JP2022019528A - Concrete composition - Google Patents

Concrete composition Download PDF

Info

Publication number
JP2022019528A
JP2022019528A JP2021059716A JP2021059716A JP2022019528A JP 2022019528 A JP2022019528 A JP 2022019528A JP 2021059716 A JP2021059716 A JP 2021059716A JP 2021059716 A JP2021059716 A JP 2021059716A JP 2022019528 A JP2022019528 A JP 2022019528A
Authority
JP
Japan
Prior art keywords
fine aggregate
water
examples
less
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021059716A
Other languages
Japanese (ja)
Inventor
拓 松田
Hiroshi Matsuda
竜一郎 峯
Ryuichiro MINE
昭夫 春日
Akio Kasuga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Publication of JP2022019528A publication Critical patent/JP2022019528A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To improve frost damage resistance in a concrete composition containing an artificial lightweight fine aggregate.SOLUTION: A concrete composition of the present invention contains a binder, water, and a fine aggregate, and when assuming a water-binder ratio as W/B (%), W is 110 or more and 150 or less, and W/B is 18 or more and (0.168×(W-110)+20) or less. A concrete composition of other aspects of the present invention contains a binder, water, and a fine aggregate, and the binder contains cement and the fine aggregate contains a lightweight fine aggregate, and when assuming a unit water content of water as W (kg/m3) and a volume ratio of a fine aggregate to a paste as vs/vp, W is 110 or more and 150 or less, and vs/vp is 0.67 or more and 1.00 or less. A concrete composition of yet other aspect of the present invention contains a binder, water, and a fine aggregate, and the fine aggregate contains a lightweight fine aggregate, and when assuming a unit water content of water as W(kg/m3), W is 110 or more and 150 or less, and a unit fine aggregate amount (kg/m3) is 515 or more and 655 or less.SELECTED DRAWING: Figure 9

Description

本発明はコンクリート組成物に関する。 The present invention relates to a concrete composition.

人工軽量細骨材は、コンクリート組成物の軽量化や、内部養生効果による自己収縮低減などの特徴があることが知られている。特許文献1には人工軽量細骨材を含み、水を145~155kg/m3で添加したコンクリート組成物が開示されている。 The artificial lightweight fine aggregate is known to have features such as weight reduction of the concrete composition and reduction of self-shrinkage due to the internal curing effect. Patent Document 1 discloses a concrete composition containing an artificial lightweight fine aggregate and to which water is added at a rate of 145 to 155 kg / m 3 .

特許第6180946号明細書Japanese Patent No. 6180946

人工軽量細骨材は空隙が多く水分を含みやすい。このため、空隙に含まれる水分が凍結膨張と融解を繰り返すことでコンクリートに繰返し応力が掛かり、耐凍害性が低下する可能性がある。 Artificial lightweight fine aggregate has many voids and tends to contain water. For this reason, the moisture contained in the voids repeatedly freezes and expands and thawes, so that stress is repeatedly applied to the concrete, which may reduce the frost damage resistance.

本発明は人工軽量細骨材を含み、耐凍害性が高いコンクリート組成物を提供することを目的とする。 It is an object of the present invention to provide a concrete composition containing an artificial lightweight fine aggregate and having high frost damage resistance.

本発明の一態様のコンクリート組成物は、結合材と水と細骨材とを含み、細骨材は軽量細骨材を含み、水の単位水量をW(kg/m3)、水結合材比をW/B(%)とするとき、Wは110以上、150以下、W/Bは18以上、(0.168×(W-110)+20)以下である。本発明の他の態様のコンクリート組成物は、結合材と水と細骨材とを含み、結合材はセメントを含み、細骨材は軽量細骨材を含み、水の単位水量をW(kg/m3)、ペーストに対する細骨材の体積比をvs/vpとするとき、Wは110以上、150以下、vs/vpは0.67以上、1.00以下である。本発明のさらに他の態様のコンクリート組成物は、結合材と水と細骨材とを含み、細骨材は軽量細骨材を含み、水の単位水量をW(kg/m3)は110以上、150以下、単位細骨材量(kg/m3)は515以上、655以下である。 The concrete composition of one aspect of the present invention contains a binder, water and a fine aggregate, the fine aggregate contains a lightweight fine aggregate, the unit water amount of water is W (kg / m 3 ), and the water binder. When the ratio is W / B (%), W is 110 or more and 150 or less, and W / B is 18 or more and (0.168 × (W-110) +20) or less. The concrete composition of another aspect of the present invention comprises a binder, water and a fine aggregate, the binder contains cement, the fine aggregate comprises a lightweight fine aggregate, and the unit water volume of water is W (kg). / M 3 ), where the volume ratio of the fine aggregate to the paste is vs / vp, W is 110 or more and 150 or less, and vs / vp is 0.67 or more and 1.00 or less. The concrete composition of still another aspect of the present invention comprises a binder, water and a fine aggregate, the fine aggregate comprises a lightweight fine aggregate, and the unit water content of water is W (kg / m 3 ) of 110. As mentioned above, 150 or less, and the unit fine aggregate amount (kg / m 3 ) is 515 or more and 655 or less.

本発明では水の単位水量を110~150kg/m3と低くしたため、凍結膨張する水分が減少する。このため、本発明によれば、人工軽量細骨材を含み、耐凍害性が高いコンクリート組成物を提供することができる。 In the present invention, since the unit water amount of water is as low as 110 to 150 kg / m 3 , the water content that freezes and expands is reduced. Therefore, according to the present invention, it is possible to provide a concrete composition containing an artificial lightweight fine aggregate and having high frost damage resistance.

