A residual stress relaxation reduction setting step for setting a value of residual stress that is relaxed and reduced from the residual stress immediately after springback with respect to at least the top plate portion of the press-formed product immediately after springback.
A method for predicting a shape change of a press-molded product, which comprises a residual stress relaxation shape analysis step of obtaining a shape in which a force moment is balanced for the press-molded product in which a value of residual stress is relaxed and reduced.
天板部と該天板部から連続する縦壁部と該縦壁部から連続するフランジ部とを有して側面視で前記天板部側に凸状に湾曲した形状を含むプレス成形品について、金型から離型した瞬間にスプリングバックした後の時間経過に伴う応力緩和による形状変化を予測するプレス成形品の形状変化予測方法であって、
前記プレス成形品のスプリングバック解析により、スプリングバックした直後の前記プレス成形品の形状及び残留応力を取得するスプリングバック直後の形状・残留応力取得工程と、
スプリングバックした直後の前記プレス成形品の少なくとも前記天板部及び/又は前記フランジ部に対し、スプリングバックした直後の残留応力よりも緩和減少した残留応力の値を設定する残留応力緩和減少設定工程と、
残留応力の値を緩和減少設定した前記プレス成形品について力のモーメントが釣り合う形状を求める残留応力緩和形状解析工程と、を含むことを特徴とするプレス成形品の形状変化予測方法。
A press-molded product having a top plate portion, a vertical wall portion continuous from the top plate portion, and a flange portion continuous from the vertical wall portion, and including a shape that is convexly curved toward the top plate portion in a side view. This is a method for predicting the shape change of a press-molded product that predicts the shape change due to stress relaxation with the passage of time after springing back at the moment of mold release from the mold.
The shape / residual stress acquisition process immediately after springback to acquire the shape and residual stress of the press-molded product immediately after springback by the springback analysis of the press-molded product, and the process of acquiring the shape / residual stress immediately after springback.
A residual stress relaxation reduction setting step of setting a value of residual stress that is relaxed and reduced from the residual stress immediately after springback with respect to at least the top plate portion and / or the flange portion of the press-formed product immediately after springback. ,
A method for predicting a shape change of a press-molded product, which comprises a residual stress relaxation shape analysis step of obtaining a shape in which a force moment is balanced for the press-molded product in which a value of residual stress is relaxed and reduced.
前記残留応力緩和減少設定工程において、スプリングバックした直後の残留応力よりも5%以上緩和減少した残留応力の値を設定することを特徴とする請求項1又は2に記載のプレス成形品の形状変化予測方法。 The shape change of the press-molded product according to claim 1 or 2, wherein in the residual stress relaxation reduction setting step, a value of residual stress whose relaxation is reduced by 5% or more from the residual stress immediately after springback is set. Prediction method. 前記プレス成形品のプレス成形に供するブランクは、引張強度が150MPa級以上2000MPa級以下の金属板であることを特徴とする請求項1乃至3のいずれか一項に記載のプレス成形品の形状変化予測方法。 The shape change of the press-molded product according to any one of claims 1 to 3, wherein the blank to be subjected to press molding of the press-molded product is a metal plate having a tensile strength of 150 MPa class or more and 2000 MPa class or less. Prediction method.
JP2020124218A 2020-07-21 2020-07-21 Shape change prediction method for press-formed products Active JP7298564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124218A JP7298564B2 (en) 2020-07-21 2020-07-21 Shape change prediction method for press-formed products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124218A JP7298564B2 (en) 2020-07-21 2020-07-21 Shape change prediction method for press-formed products

Publications (2)

Publication Number Publication Date
JP2022020932A true JP2022020932A (en) 2022-02-02
JP7298564B2 JP7298564B2 (en) 2023-06-27

Family

ID=80220084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124218A Active JP7298564B2 (en) 2020-07-21 2020-07-21 Shape change prediction method for press-formed products

Country Status (1)

Country Link
JP (1) JP7298564B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315063A (en) * 2005-05-16 2006-11-24 M & M Research:Kk Pressing die design support program, and its method
JP2020028888A (en) * 2018-08-21 2020-02-27 Jfeスチール株式会社 Press molding method
WO2020126380A1 (en) * 2018-12-21 2020-06-25 Bystronic Laser Ag Bending machine, machining line and method for bending
JP2022026451A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 Shape change prediction method of press-formed product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006315063A (en) * 2005-05-16 2006-11-24 M & M Research:Kk Pressing die design support program, and its method
JP2020028888A (en) * 2018-08-21 2020-02-27 Jfeスチール株式会社 Press molding method
WO2020126380A1 (en) * 2018-12-21 2020-06-25 Bystronic Laser Ag Bending machine, machining line and method for bending
JP2022026451A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 Shape change prediction method of press-formed product

Also Published As

Publication number Publication date
JP7298564B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
RU2692353C1 (en) Production method of pressed products and production line for them
KR101867744B1 (en) Press forming method and method for manufacturing pressed product as well as press forming apparatus
WO2021166316A1 (en) Shape change prediction method for press-molded article
JP6977824B1 (en) Method for predicting shape change of press-molded products
JP6939962B1 (en) Method for predicting shape change of press-molded products
JP6977838B1 (en) Method for predicting shape change of press-molded products
JP6977825B1 (en) Method for predicting shape change of press-molded products
JP6888703B1 (en) Method for predicting shape change of press-molded products
WO2021161579A1 (en) Method for predicting shape change of press-molded product
JP2022020932A (en) Method for predicting shape change of press-molded product
JP7021696B1 (en) Method for predicting shape change of press-molded products
WO2021171678A1 (en) Press forming method and shape evaluation method for press formed article
JP6973580B1 (en) Method for predicting shape change of press-molded products
JP7342921B2 (en) Method for predicting shape change of press-formed products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150