JP2022020269A - Control apparatus, machine tool, control method, and control program - Google Patents

Control apparatus, machine tool, control method, and control program Download PDF

Info

Publication number
JP2022020269A
JP2022020269A JP2020123668A JP2020123668A JP2022020269A JP 2022020269 A JP2022020269 A JP 2022020269A JP 2020123668 A JP2020123668 A JP 2020123668A JP 2020123668 A JP2020123668 A JP 2020123668A JP 2022020269 A JP2022020269 A JP 2022020269A
Authority
JP
Japan
Prior art keywords
coefficient
angle
drive unit
axis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020123668A
Other languages
Japanese (ja)
Inventor
直人 寺阪
Naoto Terasaka
弦 寺田
Gen Terada
太樹 小林
Taiki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2020123668A priority Critical patent/JP2022020269A/en
Publication of JP2022020269A publication Critical patent/JP2022020269A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a control apparatus, machine tool, control method, and control program that can control the machine tool so as to rotate a workbench that holds a work material more appropriately than ever, even when a load is loaded on a machine table.SOLUTION: A control apparatus controls a machine tool comprising: a drive unit for rotating a workbench that fixes a work material around an axis parallel to the horizontal plane; and a control unit for controlling the drive unit. The control apparatus calculates the coefficient of rotational moment of a load loaded on a machine table (S5). The control apparatus corrects a command angle and an amount of angular error due to the load loaded on the machine table when the drive unit is driven in an amount corresponding to the command angle, on the basis of: the coefficient of torsional rigidity of the drive unit; the coefficient of rotational moment calculated in S5; and the command angle commanded by a program to the workbench with respect to the reference plane parallel to the horizontal plane (S2 and S3). The control apparatus drives the drive unit by the amount corresponding to the corrected command angle (S5).SELECTED DRAWING: Figure 5

Description

本発明は制御装置、工作機械、制御方法、及び制御プログラムに関する。 The present invention relates to control devices, machine tools, control methods, and control programs.

従来の工作機械を制御する制御装置は制御対象の内部モデルを定義し、制御対象に指令を与えた場合の出力速度と実際の速度の誤差を小さくするように内部モデルの物理定数(例えば、イナーシャ)を推定する。制御対象は例えば、被削材を積載する台を水平面に対し傾斜する駆動源である。特許文献1の制御装置は、所定周期毎に取得した電流戻り値と推定電流値とより推定誤差を計算し、所定周期毎に検出した速度戻り値と推定誤差とを用いて制御対象の推定イナーシャと推定摩擦とを更新する。 A control device that controls a conventional machine tool defines an internal model of the controlled object, and the physical constants of the internal model (for example, inertia) so as to reduce the error between the output speed and the actual speed when a command is given to the controlled object. ) Is estimated. The control target is, for example, a drive source that inclines the table on which the work material is loaded with respect to the horizontal plane. The control device of Patent Document 1 calculates an estimation error from the current return value and the estimated current value acquired in each predetermined cycle, and uses the speed return value and the estimation error detected in each predetermined cycle to estimate the inertia of the controlled object. And update the estimated friction.

特開2011-72178号公報Japanese Unexamined Patent Publication No. 2011-72178

工作機械の台は、切削液、冷却液等の液体を供給する為のロータリージョイント、被加工物を保持するチャック等の治具の可動部を直線方向に駆動する為の油圧回転シリンダ等の積載物を着脱できる。従来の制御装置は台に積載物を付加した時、積載物の付加によりイナーシャなどの物理定数が変化し、推定した内部モデルの物理定数と差が拡大する。故に、制御装置は工作機械を適切に制御できない時がある。 The machine tool base is loaded with a rotary joint for supplying liquids such as cutting fluid and coolant, and a hydraulic rotary cylinder for driving the moving parts of jigs such as chucks that hold the workpiece in a linear direction. You can put on and take off things. In the conventional control device, when a load is added to the table, the physical constants such as inertia change due to the addition of the load, and the difference from the estimated physical constant of the internal model increases. Therefore, the control device may not be able to properly control the machine tool.

本発明の目的は、台に積載物を付加した時にも、被削材を保持する台を回動する工作機械を従来よりも適切に制御できる制御装置、工作機械、制御方法、及び制御プログラムを提供することである。 An object of the present invention is to provide a control device, a machine tool, a control method, and a control program capable of more appropriately controlling a machine tool that rotates a machine tool that holds a work material even when a load is added to the table. To provide.

請求項1の制御装置は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置において、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出部と、前記駆動部のねじり剛性係数と、前記係数算出部が算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正部と、前記補正部が補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御部とを備える。該制御装置は、台に付加した積載物の回転モーメント係数、駆動部のねじり剛性係数、基準面に対する台の指令角度に基づき、角度誤差分、指令角度を補正する。制御装置は台に付加した積載物の影響を考慮して駆動部を駆動することで、台に積載物を付加した時にも従来の装置よりも適切に工作機械を制御できる。 The control device according to claim 1 is a control device for controlling a machine tool having a drive unit that rotates a table for fixing a work material about an axis parallel to a horizontal plane and a control unit that controls the drive unit. , The coefficient calculation unit that calculates the rotation moment coefficient, which is the coefficient of the rotation moment of the load added to the table, the torsional rigidity coefficient of the drive unit, the rotation moment coefficient calculated by the coefficient calculation unit, and the program. Based on the commanded angle of the table with respect to the reference plane parallel to the horizontal plane, the correction unit for correcting the command angle and the correction for the angle error caused by adding the load to the table. A drive control unit that drives the drive unit by an amount corresponding to the command angle corrected by the unit is provided. The control device corrects the command angle by the angle error based on the rotational moment coefficient of the load added to the table, the torsional rigidity coefficient of the drive unit, and the command angle of the table with respect to the reference surface. By driving the drive unit in consideration of the influence of the load added to the table, the control device can control the machine tool more appropriately than the conventional device even when the load is added to the table.

請求項2の制御装置は前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出部を更に備え、前記補正部は、前記指令角度を前記誤差算出部が算出した前記角度誤差で補正する。制御装置は角度誤差を算出せずに指令角度を角度誤差分補正する装置よりも、指令角度を角度誤差分補正する処理を簡単にできる。 The control device according to claim 2 further includes an error calculation unit that calculates the angle error based on the torsional rigidity coefficient, the rotational moment coefficient, and the command angle, and the correction unit obtains the command angle. The angle error calculated by the error calculation unit is used for correction. The control device can simplify the process of correcting the command angle by the angle error, as compared with the device that corrects the command angle by the angle error without calculating the angle error.

請求項3の制御装置の前記係数算出部は、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出する。該制御装置は出力結果と導出結果に基づき、積載物の回転モーメント係数を算出できる。制御装置は内部モデルの複数の変数の内、回転モーメント係数以外の変数の影響を除いて回転モーメント係数を算出できる。 The coefficient calculation unit of the control device according to claim 3 uses an output result output to the drive unit according to a predetermined drive condition and an internal model of the drive unit including the rotation moment coefficient as one of a plurality of variables. The rotational moment coefficient is calculated by calculating the plurality of variables so that the error from the derivation result derived by applying to the predetermined driving condition is minimized. The control device can calculate the rotational moment coefficient of the load based on the output result and the derivation result. The controller can calculate the rotational moment coefficient by excluding the influence of variables other than the rotational moment coefficient among the multiple variables of the internal model.

請求項4の制御装置の前記係数算出部は、前記台に前記積載物を付加しない状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第一駆動量を取得し、前記台に前記積載物を付加した状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第二駆動量を取得し、前記第二駆動量から前記第一駆動量を差し引いた差分に前記駆動部の減速比を積算することで前記回転モーメント係数を算出する。該制御装置は第二駆動量から第一駆動量を差し引いた差分に駆動部の減速比を積算するという比較的簡単な処理で、積載物の回転モーメント係数を算出できる。 The coefficient calculation unit of the control device according to claim 4 is the first drive unit when the table is rotated at an angle perpendicular to the reference surface without the load being added to the table. One drive amount is acquired, and the second drive amount of the drive unit when the table is rotated at an angle perpendicular to the reference surface with the load added to the table is acquired. The rotation moment coefficient is calculated by integrating the reduction ratio of the drive unit with the difference obtained by subtracting the first drive amount from the second drive amount. The control device can calculate the rotation moment coefficient of the load by a relatively simple process of integrating the reduction ratio of the drive unit into the difference obtained by subtracting the first drive amount from the second drive amount.

請求項5の工作機械は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部と、請求項1~3の何れかに記載の制御装置とを備える。該工作機械は、工作機械が備える請求項1~3の何れかの制御装置に応じた効果を奏する。 The machine tool according to claim 5 comprises a drive unit that rotates a table for fixing a work material about an axis parallel to a horizontal plane, a control unit that controls the drive unit, and any one of claims 1 to 3. It is equipped with a control device. The machine tool has an effect according to the control device according to any one of claims 1 to 3 provided in the machine tool.

請求項6の制御方法は被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械の制御方法において、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出工程と、前記駆動部のねじり剛性係数と、前記係数算出工程で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正工程と、 前記補正工程で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御工程とを備える。該制御方法は請求項1の制御装置と同様の効果を奏する。 The control method according to claim 6 is the control method of a machine tool including a drive unit that rotates a table for fixing a work material around an axis parallel to a horizontal plane and a control unit that controls the drive unit. The program commands a coefficient calculation process for calculating the rotational moment coefficient, which is a coefficient of the rotational moment of the load added to the table, a torsional rigidity coefficient of the drive unit, and the rotational moment coefficient calculated in the coefficient calculation process. In the correction step of correcting the command angle by the angle error due to the addition of the load to the table based on the command angle of the table with respect to the reference plane parallel to the horizontal plane, and the correction step. A drive control step for driving the drive unit by an amount corresponding to the corrected command angle is provided. The control method has the same effect as that of the control device according to claim 1.

請求項7の制御プログラムは、被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置が実行可能な制御プログラムにおいて、前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出処理と、前記駆動部のねじり剛性係数と、前記係数算出処理で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正処理と、前記補正処理で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御処理とを前記制御装置に実行させる指示を含む。該制御プログラムは請求項1の制御装置と同様の効果を奏する。 The control program according to claim 7 is a control device that controls a machine tool including a drive unit that rotates a table for fixing a work material around an axis parallel to a horizontal plane and a control unit that controls the drive unit. In a control program that can be executed, the coefficient calculation process for calculating the rotational moment coefficient, which is the coefficient of the rotational moment of the load added to the platform, the torsional rigidity coefficient of the drive unit, and the coefficient calculation process. Based on the rotation moment coefficient and the command angle of the table with respect to the reference plane parallel to the horizontal plane, the command angle is corrected by the angle error caused by adding the load to the table. It includes an instruction to cause the control device to execute the correction process for driving the drive unit and the drive control process for driving the drive unit by an amount corresponding to the command angle corrected by the correction process. The control program has the same effect as that of the control device of claim 1.