実施例1~3と比較例1の凍結融解試験結果を示すグラフである。It is a graph which shows the freeze-thaw test result of Examples 1 to 3 and Comparative Example 1. 実施例1と比較例1の収縮ひずみを示すグラフである。It is a graph which shows the shrinkage strain of Example 1 and Comparative Example 1. 実施例4~6と比較例2~3の収縮ひずみを示すグラフである。3 is a graph showing shrinkage strains of Examples 4 to 6 and Comparative Examples 2 to 3. 実施例1,3と比較例1の中性化促進試験結果を示すグラフである。It is a graph which shows the neutralization promotion test result of Examples 1 and 3 and Comparative Example 1. 実施例1~3,7と比較例1における材齢と圧縮強度の関係を示すグラフである。It is a graph which shows the relationship between the age and the compressive strength in Examples 1 to 3 and 7 and Comparative Example 1. 実施例1~3,7と比較例1の圧縮強度とヤング係数の関係を示すグラフである。It is a graph which shows the relationship between the compressive strength and the Young's modulus of Examples 1 to 3 and 7 and Comparative Example 1. 実施例8~14と比較例4の圧縮強度を示すグラフである。It is a graph which shows the compressive strength of Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4の凍結融解試験結果(相対動弾性係数)を示すグラフである。It is a graph which shows the freeze-thaw test result (relative dynamic elastic modulus) of Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4の凍結融解試験結果(質量減少率)を示すグラフである。It is a graph which shows the freeze-thaw test result (mass reduction rate) of Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4における単位水量とW/Bの関係を示すグラフである。It is a graph which shows the relationship between the unit water amount and W / B in Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4における空気量と耐久性指数の関係を示すグラフである。3 is a graph showing the relationship between the amount of air and the durability index in Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4におけるvs/vpと圧縮強度の関係を示すグラフである。6 is a graph showing the relationship between vs / vp and compressive strength in Examples 8 to 14 and Comparative Example 4. 実施例8~14と比較例4における単位細骨材量と圧縮強度の関係を示すグラフである。It is a graph which shows the relationship between the unit fine aggregate amount and compressive strength in Examples 8 to 14 and Comparative Example 4. 実施例8~11と比較例4の収縮ひずみを示すグラフである。It is a graph which shows the shrinkage strain of Examples 8 to 11 and Comparative Example 4. 実施例8~11と比較例4における単位水量と収縮ひずみの関係を示すグラフである。It is a graph which shows the relationship between the unit water amount and shrinkage strain in Examples 8 to 11 and Comparative Example 4. 実施例8~11と比較例4におけるW/Bと収縮ひずみの関係を示すグラフである。It is a graph which shows the relationship between W / B and shrinkage strain in Examples 8 to 11 and Comparative Example 4.

以下、実施例と比較例に基づいて、本発明のコンクリート組成物について説明する。表1は実施例1~7と比較例1~3のコンクリート組成物の配合を、表2は実施例1,3と比較例1のコンクリート組成物の単位質量と単位容積を、表3は実施例1~7と比較例1~3において使用した材料の諸元を示している。なお、表3中、BETはJIS R 1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」による測定結果であることを意味する。 Hereinafter, the concrete composition of the present invention will be described based on Examples and Comparative Examples. Table 1 shows the composition of the concrete compositions of Examples 1 to 7 and Comparative Examples 1 to 3, Table 2 shows the unit mass and unit volume of the concrete compositions of Examples 1 and 3 and Comparative Example 1, and Table 3 shows the unit mass and volume. The specifications of the materials used in Examples 1 to 7 and Comparative Examples 1 to 3 are shown. In Table 3, BET means that it is a measurement result by JIS R 1626 "Measurement method of specific surface area by gas adsorption BET method of fine ceramic powder".

Figure 2022019528000002
Figure 2022019528000002

Figure 2022019528000003
Figure 2022019528000003

Figure 2022019528000004
Figure 2022019528000004

図1(a)は、実施例1~3と比較例1についての相対動弾性係数を、図1(b)は、実施例1~3と比較例1についての質量減少率を、図1(c)は実施例1~3と比較例1の配合を示している。細骨材比(s/a)は55.0としている。相対動弾性係数と質量減少率は、JISA1148:2010「コンクリートの凍結融解試験方法」に規定される水中凍結融解試験方法(A法)に基づいて求めた。300サイクル経過時に相対動弾性係数が初期値の60%以上であれば、耐凍害性に優れると評価できる。比較例1では、100サイクル程度で、相対動弾性係数が初期値の60%を下回ったのに対し、実施例1~3では300サイクル経過時でも初期値の80~90%程度にとどまっている。質量減少率は、比較例1ではサイクル数とともに急激に増加しているが、実施例1~3ではほぼ一定である。なお、実施例1~3のコンクリートは結合材としてシリカフュームを含み、比較例1のコンクリートは結合材としてシリカフュームを含んでいない。シリカフュームはコンクリートの流動性を高める効果を有する。 1 (a) shows the relative dynamic elastic modulus of Examples 1 to 3 and Comparative Example 1, and FIG. 1 (b) shows the mass reduction rate of Examples 1 to 3 and Comparative Example 1 (FIG. 1). c) shows the combination of Examples 1 to 3 and Comparative Example 1. The fine aggregate ratio (s / a) is 55.0. The relative dynamic elastic modulus and the mass reduction rate were determined based on the underwater freeze-thaw test method (method A) specified in JIS A1148: 2010 “Concrete freeze-thaw test method”. If the relative dynamic elastic modulus is 60% or more of the initial value after 300 cycles, it can be evaluated as having excellent frost damage resistance. In Comparative Example 1, the relative dynamic elastic modulus was less than 60% of the initial value in about 100 cycles, whereas in Examples 1 to 3, it remained at about 80 to 90% of the initial value even after 300 cycles had elapsed. .. The mass reduction rate increases sharply with the number of cycles in Comparative Example 1, but is almost constant in Examples 1 to 3. The concrete of Examples 1 to 3 contains silica fume as a binder, and the concrete of Comparative Example 1 does not contain silica fume as a binder. Silica fume has the effect of increasing the fluidity of concrete.

