JP2022020264A - Battery cooling device - Google Patents

Battery cooling device Download PDF

Info

Publication number
JP2022020264A
JP2022020264A JP2020123662A JP2020123662A JP2022020264A JP 2022020264 A JP2022020264 A JP 2022020264A JP 2020123662 A JP2020123662 A JP 2020123662A JP 2020123662 A JP2020123662 A JP 2020123662A JP 2022020264 A JP2022020264 A JP 2022020264A
Authority
JP
Japan
Prior art keywords
battery
temperature
cooling
flow path
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020123662A
Other languages
Japanese (ja)
Inventor
裕也 安藤
Yuya Ando
耕巳 伊藤
Koji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020123662A priority Critical patent/JP2022020264A/en
Publication of JP2022020264A publication Critical patent/JP2022020264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)

Abstract

To appropriately cool a plurality of modularized batteries.SOLUTION: A battery cooling device (100) cools a battery module in which a first battery (A) and a second battery (B) different in purpose from the first battery are modularized. The battery cooling device comprises: a first cooling channel that passes through the first battery, the second battery, and a radiator; a second cooling channel that passes through the first battery and the second battery without passing through the radiator; switching means (23) that can switch between the first cooling channel and the second cooling channel; and control means (10) that controls the switching means to switch between the first cooling channel and the second cooling channel according to an index related to the temperatures of the first battery and the second battery.SELECTED DRAWING: Figure 1

Description

本発明は、バッテリ冷却装置の技術分野に関する。 The present invention relates to the technical field of a battery cooling device.

この種の装置として、例えば、ハイブリッド車両の冷却装置であって、内燃機関を冷却する第1水路と、バッテリを含むハイブリッドシステムを冷却する第2水路とを備える冷却装置が提案されている(特許文献1参照)。 As a device of this type, for example, a cooling device for a hybrid vehicle, the cooling device including a first water channel for cooling an internal combustion engine and a second water channel for cooling a hybrid system including a battery has been proposed (patented). See Document 1).

特開2020-023278号公報Japanese Unexamined Patent Publication No. 2020-023278

例えばハイブリッド車両において、省スペース化の要請から、補機に電力を供給するバッテリと、駆動用モータに電力を供給するバッテリとがモジュール化されることがある。この場合、例えば特許文献1に記載の冷却装置では、モジュール化された複数のバッテリを適切に冷却することは困難である。加えて、この場合に、該二つのバッテリをどのように冷却するのかについては、十分には検討されていないという技術的問題点がある。 For example, in a hybrid vehicle, a battery that supplies electric power to an auxiliary machine and a battery that supplies electric power to a drive motor may be modularized due to a demand for space saving. In this case, for example, it is difficult for the cooling device described in Patent Document 1 to appropriately cool a plurality of modularized batteries. In addition, in this case, there is a technical problem that how to cool the two batteries has not been sufficiently studied.

本発明は、上記問題点に鑑みてなされたものであり、モジュール化された複数のバッテリを適切に冷却することができるバッテリ冷却装置を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery cooling device capable of appropriately cooling a plurality of modularized batteries.

本発明の一態様に係るバッテリ冷却装置は、第1のバッテリと、前記第1のバッテリとは用途が異なる第2のバッテリとがモジュール化されたバッテリモジュールを冷却するバッテリ冷却装置であって、前記第1のバッテリ、前記第2のバッテリ及びラジエータを経由する第1の冷却流路と、前記ラジエータは経由せずに、前記第1のバッテリ及び前記第2のバッテリを経由する第2の冷却流路と、前記第1の冷却流路と前記第2の冷却流路とを切り替え可能な切替手段と、前記第1のバッテリ及び前記第2のバッテリ各々の温度に係る指標に応じて、前記第1の冷却流路と前記第2の冷却流路とを切り替えるように前記切替手段を制御する制御手段と、を備えるというものである。 The battery cooling device according to one aspect of the present invention is a battery cooling device for cooling a battery module in which a first battery and a second battery having a different use from the first battery are modularized. A first cooling flow path via the first battery, the second battery and the radiator, and a second cooling via the first battery and the second battery without passing through the radiator. According to the flow path, the switching means capable of switching between the first cooling flow path and the second cooling flow path, and the index related to the temperature of each of the first battery and the second battery. It is provided with a control means for controlling the switching means so as to switch between the first cooling flow path and the second cooling flow path.