工作機械1の斜視図。A perspective view of the machine tool 1. 支持装置8の斜視図。The perspective view of the support device 8. 制御装置40と工作機械1の電気的構成を示すブロック図。The block diagram which shows the electric composition of a control device 40 and a machine tool 1. 駆動回路55の制御系を示す図。The figure which shows the control system of a drive circuit 55. 第一実施形態の主処理の流れ図。The flow chart of the main process of 1st Embodiment. (A)基準面Rに対しA軸台20が0(rad)である時のA軸台20の模式図、(B)基準面Rに対しA軸台20が指令角度K1の位置にA軸台20を回動する場合の角度誤差K2の模式図。(A) Schematic diagram of the A-axis pedestal 20 when the A-axis pedestal 20 is 0 (rad) with respect to the reference surface R, (B) The A-axis at the position where the A-axis pedestal 20 is at the command angle K1 with respect to the reference surface R. The schematic diagram of the angle error K2 when rotating a table 20. 制御装置40の機能を示す機能ブロック図。The functional block diagram which shows the function of the control device 40. 二段の移動平均フィルタFIR1、FIR2を適用した時の角速度曲線と角加速度曲線の図。The figure of the angular velocity curve and the angular acceleration curve when the two-stage moving average filters FIR1 and FIR2 are applied. 第一実施形態の主処理の評価結果を示すグラフ。The graph which shows the evaluation result of the main process of 1st Embodiment. 第二実施形態の係数算出処理の流れ図。The flow chart of the coefficient calculation process of the second embodiment. 基準面Rに対しA軸台20がπ/2(rad)(垂直)である時のA軸台20の模式図。The schematic diagram of the A shaft base 20 when the A shaft base 20 is π / 2 (rad) (perpendicular) with respect to the reference plane R. 第二実施形態の主処理の流れ図。The flow chart of the main process of the 2nd Embodiment.

本発明の第一、第二実施形態を、図面を参照し順に説明する。以下説明は、図中に矢印で示す左右、前後、上下を使用する。工作機械1の左右方向、前後方向、上下方向は夫々、工作機械1のX軸方向、Y軸方向、Z軸方向である。右方向、前方向、上方向は夫々、正方向であり、左方向、後方向、下方向は夫々、負方向である。図1に示す工作機械1は、工具により被削材W(図2参照)の切削加工と旋削加工ができる複合機である。 The first and second embodiments of the present invention will be described in order with reference to the drawings. The following description uses left and right, front and back, and up and down indicated by arrows in the figure. The left-right direction, the front-back direction, and the up-down direction of the machine tool 1 are the X-axis direction, the Y-axis direction, and the Z-axis direction of the machine tool 1, respectively. The right, forward, and upward directions are positive, and the left, backward, and downward directions are negative. The machine tool 1 shown in FIG. 1 is a multifunction machine capable of cutting and turning a work material W (see FIG. 2) with a tool.

図1~図3を参照し、第一、第二実施形態の工作機械1の構造を説明する。工作機械1は基台2、Y軸移動機構(図示略)、X軸移動機構(図示略)、Z軸移動機構(図示略)、移動体15、立柱5、主軸ヘッド6、主軸(図示略)、支持装置8、工具交換装置9、制御箱(図示略)、制御装置40(図3参照)等を備える。基台2は架台11、主軸基台12、右側基台13、左側基台14等を備える。架台11は前後方向に長い略直方体状の構造体である。主軸基台12は前後方向に長い略直方体状に形成し、架台11上面後方に設ける。右側基台13は架台11上面右前方に設ける。左側基台14は架台11上面左前方に設ける。右側基台13と左側基台14は夫々、上面に支持装置8を支持する。 The structure of the machine tool 1 of the first and second embodiments will be described with reference to FIGS. 1 to 3. The machine tool 1 includes a base 2, a Y-axis moving mechanism (not shown), an X-axis moving mechanism (not shown), a Z-axis moving mechanism (not shown), a moving body 15, a vertical column 5, a spindle head 6, and a spindle (not shown). ), A support device 8, a tool changer 9, a control box (not shown), a control device 40 (see FIG. 3), and the like. The base 2 includes a pedestal 11, a main shaft base 12, a right base 13, a left base 14, and the like. The gantry 11 is a substantially rectangular parallelepiped structure that is long in the front-rear direction. The headstock base 12 is formed in a substantially rectangular parallelepiped shape long in the front-rear direction, and is provided behind the upper surface of the gantry 11. The right base 13 is provided on the right front of the upper surface of the gantry 11. The left base 14 is provided on the left front of the upper surface of the gantry 11. The right base 13 and the left base 14 each support the support device 8 on the upper surface.

Y軸移動機構は主軸基台12上面に設け、Y軸モータ62(図3参照)等を備える。Y軸移動機構はY軸モータ62の駆動により、略平板状の移動体15をY軸方向に移動する。X軸移動機構は移動体15上面に設け、X軸モータ61(図3参照)等を備える。X軸移動機構はX軸モータ61の駆動により、立柱5をX軸方向に移動する。立柱5は、Y軸移動機構、移動体15、X軸移動機構により、基台2上をX軸方向とY軸方向に移動する。Z軸移動機構は立柱5前面に設け、Z軸モータ63(図3参照)等を備える。Z軸移動機構はZ軸モータ63の駆動により、主軸ヘッド6をZ軸方向に移動する。主軸(図示略)は主軸ヘッド6内部に設け、主軸下部に工具装着穴(図示略)を備える。工具装着穴は工具を装着する。故に、X軸移動機構、Y軸移動機構、Z軸移動機構は夫々、主軸に装着した工具に対して被削材Wを相対的に、X軸方向、Y軸方向、Z軸方向に移動する。主軸は主軸ヘッド6上部に設けた主軸モータ66(図3参照)で回転する。該時、主軸に設けた工具は、被削材Wに対して回転する。 The Y-axis movement mechanism is provided on the upper surface of the spindle base 12, and includes a Y-axis motor 62 (see FIG. 3) and the like. The Y-axis moving mechanism moves the substantially flat plate-shaped moving body 15 in the Y-axis direction by driving the Y-axis motor 62. The X-axis moving mechanism is provided on the upper surface of the moving body 15 and includes an X-axis motor 61 (see FIG. 3) and the like. The X-axis movement mechanism moves the vertical column 5 in the X-axis direction by driving the X-axis motor 61. The vertical column 5 moves on the base 2 in the X-axis direction and the Y-axis direction by the Y-axis moving mechanism, the moving body 15, and the X-axis moving mechanism. The Z-axis movement mechanism is provided on the front surface of the vertical column 5 and includes a Z-axis motor 63 (see FIG. 3) and the like. The Z-axis movement mechanism moves the spindle head 6 in the Z-axis direction by driving the Z-axis motor 63. The spindle (not shown) is provided inside the spindle head 6, and a tool mounting hole (not shown) is provided in the lower part of the spindle. A tool is mounted in the tool mounting hole. Therefore, the X-axis movement mechanism, the Y-axis movement mechanism, and the Z-axis movement mechanism move the work material W relative to the tool mounted on the spindle in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively. .. The spindle is rotated by a spindle motor 66 (see FIG. 3) provided on the upper part of the spindle head 6. At this time, the tool provided on the spindle rotates with respect to the work material W.

工具交換装置9は立柱5と主軸ヘッド6周囲を取り巻く略円環状である。工具交換装置9はZ軸移動機構が主軸ヘッド6を昇降する間に、主軸に現在装着する工具を交換する。制御箱は工作機械1を覆うカバー(図示略)の外壁に取り付ける。制御装置40は制御箱の内側に格納する。制御装置40はNCプログラムに基づき工作機械1の動作を制御する。工作機械1を覆うカバーは外壁面に操作盤10(図3参照)を備える。操作盤10は操作部18と表示部19を備える。操作部18は制御装置40の各種設定を行う。表示部19は各種画面、メッセージ、警報等を表示する。 The tool changer 9 is a substantially annular shape surrounding the vertical column 5 and the spindle head 6. The tool changer 9 changes the tool currently mounted on the spindle while the Z-axis moving mechanism moves up and down the spindle head 6. The control box is attached to the outer wall of a cover (not shown) that covers the machine tool 1. The control device 40 is stored inside the control box. The control device 40 controls the operation of the machine tool 1 based on the NC program. The cover covering the machine tool 1 is provided with an operation panel 10 (see FIG. 3) on the outer wall surface. The operation panel 10 includes an operation unit 18 and a display unit 19. The operation unit 18 makes various settings for the control device 40. The display unit 19 displays various screens, messages, alarms, and the like.

支持装置8は右側基台13と左側基台14の上面に固定する。図2の如く、支持装置8はA軸台20、左側支持台27、駆動部28、回転台29、C軸駆動部30等を備える。A軸台20は積載物200、300を取り外し可能に付加できる。積載物200はA軸台20に対しA軸側(台側)に付加する治具201、被削材Wを含む。治具201はチャック、平治具等の被削材Wを固定する器具である。積載物300はA軸台20に対しA軸側とは反対側(尾側)に付加する回転シリンダ、ロータリージョイントを含む。ロータリージョイントは切削液、冷却液等の液体を供給する。回転シリンダは被削材Wを保持するチャック等の治具の可動部を直線方向に駆動する。 The support device 8 is fixed to the upper surfaces of the right base 13 and the left base 14. As shown in FIG. 2, the support device 8 includes an A-axis base 20, a left-side support base 27, a drive unit 28, a rotary table 29, a C-axis drive unit 30, and the like. The A-axis base 20 can be detachably attached with loads 200 and 300. The load 200 includes a jig 201 added to the A-axis side (base side) with respect to the A-axis pedestal 20, and a work material W. The jig 201 is an instrument for fixing a work material W such as a chuck and a flat jig. The load 300 includes a rotary cylinder and a rotary joint added to the A-axis base 20 on the side opposite to the A-axis side (tail side). The rotary joint supplies liquids such as cutting fluid and coolant. The rotary cylinder drives a movable part of a jig such as a chuck that holds the work material W in a linear direction.

A軸台20は台部21、右連結部22、左連結部23を備える。台部21は、基準面R(図6参照)に対するA軸台20の角度が0(rad)の時、上面が基準面Rと平行となる平面視略長方形状の板状部である。基準面Rは水平面と平行な仮想面である。右連結部22は台部21の右端部から右斜め上方に延び且つ駆動部28と回動可能に連結する。右連結部22はその右端面から右方に突出する略円柱状の支軸32を有する。左連結部23は台部21の左端部から左斜め上方に延び且つ後述する左側支持台27と回動可能に連結する。左連結部23はその左端面から左方に突出する略円柱状の支軸31を有する。左側支持台27はA軸台20右側に位置する。左側支持台27は支軸31を回転可能に支持する。左側支持台27の底部は、左側基台14(図1参照)の上面に固定する。 The A-axis base 20 includes a base portion 21, a right connecting portion 22, and a left connecting portion 23. The base portion 21 is a plate-shaped portion having a substantially rectangular shape in a plan view in which the upper surface is parallel to the reference plane R when the angle of the A-axis base 20 with respect to the reference plane R (see FIG. 6) is 0 (rad). The reference plane R is a virtual plane parallel to the horizontal plane. The right connecting portion 22 extends diagonally upward to the right from the right end portion of the base portion 21 and is rotatably connected to the driving portion 28. The right connecting portion 22 has a substantially columnar support shaft 32 protruding to the right from the right end surface thereof. The left connecting portion 23 extends diagonally upward to the left from the left end portion of the base portion 21 and is rotatably connected to the left support base 27 described later. The left connecting portion 23 has a substantially columnar support shaft 31 projecting to the left from its left end surface. The left support base 27 is located on the right side of the A-axis base 20. The left support base 27 rotatably supports the support shaft 31. The bottom of the left support base 27 is fixed to the upper surface of the left base 14 (see FIG. 1).