図2(a)は、実施例1と比較例1についての収縮ひずみを、図2(b)は実施例1と比較例1の配合を示している。実施例1と比較例1はいずれも人工軽量細骨材を用いているが、水の含有量(単位水量)Wと水結合材比W/Bが異なっている。実施例1では18-W130-55.0(20℃)と18-W130-55.0(7dry)の2種類の条件で試験を行っている。18-W130-55.0(20℃)では、コンクリートを打設後、20℃環境で封かん状態(乾燥させない状態)を維持した。18-W130-55.0(7dry)では、コンクリート打設後、材齢7日まで20℃環境で封かんし、材齢7日(図中A点)で脱枠し、気中養生した(乾燥させた)。比較例では、18-W130-55.0(20℃)と同様、コンクリートを打設後、20℃環境で封かん状態を維持した。打込み完了からの経過日数が少ない段階では、収縮ひずみは主に自己収縮(セメント水和反応によってコンクリート中の水が消費されることで生じる、コンクリート打設後の初期段階における収縮)によって生じる。18-W130-55.0(20℃)と比較例では封かんを続けているため、乾燥収縮(コンクリート中の水が空中に逸散することで生じる、コンクリート打設後長期に渡る収縮)は基本的に生じていない。以上より、18-W130-55.0(20℃)と18-W130-55.0(7dry)と比較例のいずれのケースでも、自己収縮による初期の収縮ひずみは抑えられていることがわかる。18-W130-55.0(7dry)では、脱枠後、水の蒸発が進み、これに伴い乾燥収縮による収縮ひずみが進行している。 FIG. 2A shows the shrinkage strains of Example 1 and Comparative Example 1, and FIG. 2B shows the combination of Example 1 and Comparative Example 1. Both Example 1 and Comparative Example 1 use artificial lightweight fine aggregates, but the water content (unit water amount) W and the water binder ratio W / B are different. In Example 1, the test is conducted under two conditions, 18-W130-55.0 (20 ° C.) and 18-W130-55.0 (7dry). At 18-W130-55.0 (20 ° C), the concrete was placed and then maintained in a sealed state (not dried) in a 20 ° C environment. In 18-W130-55.0 (7dry), after concrete was placed, it was sealed in an environment of 20 ° C until the age of 7 days, unframed at the age of 7 days (point A in the figure), and cured in the air (dried). ). In the comparative example, as in 18-W130-55.0 (20 ° C), after the concrete was poured, the sealed state was maintained in a 20 ° C environment. In the stage where the number of days elapsed from the completion of pouring is short, the shrinkage strain is mainly caused by self-shrinkage (shrinkage in the initial stage after concrete pouring, which is caused by the consumption of water in the concrete by the cement hydration reaction). Since sealing is continued in the comparative example with 18-W130-55.0 (20 ° C), drying shrinkage (shrinkage over a long period of time after concrete placement caused by the dissipation of water in the concrete into the air) is basically performed. Not happening. From the above, it can be seen that the initial shrinkage strain due to self-shrinkage is suppressed in both cases of 18-W130-55.0 (20 ° C) and 18-W130-55.0 (7dry) in the comparative example. In 18-W130-55.0 (7dry), after deframement, water evaporation progresses, and along with this, shrinkage strain due to drying shrinkage progresses.

図3(a)は、実施例4~6と比較例2~3についての収縮ひずみを、図3(b)は実施例4~6と比較例2~3の配合を示している。細骨材率(s/a)は47.5としている。各実施例と比較例では、材齢7日(図中A点)で脱枠し、気中養生した。実施例4~6では、細骨材として人工軽量細骨材を用い、比較例2~3は細骨材として砕砂を用いている。水の含有量(単位水量)Wはすべてのケースで同じである。実施例4~6では、自己収縮と乾燥収縮の両者が抑えられている。比較例2~3では自己収縮は大きいが、乾燥収縮は実施例4~6と同程度である。 FIG. 3A shows the shrinkage strains of Examples 4 to 6 and Comparative Examples 2 to 3, and FIG. 3B shows the combination of Examples 4 to 6 and Comparative Examples 2 to 3. The fine aggregate ratio (s / a) is 47.5. In each Example and Comparative Example, the material was removed from the frame at the age of 7 days (point A in the figure) and cured in the air. In Examples 4 to 6, an artificial lightweight fine aggregate is used as the fine aggregate, and in Comparative Examples 2 and 3, crushed sand is used as the fine aggregate. The water content (unit water amount) W is the same in all cases. In Examples 4 to 6, both self-shrinkage and dry shrinkage are suppressed. In Comparative Examples 2 and 3, self-shrinkage is large, but dry shrinkage is about the same as in Examples 4 and 6.