実施形態に係るバッテリ冷却装置の構成を示す図である。It is a figure which shows the structure of the battery cooling apparatus which concerns on embodiment. 実施形態に係るバッテリ冷却装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the battery cooling apparatus which concerns on embodiment. 電池温度の時間変化の一例を示す図である。It is a figure which shows an example of the time change of a battery temperature.

バッテリ冷却装置の実施形態について図1乃至図3を参照して説明する。図1において、バッテリ冷却装置100は、電動車両1に搭載されている。電池A及び電池Bは、一体的に組付けられモジュール化されている。電池Aは、電動車両1のモータジェネレータ(図示せず)に電力を供給するための電池である。また、電池Aは、モータジェネレータで生じた回生電力により充電可能に構成されている。電池Bは、電動車両1の補機(図示せず)に電力を供給するための電池である。電池Bも、回生電力により充電可能に構成されていてよい。電池A及び電池B各々には、暖機用のヒータHが取り付けられている。 An embodiment of the battery cooling device will be described with reference to FIGS. 1 to 3. In FIG. 1, the battery cooling device 100 is mounted on the electric vehicle 1. Battery A and battery B are integrally assembled and modularized. The battery A is a battery for supplying electric power to a motor generator (not shown) of the electric vehicle 1. Further, the battery A is configured to be rechargeable by the regenerative power generated by the motor generator. The battery B is a battery for supplying electric power to an auxiliary machine (not shown) of the electric vehicle 1. The battery B may also be configured to be rechargeable by regenerative power. A heater H for warming up is attached to each of the battery A and the battery B.

バッテリ冷却システム100は、ECU(Electronic Control Unit)10、ラジエータ21、ラジエータファン22、分流器23、ウォータポンプ24及びリザーブタンク25を備えて構成されている。バッテリ冷却装置100は、(i)冷媒が、ラジエータ21、ウォータポンプ24、電池A、電池B及び分流器23を通過し、再びラジエータ21に戻るように、冷媒を循環させる第1の流路と、(ii)電池Bを通過した冷媒が、分流器23からバイパス路bに流入し、ウォータポンプ24及び電池Aを通過して、再び電池Bを通過するように、冷媒を循環させる第2の流路とを備える。 The battery cooling system 100 includes an ECU (Electronic Control Unit) 10, a radiator 21, a radiator fan 22, a shunt 23, a water pump 24, and a reserve tank 25. The battery cooling device 100 has (i) a first flow path for circulating the refrigerant so that the refrigerant passes through the radiator 21, the water pump 24, the battery A, the battery B, and the diversion device 23 and returns to the radiator 21 again. (Ii) A second type that circulates the refrigerant so that the refrigerant that has passed through the battery B flows from the diversion device 23 into the bypass path b, passes through the water pump 24 and the battery A, and passes through the battery B again. It has a flow path.

ECU10は、電池A及び電池B各々のヒータHのON/OFFの切替え、ラジエータファン22の駆動量制御、分流器23の分流量制御、ウォータポンプ24の流量制御、等を行う。ECU10は特に、電池A及び電池B各々の温度に応じて、分流器23に係る分流量を制御することにより、上記第1の流路を流れる冷媒の量及び上記第2の流路を流れる冷媒の量を制御する。 The ECU 10 switches ON / OFF of the heater H of each of the battery A and the battery B, controls the drive amount of the radiator fan 22, controls the flow rate of the shunt 23, controls the flow rate of the water pump 24, and the like. In particular, the ECU 10 controls the flow rate of the shunt 23 according to the temperature of each of the battery A and the battery B, whereby the amount of the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path are Control the amount of.

バッテリ冷却装置100の動作について図2のフローチャートを参照して説明を加える。図2において、ECU10は、電池A及び電池Bの少なくとも一方を昇温するための暖機運転を行っていないか否かを判定する(ステップS101)。ここで、暖機運転を行っていないか否かは、例えば、ヒータHの動作状態に基づいて判定すればよい。 The operation of the battery cooling device 100 will be described with reference to the flowchart of FIG. In FIG. 2, the ECU 10 determines whether or not a warm-up operation for raising the temperature of at least one of the battery A and the battery B is performed (step S101). Here, whether or not the warm-up operation is performed may be determined based on, for example, the operating state of the heater H.