駆動部28はA軸台20右側に位置する。駆動部28は右側支持台26、A軸モータ65等を備える。右側支持台26の底部は、右側基台13(図1参照)の上面に固定する。右側支持台26はA軸出力軸67を介して右連結部22の支軸32を回転可能に支持する。右連結部22の支軸32とA軸モータ65の出力軸は、A軸出力軸67を介して互いに連結する。A軸モータ65の出力軸が回転すると、A軸台20はA軸を中心に連結部22、23と一体に回動する。A軸はX軸方向と平行であり、側面視で支軸31、32の中心を通る。駆動部28は工具に対して被削材Wを、A軸を中心として回転する。A軸台20はA軸回りに任意角度で傾くことで、主軸に装着する工具に対して被削材WをA軸回りの任意方向に傾ける。 The drive unit 28 is located on the right side of the A axle base 20. The drive unit 28 includes a right side support base 26, an A-axis motor 65, and the like. The bottom of the right support base 26 is fixed to the upper surface of the right base 13 (see FIG. 1). The right support base 26 rotatably supports the support shaft 32 of the right connecting portion 22 via the A-axis output shaft 67. The support shaft 32 of the right connecting portion 22 and the output shaft of the A-axis motor 65 are connected to each other via the A-axis output shaft 67. When the output shaft of the A-axis motor 65 rotates, the A-axis base 20 rotates integrally with the connecting portions 22 and 23 around the A-axis. The A axis is parallel to the X axis direction and passes through the centers of the support axes 31 and 32 in a side view. The drive unit 28 rotates the work material W with respect to the tool about the A axis. By tilting the A-axis base 20 at an arbitrary angle around the A-axis, the work material W is tilted in an arbitrary direction around the A-axis with respect to the tool mounted on the spindle.

回転台29は台部21上面略中央に回転可能に設ける。回転台29は円盤状に形成し、A軸台20上面略中央に設ける。C軸駆動部30は台部21下面に設け且つ台部21の略中央に設けた穴(図示略)を介して回転台29と連結する。C軸駆動部30は内部に回転軸(図示略)、C軸モータ64(図3参照)等を備える。回転軸は回転台29に対して直交する方向に延びる。回転軸は回転台29に固定する。C軸モータ64のローターは回転軸に固定する。故に、C軸モータ64が回転軸を回転すると、回転台29はC軸を中心に回転する。回転台29上面は積載物200を固定する。C軸駆動部30は工具に対して被削材Wを、C軸を中心として回転する。 The rotary table 29 is rotatably provided at substantially the center of the upper surface of the table portion 21. The rotary table 29 is formed in a disk shape and is provided substantially in the center of the upper surface of the A-axis table 20. The C-axis drive unit 30 is provided on the lower surface of the base portion 21 and is connected to the rotary table 29 via a hole (not shown) provided in the substantially center of the base portion 21. The C-axis drive unit 30 includes a rotating shaft (not shown), a C-axis motor 64 (see FIG. 3), and the like inside. The axis of rotation extends in a direction orthogonal to the rotary table 29. The rotary shaft is fixed to the rotary table 29. The rotor of the C-axis motor 64 is fixed to the rotating shaft. Therefore, when the C-axis motor 64 rotates the rotation axis, the rotary table 29 rotates about the C-axis. The upper surface of the rotary table 29 fixes the load 200. The C-axis drive unit 30 rotates the work material W with respect to the tool about the C-axis.

図3を参照し、第一、第二実施形態の制御装置40と工作機械1の電気的構成を説明する。制御装置40はCPU41、ROM42、RAM43、記憶部44、入出力部45、駆動回路51~56を備える。工作機械1はX軸モータ61、Y軸モータ62、Z軸モータ63、C軸モータ64、A軸モータ65、主軸モータ66、エンコーダ71~76を備える。以下、駆動回路51~56を区別しない時、駆動回路50と総称する。X軸モータ61、Y軸モータ62、Z軸モータ63、C軸モータ64、A軸モータ65、主軸モータ66を区別しない時、モータ60と総称する。エンコーダ71~76を区別しない時、エンコーダ70と総称する。 With reference to FIG. 3, the electrical configurations of the control device 40 and the machine tool 1 of the first and second embodiments will be described. The control device 40 includes a CPU 41, a ROM 42, a RAM 43, a storage unit 44, an input / output unit 45, and drive circuits 51 to 56. The machine tool 1 includes an X-axis motor 61, a Y-axis motor 62, a Z-axis motor 63, a C-axis motor 64, an A-axis motor 65, a spindle motor 66, and encoders 71 to 76. Hereinafter, when the drive circuits 51 to 56 are not distinguished, they are collectively referred to as the drive circuit 50. When the X-axis motor 61, the Y-axis motor 62, the Z-axis motor 63, the C-axis motor 64, the A-axis motor 65, and the spindle motor 66 are not distinguished, they are collectively referred to as a motor 60. When the encoders 71 to 76 are not distinguished, they are collectively referred to as an encoder 70.

CPU41は工作機械1の動作を制御する。ROM42は後述する主処理(図5、図12参照)を実行する為の制御プログラム等を記憶する。RAM43は各種処理実行中に発生する各種データを記憶する。記憶部44はNCプログラム等を記憶する。入出力部45は駆動回路50、エンコーダ70、操作部18、表示部19と電気的に接続し、駆動回路50、エンコーダ70、操作部18、表示部19との間で各種信号の入出力を行う。 The CPU 41 controls the operation of the machine tool 1. The ROM 42 stores a control program or the like for executing the main processing (see FIGS. 5 and 12) described later. The RAM 43 stores various data generated during execution of various processes. The storage unit 44 stores NC programs and the like. The input / output unit 45 is electrically connected to the drive circuit 50, the encoder 70, the operation unit 18, and the display unit 19, and inputs / outputs various signals between the drive circuit 50, the encoder 70, the operation unit 18, and the display unit 19. conduct.

駆動回路50は、CPU41が出力する指令に基づき、モータ60にパルス信号を出力する。エンコーダ70は、対応するモータ60の出力軸の回転角度を検出し、該検出信号を駆動回路50及び入出力部45に出力する。モータ60は何れもサーボモータである。エンコーダ70は一般的な絶対値エンコーダである。 The drive circuit 50 outputs a pulse signal to the motor 60 based on the command output by the CPU 41. The encoder 70 detects the rotation angle of the output shaft of the corresponding motor 60, and outputs the detection signal to the drive circuit 50 and the input / output unit 45. The motors 60 are all servo motors. The encoder 70 is a general absolute value encoder.

図4を参照し、駆動回路55の制御系を説明する。制御装置40のCPU41はNCプログラムのA軸送り指令に基づき所定周期毎の目標角度の時系列データ(後述)を生成し、各データに応じた角度指令を、駆動回路55に出力する。角度指令はデータが示す目標角度にA軸台20を回動する時のA軸モータ65の出力軸の回転角を示す。エンコーダ75はA軸モータ65の出力軸の現在の回転角情報を戻り値として駆動回路55に出力する。駆動回路50は該戻り値と該角度指令に基づき、A軸モータ65に出力する駆動電流を制御する。具体的には駆動回路55は加算器50Aで戻り値と角度指令との角度偏差を算出し、該角度偏差に角度比例ゲインを乗じて角速度指令を算出する。駆動回路55は加算器50Bで算出した角速度指令と実際の角速度、即ち戻り値を微分器50Cで微分した角速度戻り値との角速度偏差を算出する。駆動回路55は加算器50Dで算出した角速度偏差に角速度比例ゲインを乗じた電流指令と、角速度偏差を積分器50Eで積分してその積分結果に角速度積分ゲインを乗じた電流指令を加算し、トルク指令を生成する。駆動回路55はトルク指令を示すパルス信号により、A軸モータ65を駆動する。 The control system of the drive circuit 55 will be described with reference to FIG. The CPU 41 of the control device 40 generates time-series data (described later) of the target angle for each predetermined cycle based on the A-axis feed command of the NC program, and outputs the angle command corresponding to each data to the drive circuit 55. The angle command indicates the rotation angle of the output shaft of the A-axis motor 65 when the A-axis base 20 is rotated to the target angle indicated by the data. The encoder 75 outputs the current rotation angle information of the output shaft of the A-axis motor 65 to the drive circuit 55 as a return value. The drive circuit 50 controls the drive current output to the A-axis motor 65 based on the return value and the angle command. Specifically, the drive circuit 55 calculates the angle deviation between the return value and the angle command by the adder 50A, and multiplies the angle deviation by the angle proportional gain to calculate the angular velocity command. The drive circuit 55 calculates the angular velocity deviation between the angular velocity command calculated by the adder 50B and the actual angular velocity, that is, the angular velocity return value obtained by differentiating the return value by the differentiator 50C. The drive circuit 55 adds a current command obtained by multiplying the angular velocity deviation calculated by the adder 50D by the angular velocity proportional gain and a current command obtained by integrating the angular velocity deviation with the integrator 50E and multiplying the integration result by the angular velocity integrated gain, and torque. Generate a command. The drive circuit 55 drives the A-axis motor 65 by a pulse signal indicating a torque command.

図5~図8を参照し、第一実施形態の制御装置40のCPU41が実行する主処理を説明する。主処理は制御装置40の電源がONである時、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。 5 to 8, the main process executed by the CPU 41 of the control device 40 of the first embodiment will be described. The main process is started by the CPU 41 reading and executing the control program stored in the storage unit 44 when the power of the control device 40 is ON.

図5の如く、CPU41は記憶部44に記憶したNCプログラムを一行読出す(S1)。CPU41はS1で読出したプログラムがA軸送り指令である時、A軸送り指令が指示する指令角度θ(rad)に応じた角度誤差ΔQ(θ)(rad)を算出する(S2)。指令角度θは基準面Rに対するA軸台20の角度で表す。図6(A)の如く、角度θが0である時、A軸台20が有する面の内、A軸と対向する面は基準面Rと平行であり、A軸台20の重心CがA軸に対し、鉛直下向き方向に位置する。角度はA軸台20が図6(A)に示す位置から左側面視反時計回りに回動する場合の角度をプラスの角度とする。A軸送り指令は水平面に平行な基準面Rに対するA軸台20の指令角度θ迄、A軸台20をA軸周りに回動することを指示する。角度誤差ΔQ(θ)はA軸送り指令で指示する指令角度θに対応する量だけ駆動部28を駆動した時の、積載物をA軸台20に付加したことに因る角度の誤差である。 As shown in FIG. 5, the CPU 41 reads one line of the NC program stored in the storage unit 44 (S1). When the program read in S1 is the A-axis feed command, the CPU 41 calculates the angle error ΔQ (θ) (rad) according to the command angle θ (rad) instructed by the A-axis feed command (S2). The command angle θ is represented by the angle of the A-axis pedestal 20 with respect to the reference plane R. As shown in FIG. 6A, when the angle θ is 0, the surface of the A-axis pedestal 20 facing the A-axis is parallel to the reference surface R, and the center of gravity Cg of the A-axis pedestal 20 is It is located vertically downward with respect to the A axis. The angle is a positive angle when the A-axis base 20 rotates counterclockwise when viewed from the left side from the position shown in FIG. 6 (A). The A-axis feed command instructs the A-axis pedestal 20 to rotate around the A-axis up to the command angle θ of the A-axis pedestal 20 with respect to the reference plane R parallel to the horizontal plane. The angle error ΔQ (θ) is an angle error due to the addition of the load to the A-axis pedestal 20 when the drive unit 28 is driven by the amount corresponding to the command angle θ specified by the A-axis feed command. ..