以上より、以下のことが理解される。まず、人工軽量細骨材と砕砂とを比べると、図3(a)に示すように、人工軽量細骨材を用いたほうが、自己収縮が抑制されている。これは、人工軽量細骨材は内部の空隙が水を保持する性能が高く、内部養生効果による自己収縮抑制効果が大きいためであると考えられる。内部養生効果による自己収縮抑制効果は、人工軽量細骨材の従来から知られている特徴である。一方、18-W130-55.0(20℃)と18-W130-55.0(7dry)は材齢7日以降の封かんの有無だけが異なるが、図2(a)に示すように、18-W130-55.0(7dry)においても、乾燥収縮に伴う収縮ひずみは大きく増加していない。これは、実施例1における水の含有量(単位水量)Wが少ないためであると考えられる。すなわち、セメントの水和反応で使用されなかった水は人工軽量細骨材の間隙に残留し、これが乾燥収縮の原因となるのであるが、単位水量Wが小さいため、残留水分量が減少し、乾燥収縮が抑えられたものと考えられる。さらに、残留水分量が減少する結果、耐凍害性が改善される。凍害は、コンクリートの空隙に含まれる水分が凍結膨張と融解を繰り返すことで、コンクリートに繰返し応力が掛かって生じる。残留水分が減少することで応力が抑えられ、図1(a)に示すように、相対動弾性係数と質量減少率の変動が抑えられると考えられる。 From the above, the following can be understood. First, comparing the artificial lightweight fine aggregate and the crushed sand, as shown in FIG. 3A, the self-shrinkage is suppressed by using the artificial lightweight fine aggregate. It is considered that this is because the artificial lightweight fine aggregate has a high ability to retain water in the internal voids and has a large effect of suppressing self-shrinkage due to the internal curing effect. The self-shrinkage suppressing effect due to the internal curing effect is a conventionally known feature of artificial lightweight fine aggregate. On the other hand, 18-W130-55.0 (20 ° C) and 18-W130-55.0 (7dry) differ only in the presence or absence of sealing after 7 days of age, but as shown in Fig. 2 (a), 18-W130-55.0. Even in (7dry), the shrinkage strain associated with the drying shrinkage did not increase significantly. It is considered that this is because the water content (unit water amount) W in Example 1 is small. That is, the water not used in the hydration reaction of cement remains in the gaps of the artificial lightweight fine aggregate, which causes drying shrinkage. However, since the unit water amount W is small, the residual water amount decreases. It is considered that the drying shrinkage was suppressed. Further, as a result of reducing the residual water content, the frost damage resistance is improved. Freezing damage occurs when the water contained in the voids of concrete repeats freezing expansion and thawing, and the concrete is repeatedly stressed. It is considered that the stress is suppressed by reducing the residual water content, and the fluctuations in the relative dynamic elastic modulus and the mass reduction rate are suppressed as shown in FIG. 1 (a).

単位水量Wが110~140kg/m3の範囲、ないし約125~140kg/m3の範囲、特に130kg/m3を中心とした±5kg/m3程度の範囲(約125~約135kg/m3の範囲)では各実施例と同様の結果が得られると考えられる。実施例1と3は水結合材比W/Bだけが異なり、実施例1(W/B=18)のほうが実施例3(W/B=20)より多少耐凍害性に優れるが、両者とも十分な耐凍害性を有している。従って、水結合材比W/Bは少なくとも18~20%の範囲にあることが好ましい。また、PP(ポリプロピレン繊維)を含めることによって(実施例6)、耐凍害性がさらに向上する。繊維としてはポリプロピレン繊維以外の有機繊維を用いることもできる。細骨材はすべて人工軽量細骨材であることが好ましいが、一部が人工軽量細骨材であっても本発明の効果を奏することができる。 The unit water volume W is in the range of 110 to 140 kg / m 3 , or in the range of about 125 to 140 kg / m 3 , especially in the range of about ± 5 kg / m 3 centered on 130 kg / m 3 (about 125 to about 135 kg / m 3 ). In the range of), it is considered that the same result as in each example can be obtained. Examples 1 and 3 differ only in the water binder ratio W / B, and Example 1 (W / B = 18) is slightly superior to Example 3 (W / B = 20) in frost damage resistance, but both are Has sufficient frost damage resistance. Therefore, the water binder ratio W / B is preferably in the range of at least 18 to 20%. Further, by including PP (polypropylene fiber) (Example 6), the frost damage resistance is further improved. As the fiber, an organic fiber other than the polypropylene fiber can also be used. It is preferable that all the fine aggregates are artificial lightweight fine aggregates, but the effect of the present invention can be exhibited even if some of the fine aggregates are artificial lightweight fine aggregates.