ステップS101の処理において、暖機運転を行っていないと判定された場合(ステップS101:Yes)、ECU10は、電池A又は電池Bの温度が温度条件を満たすか否かを判定する(ステップS102)。ここで、温度条件には、例えば(i)電池Aの温度が電池Aに係る温度閾値以上である、(ii)電池Bの温度が電池Bに係る温度閾値以上である、(iii)電池Aの時間当たりの温度変化量が電池Aに係る所定変化量以上である、(iv)電池Bの時間当たりの温度変化量が電池Bに係る所定変化量以上である、等の条件が含まれていてよい。 When it is determined in the process of step S101 that the warm-up operation is not performed (step S101: Yes), the ECU 10 determines whether or not the temperature of the battery A or the battery B satisfies the temperature condition (step S102). .. Here, the temperature conditions include, for example, (i) the temperature of the battery A is equal to or higher than the temperature threshold related to the battery A, (ii) the temperature of the battery B is equal to or higher than the temperature threshold related to the battery B, and (iii) the battery A. The temperature change amount per hour is equal to or greater than the predetermined change amount related to the battery A, and (iv) the temperature change amount per hour of the battery B is equal to or greater than the predetermined change amount related to the battery B. You can.

ステップS102の処理において、電池A及び電池Bの温度が温度条件を満たしていないと判定された場合(ステップS102:No)、ECU10は、電池A及び電池Bの温度差が所定値(例えば10℃~20℃等)以上であるか否かを判定する(ステップS103)。 When it is determined in the process of step S102 that the temperatures of the battery A and the battery B do not satisfy the temperature condition (step S102: No), the ECU 10 has a predetermined temperature difference between the battery A and the battery B (for example, 10 ° C.). It is determined whether or not the temperature is equal to or higher than (~ 20 ° C., etc.) (step S103).

ステップS103の処理において、電池A及び電池Bの温度差が所定値以上であると判定された場合(ステップS103:Yes)、ECU10は、電池A及び電池Bの温度差が解消されるように、冷媒がラジエータ21を経由しないで循環するように(即ち、冷媒が上記第2の流路を循環するように)分流器23を制御する(ステップS104)。 When it is determined in the process of step S103 that the temperature difference between the battery A and the battery B is equal to or higher than a predetermined value (step S103: Yes), the ECU 10 determines that the temperature difference between the battery A and the battery B is eliminated. The shunt 23 is controlled so that the refrigerant circulates without passing through the radiator 21 (that is, the refrigerant circulates in the second flow path) (step S104).

ステップS104の処理の結果、電池A及び電池Bの温度の高い電池から、電池A及び電池Bの温度の低い電池に、冷媒を介して熱が移動するので、電池A及び電池Bの温度差が小さくなり、将来的に温度差が解消することが期待できる。ステップS104の処理の後、所定時間(例えば数十ミリ秒から数百ミリ秒等)が経過した後に、ステップS101の処理が行われる。つまり、図2に示す動作は、所定時間に応じた周期で繰り返し行われる。 As a result of the process of step S104, heat is transferred from the battery having a high temperature of the battery A and the battery B to the battery having a low temperature of the battery A and the battery B via the refrigerant, so that the temperature difference between the battery A and the battery B becomes large. It will become smaller, and it can be expected that the temperature difference will be eliminated in the future. After a predetermined time (for example, several tens of milliseconds to several hundreds of milliseconds) has elapsed after the processing of step S104, the processing of step S101 is performed. That is, the operation shown in FIG. 2 is repeated at a cycle corresponding to a predetermined time.