CPU41は式(1)を用い角度誤差ΔQ(θ)を算出する。式(1)において、E(deg/N・m)は駆動部28のねじり剛性係数であり、駆動部28に固有な値である。Eは予め記憶部44が記憶する。Fθsin(θ)(N・m)はA軸台20、C軸駆動部30、及びA軸台20に付加した積載物の回転モーメントの合計である。Fθ(N・m)は指令角度θに応じた回転モーメントを算出する為の係数であり、記憶部44が記憶する。回転モーメント(N・m)は、回転モーメント係数Fθ(N・m)に指令角度θの正弦を乗じて算出する。回転モーメント係数FθはA軸台20に積載物を付加した状態で実行する前回のS5の処理によりCPU41が算出し、S10で記憶部44に記憶する。CPU41が前回のS5を実行していない時、記憶部44は回転モーメント係数Fθの初期値を記憶する。回転モーメント係数Fθの初期値は、A軸台20に積載物を付加しない時の回転モーメントを算出する為の係数であり、A軸台20とC軸駆動部30の回転モーメント係数Fθ1である。
ΔQ(θ)=E×Fθsin(θ) ・・・式(1)
The CPU 41 calculates the angle error ΔQ (θ) using the equation (1). In the formula (1), E (deg / N · m) is a torsional rigidity coefficient of the drive unit 28, which is a value peculiar to the drive unit 28. E is stored in advance by the storage unit 44. F θ sin (θ) (Nm) is the total rotational moment of the load added to the A-axis base 20, the C-axis drive unit 30, and the A-axis base 20. F θ (Nm) is a coefficient for calculating the rotational moment according to the command angle θ, and is stored by the storage unit 44. The rotational moment (Nm) is calculated by multiplying the rotational moment coefficient Fθ (Nm) by the sine of the command angle θ . The rotation moment coefficient F θ is calculated by the CPU 41 by the previous process of S5 executed with the load added to the A axle base 20, and stored in the storage unit 44 in S10. When the CPU 41 has not executed the previous S5, the storage unit 44 stores the initial value of the rotation moment coefficient F θ . The initial value of the rotational moment coefficient F θ is a coefficient for calculating the rotational moment when no load is added to the A-axis pedestal 20, and is the rotational moment coefficient F θ 1 of the A-axis pedestal 20 and the C-axis drive unit 30. be.
ΔQ (θ) = E × F θ sin (θ) ・ ・ ・ Equation (1)

図6(B)の如く、指令角度θがK1(rad)である時、CPU41は例えば角度誤差をK2(rad)と算出する。CPU41はS2で算出した角度誤差ΔQ(θ)を用い、指令角度θを補正する(S3)。CPU41は例えば、指令角度θから角度誤差ΔQ(θ)を差し引いて、指令角度θを補正する。CPU41はS1で読出したプログラムがA軸送り指令でない時、S2、S3を省略してよい。 As shown in FIG. 6B, when the command angle θ is K1 (rad), the CPU 41 calculates, for example, the angle error as K2 (rad). The CPU 41 uses the angle error ΔQ (θ) calculated in S2 to correct the command angle θ (S3). For example, the CPU 41 corrects the command angle θ by subtracting the angle error ΔQ (θ) from the command angle θ. The CPU 41 may omit S2 and S3 when the program read in S1 is not an A-axis feed command.

CPU41はS1で読出したNCプログラムの指令がA軸早送り指令であるか否かを判断する(S4)。A軸早送り指令は水平面に平行な基準面Rに対するA軸台20の指令角度θ迄、A軸台20をA軸周りに早送り条件で回動することを指示する。早送り条件は工作機械1で設定可能な最大角速度Vmaxでモータ60が回転する条件である。CPU41はS1で読出したNCプログラムの指令がA軸早送り指令であると判断する時(S4:YES)、CPU41はS3で補正した指令角度θに関するA軸早送りと、駆動部28の内部モデルの変数算出を実行する(S5)。CPU41は、S5で補正したA軸早送り指令に応じて駆動回路55に出力する目標角度の時系列データを、記憶部44に記憶したFIR1、FIR2(図8参照)の時定数T1、T2に基づき決定し、決定した目標角度の時系列データの各データに対応する角度指令を駆動回路55に出力することでA軸早送りを実行する。CPU41は、駆動回路55がA軸モータ65に対して出力するトルクuと、エンコーダ75の戻り値xを後述の内部モデルの評価関数に適用し、駆動部28の内部モデルの複数の変数を算出する。 The CPU 41 determines whether or not the command of the NC program read in S1 is an A-axis fast-forward command (S4). The A-axis fast-forward command instructs the A-axis base 20 to rotate around the A-axis under fast-forward conditions up to the command angle θ of the A-axis base 20 with respect to the reference plane R parallel to the horizontal plane. The fast-forward condition is a condition in which the motor 60 rotates at the maximum angular velocity Vmax that can be set in the machine tool 1. When the CPU 41 determines that the NC program command read in S1 is an A-axis fast-forward command (S4: YES), the CPU 41 performs A-axis fast-forward regarding the command angle θ corrected in S3 and variables of the internal model of the drive unit 28. The calculation is executed (S5). The CPU 41 stores the time-series data of the target angle output to the drive circuit 55 in response to the A-axis fast-forward command corrected in S5 based on the time constants T1 and T2 of FIR1 and FIR2 (see FIG. 8) stored in the storage unit 44. The A-axis fast forward is executed by outputting the angle command corresponding to each data of the time series data of the determined and determined target angle to the drive circuit 55. The CPU 41 applies the torque u output by the drive circuit 55 to the A-axis motor 65 and the return value x of the encoder 75 to the evaluation function of the internal model described later, and calculates a plurality of variables of the internal model of the drive unit 28. do.

図7、図8を参照し、A軸早送り指令に基づくA軸早送りを説明する。図7の如く、CPU41はS1で読込みNCプログラムからA軸早送り指令を取得する(P1)。CPU41はA軸台20をS3で補正した指令角度θ迄回動する為、目標角度の時系列データを決定する(P2)。CPU41は所定周期で目標角度のデータに応じた角度指令を駆動回路55に出力する。該角度指令は目標角度迄A軸台20を回動する為のA軸モータ65の回転角、駆動条件を示す。 A-axis fast-forwarding based on the A-axis fast-forwarding command will be described with reference to FIGS. 7 and 8. As shown in FIG. 7, the CPU 41 acquires an A-axis fast-forward command from the read NC program in S1 (P1). Since the CPU 41 rotates the A-axis base 20 to the command angle θ corrected by S3, the time-series data of the target angle is determined (P2). The CPU 41 outputs an angle command corresponding to the target angle data to the drive circuit 55 at a predetermined cycle. The angle command indicates the rotation angle and driving conditions of the A-axis motor 65 for rotating the A-axis base 20 to the target angle.

図8(A)、図8(B)の如く、CPU41はA軸早送り指令の指令角度θ迄A軸台20を一定の最大角速度Vmaxで回動する場合のA軸台20の角速度の時系列変化を示す波形(角速度波形と称す)を設定する。次にCPU41は図8(B)に示す角速度波形に二種類の移動平均フィルタFIR1、FIR2を順に適用し、角速度波形が示す角速度の変化を平滑化する。FIR1は図8(B)に示す角速度波形に適用し、FIR1の時定数T1の期間で角速度が0からVmax迄加速し、最大角速度Vmaxを維持した後、時定数T1の期間で角速度をVmaxから0迄減速するよう、角速度波形を平滑化する。FIR2は図8(C)に示すFIR1を適用した角速度波形に適用し、図8(D)の如く、角速度波形の内の加速期間と減速期間の開始部分と終了部分で角速度の変化を平滑化する。該時、角速度波形の加速期間と減速期間の長さは夫々FIR2の時定数T2ずつ増加し、(T1+T2)とする。 As shown in FIGS. 8A and 8B, when the CPU 41 rotates the A-axis platform 20 at a constant maximum angular velocity V max up to the command angle θ of the A-axis fast-forward command at the angular velocity of the A-axis platform 20. Set a waveform (called an angular velocity waveform) that indicates a series change. Next, the CPU 41 applies two types of moving average filters FIR1 and FIR2 in order to the angular velocity waveform shown in FIG. 8B to smooth the change in the angular velocity indicated by the angular velocity waveform. FIR1 is applied to the angular velocity waveform shown in FIG. 8B, and the angular velocity accelerates from 0 to V max during the period of the time constant T1 of FIR1, maintains the maximum angular velocity V max , and then the angular velocity is increased during the period of the time constant T1. The angular velocity waveform is smoothed so as to decelerate from V max to 0. FIR2 is applied to the angular velocity waveform to which FIR1 shown in FIG. 8C is applied, and as shown in FIG. 8D, the change in the angular velocity is smoothed at the start part and the end part of the acceleration period and the deceleration period in the angular velocity waveform. do. At this time, the lengths of the acceleration period and the deceleration period of the angular velocity waveform are increased by the time constant T2 of FIR2, respectively, and are set to (T1 + T2).

CPU41はFIR1とFIR2を適用して得た図8(D)の角速度波形に基づき、所定周期毎の目標角度を決定する。CPU41は決定した目標角度のデータに応じた角度指令rを所定周期で駆動回路55に出力する。駆動回路55はCPU41が所定周期で出力する角度指令rに基づき、A軸モータ65を駆動する。A軸モータ65はA軸台20を目標角度迄A軸周りに回動する。A軸台20は所定周期毎に目標角度迄回動する動作を繰り返す。A軸台20はA軸早送り指令により指定した指令角度に最終的に到達する。 The CPU 41 determines the target angle for each predetermined cycle based on the angular velocity waveform of FIG. 8D obtained by applying FIR1 and FIR2. The CPU 41 outputs an angle command r corresponding to the determined target angle data to the drive circuit 55 at a predetermined cycle. The drive circuit 55 drives the A-axis motor 65 based on the angle command r output by the CPU 41 at a predetermined cycle. The A-axis motor 65 rotates the A-axis base 20 around the A-axis to a target angle. The A-axis pedestal 20 repeats the operation of rotating to a target angle at predetermined intervals. The A-axis platform 20 finally reaches the command angle specified by the A-axis fast-forward command.

CPU41は支持装置8の内部モデルの複数の変数を以下のように算出する。内部モデルは、複数の変数の一つとしてA軸台20に付加した積載物の回転モーメント(偏荷重)を含む。積載物の回転モーメントは支持装置8のA軸台20の回転角度に応じて変動し、積載物の回転モーメントを解消する方向にA軸モータ65を回転しようとする力又はトルクを示す。図6(A)の如く、A軸台20の重心Cを定義する時、A軸台20の重心Cに対して鉛直下向き方向に積載物の回転モーメントによる力が作用する。 The CPU 41 calculates a plurality of variables of the internal model of the support device 8 as follows. The internal model includes the rotational moment (uneven load) of the load added to the A-axis pedestal 20 as one of a plurality of variables. The rotation moment of the load fluctuates according to the rotation angle of the A-axis base 20 of the support device 8, and indicates a force or torque for rotating the A-axis motor 65 in a direction for eliminating the rotation moment of the load. As shown in FIG. 6A, when the center of gravity C g of the A-axis pedestal 20 is defined, a force due to the rotational moment of the load acts vertically downward on the center of gravity C g of the A-axis pedestal 20.