細骨材に人工軽量細骨材を使用することで、砕砂を使用した場合に比べ、流動性が大きく改善される。表4に実施例4と比較例2のフレッシュ試験結果を示す。スランプフロー値はJIS A1150:2014「コンクリートのスランプフロー試験方法」に従って測定した。50cmスランプフロー通過時間は、コーンを引き上げた瞬間から、コンクリートの直径が50cmまで広がる時間のことであり、コンクリートの流動性の指標の一つである。比較例2はスランプフロー値が50cmに達しなかったため、測定値がない。実施例4と比較例2の違いは、細骨材での種類である。実施例4は細骨材に人工軽量細骨材を使用し、比較例2は細骨材に砕砂を使用している。比較例2は、実施例よりも高性能減水剤(SP)の使用量が多いにもかかわらず、スランプフロー値は実施例よりも極めて小さい。すなわち、細骨材に人工軽量細骨材を使用することで、極めて高い流動性が得られる。 By using an artificial lightweight fine aggregate for the fine aggregate, the fluidity is greatly improved as compared with the case where crushed sand is used. Table 4 shows the fresh test results of Example 4 and Comparative Example 2. The slump flow value was measured according to JIS A1150: 2014 “Concrete slump flow test method”. The 50 cm slump flow passage time is the time when the diameter of the concrete expands to 50 cm from the moment when the cone is pulled up, and is one of the indexes of the fluidity of the concrete. In Comparative Example 2, since the slump flow value did not reach 50 cm, there was no measured value. The difference between Example 4 and Comparative Example 2 is the type of fine aggregate. In Example 4, an artificial lightweight fine aggregate is used as the fine aggregate, and in Comparative Example 2, crushed sand is used as the fine aggregate. In Comparative Example 2, although the amount of the high-performance water reducing agent (SP) used is larger than that of the example, the slump flow value is much smaller than that of the example. That is, by using an artificial lightweight fine aggregate for the fine aggregate, extremely high fluidity can be obtained.

Figure 2022019528000005
Figure 2022019528000005

図4(a)は実施例1,3と比較例1について、促進材齢と促進中性化深さとの関係を、図4(b)は実施例1,3と比較例1の配合を示している。促進中性化深さは、JISA1153:2012「コンクリートの促進中性化試験方法」に基づいて求めた。コンクリートは、大気中に存在する二酸化炭素がコンクリート中の水酸カルシウムと反応することによって、中性化する。コンクリートの中性化は鉄筋の腐食の可能性を高める。従って、コンクリートの中性化のしにくさは、耐凍害性と同様、コンクリートの長期耐久性の指標の一つである。促進試験開始後26週経過の時点で促進中性化深さが25mm以下であれば十分な耐中性化性能を有していると評価される。実施例1,3は13週までのデータしかないが、比較例1との対比から十分な耐中性化性能を有していると考えられる。 FIG. 4A shows the relationship between the accelerated material age and the accelerated neutralization depth for Examples 1 and 3 and Comparative Example 1, and FIG. 4B shows the combination of Examples 1 and 3 and Comparative Example 1. ing. The accelerated neutralization depth was determined based on JIS A1153: 2012 "Promoted Neutralization Test Method for Concrete". Concrete is neutralized by the reaction of carbon dioxide present in the atmosphere with calcium hydroxide in concrete. Neutralization of concrete increases the possibility of corrosion of reinforcing bars. Therefore, the difficulty of neutralizing concrete is one of the indicators of long-term durability of concrete as well as frost damage resistance. If the accelerated neutralization depth is 25 mm or less at the time when 26 weeks have passed since the start of the accelerated test, it is evaluated to have sufficient neutralization resistance. Although Examples 1 and 3 have only data up to 13 weeks, it is considered that they have sufficient neutralization resistance performance from the comparison with Comparative Example 1.

図5(a)は実施例1~3,7と比較例1について、材齢と圧縮強度との関係を、図5(b)は実施例1~3,7と比較例1の配合を示している。図5(a)は標準養生した試験体の材齢と圧縮強度の関係を示している。実施例1~3,7は比較例1と比べて大きな圧縮強度を有している。一般に水結合材比W/Bが小さいほどコンクリートの圧縮強度が上がるとされているが、図5(a)からこの一般的な傾向が確認された。 5 (a) shows the relationship between the age and the compressive strength of Examples 1 to 3 and 7 and Comparative Example 1, and FIG. 5 (b) shows the combination of Examples 1 to 3 and 7 and Comparative Example 1. ing. FIG. 5A shows the relationship between the age of the standard cured test piece and the compressive strength. Examples 1 to 3 and 7 have a large compressive strength as compared with Comparative Example 1. Generally, it is said that the smaller the water binder ratio W / B, the higher the compressive strength of concrete, but this general tendency was confirmed from FIG. 5 (a).

図6(a)は実施例1~3,7と比較例1について、圧縮強度とヤング係数との関係を、図6(b)は実施例1~3,7と比較例1の配合を示している。ヤング係数としては、設計マージンを考慮して、計算値を0.8倍した値を用いることが多い。人工軽量細骨材を用いたコンクリートの比重γは2.3t/m3程度になると考えられる。図6(a)にはγ=2.4t/m3と2.1t/m3の例を示している。実施例1~3,7はγ=2.4t/m3の場合の計算値を0.8倍した値を上回るヤング係数を示している。人工軽量骨材は砕砂より柔らかく、ヤング係数もその分低下する傾向にあるが、実施例1~3,7はヤング係数(剛性)の観点からも問題ない性能が得られた。 FIG. 6A shows the relationship between the compressive strength and the Young's modulus for Examples 1 to 3 and 7 and Comparative Example 1, and FIG. 6B shows the combination of Examples 1 to 3 and 7 and Comparative Example 1. ing. As the Young's modulus, a value obtained by multiplying the calculated value by 0.8 is often used in consideration of the design margin. The specific gravity γ of concrete using artificial lightweight fine aggregate is considered to be about 2.3 t / m 3 . FIG. 6A shows an example of γ = 2.4 t / m 3 and 2.1 t / m 3 . Examples 1 to 3 and 7 show a Young's modulus that exceeds the value obtained by multiplying the calculated value in the case of γ = 2.4 t / m 3 by 0.8. The artificial lightweight aggregate is softer than the crushed sand, and the Young's modulus tends to decrease by that amount. However, in Examples 1 to 3 and 7, no problem was obtained from the viewpoint of the Young's modulus (rigidity).