ステップS103の処理において、電池A及び電池Bの温度差が所定値未満であると判定された場合(ステップS103:No)、ECU10は、例えば、冷媒のラジエータ21を経由した循環(即ち、冷媒の上記第1の流路の循環)と、冷媒のラジエータ21を経由しない循環(即ち、冷媒の上記第2の流路の循環)とが交互に繰り返されるように分流器23を制御する(ステップS105)。その後、所定時間が経過した後に、ステップS101の処理が行われる。 When it is determined in the process of step S103 that the temperature difference between the battery A and the battery B is less than a predetermined value (step S103: No), the ECU 10 circulates through, for example, the radiator 21 of the refrigerant (that is, the refrigerant). The shunt 23 is controlled so that the circulation of the first flow path and the circulation of the refrigerant not passing through the radiator 21 (that is, the circulation of the second flow path of the refrigerant) are alternately repeated (step S105). ). Then, after a predetermined time has elapsed, the process of step S101 is performed.

ステップS102の処理において、電池A又は電池Bの温度が温度条件を満たしていると判定された場合(ステップS102:Yes)、ECU10は、電池A及び電池Bの少なくとも一方(即ち、少なくとも上記温度条件を満たした電池)を優先して冷却するために、冷媒がラジエータ21を経由して循環するように(即ち、冷媒が上記第1の流路を循環するように)分流器23を制御する(ステップS106)。このとき、ECU10は、ラジエータファン22の駆動量を増大したり、ウォータポンプ24の流量を増大したりしてよい。 When it is determined in the process of step S102 that the temperature of the battery A or the battery B satisfies the temperature condition (step S102: Yes), the ECU 10 receives at least one of the battery A and the battery B (that is, at least the above temperature condition). The diversion device 23 is controlled so that the refrigerant circulates via the radiator 21 (that is, the refrigerant circulates in the first flow path) in order to preferentially cool the battery (battery satisfying the above). Step S106). At this time, the ECU 10 may increase the drive amount of the radiator fan 22 or increase the flow rate of the water pump 24.

その後、ECU10は、冷却を優先した電池(即ち、上記温度条件を満たした電池)の温度が所定温度以下であるか否かを判定する(ステップS107)。ステップS107の処理において、冷却を優先した電池の温度が所定温度より高いと判定された場合(ステップS107:No)、ステップS106の処理が行われる。つまり、ECU10は、冷却を優先した電池の温度が所定温度以下になるまで、ステップS106の処理を継続する。 After that, the ECU 10 determines whether or not the temperature of the battery that gives priority to cooling (that is, the battery that satisfies the above temperature conditions) is equal to or lower than the predetermined temperature (step S107). In the process of step S107, when it is determined that the temperature of the battery giving priority to cooling is higher than the predetermined temperature (step S107: No), the process of step S106 is performed. That is, the ECU 10 continues the process of step S106 until the temperature of the battery that gives priority to cooling becomes equal to or lower than the predetermined temperature.

ステップS107の処理において、冷却を優先した電池の温度が所定温度以下であると判定された場合(ステップS107:Yes)、所定時間が経過した後に、ステップS101の処理が行われる。 In the process of step S107, when it is determined that the temperature of the battery giving priority to cooling is equal to or lower than the predetermined temperature (step S107: Yes), the process of step S101 is performed after the predetermined time has elapsed.

ステップS101の処理において、暖機運転を行っていると判定された場合(ステップS101:No)、ECU10は、電池A及び電池Bの少なくとも一方を優先して暖機するために、冷媒がラジエータ21を経由しないで循環するように(即ち、冷媒が上記第2の流路を循環するように)分流器23を制御する(ステップS108)。 When it is determined in the process of step S101 that the warm-up operation is being performed (step S101: No), the ECU 10 preferentially warms up at least one of the battery A and the battery B, so that the refrigerant is the radiator 21. The shunt 23 is controlled so as to circulate without passing through (that is, so that the refrigerant circulates in the second flow path) (step S108).

ステップS108の処理の結果、電池A及び電池Bの温度が低下しにくくなるので、電池A及び電池Bの少なくとも一方の暖機を促進することができる。加えて、電池Aと電池Bとに温度差が生じている場合、電池A及び電池Bの温度の高い電池から、電池A及び電池Bの温度の低い電池に、冷媒を介して熱が移動するので、暖機対象の電池が比較的速やかに暖機されることが期待できる。ここで、ECU10は、電池A及び電池Bのうち暖機対象ではない電池のヒータHをあえて作動させてもよい。ステップS108の処理の後、所定時間が経過した後に、ステップS101の処理が行われる。 As a result of the process of step S108, the temperatures of the battery A and the battery B are less likely to decrease, so that warming up of at least one of the battery A and the battery B can be promoted. In addition, when there is a temperature difference between the battery A and the battery B, heat is transferred from the battery having a high temperature of the battery A and the battery B to the battery having a low temperature of the battery A and the battery B via the refrigerant. Therefore, it can be expected that the battery to be warmed up will be warmed up relatively quickly. Here, the ECU 10 may dare to operate the heater H of the battery A and the battery B which are not the targets of warm-up. After a predetermined time has elapsed after the processing of step S108, the processing of step S101 is performed.