支持装置8の内部モデルは、複数の変数を用い適宜設定すればよく、例えば、式(2)で表す。式(2)において、θは基準面Rに対するA軸台20の角度である。θ(上付き一つドット)は角度の一回時間微分(角速度(rad/s))を示す。θ(上付き二つドット)は角度の二回時間微分(角加速度(rad/s))を示す。u(N・m)は駆動回路55がA軸モータ65に対して出力するトルク、J(kg・m)は支持装置8に関する慣性モーメントである。

Figure 2022020269000002
式(2)でfは式(3)の関係を満たす。Fは支持装置8に関するクーロン摩擦係数(N・m)である。sign関数は、実数に対しその符号に応じて1、-1、0の何れかを返す符号関数である。Dは支持装置8に関する粘性摩擦係数(N・m/(rad/s))である。
Figure 2022020269000003
The internal model of the support device 8 may be appropriately set by using a plurality of variables, and is represented by, for example, the equation (2). In equation (2), θ is the angle of the A-axis platform 20 with respect to the reference plane R. θ (one dot with superscript) indicates the one-time derivative of the angle (angular velocity (rad / s)). θ (two dots with a top) indicates the double time derivative of the angle (angular acceleration (rad / s 2 )). u (N · m) is the torque output by the drive circuit 55 to the A-axis motor 65, and J (kg · m 2 ) is the moment of inertia with respect to the support device 8.
Figure 2022020269000002
In equation (2), f satisfies the relationship of equation (3). FC is the Coulomb friction coefficient ( Nm ) with respect to the support device 8. The sign function is a sign function that returns any of 1, -1, and 0 for a real number depending on its sign. D is a viscous friction coefficient (Nm / (rad / s)) with respect to the support device 8.
Figure 2022020269000003

駆動回路55が出力するトルクuは式(2)の内部モデルを用いて推定できる。推定誤差e(ρ)は式(4)により導出できる。ρは算出する変数、xはエンコーダ75からの戻り値、GLPFは微分ノイズを除去する為のローパスフィルタである。上付きのTは転置行列であることを示す。例えば、ρはρの転置行列を示す。
e(ρ)=GLPFu-ρx ・・・式(4)
式(4)でρ、xは式(5)、式(6)の関係を満たす。ρで表す複数の変数(慣性モーメントJ、粘性摩擦係数D、クーロン摩擦係数F、回転モーメント係数Fθ)をモデル変数とも言う。

Figure 2022020269000004
Figure 2022020269000005
The torque u output by the drive circuit 55 can be estimated using the internal model of the equation (2). The estimation error e (ρ) can be derived by Eq. (4). ρ is a variable to be calculated, x is a return value from the encoder 75, and G LPF is a low-pass filter for removing differential noise. The superscript T indicates that it is a transposed matrix. For example, ρ T represents the transposed matrix of ρ.
e (ρ) = GLPFu-ρ T x ... Equation (4)
In equation (4), ρ and x satisfy the relationship between equations (5) and (6). A plurality of variables represented by ρ (moment of inertia J, coefficient of viscous friction D, coefficient of Coulomb friction FC, coefficient of rotational moment F θ ) are also called model variables.
Figure 2022020269000004
Figure 2022020269000005

図7の如く、CPU41は評価関数|e(ρ)|が最小になるρを逐次最小二乗法により決定する(P3)。今回取得した戻り値をk番目の戻り値、前回取得した戻り値を(k-1)番目の戻りとする時、今回算出する変数をサーカムフレックス付きのρ(ρ^と表記する)(k)、今回の推定誤差e(ρ)をε(k)、今回の共分散行列をP(k)と置いた時、ρ^(k)、ε(k)、P(k)は式(7)~式(9)で表す。

Figure 2022020269000006
Figure 2022020269000007
Figure 2022020269000008
As shown in FIG. 7, the CPU 41 determines ρ at which the evaluation function | e (ρ) | 2 is minimized by the sequential least squares method (P3). When the return value acquired this time is the kth return value and the return value acquired last time is the (k-1) th return, the variable to be calculated this time is ρ (expressed as ρ ^) with circumflex (k). When the current estimation error e (ρ) is set to ε (k) and the current covariance matrix is set to P (k), ρ ^ (k), ε (k), and P (k) are given by Eq. (7). It is expressed by the formula (9).
Figure 2022020269000006
Figure 2022020269000007
Figure 2022020269000008

ρ^(k)、ε(k)、P(k)は何れも式(7)~式(9)に基づき、前回の該ρ^(k―1)、ε(k―1)、P(k―1)、今回のトルクu(k)、戻り値x(k)を用いて逐次的に算出できる。故にCPU41は、駆動回路55がA軸モータ65に対して出力するトルクuと、エンコーダ75の戻り値xを内部モデルに適用し、式(7)~式(9)を所定周期毎計算し、評価関数|e(ρ)|が最小になるρ、即ちモデル変数(慣性モーメントJ、粘性摩擦係数D、クーロン摩擦係数F、回転モーメント係数Fθ)を逐次的に算出する(P3)。CPU41は処理をS1に戻す。 ρ ^ (k), ε (k), P (k) are all based on the equations (7) to (9), and the previous ρ ^ (k-1), ε (k-1), P (k) It can be calculated sequentially using k-1), the current torque u (k), and the return value x (k). Therefore, the CPU 41 applies the torque u output by the drive circuit 55 to the A-axis motor 65 and the return value x of the encoder 75 to the internal model, and calculates equations (7) to (9) every predetermined cycle. The evaluation function | e (ρ) | 2 is minimized ρ, that is, the model variables (moment of inertia J, viscous friction coefficient D, Coulomb friction coefficient FC, rotational moment coefficient F θ ) are sequentially calculated (P3). The CPU 41 returns the process to S1.

CPU41は読出したNCプログラムの指令がA軸早送り指令ではないと判断した時(S4:NO)、CPU41はS1で読出したNCプログラムの指令が、工作機械1の動作を停止する指令か否かを判断する(S7)。CPU41は工作機械1の動作を停止する指令でないと判断時(S7:NO)、S1で読出した指令に応じた処理を実行し(S8)、処理をS1に戻す。工作機械1の動作を停止する指令と判断時(S7:YES)、CPU41はS5でモデル変数を算出済みであるか否かを判断する(S9)。S5でモデル変数を算出済みである時(S9:YES)、CPU41はS5で算出したモデル変数を記憶部44に記憶し、モデル変数を更新する(S10、P4)。S5でモデル変数を算出済みでない時(S9:NO)又はS10の次に、CPU41は以上で主処理を終了する。 When the CPU 41 determines that the NC program command read out is not an A-axis fast-forward command (S4: NO), the CPU 41 determines whether the NC program command read in S1 is a command to stop the operation of the machine tool 1. Judgment (S7). When the CPU 41 determines that it is not a command to stop the operation of the machine tool 1 (S7: NO), the CPU 41 executes a process according to the command read in S1 (S8), and returns the process to S1. At the time of the command and determination to stop the operation of the machine tool 1 (S7: YES), the CPU 41 determines whether or not the model variable has been calculated in S5 (S9). When the model variable has been calculated in S5 (S9: YES), the CPU 41 stores the model variable calculated in S5 in the storage unit 44 and updates the model variable (S10, P4). When the model variable has not been calculated in S5 (S9: NO) or next to S10, the CPU 41 ends the main process.

図9を参照し、第一実施形態の主処理の評価結果を説明する。評価では上記第一実施形態の主処理を実行することにより、A軸台20に積載物を付加した時にも、被削材Wを保持するA軸台20を回動する工作機械1をA軸早送り指令の指令角度θに従来よりも適切に回動できるかを確認した。工作機械1が上記第一実施形態の主処理を実行する場合を実施例とし、工作機械1が主処理の内S2、S3を実行しない場合を比較例とした。実施例と比較例を以下の五条件で駆動し、指令角度と誤差の関係を比較した。誤差はS5でA軸台20を回動した後の実際のA軸台20の角度(rad)から指令角度(rad)を差し引いた角度である。第一条件は積載物を付加しない条件である。第二条件は、A軸台20の尾側に積載物A1を付加した条件である。第三条件は、A軸台20の尾側に積載物A2を付加した条件である。第四条件は、A軸台20の尾側に積載物A3を付加した条件である。第五条件は、A軸台20の台側に積載物A4を付加した条件である。各条件の積載物の重量は35~600(N)の範囲の値であり、積載物A1~A4の順に値が大きい。 The evaluation result of the main treatment of the first embodiment will be described with reference to FIG. In the evaluation, by executing the main process of the first embodiment, the machine tool 1 that rotates the A-axis pedestal 20 that holds the work material W even when the load is added to the A-axis pedestal 20 is the A-axis. It was confirmed whether the fast-forward command can be rotated to the command angle θ more appropriately than before. An example is a case where the machine tool 1 executes the main process of the first embodiment, and a comparative example is a case where the machine tool 1 does not execute S2 and S3 of the main processes. The examples and comparative examples were driven under the following five conditions, and the relationship between the command angle and the error was compared. The error is an angle obtained by subtracting the command angle (rad) from the actual angle (rad) of the A-axis pedestal 20 after rotating the A-axis pedestal 20 in S5. The first condition is a condition in which no load is added. The second condition is a condition in which the load A1 is added to the tail side of the A shaft base 20. The third condition is a condition in which the load A2 is added to the tail side of the A-axis pedestal 20. The fourth condition is a condition in which the load A3 is added to the tail side of the A-axis pedestal 20. The fifth condition is a condition in which the load A4 is added to the base side of the A-axis base 20. The weight of the load under each condition is a value in the range of 35 to 600 (N), and the value is larger in the order of the load A1 to A4.

比較例の指令角度と誤差との関係を図9(A)に示し、実施例の指令角度と誤差との関係を図9(B)に示す。図9(A)、図9(B)の縦軸は誤差(rad)をαを用いる相対値で示し、横軸は指令角度(rad)を示す。誤差(rad)は指令角度(rad)の値を超えない。第一条件~第五条件の指令角度と誤差との関係を、結果81~85に示す。図9(A)、図9(B)の如く、比較例、実施例共に結果81で示す第一条件は指令角度が-π/6~2π/3(rad)の範囲で、誤差の絶対値はαに収まる。比較例では、結果82で示す第二条件、結果83で示す第三条件、結果84で示す第四条件は、積載物の重量が大きいほど、積載物の重量が小さい条件に比べ、誤差が大きく、且つ、指令角度が-π/6~π/2(rad)迄の範囲では、指令角度の絶対値が大きいほど、指令角度の絶対値が小さい場合よりも、誤差が大きい。結果85で示す第五条件の場合は、指令角度の絶対値が大きいほど、指令角度の絶対値が小さい場合よりも、誤差の絶対値が大きい。一方実施例では、結果82で示す第二条件、結果83で示す第三条件、結果84で示す第四条件、結果85で示す第五条件の何れの条件でも、角度が-π/6~2π/3(rad)の範囲で、誤差の絶対値はαに収まる。以上から、第一実施形態の制御装置40は主処理を実行することでA軸台20に積載物200、300を付加した時にも、被削材Wを保持するA軸台20を回動する工作機械1を従来よりも適切に制御できることが確認できた。制御装置4はA軸台20の台側に積載物200を付加する場合と、A軸台20の尾側に積載物300を付加する場合の双方で被削材Wを保持するA軸台20を回動する工作機械1を適切に制御できることが確認できた。 The relationship between the command angle and the error in the comparative example is shown in FIG. 9 (A), and the relationship between the command angle and the error in the embodiment is shown in FIG. 9 (B). The vertical axis of FIGS. 9A and 9B indicates the error (rad) as a relative value using α, and the horizontal axis indicates the command angle (rad). The error (rad) does not exceed the value of the command angle (rad). The relationship between the command angle of the first condition to the fifth condition and the error is shown in the results 81 to 85. As shown in FIGS. 9 (A) and 9 (B), the first condition shown in the result 81 in both the comparative example and the embodiment is the absolute value of the error in the range of the command angle of −π / 6 to 2π / 3 (rad). Fits in α. In the comparative example, in the second condition shown in the result 82, the third condition shown in the result 83, and the fourth condition shown in the result 84, the larger the weight of the load, the larger the error than the condition where the weight of the load is small. Moreover, in the range of the command angle from −π / 6 to π / 2 (rad), the larger the absolute value of the command angle, the larger the error than the case where the absolute value of the command angle is small. In the case of the fifth condition shown in the result 85, the larger the absolute value of the command angle is, the larger the absolute value of the error is than the case where the absolute value of the command angle is small. On the other hand, in the embodiment, the angle is −π / 6 to 2π under any of the second condition shown in the result 82, the third condition shown in the result 83, the fourth condition shown in the result 84, and the fifth condition shown in the result 85. In the range of / 3 (rad), the absolute value of the error falls within α. From the above, the control device 40 of the first embodiment rotates the A-axis pedestal 20 that holds the work material W even when the loads 200 and 300 are added to the A-axis pedestal 20 by executing the main process. It was confirmed that the machine tool 1 can be controlled more appropriately than before. The control device 4 holds the work material W in both the case where the load 200 is added to the base side of the A shaft base 20 and the case where the load 300 is added to the tail side of the A shaft base 20. It was confirmed that the machine tool 1 that rotates the machine tool 1 can be appropriately controlled.