表5は実施例8~14と比較例4のコンクリート組成物の配合を、表6は実施例8~14と比較例4において使用した材料の諸元を示している。実施例8は実施例1とロットが異なるが、同じ配合である。実施例8~14と比較例4において使用した材料は、基本的に実施例1~7と比較例1~3において使用した材料と同じである。 Table 5 shows the formulations of the concrete compositions of Examples 8 to 14 and Comparative Example 4, and Table 6 shows the specifications of the materials used in Examples 8 to 14 and Comparative Example 4. Example 8 has a different lot from Example 1, but has the same composition. The materials used in Examples 8 to 14 and Comparative Example 4 are basically the same as the materials used in Examples 1 to 7 and Comparative Examples 1 to 3.

Figure 2022019528000006
Figure 2022019528000006

Figure 2022019528000007
Figure 2022019528000007

表7は、実施例8~14と比較例4のフレッシュ試験結果を示している。フレッシュ試験は表4に示すフレッシュ試験と同様の方法で行った。いずれも表4の比較例2より良好な流動性を示しており、細骨材に人工軽量細骨材を使用することで、高い流動性が得られることが確認された。後述するように、比較例4は水や結合材と比べて細骨材が多いため、流動性が低下したものと考えられる。 Table 7 shows the fresh test results of Examples 8 to 14 and Comparative Example 4. The fresh test was carried out in the same manner as the fresh test shown in Table 4. All of them showed better fluidity than Comparative Example 2 in Table 4, and it was confirmed that high fluidity can be obtained by using an artificial lightweight fine aggregate as the fine aggregate. As will be described later, it is considered that the fluidity of Comparative Example 4 is lowered because the amount of fine aggregate is larger than that of water or the binder.

Figure 2022019528000008
Figure 2022019528000008

図7は、実施例8~14と比較例4についての圧縮強度を示している。図中、「90℃封かんσ7」はコンクリートを打設し、90℃環境で7日間封かんした後の圧縮強度を、「標準σ28」はコンクリートを打設し、水中で28日間養生した後の圧縮強度を、「20℃封かんσ7」はコンクリートを打設し、20℃環境で7日間封かんした後の圧縮強度を意味する。実施例8~14と比較例4では、実用上問題のないレベルの圧縮強度が得られた。また、図5と同様、水結合材比W/Bが小さいほどコンクリートの圧縮強度が上がる傾向が確認された。 FIG. 7 shows the compressive strengths of Examples 8 to 14 and Comparative Example 4. In the figure, "90 ° C sealing σ7" is the compressive strength after concrete is placed and sealed in a 90 ° C environment for 7 days, and "standard σ28" is the compressive strength after concrete is placed and cured in water for 28 days. As for the strength, "20 ° C. sealing σ7" means the compressive strength after concrete is placed and sealed in a 20 ° C. environment for 7 days. In Examples 8 to 14 and Comparative Example 4, a level of compressive strength that does not cause a problem in practical use was obtained. Further, as in FIG. 5, it was confirmed that the compressive strength of concrete tends to increase as the water-bonding material ratio W / B becomes smaller.

図8(a)は実施例8~14と比較例4についての、150サイクルまでの相対動弾性係数を示している。実施例8~11と比較例4については300サイクルまで相対動弾性係数の測定を行ったため、図8(b)に別途示している。図9は実施例8~14と比較例4についての質量減少率を示している。相対動弾性係数と質量減少率は、JISA1148:2010「コンクリートの凍結融解試験方法」に規定される水中凍結融解試験方法(A法)に基づいて求めた。比較例4では、150サイクル程度で、相対動弾性係数が初期値の60%を下回ったのに対し、実施例8~11では300サイクル経過時でも初期値と同程度の値が得られた。実施例12~14は150サイクルまでの測定結果しか得られていないが、150サイクルまでの傾向及び図8(b)から判断し、300サイクル到達時での相対動弾性係数は少なくとも60%以上であると評価できる。質量減少率は、比較例4では150サイクルを中心として減少し、その後回復する傾向がみられた。これに対し、実施例8~14では、質量減少率は1%未満またはマイナス(質量が増加)となっている。なお、図8(b)には実施例1のデータを併記しているが、同一配合である実施例1と8はほぼ同様の結果となっており、試験結果の再現性が確認された。 FIG. 8A shows the relative dynamic elastic modulus up to 150 cycles for Examples 8 to 14 and Comparative Example 4. Since the relative dynamic elastic modulus was measured up to 300 cycles in Examples 8 to 11 and Comparative Example 4, they are shown separately in FIG. 8 (b). FIG. 9 shows the mass reduction rates of Examples 8 to 14 and Comparative Example 4. The relative dynamic elastic modulus and the mass reduction rate were determined based on the underwater freeze-thaw test method (method A) specified in JIS A1148: 2010 “Concrete freeze-thaw test method”. In Comparative Example 4, the relative dynamic elastic modulus was less than 60% of the initial value in about 150 cycles, whereas in Examples 8 to 11, the same value as the initial value was obtained even after 300 cycles. In Examples 12 to 14, only the measurement results up to 150 cycles were obtained, but judging from the tendency up to 150 cycles and FIG. 8 (b), the relative dynamic elastic modulus at the time of reaching 300 cycles was at least 60% or more. It can be evaluated as being. In Comparative Example 4, the mass reduction rate tended to decrease around 150 cycles and then recover. On the other hand, in Examples 8 to 14, the mass reduction rate is less than 1% or minus (mass increase). Although the data of Example 1 are also shown in FIG. 8 (b), the results of Examples 1 and 8 having the same composition were almost the same, and the reproducibility of the test results was confirmed.