次に、図3を参照して、図2に示す動作と電池A及び電池B各々の温度の時間変化との関係について説明する。図3において、実線は電池Aの温度の時間変化を示しており、点線は電池Bの温度の時間変化を示している。上述したように、電池Aはモータジェネレータに電力を供給するとともに、モータジェネレータで生じた回生電力により充電される。電池Bは、補機に電力を供給する。電動車両1の走行時には、電池Aの充放電電力が、電池Bの充放電電力に比べて大きいので、電池Aの温度が電池Bの温度に比べて高くなりやすい。 Next, with reference to FIG. 3, the relationship between the operation shown in FIG. 2 and the time change of the temperature of each of the battery A and the battery B will be described. In FIG. 3, the solid line shows the time change of the temperature of the battery A, and the dotted line shows the time change of the temperature of the battery B. As described above, the battery A supplies electric power to the motor generator and is charged by the regenerative electric power generated by the motor generator. The battery B supplies electric power to the auxiliary machine. When the electric vehicle 1 is traveling, the charge / discharge power of the battery A is larger than the charge / discharge power of the battery B, so that the temperature of the battery A tends to be higher than the temperature of the battery B.

さて、図3の時刻tにおいて、電池Aの温度と電池Bの温度との温度差が、上述したステップS103の処理の所定値以上になったとする(即ち、上述したステップS103の処理において“Yes”と判定されたとする)。この場合、ECU10は、上述したステップS104の処理(即ち、電池A及び電池Bの温度差を解消するための処理)を行う。その後、図3の時刻tにおいて、電池Aの温度と電池Bの温度との温度差が、上述したステップS103の処理の所定値未満になったとする(即ち、上述したステップS103の処理において“No”と判定されたとする)。この場合、ECU10は、上述したステップS104の処理を終了して、上述したステップS105の処理を行う。 By the way, at time t1 of FIG. 3 , it is assumed that the temperature difference between the temperature of the battery A and the temperature of the battery B becomes equal to or more than the predetermined value in the process of step S103 described above (that is, in the process of step S103 described above. It is assumed that it is determined as "Yes"). In this case, the ECU 10 performs the process of step S104 described above (that is, a process for eliminating the temperature difference between the battery A and the battery B). After that, at time t2 in FIG . 3, it is assumed that the temperature difference between the temperature of the battery A and the temperature of the battery B becomes less than the predetermined value in the process of the above-mentioned step S103 (that is, in the process of the above-mentioned step S103, ". It is assumed that it is determined as "No"). In this case, the ECU 10 ends the process of step S104 described above and performs the process of step S105 described above.

図3の時刻tにおいて、電池Aの温度と電池Bの温度との温度差が、再び、上述したステップS103の処理の所定値以上になったとする。この場合、ECU10は、上述したステップS104の処理を行う。その後、図3の時刻tにおいて、電池Aの時間当たりの温度変化量が電池Aに係る所定変化量以上になったとする(即ち、上述したステップS102の処理において“Yes”と判定されたとする)。この場合、ECU10は、上述したステップS106の処理(即ち、電池Aを優先して冷却する処理)を行う。尚、電池Aの時間当たりの温度変化量が比較的大きくなる場合としては、例えば、電動車両1が登り坂を走行する場合、電動車両1が比較的長い下り坂を走行し、回生電力による電池Aの充電量が比較的大きくなる場合、等が挙げられる。 At time t3 in FIG. 3 , it is assumed that the temperature difference between the temperature of the battery A and the temperature of the battery B becomes equal to or higher than the predetermined value of the process of step S103 described above again. In this case, the ECU 10 performs the process of step S104 described above. After that, at time t4 in FIG. 3 , it is assumed that the temperature change amount per hour of the battery A becomes equal to or more than the predetermined change amount related to the battery A (that is, it is determined as “Yes” in the process of step S102 described above. ). In this case, the ECU 10 performs the process of step S106 described above (that is, the process of preferentially cooling the battery A). When the amount of change in temperature of the battery A per hour is relatively large, for example, when the electric vehicle 1 travels uphill, the electric vehicle 1 travels a relatively long downhill, and the battery generated by regenerative power is used. When the charge amount of A is relatively large, and the like can be mentioned.