図10、図11を参照し、第二実施形態の制御装置40のCPU41が実行する係数算出処理を説明する。係数算出処理は制御装置40の電源がON、且つ、作業者が開始の指示を入力した時に、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。 A coefficient calculation process executed by the CPU 41 of the control device 40 of the second embodiment will be described with reference to FIGS. 10 and 11. The coefficient calculation process is started by the CPU 41 reading and executing the control program stored in the storage unit 44 when the power of the control device 40 is turned on and the operator inputs a start instruction.

図10の如く、CPU41はA軸台20に積載物を付加しない状態でA軸モータ65を駆動し、基準面Rに対するA軸台20の角度がπ/2(rad)の角度にA軸台20を回動する(S21)。図11の如く、CPU41はエンコーダ75の出力値により、基準面Rに対するA軸台20の角度がπ/2(rad)であると判断した時、A軸モータ65の駆動を停止する。角度θがπ/2(rad)である時、A軸台20が有する面の内、A軸と対向する面は基準面Rと垂直であり、A軸台20の重心CがA軸に対し、前方に位置する。CPU41はA軸台20に積載物を付加しない状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時のA軸モータ65の第一駆動量を取得する(S22)。CPU41はA軸モータ65を駆動し、A軸台20に積載物を付加する角度迄、A軸台20を回動する(S23)。A軸台20に積載物を付加(固定)する位置は適宜定めればよく、例えば、基準面Rに対するA軸台20の角度が0(rad)の位置である。 As shown in FIG. 10, the CPU 41 drives the A-axis motor 65 without adding a load to the A-axis pedestal 20, and the A-axis pedestal 20 has an angle of π / 2 (rad) with respect to the reference surface R. 20 is rotated (S21). As shown in FIG. 11, when the CPU 41 determines that the angle of the A-axis base 20 with respect to the reference surface R is π / 2 (rad) based on the output value of the encoder 75, the CPU 41 stops driving the A-axis motor 65. When the angle θ is π / 2 (rad), the surface of the A-axis pedestal 20 facing the A-axis is perpendicular to the reference surface R, and the center of gravity C g of the A-axis pedestal 20 is on the A-axis. On the other hand, it is located in front. The CPU 41 acquires the first drive amount of the A-axis motor 65 when the A-axis pedestal 20 is rotated at an angle at which the A-axis pedestal 20 is perpendicular to the reference surface R without adding a load to the A-axis pedestal 20. (S22). The CPU 41 drives the A-axis motor 65 and rotates the A-axis pedestal 20 to an angle at which a load is added to the A-axis pedestal 20 (S23). The position where the load is added (fixed) to the A-axis pedestal 20 may be appropriately determined. For example, the angle of the A-axis pedestal 20 with respect to the reference surface R is 0 (rad).

CPU41はA軸台20に積載物を付加したか否かを判断する(S24)。積載物は作業者がA軸台20に付加してもよく、作業者は積載物をA軸台20に付加後、操作部18を操作して固定作業が終了したことを示す終了信号を入力してもよい。積載物はロボットがA軸台20に固定してもよく、ロボットは積載物をA軸台20に固定後、制御装置40に終了信号を入力してもよい。CPU41は終了信号を検出したか否かに応じて、A軸台20に積載物を固定したか否かを判断する。CPU41はA軸台20に積載物を固定する迄、S24で待機する(S24:NO)。CPU41はA軸台20に積載物を固定したことを検出した時(S24:YES)、CPU41はS21と同様に、A軸台20に積載物を付加した状態でA軸モータ65を駆動し、基準面Rに対するA軸台20の角度をπ/2(rad)の位置にA軸台20を回動する(S25)。CPU41は、A軸台20に積載物を付加した状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時のA軸モータ65の第二駆動量を取得する(S26)。CPU41は、S26で取得した第二駆動量からS22で取得した第一駆動量を差し引いた差分にA軸モータ65の減速比を積算することで積載物の回転モーメント係数を算出する(S28)。A軸モータ65の減速比は、予め記憶部44に記憶する。CPU41は算出した積載物の回転モーメント係数を記憶部44に記憶する。CPU41は以上で係数算出処理を終了する。 The CPU 41 determines whether or not a load is added to the A axle base 20 (S24). The operator may add the load to the A-axis pedestal 20, and after adding the load to the A-axis pedestal 20, the operator operates the operation unit 18 to input an end signal indicating that the fixing work is completed. You may. The robot may fix the load to the A-axis pedestal 20, and the robot may input an end signal to the control device 40 after fixing the load to the A-axis pedestal 20. The CPU 41 determines whether or not the load is fixed to the A-axle base 20 depending on whether or not the end signal is detected. The CPU 41 waits in S24 until the load is fixed to the A axle base 20 (S24: NO). When the CPU 41 detects that the load is fixed to the A-axis 20 (S24: YES), the CPU 41 drives the A-axis motor 65 with the load added to the A-axis 20 as in S21. The A-axis pedestal 20 is rotated to a position of π / 2 (rad) at an angle of the A-axis pedestal 20 with respect to the reference plane R (S25). The CPU 41 sets the second drive amount of the A-axis motor 65 when the A-axis pedestal 20 is rotated at an angle at which the A-axis pedestal 20 is perpendicular to the reference surface R with the load added to the A-axis pedestal 20. Acquire (S26). The CPU 41 calculates the rotational moment coefficient of the load by integrating the reduction ratio of the A-axis motor 65 into the difference obtained by subtracting the first drive amount acquired in S22 from the second drive amount acquired in S26 (S28). The reduction ratio of the A-axis motor 65 is stored in the storage unit 44 in advance. The CPU 41 stores the calculated rotation moment coefficient of the load in the storage unit 44. The CPU 41 ends the coefficient calculation process.

図12を参照し、第二実施形態の制御装置40のCPU41が実行する主処理を説明する。主処理は制御装置40の電源がON時、記憶部44に記憶した制御プログラムをCPU41が読出し実行することにより開始する。図12では図5の第一実施形態の主処理と同様の処理に同じ符号を付与する。図12の如く、第二実施形態の主処理は、S2、S55の処理に替えて、S32、S35の処理を実行し、S9、S10の処理を実行しない点で第一実施形態の主処理と互いに異なり、他の処理は第一実施形態の主処理と互いに同じである。以下、第一実施形態と互いに異なるS32、S35の処理を説明する。 With reference to FIG. 12, the main process executed by the CPU 41 of the control device 40 of the second embodiment will be described. The main process is started by the CPU 41 reading and executing the control program stored in the storage unit 44 when the power of the control device 40 is turned on. In FIG. 12, the same reference numerals are given to the same processes as those of the main process of the first embodiment of FIG. As shown in FIG. 12, the main process of the second embodiment is different from the main process of the first embodiment in that the processes of S32 and S35 are executed instead of the processes of S2 and S55 and the processes of S9 and S10 are not executed. Different from each other, the other treatments are the same as the main treatments of the first embodiment. Hereinafter, the processes of S32 and S35, which are different from those of the first embodiment, will be described.

CPU41はS1の次にS28で算出した基準面Rに対するA軸台20の角度がπ/2(rad)である時の積載物の回転モーメントを用い角度誤差ΔQ(θ)を算出する(S32)。CPU41はS28で算出した基準面Rに対するA軸台20の角度がπ/2(rad)である時の積載物の回転モーメントを回転モーメント係数Fθ2とし、式(1)の回転モーメント係数Fθに変えて回転モーメント係数Fθ2を用い、角度誤差ΔQ(θ)を算出する。CPU41は第一実施形態と同様に、S32で算出した角度誤差ΔQ(θ)を用い、指令角度θを補正する(S3)。 The CPU 41 calculates the angle error ΔQ (θ) using the rotational moment of the load when the angle of the A-axis base 20 with respect to the reference plane R calculated in S28 after S1 is π / 2 (rad) (S32). .. The CPU 41 sets the rotational moment of the load when the angle of the A shaft base 20 with respect to the reference surface R calculated in S28 is π / 2 (rad) as the rotational moment coefficient F θ2 , and the rotational moment coefficient F θ of the equation (1). The angle error ΔQ (θ) is calculated by using the rotational moment coefficient F θ2 instead of. Similar to the first embodiment, the CPU 41 corrects the command angle θ by using the angle error ΔQ (θ) calculated in S32 (S3).

CPU41は読出したNCプログラムの指令がA軸早送り指令であると判断した時(S4:YES)、CPU41はS3で補正した指令角度θに関するA軸早送りを実行する(S35)。CPU41は、S3で補正したA軸早送り指令に応じて駆動回路55に出力する目標角度の時系列データを、記憶部44に記憶したFIR1、FIR2(図8参照)の時定数T1、T2に基づき決定し、決定した目標角度の時系列データを駆動回路55に出力することで早送りを実行する。CPU41は予め設定し記憶部44が記憶した時定数T1、T2は用いて角度指令rを決定する。CPU41は第一実施形態の内部モデルの複数の変数を算出する処理は実行しない。以上から、第二実施形態の主処理により、CPU41は主処理とは別途行う係数算出処理で算出した積載物の回転モーメントを用いて、指令角度θを補正できる。図示しないが、第二実施形態の制御装置40は主処理を実行することで図9の第一実施形態の制御装置40の評価結果と同様の評価結果を示す。 When the CPU 41 determines that the command of the NC program read out is the A-axis fast-forward command (S4: YES), the CPU 41 executes the A-axis fast-forward regarding the command angle θ corrected in S3 (S35). The CPU 41 stores the time-series data of the target angle output to the drive circuit 55 in response to the A-axis fast-forward command corrected in S3 based on the time constants T1 and T2 of FIR1 and FIR2 (see FIG. 8) stored in the storage unit 44. Fast-forwarding is executed by determining and outputting the time-series data of the determined target angle to the drive circuit 55. The CPU 41 is set in advance and the time constants T1 and T2 stored in the storage unit 44 are used to determine the angle command r. The CPU 41 does not execute the process of calculating a plurality of variables of the internal model of the first embodiment. From the above, by the main processing of the second embodiment, the CPU 41 can correct the command angle θ by using the rotation moment of the load calculated by the coefficient calculation processing performed separately from the main processing. Although not shown, the control device 40 of the second embodiment shows the same evaluation result as the evaluation result of the control device 40 of the first embodiment of FIG. 9 by executing the main process.