図10は水の単位量W(kg/m3)と水結合材比W/B(%)の関係を示している。図8との対比より、Wが110以上、150以下、W/Bが18以上、(0.168×(W-110)+20)以下の領域で規定される台形の領域A、好ましくは、Wが110以上、140以下、W/Bが18以上、(0.168×(W-110)+20)以下の領域で規定される台形の領域Bでは相対動弾性係数が300サイクルで60%以上となっている。また、この領域では、0~300サイクルの範囲で質量減少率が1%未満またはマイナス(質量が増加)となっている。従って、水の単位量W(kg/m3)と水結合材比W/B(%)の関係としては領域Aが好ましく、領域Bがより好ましい。 FIG. 10 shows the relationship between the unit amount W (kg / m 3 ) of water and the water binder ratio W / B (%). From the comparison with FIG. 8, the trapezoidal region A defined by the region where W is 110 or more and 150 or less, W / B is 18 or more and (0.168 × (W-110) +20) or less, preferably W. In the trapezoidal region B defined by the region of 110 or more, 140 or less, W / B of 18 or more, and (0.168 × (W-110) +20) or less, the relative dynamic elastic modulus is 60% or more in 300 cycles. It has become. Further, in this region, the mass reduction rate is less than 1% or minus (mass increase) in the range of 0 to 300 cycles. Therefore, the region A is preferable and the region B is more preferable as the relationship between the unit amount W (kg / m 3 ) of water and the water binder ratio W / B (%).

図11は空気量と耐久性指数DFの関係を示している。耐久性指数DFはJISA1148:2010「コンクリートの凍結融解試験方法」に規定される、コンクリートの耐凍害性を評価するための指標であり、一般にはこの値が60以上であれば耐凍害性を有すると判定される。 FIG. 11 shows the relationship between the amount of air and the durability index DF. The durability index DF is an index for evaluating the frost damage resistance of concrete specified in JIS A1148: 2010 “Concrete freeze-thaw test method”, and generally, if this value is 60 or more, it has frost damage resistance. Is determined.

図12は、vs/vpと標準σ28の関係を示している。vsは細骨材の単位絶対容積を、vpはペーストの単位絶対容積を示している。図13は単位細骨材量(kg/m3)と標準σ28の関係を示している。比較例4は表5からもわかる通り細骨材の量が多く、セメントと水が少ない。このため、十分な圧縮強度が得られなかったものと考えられる。図11より、Wが110以上、150以下、好ましくは110以上、140以下で、vs/vpが0.67以上、1.00以下であるとき、相対動弾性係数が300サイクルで60%以上となっている。図12より、Wが110以上、150以下、好ましくは110以上、140以下で、単位細骨材量(kg/m3)が515以上、655以下であるとき、相対動弾性係数が300サイクルで60%以上となっている。また、これらの領域では、0~300サイクルの範囲で質量減少率が1%未満またはマイナス(質量が増加)となっている。 FIG. 12 shows the relationship between vs / vp and the standard σ28. vs indicates the unit absolute volume of the fine aggregate, and vp indicates the unit absolute volume of the paste. FIG. 13 shows the relationship between the unit amount of fine aggregate (kg / m 3 ) and the standard σ28. As can be seen from Table 5, Comparative Example 4 has a large amount of fine aggregate and a small amount of cement and water. Therefore, it is probable that sufficient compressive strength could not be obtained. From FIG. 11, when W is 110 or more and 150 or less, preferably 110 or more and 140 or less, and vs / vp is 0.67 or more and 1.00 or less, the relative dynamic elastic modulus is 60% or more in 300 cycles. It has become. From FIG. 12, when W is 110 or more and 150 or less, preferably 110 or more and 140 or less, and the unit fine aggregate amount (kg / m 3 ) is 515 or more and 655 or less, the relative dynamic elastic modulus is 300 cycles. It is 60% or more. Further, in these regions, the mass reduction rate is less than 1% or minus (mass increase) in the range of 0 to 300 cycles.

図14は実施例8~11と比較例4についての収縮ひずみを示している。図14(a)は20℃で封かんした条件、図14(b)は材齢7日まで20℃で封かんし、その後20℃、相対湿度60%で気中養生した条件での収縮ひずみを示している。20℃封かんの条件では実施例8~11、比較例4とも収縮は見られなかった。材齢7日まで20℃で封かんし、その後気中養生した場合は、収縮ひずみが200×10-6程度まで進行したが、図3に示す場合と比べて収縮ひずみは抑えられている。 FIG. 14 shows the shrinkage strains of Examples 8 to 11 and Comparative Example 4. FIG. 14 (a) shows the shrinkage strain under the condition of sealing at 20 ° C., and FIG. 14 (b) shows the shrinkage strain under the condition of sealing at 20 ° C. until the age of 7 days and then curing at 20 ° C. and 60% relative humidity. ing. No shrinkage was observed in Examples 8 to 11 and Comparative Example 4 under the condition of sealing at 20 ° C. When the material was sealed at 20 ° C. until the age of 7 days and then cured in the air, the shrinkage strain progressed to about 200 × 10 -6 , but the shrinkage strain was suppressed as compared with the case shown in FIG.