その後、図3の時刻tにおいて、電池Aの温度が、上述したステップS107の処理の所定温度以下になったとする(即ち、上述したステップS107の処理において“Yes”と判定されたとする)。図3に示すように、時刻tにおける電池Aの温度と電池Bの温度との温度差は比較的大きい。この場合ECU10は、上述したステップS107の処理において“Yes”と判定された後、再度図2に示す動作が行われたときに(即ち、次のサイクルで)、上述したステップS103の処理において“Yes”と判定し、上述したステップS104の処理を行う。 After that, at time t5 in FIG. 3 , it is assumed that the temperature of the battery A becomes equal to or lower than the predetermined temperature in the process of step S107 described above (that is, it is determined to be “Yes” in the process of step S107 described above). As shown in FIG. 3 , the temperature difference between the temperature of the battery A and the temperature of the battery B at time t5 is relatively large. In this case, the ECU 10 determines "Yes" in the process of step S107 described above, and then when the operation shown in FIG. 2 is performed again (that is, in the next cycle), "Yes" is performed in the process of step S103 described above. It is determined as "Yes", and the process of step S104 described above is performed.

その後、図3の時刻tにおいて、電池Aの温度と電池Bの温度との温度差が、上述したステップS103の処理の所定値未満になったとする。この場合、ECU10は、上述したステップS104の処理を終了して、上述したステップS105の処理を行う。 After that, at time t6 in FIG. 3 , it is assumed that the temperature difference between the temperature of the battery A and the temperature of the battery B becomes less than the predetermined value in the process of step S103 described above. In this case, the ECU 10 ends the process of step S104 described above and performs the process of step S105 described above.

(技術的効果)
本実施形態では、電池Aの温度変化は、電動車両1の走行に比較的大きな影響を受けるのに対して、電池Bの温度変化は、電動車両1の走行に影響を受けにくい。この結果、電池Aの温度と電池Bの温度との温度差が比較的大きくなりやすい。つまり、用途が異なる複数の電池間では、温度差が比較的大きくなりやすい。このため、用途が異なる複数の電池を、共通の冷却装置で冷却する場合、例えば一の電池の冷却が不十分になったり、他の電池が必要以上に冷却されたりする可能性がある。
(Technical effect)
In the present embodiment, the temperature change of the battery A is relatively greatly affected by the running of the electric vehicle 1, whereas the temperature change of the battery B is not easily affected by the running of the electric vehicle 1. As a result, the temperature difference between the temperature of the battery A and the temperature of the battery B tends to be relatively large. That is, the temperature difference tends to be relatively large among a plurality of batteries having different uses. Therefore, when a plurality of batteries having different uses are cooled by a common cooling device, for example, one battery may be insufficiently cooled, or another battery may be cooled more than necessary.

これに対して、本実施形態に係るバッテリ冷却装置100では、電池A及び電池Bの温度差が所定値以上になった場合、ラジエータ21を経由しない流路(即ち、上述した第2の流路)で冷媒が循環される。この結果、バッテリ冷却装置100によれば、電池A及び電池Bの温度差を小さくすることができる(更には、温度差を解消することができる)。バッテリ冷却装置100は、電池A及び電池Bの温度差を小さくすることができる(言い換えれば、電池Aの温度と電池Bの温度とのばらつきを抑制することができる)ので、共通の冷却装置(ここでは、バッテリ冷却装置100)で電池A及び電池Bを適切に冷却することができる。 On the other hand, in the battery cooling device 100 according to the present embodiment, when the temperature difference between the battery A and the battery B becomes a predetermined value or more, the flow path that does not pass through the radiator 21 (that is, the second flow path described above). ) Circulates the refrigerant. As a result, according to the battery cooling device 100, the temperature difference between the battery A and the battery B can be reduced (furthermore, the temperature difference can be eliminated). Since the battery cooling device 100 can reduce the temperature difference between the battery A and the battery B (in other words, it is possible to suppress the variation between the temperature of the battery A and the temperature of the battery B), a common cooling device (in other words, the temperature difference between the battery A and the battery B can be suppressed). Here, the battery A and the battery B can be appropriately cooled by the battery cooling device 100).