上記第一、第二実施形態において、工作機械1、A軸台20、制御装置40、CPU41は本発明の工作機械、台、制御装置、制御部の一例である。A軸モータ65は本発明の駆動部の一例である。S5のP3、S28は本発明の係数算出工程、係数算出処理の一例であり、S5のP3、S28を行うCPU41は本発明の係数算出部の一例である。S2、S32は本発明の誤差算出工程、誤差算出処理の一例であり、S2、S32を行うCPU41は本発明の誤差算出部の一例である。S3は本発明の補正工程、補正処理の一例であり、S3を行うCPU41は本発明の補正部の一例である。S5、S35は本発明の駆動制御工程、駆動制御処理の一例であり、S5、S35を行うCPU41は本発明の駆動制御部の一例である。 In the first and second embodiments, the machine tool 1, the A shaft base 20, the control device 40, and the CPU 41 are examples of the machine tool, the base, the control device, and the control unit of the present invention. The A-axis motor 65 is an example of the drive unit of the present invention. P3 and S28 of S5 are examples of the coefficient calculation process and coefficient calculation process of the present invention, and the CPU 41 that performs P3 and S28 of S5 is an example of the coefficient calculation unit of the present invention. S2 and S32 are examples of the error calculation process and error calculation processing of the present invention, and the CPU 41 that performs S2 and S32 is an example of the error calculation unit of the present invention. S3 is an example of the correction process and correction processing of the present invention, and the CPU 41 performing S3 is an example of the correction unit of the present invention. S5 and S35 are examples of the drive control process and drive control process of the present invention, and the CPU 41 that performs S5 and S35 is an example of the drive control unit of the present invention.

第一、第二実施形態の制御装置40は、被削材Wを固定するA軸台20を、水平面と平行な軸周りに回動する駆動部28と、駆動部28を制御するCPU41とを備えた工作機械1を制御する。CPU41はA軸台20に付加した積載物の回転モーメント係数を算出する(S5のP3、S28)。CPU41は駆動部28のねじり剛性係数Eと、算出した積載物の回転モーメント係数と、NCプログラムが指令する、水平面に平行な基準面Rに対するA軸台20の指令角度とに基づいて、積載物をA軸台20に付加したことに因る角度誤差分、指令角度を補正する(S2、S32、S3)。CPU41はS3で補正した指令角度に対応する量だけ駆動部28を駆動する(S5、S35)。制御装置40、工作機械1は、A軸台20に付加した積載物の回転モーメント係数、駆動部28のねじり剛性係数E、基準面Rに対するA軸台20の指令角度に基づき角度誤差分指令角度を補正する(S3)。故に制御装置40は、A軸台20に付加した積載物の影響を考慮して駆動部28を駆動することで、A軸台20に積載物を付加した時にも従来の装置よりも適切に工作機械1を制御できる。 The control device 40 of the first and second embodiments has a drive unit 28 that rotates the A-axis base 20 that fixes the work material W around an axis parallel to the horizontal plane, and a CPU 41 that controls the drive unit 28. The machine tool 1 provided is controlled. The CPU 41 calculates the rotational moment coefficient of the load added to the A axle base 20 (P3, S28 in S5). The CPU 41 is based on the torsional rigidity coefficient E of the drive unit 28, the calculated rotational moment coefficient of the load, and the command angle of the A-axis base 20 with respect to the reference plane R parallel to the horizontal plane, which is commanded by the NC program. Is corrected for the command angle by the angle error due to the addition of the A-axis base 20 (S2, S32, S3). The CPU 41 drives the drive unit 28 by an amount corresponding to the command angle corrected in S3 (S5, S35). The control device 40 and the machine tool 1 have an angle error command angle based on the rotational moment coefficient of the load added to the A shaft base 20, the torsional rigidity coefficient E of the drive unit 28, and the command angle of the A shaft base 20 with respect to the reference surface R. Is corrected (S3). Therefore, the control device 40 drives the drive unit 28 in consideration of the influence of the load added to the A-axis pedestal 20, so that even when the load is added to the A-axis pedestal 20, the control device 40 works more appropriately than the conventional device. Machine 1 can be controlled.

第一、第二実施形態の制御装置40のCPU41は駆動部28のねじり剛性係数Eと、回転モーメント係数と、指令角度とに基づいて、積載物をA軸台20に付加したことに因る角度誤差を算出する(S2、S32)。CPU41は指令角度をS2で算出した角度誤差で補正する(S3)。制御装置40は角度誤差を算出せずに指令角度を角度誤差分補正する装置よりも、指令角度を角度誤差分補正する処理を簡単にできる。 The CPU 41 of the control device 40 of the first and second embodiments is due to the fact that the load is added to the A shaft base 20 based on the torsional rigidity coefficient E of the drive unit 28, the rotational moment coefficient, and the command angle. Calculate the angular error (S2, S32). The CPU 41 corrects the command angle with the angle error calculated in S2 (S3). The control device 40 can simplify the process of correcting the command angle by the angle error as compared with the device that corrects the command angle by the angle error without calculating the angle error.

第一実施形態の制御装置40のCPU41は、所定の駆動条件に応じて駆動部28に出力した出力結果と、複数の変数の一つとして回転モーメント係数を含む駆動部28の内部モデルを所定の駆動条件(A軸早送り指令)に適用して導出した導出結果との誤差が最小となるように複数の変数を算出することで、積載物の回転モーメント係数を算出する(S5)。第一実施形態の制御装置40、工作機械1は、出力結果と、導出結果とに基づき、積載物の回転モーメント係数を算出できる。制御装置40は、内部モデルの複数の変数の内、回転モーメント係数以外の変数の影響を除いて回転モーメント係数を算出できる。 The CPU 41 of the control device 40 of the first embodiment defines an output result output to the drive unit 28 according to a predetermined drive condition and an internal model of the drive unit 28 including a rotation moment coefficient as one of a plurality of variables. The rotational moment coefficient of the load is calculated by calculating a plurality of variables so as to minimize the error from the derivation result derived by applying the drive condition (A-axis fast forward command) (S5). The control device 40 and the machine tool 1 of the first embodiment can calculate the rotation moment coefficient of the load based on the output result and the derivation result. The control device 40 can calculate the rotation moment coefficient by excluding the influence of variables other than the rotation moment coefficient among the plurality of variables of the internal model.

第二実施形態の制御装置40のCPU41は、A軸台20に積載物を付加しない状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時の駆動部28の第一駆動量を取得する(S22)。CPU41はA軸台20に積載物を付加した状態で基準面Rに対しA軸台20が垂直になる角度にA軸台20を回動した時の駆動部28の第二駆動量を取得する(S26)。CPU41はS26で取得した第二駆動量からS22で取得した第一駆動量を差し引いた差分に駆動部28の減速比を積算することで積載物の回転モーメント係数を算出する(S28)。第二実施形態の制御装置40、工作機械1は、第二駆動量から第一駆動量を差し引いた差分に駆動部28の減速比を積算するという比較的簡単な処理で、積載物の回転モーメント係数を算出できる。 The CPU 41 of the control device 40 of the second embodiment is driven when the A-axis pedestal 20 is rotated at an angle such that the A-axis pedestal 20 is perpendicular to the reference surface R in a state where no load is added to the A-axis pedestal 20. Acquire the first drive amount of the unit 28 (S22). The CPU 41 acquires the second drive amount of the drive unit 28 when the A-axis pedestal 20 is rotated at an angle at which the A-axis pedestal 20 is perpendicular to the reference surface R with the load added to the A-axle pedestal 20. (S26). The CPU 41 calculates the rotational moment coefficient of the load by integrating the reduction ratio of the drive unit 28 into the difference obtained by subtracting the first drive amount acquired in S22 from the second drive amount acquired in S26 (S28). The control device 40 and the machine tool 1 of the second embodiment perform a relatively simple process of integrating the reduction ratio of the drive unit 28 into the difference obtained by subtracting the first drive amount from the second drive amount, and the rotational moment of the load. The coefficient can be calculated.

本発明は上記実施形態に限らない。制御装置40は工作機械1に設ける時に限らず、工作機械1と別体に設けてもよい。例えば制御装置40は工作機械1に接続した装置(PC、専用機等)でもよい。 The present invention is not limited to the above embodiment. The control device 40 may be provided separately from the machine tool 1 not only when it is provided in the machine tool 1. For example, the control device 40 may be a device (PC, dedicated machine, etc.) connected to the machine tool 1.

第一実施形態の制御装置40は駆動部28に関する内部モデルのモデル変数の決定を示したが、工作機械1と異なる機械構成を持つ機械でも、積載物の回転モーメント(偏荷重)を受ける軸(例えば、C軸)周りにA軸台20を回動する駆動部に対して適用できる。積載物の回転モーメント係数を用いて指令角度を補正する方法は適宜変更してよい。回転モーメント係数Fθは、A軸台20とC軸駆動部30の回転モーメント係数Fθ1とA軸台20に付加した積載物200、300の回転モーメント係数Fθ2との和である。角度誤差はA軸周りに回転する全ての要素の回転モーメントによって生じる。故に第一実施形態の如く、制御装置40はA軸台20に付加した積載物200、300を含むA軸周りに回転する全ての要素に応じた回転モーメント係数Fθを用い角度誤差を算出してもよい。A軸台20とC軸駆動部30の回転モーメント係数Fθ1を工作機械1の固有値として用い別途補正する時、第二実施形態の如く、制御装置40はA軸台20に付加した積載物200、300の回転モーメント係数Fθ2を用い角度誤差を算出してもよい。例えば、制御装置40が積載物の回転モーメント係数に基づく補正を行うのとは別に、製造時のピッチ誤差を補正する時、制御装置40のCPU41はピッチ誤差に角度誤差を足し合わせて、ピッチ誤差補正時に、角度誤差の補正を行ってもよい。制御装置40のCPU41は指令角度をθ、補正後の指令角度をθaとした時、式(10)を満たすθaを算出することで、角度誤差を算出せずに、角度誤差分と、指令角度θを補正してもよい。
θa+E×Fθsin(θa)=θ ・・・式(10)
Although the control device 40 of the first embodiment shows the determination of the model variables of the internal model regarding the drive unit 28, the shaft (unbalanced load) that receives the rotational moment (uneven load) of the load even in a machine having a machine configuration different from that of the machine tool 1 ( For example, it can be applied to a drive unit that rotates the A-axis base 20 around (C-axis). The method of correcting the command angle using the rotational moment coefficient of the load may be appropriately changed. The rotation moment coefficient F θ is the sum of the rotation moment coefficient F θ1 of the A-axis base 20 and the C-axis drive unit 30 and the rotation moment coefficient F θ2 of the loads 200 and 300 added to the A-axis base 20. The angular error is caused by the rotational moments of all the elements rotating around the A axis. Therefore, as in the first embodiment, the control device 40 calculates the angle error using the rotation moment coefficient F θ corresponding to all the elements rotating around the A axis including the loads 200 and 300 added to the A axle base 20. You may. When the rotational moment coefficient F θ1 of the A-axis pedestal 20 and the C-axis drive unit 30 is used as an eigenvalue of the machine tool 1 and separately corrected, the control device 40 uses the load 200 added to the A-axis pedestal 20 as in the second embodiment. , 300 may be used to calculate the angular error using the rotational moment coefficient F θ2 . For example, when the control device 40 corrects the pitch error at the time of manufacturing separately from the correction based on the rotation moment coefficient of the load, the CPU 41 of the control device 40 adds the angle error to the pitch error to obtain the pitch error. At the time of correction, the angle error may be corrected. When the command angle is θ and the command angle after correction is θa, the CPU 41 of the control device 40 calculates θa satisfying the equation (10), thereby performing the angle error and the command angle without calculating the angle error. θ may be corrected.
θa + E × F θ sin (θa) = θ ・ ・ ・ Equation (10)