図15は単位水量と収縮ひずみの関係を、図16はW/Bと収縮ひずみの関係を示している。単位水量とW/Bは収縮ひずみに対し大きな影響を及ぼしていないことがわかる。 FIG. 15 shows the relationship between the unit water amount and the shrinkage strain, and FIG. 16 shows the relationship between W / B and the shrinkage strain. It can be seen that the unit water volume and W / B do not have a large effect on the shrinkage strain.

Claims (9)

結合材と水と細骨材とを含み、前記細骨材は軽量細骨材を含み、
前記水の単位水量をW(kg/m3)、水結合材比をW/B(%)とするとき、Wは110以上、150以下、W/Bは18以上、(0.168×(W-110)+20)以下である、コンクリート組成物。
It contains a binder, water and fine aggregate, said fine aggregate including lightweight fine aggregate.
When the unit water amount of the water is W (kg / m 3 ) and the water binder ratio is W / B (%), W is 110 or more and 150 or less, W / B is 18 or more, (0.168 × (0.168 ×). A concrete composition of W-110) +20) or less.
結合材と水と細骨材とを含み、前記結合材はセメントを含み、前記細骨材は軽量細骨材を含み、
前記水の単位水量をW(kg/m3)、前記ペーストに対する前記細骨材の体積比をvs/vpとするとき、Wは110以上、150以下、vs/vpは0.67以上、1.00以下である、コンクリート組成物。
The binder contains water and fine aggregate, the binder contains cement, and the fine aggregate contains lightweight fine aggregate.
When the unit amount of water is W (kg / m 3 ) and the volume ratio of the fine aggregate to the paste is vs / vp, W is 110 or more and 150 or less, vs / vp is 0.67 or more and 1 A concrete composition of .00 or less.
結合材と水と細骨材とを含み、前記細骨材は軽量細骨材を含み、
前記水の単位水量をW(kg/m3)は110以上、150以下、単位細骨材量(kg/m3)は515以上、655以下である、コンクリート組成物。
It contains a binder, water and fine aggregate, said fine aggregate including lightweight fine aggregate.
A concrete composition having a unit water amount of W (kg / m 3 ) of 110 or more and 150 or less, and a unit fine aggregate amount (kg / m 3 ) of 515 or more and 655 or less.
W=110~140である、請求項1から3のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 3, wherein W = 110 to 140. W=125~140である、請求項1から3のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 3, wherein W = 125 to 140. W=125~135である、請求項1から3のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 3, wherein W = 125 to 135. 前記細骨材は人工軽量細骨材からなる、請求項1から6のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 6, wherein the fine aggregate comprises an artificial lightweight fine aggregate. 有機繊維をさらに含む、請求項1から7のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 7, further comprising organic fibers. 前記結合材はシリカフュームを含む、請求項1から8のいずれか1項に記載のコンクリート組成物。 The concrete composition according to any one of claims 1 to 8, wherein the binder contains silica fume.
JP2021059716A 2020-07-17 2021-03-31 Concrete composition Pending JP2022019528A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123080 2020-07-17
JP2020123080 2020-07-17

Publications (1)

Publication Number Publication Date
JP2022019528A true JP2022019528A (en) 2022-01-27

Family

ID=80203707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021059716A Pending JP2022019528A (en) 2020-07-17 2021-03-31 Concrete composition

Country Status (1)

Country Link
JP (1) JP2022019528A (en)

Similar Documents

Publication Publication Date Title
KR101460498B1 (en) Compositions of self water absorbing type retentive and repair method for concrete structures using the same
JP5872165B2 (en) Explosion-preventing ultra-high-strength precast concrete and method for producing the same
JP6284388B2 (en) Geopolymer composition
JP6653077B2 (en) Ultra-fast setting cement mortar
JP2022019528A (en) Concrete composition
JP2003003796A (en) Tunnel lining structure
JP7076704B2 (en) Cement composition for centrifugal molding, manufacturing method of tubular molded body
JP4056696B2 (en) Cement slurry
JP4932383B2 (en) Expanded cement joint material for lightweight cellular concrete board
KR101568765B1 (en) Concrete composite for preventing drying shrinkage and crack
JP2005035877A (en) Acid resistant concrete
JP2014189437A (en) Cracking-reduced type blast furnace cement composition and production method thereof
JP4112049B2 (en) Low shrinkage concrete composition
JP2730234B2 (en) High flow and high durability fiber reinforced filling mortar with excellent salt barrier properties
JP6899118B2 (en) Self-healing concrete products
KR100933224B1 (en) Composition of polymer mortar and repair method of concrete structures using the same
JP2009161388A (en) High flow light weight mortar composition
JP6513419B2 (en) Process for producing a molded article formed by molding a composition for concrete having improved scaling resistance using blast furnace slag
JPS60239350A (en) Manufacture of high resistance concrete products
KR102114749B1 (en) Eco-friendly wet-curing cement mortar composition and method for repairing concrete structure using the same
JP7341759B2 (en) How to improve the strength of concrete by air curing
JP2018008849A (en) Cement composition
JP2009234872A (en) Expansion depressant and expansion depressing method
JP2021066610A (en) Method for suppressing alkali aggregate reaction in cement hardened body
JP6846144B2 (en) Concrete composition, concrete kneaded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507