このように、バッテリ冷却装置100によれば、用途が異なり、且つ、モジュール化された電池A及び電池Bを適切に冷却することができる。加えて、電池Aを冷却するための冷却装置と電池Bを冷却するための冷却装置とが設けられる場合に比べて、バッテリ冷却装置100の構成を簡素化及び省スペース化することができる。 As described above, according to the battery cooling device 100, it is possible to appropriately cool the modularized battery A and the battery B, which have different uses. In addition, the configuration of the battery cooling device 100 can be simplified and space-saving as compared with the case where the cooling device for cooling the battery A and the cooling device for cooling the battery B are provided.

<変形例>
(1)上述したステップS104の処理において、ECU10は、冷媒の一の方向(例えば、電池Aから電池Bに向かう方向)への循環と、冷媒の該一の方向とは反対方向(例えば、電池Bから電池Aに向かう方向)への循環とが、適宜切り替わるようにウォータポンプ24を制御してよい。このように構成すれば、電池内に生じる温度差を抑制することができる。
<Modification example>
(1) In the process of step S104 described above, the ECU 10 circulates the refrigerant in one direction (for example, the direction from the battery A to the battery B) and the direction opposite to the one direction of the refrigerant (for example, the battery). The water pump 24 may be controlled so that the circulation from B to the battery A) is appropriately switched. With this configuration, it is possible to suppress the temperature difference that occurs in the battery.

(2)上述したステップS104の処理において、ECU10は、電池A及び電池Bの温度差が小さくなるにつれて、バイパス路bを流れる冷媒の流量を減らす一方、ラジエータ21を経由する冷媒の流量を増やすように分流器23を制御してよい。 (2) In the process of step S104 described above, the ECU 10 reduces the flow rate of the refrigerant flowing through the bypass path b as the temperature difference between the battery A and the battery B decreases, while increasing the flow rate of the refrigerant passing through the radiator 21. The shunt 23 may be controlled.

以上に説明した実施形態及び変形例から導き出される発明の態様を以下に説明する。 Aspects of the invention derived from the embodiments and modifications described above will be described below.

発明の一態様に係るバッテリ冷却装置は、第1のバッテリと、前記第1のバッテリとは用途が異なる第2のバッテリとがモジュール化されたバッテリモジュールを冷却するバッテリ冷却装置であって、前記第1のバッテリ、前記第2のバッテリ及びラジエータを経由する第1の冷却流路と、前記ラジエータは経由せずに、前記第1のバッテリ及び前記第2のバッテリを経由する第2の冷却流路と、前記第1の冷却流路と前記第2の冷却流路とを切り替え可能な切替手段と、前記第1のバッテリ及び前記第2のバッテリ各々の温度に係る指標に応じて、前記第1の冷却流路と前記第2の冷却流路とを切り替えるように前記切替手段を制御する制御手段と、を備えるというものである。 The battery cooling device according to one aspect of the invention is a battery cooling device for cooling a battery module in which a first battery and a second battery having a different use from the first battery are modularized. A first cooling flow path passing through the first battery, the second battery and the radiator, and a second cooling flow passing through the first battery and the second battery without passing through the radiator. The first, depending on the path, the switching means capable of switching between the first cooling flow path and the second cooling flow path, and the index relating to the temperature of each of the first battery and the second battery. It is provided with a control means for controlling the switching means so as to switch between the cooling flow path 1 and the second cooling flow path.