内部モデル、内部モデルの変数は制御対象の構成に応じて適宜変更してよい。CPU41は算出したモデル変数に基づく処理は適宜変更してもよい。制御装置40はエンコーダ70が出力した戻り値に基づくフィードバック制御の他、フィードフォワード制御を実行してもよい。該時、CPU41はフィードフォワード制御の変数を、決定したモデル変数により最適化してもよい。例えば、CPU41は駆動回路55が行うフィードバック制御の角度比例ゲイン、角速度比例ゲイン、角速度積分ゲイン等の制御変数を最適化してもよい。該時、制御装置40は工作機械1を高速且つ高精度に制御できる。第一実施形態の所定の駆動条件は適宜変更してよく、例えば、CPU41はS1で取得したNCプログラムが示す指令がA軸切削送り指令の時にモデル変数を算出してもよい。A軸切削送り指令はA軸台20に付加した被削材Wに対して工具をA軸周りに切削送り条件で相対移動して加工するNCプログラムの指令である。切削送り条件は工作機械1で設定可能な最大角速度Vmaxよりも小さい所定の切削速度でモータ60が回転する条件である。S21、S25の少なくとも何れかで作業者が手動でA軸台20を基準面Rに対しπ/2(rad)(垂直)の位置に移動してもよい。 The variables of the internal model and the internal model may be changed as appropriate according to the configuration of the controlled object. The CPU 41 may appropriately change the processing based on the calculated model variables. The control device 40 may execute feedforward control in addition to feedback control based on the return value output by the encoder 70. At this time, the CPU 41 may optimize the feedforward control variable with the determined model variable. For example, the CPU 41 may optimize control variables such as the angular proportional gain, the angular velocity proportional gain, and the angular velocity integrated gain of the feedback control performed by the drive circuit 55. At this time, the control device 40 can control the machine tool 1 at high speed and with high accuracy. The predetermined drive conditions of the first embodiment may be appropriately changed, and for example, the CPU 41 may calculate model variables when the command indicated by the NC program acquired in S1 is the A-axis cutting feed command. The A-axis cutting feed command is a command of the NC program that moves the tool relative to the work material W attached to the A-axis base 20 around the A-axis under the cutting feed conditions. The cutting feed condition is a condition in which the motor 60 rotates at a predetermined cutting speed smaller than the maximum angular velocity Vmax that can be set by the machine tool 1. At least one of S21 and S25, the operator may manually move the A-axis base 20 to a position of π / 2 (rad) (perpendicular) with respect to the reference plane R.

1 :工作機械
20 :A軸台
40 :制御装置
41 :CPU
44 :記憶部
55 :駆動回路
65 :A軸モータ
75 :エンコーダ
R :基準面
1: Machine tool 20: A shaft base 40: Control device 41: CPU
44: Storage unit 55: Drive circuit 65: A-axis motor 75: Encoder R: Reference plane

Claims (7)

被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置において、
前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出部と、
前記駆動部のねじり剛性係数と、前記係数算出部が算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正部と、
前記補正部が補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御部と
を備えることを特徴とする制御装置。
In a control device that controls a machine tool having a drive unit that rotates a table for fixing a work material around an axis parallel to a horizontal plane and a control unit that controls the drive unit.
A coefficient calculation unit that calculates the rotational moment coefficient, which is the coefficient of the rotational moment of the load added to the table,
The load is loaded based on the torsional rigidity coefficient of the drive unit, the rotational moment coefficient calculated by the coefficient calculation unit, and the command angle of the table with respect to the reference plane parallel to the horizontal plane, which is commanded by the program. A correction unit that corrects the command angle by the amount of the angle error caused by adding to the table, and
A control device including a drive control unit that drives the drive unit by an amount corresponding to the command angle corrected by the correction unit.
前記ねじり剛性係数と、前記回転モーメント係数と、前記指令角度とに基づいて、前記角度誤差を算出する誤差算出部を更に備え、
前記補正部は、前記指令角度を前記誤差算出部が算出した前記角度誤差で補正することを特徴とする請求項1に記載の制御装置。
An error calculation unit for calculating the angle error based on the torsional rigidity coefficient, the rotational moment coefficient, and the command angle is further provided.
The control device according to claim 1, wherein the correction unit corrects the command angle with the angle error calculated by the error calculation unit.
前記係数算出部は、所定の駆動条件に応じて前記駆動部に出力した出力結果と、複数の変数の一つとして前記回転モーメント係数を含む前記駆動部の内部モデルを前記所定の駆動条件に適用して導出した導出結果との誤差が最小となるように前記複数の変数を算出することで、前記回転モーメント係数を算出することを特徴とする請求項1又は2に記載の制御装置。 The coefficient calculation unit applies the output result output to the drive unit according to the predetermined drive condition and the internal model of the drive unit including the rotation moment coefficient as one of a plurality of variables to the predetermined drive condition. The control device according to claim 1 or 2, wherein the rotational moment coefficient is calculated by calculating the plurality of variables so as to minimize the error from the derivation result derived in the above. 前記係数算出部は、
前記台に前記積載物を付加しない状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第一駆動量を取得し、
前記台に前記積載物を付加した状態で前記基準面に対し前記台が垂直になる角度に前記台を回動した時の前記駆動部の第二駆動量を取得し、
前記第二駆動量から前記第一駆動量を差し引いた差分に前記駆動部の減速比を積算することで前記回転モーメント係数を算出することを特徴とする請求項1又は2に記載の制御装置。
The coefficient calculation unit is
The first drive amount of the drive unit when the table is rotated at an angle such that the table is perpendicular to the reference surface without adding the load to the table is acquired.
The second drive amount of the drive unit when the table is rotated at an angle such that the table is perpendicular to the reference surface with the load added to the table is acquired.
The control device according to claim 1 or 2, wherein the rotation moment coefficient is calculated by integrating the reduction ratio of the drive unit into the difference obtained by subtracting the first drive amount from the second drive amount.
被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、
前記駆動部を制御する制御部と
請求項1~4の何れかに記載の制御装置と
を備えることを特徴とする工作機械。
A drive unit that rotates the table for fixing the work material around an axis parallel to the horizontal plane,
A machine tool comprising a control unit for controlling the drive unit and the control device according to any one of claims 1 to 4.
被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械の制御方法において、
前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出工程と、
前記駆動部のねじり剛性係数と、前記係数算出工程で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正工程と、
前記補正工程で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御工程と
を備えることを特徴とする制御方法。
In a machine tool control method including a drive unit that rotates a table for fixing a work material around an axis parallel to a horizontal plane and a control unit that controls the drive unit.
A coefficient calculation step for calculating the rotation moment coefficient, which is a coefficient of the rotation moment of the load added to the table, and
The load is loaded based on the torsional rigidity coefficient of the drive unit, the rotational moment coefficient calculated in the coefficient calculation step, and the command angle of the table with respect to the reference plane parallel to the horizontal plane, which is commanded by the program. A correction step that corrects the command angle by the amount of the angle error caused by adding to the table, and
A control method comprising a drive control step for driving the drive unit by an amount corresponding to the command angle corrected in the correction step.
被削材を固定する台を、水平面と平行な軸周りに回動する駆動部と、前記駆動部を制御する制御部とを備えた工作機械を制御する制御装置が実行可能な制御プログラムにおいて、
前記台に付加した積載物の回転モーメントの係数である回転モーメント係数を算出する係数算出処理と、
前記駆動部のねじり剛性係数と、前記係数算出処理で算出した前記回転モーメント係数と、プログラムが指令する、前記水平面に平行な基準面に対する前記台の指令角度とに基づいて、前記積載物を前記台に付加したことに因る角度誤差分、前記指令角度を補正する補正処理と、
前記補正処理で補正した前記指令角度に対応する量だけ前記駆動部を駆動する駆動制御処理と
を前記制御装置に実行させる指示を含むことを特徴とする制御プログラム。
In a control program that can be executed by a control device that controls a machine tool having a drive unit that rotates a table for fixing a work material around an axis parallel to a horizontal plane and a control unit that controls the drive unit.
Coefficient calculation processing for calculating the rotational moment coefficient, which is the coefficient of the rotational moment of the load added to the table, and
The load is loaded based on the torsional rigidity coefficient of the drive unit, the rotational moment coefficient calculated by the coefficient calculation process, and the command angle of the table with respect to the reference plane parallel to the horizontal plane, which is commanded by the program. A correction process that corrects the command angle by the amount of the angle error caused by adding to the table, and
A control program comprising an instruction to cause the control device to execute a drive control process for driving the drive unit by an amount corresponding to the command angle corrected by the correction process.
JP2020123668A 2020-07-20 2020-07-20 Control apparatus, machine tool, control method, and control program Pending JP2022020269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020123668A JP2022020269A (en) 2020-07-20 2020-07-20 Control apparatus, machine tool, control method, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123668A JP2022020269A (en) 2020-07-20 2020-07-20 Control apparatus, machine tool, control method, and control program

Publications (1)

Publication Number Publication Date
JP2022020269A true JP2022020269A (en) 2022-02-01

Family

ID=80216244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123668A Pending JP2022020269A (en) 2020-07-20 2020-07-20 Control apparatus, machine tool, control method, and control program

Country Status (1)

Country Link
JP (1) JP2022020269A (en)

Similar Documents

Publication Publication Date Title
JP5566469B2 (en) Numerical control method
JP4323542B2 (en) Motor control device with learning control function
JP4074638B2 (en) Electric motor control device
JP3699458B2 (en) Cutting force detection method, machining control method using cutting force, and control device
JP5916583B2 (en) Weaving control device for articulated robot
US10025297B2 (en) Machine tool and parameter adjustment method therefor
JP2017124455A (en) Robot device, robot control method, program and record medium
JP2017209762A (en) Robot device, robot control method, program, recording medium and production method of article
JP2007072943A (en) Position controller
US7129665B2 (en) Control apparatus for feed driving system
CN112743510B (en) Control method and computing device
JP2020015124A (en) Robot control method, article manufacturing method, robot control device, robot, program and recording medium
JP2022020269A (en) Control apparatus, machine tool, control method, and control program
JP2016221661A (en) Robot control method, assembly manufacturing method, robot device, program, and recording medium
CN112743509B (en) Control method and computing device
JP2024005673A (en) Numerical control device, identifying method and identifying program
JP2000069782A (en) Linear-direction drive
JP7226070B2 (en) Numerical controller
CN111857045B (en) Numerical control device and machine tool
JP2771458B2 (en) Industrial robot deflection correction method
JP4699118B2 (en) Control apparatus and control method
JP2016190305A (en) Parameter setting method of positioner, parameter setting device, and positioner having the parameter setting device
JPH106180A (en) Work machining device
EP4067012B1 (en) Method for controlling robot, robot system, and program for controlling robot
US20220314450A1 (en) Method For Controlling Robot, Robot System, And Storage Medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325