上述の実施形態においては、「電池A」が「第1のバッテリ」の一例に相当し、「電池B」が「第2のバッテリ」の一例に相当し、「分流器23」が「切替手段」の一例に相当し、「ECU10」が「制御手段」の一例に相当する。尚、「温度に係る指標」は、温度そのものに限らず、例えば、時間当たりの温度変化量、温度差等を含む概念である。 In the above-described embodiment, the "battery A" corresponds to an example of the "first battery", the "battery B" corresponds to the example of the "second battery", and the "shunt 23" corresponds to the "switching means". The "ECU 10" corresponds to an example of the "control means". The "index related to temperature" is not limited to the temperature itself, but is a concept including, for example, the amount of temperature change per hour, the temperature difference, and the like.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うバッテリ冷却装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of the claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and the battery cooling device accompanied by such a modification. Is also included in the technical scope of the present invention.

1…電動車両、10…ECU、21…ラジエータ、22…ラジエータファン、23…分流器、24…ウォータポンプ、25…リザーブタンク、100…バッテリ冷却装置、A、B…電池 1 ... electric vehicle, 10 ... ECU, 21 ... radiator, 22 ... radiator fan, 23 ... shunt, 24 ... water pump, 25 ... reserve tank, 100 ... battery cooling device, A, B ... battery

Claims (1)

第1のバッテリと、前記第1のバッテリとは用途が異なる第2のバッテリとがモジュール化されたバッテリモジュールを冷却するバッテリ冷却装置であって、
前記第1のバッテリ、前記第2のバッテリ及びラジエータを経由する第1の冷却流路と、
前記ラジエータは経由せずに、前記第1のバッテリ及び前記第2のバッテリを経由する第2の冷却流路と、
前記第1の冷却流路と前記第2の冷却流路とを切り替え可能な切替手段と、
前記第1のバッテリ及び前記第2のバッテリ各々の温度に係る指標に応じて、前記第1の冷却流路と前記第2の冷却流路とを切り替えるように前記切替手段を制御する制御手段と、
を備えることを特徴とするバッテリ冷却装置。
A battery cooling device for cooling a battery module in which a first battery and a second battery having a different purpose from the first battery are modularized.
A first cooling flow path via the first battery, the second battery and a radiator, and
A second cooling flow path that passes through the first battery and the second battery without passing through the radiator.
A switching means capable of switching between the first cooling flow path and the second cooling flow path,
A control means for controlling the switching means so as to switch between the first cooling flow path and the second cooling flow path according to an index related to the temperature of each of the first battery and the second battery. ,
A battery cooling device characterized by being provided with.
JP2020123662A 2020-07-20 2020-07-20 Battery cooling device Pending JP2022020264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020123662A JP2022020264A (en) 2020-07-20 2020-07-20 Battery cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123662A JP2022020264A (en) 2020-07-20 2020-07-20 Battery cooling device

Publications (1)

Publication Number Publication Date
JP2022020264A true JP2022020264A (en) 2022-02-01

Family

ID=80216242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123662A Pending JP2022020264A (en) 2020-07-20 2020-07-20 Battery cooling device

Country Status (1)

Country Link
JP (1) JP2022020264A (en)

Similar Documents

Publication Publication Date Title
JP6897489B2 (en) Fuel cell vehicle
KR102518177B1 (en) Hvac system of vehicle
CN109383221B (en) HVAC system for a vehicle
JP6364926B2 (en) Air conditioner for vehicles
US8875820B2 (en) Hybrid construction machine
KR20200127068A (en) Thermal management system for vehicle
KR101688494B1 (en) Electrically driven vehicle
JP2013038998A (en) Secondary battery-loaded vehicle
KR20200142617A (en) Thermal management system for vehicle
JP2011098628A (en) Cooling system of hybrid vehicle
JP2015081089A (en) Cooling system of electric motorcar and cooling system driving method
CN109203909B (en) Heating, ventilation and air conditioning system for a vehicle
JP2010284045A (en) Heat supply device
KR20200139878A (en) Thermal management system for vehicle
JP2018194290A (en) Cooling device
JP6997884B2 (en) vehicle
JP2000073763A (en) Cooling system of hybrid powered automatic
CN109560345B (en) Cooling system for vehicle
JP2017105290A (en) Temperature control device of battery for driving
JP5929678B2 (en) Control device for hybrid vehicle
JP6515775B2 (en) Fuel cell system
JP2022020264A (en) Battery cooling device
JP2023096401A (en) Battery cooling system and control method of battery cooling system
JP7378204B2 (en) temperature regulation system
JP2006103537A (en) Cooling system