JP2022018980A - Reactive sintered silicon carbide sintered compact and method for producing the same - Google Patents
Reactive sintered silicon carbide sintered compact and method for producing the same Download PDFInfo
- Publication number
- JP2022018980A JP2022018980A JP2020122465A JP2020122465A JP2022018980A JP 2022018980 A JP2022018980 A JP 2022018980A JP 2020122465 A JP2020122465 A JP 2020122465A JP 2020122465 A JP2020122465 A JP 2020122465A JP 2022018980 A JP2022018980 A JP 2022018980A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- powder
- particle size
- average particle
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Products (AREA)
Abstract
Description
本発明は、 本発明は、押出成形により、高強度の反応焼結炭化ケイ素焼結体を製造する方法並びに製造するための材料組成に関する。 The present invention relates to a method for producing a high-strength reaction-sintered silicon carbide sintered body by extrusion molding, and a material composition for producing the sintered body.
近年、炭化ケイ素は高温構造材料、耐蝕材料として優れた特性があり、高温伝導性、高硬度等の特徴を持ち、クリープ抵抗性、耐酸化性も高い特性を有する。これらの特徴から半導体製造装置用部材、耐摩耗用ノズル、メカニカルシール、耐食用反応管、酸処理用治具、等に用いられている。また、セラミックスを焼結させるための焼結炉に用いられる治具である架台もしくはローラーに用いられる。またリチウムイオン電池正極材料を作成するための連続処理炉の治具であるローラーに用いられる。
これらの炭化ケイ素焼結部品を得るための方法として、炭化ケイ素の代表的な製造プロセスには,焼結助剤を用いた常圧焼結法、雰囲気加圧焼結法、ホットプレス法、HIP法、反応焼結法が挙げられる。
特に、反応焼結法 (RS法)は,骨材の炭化ケイ素 (SiC)粉末と炭素(C)粉末からなる圧粉体に溶融した金属シリコンを含浸させて, Si+C→SiCの反応によりSiCを生成, SiCのまわりの気孔を遊離ケイ素 (Si) で埋めることにより緻密な焼結体が得られる。
そのため, RS法ではSICのほかに遊離Siを10~40wt%含んでいる. RS-SiCは, 常圧焼結法,雰囲気加圧焼結法,ホットプレス法, HIP法等の粉末焼結法で作製したSiCと比較して, 一般に,強度や破壊靭性値は低く, 熱伝導率は高いことが報告されている.また, RS法は焼結助剤を用いた粉末焼結法に比べて焼結温度が低く, 助剤を添加せずに緻密化できるため, 低コスト化ならびに高純度化が期待できる。 更に,焼結による寸法変化がほとんどなく,大型複雑形状物がニアネットに焼結できる。
このため、RS-SiCは他工法と比較して、製造コストが低く抑えられるため、焼結炉用の治具には多く用いられている。
しかしながら、RS法により得られたRS-SiCは常圧焼結法、雰囲気加圧焼結法、ホットプレス法ならびにHIP法と比較して、強度が低く、焼結炉用の架台に使用する場合には、肉厚を厚くする必要があり、また重量も重くなり、製造コストがアップする。
現在、技術論文1特許文献1~4にあるとおり、炭化ケイ素粉末の粒径の粒径を0.1μmから10μm の炭化ケイ素と平均粒径0.005μmから1μmのカーボン粉末との混合粉末を用いて有機バインダを添加しプレス成形にて製品を得ている。粒径が細かいほど焼結密度は高くなり、強度も向上するが、押出成形・鋳込み成形ではバインダ添加量を増やす必要があり、脱脂時のクラック・膨れ等が発生しやすくなるため、脱脂、乾燥時間24時間以上に長くする必要がある。
In recent years, silicon carbide has excellent properties as a high-temperature structural material and corrosion-resistant material, has features such as high-temperature conductivity and high hardness, and also has high creep resistance and oxidation resistance. Due to these characteristics, it is used in semiconductor manufacturing equipment members, wear-resistant nozzles, mechanical seals, corrosion-resistant reaction tubes, acid treatment jigs, and the like. Further, it is used for a gantry or a roller which is a jig used in a sintering furnace for sintering ceramics. It is also used for rollers, which are jigs for continuous processing furnaces for producing positive electrode materials for lithium-ion batteries.
As a method for obtaining these silicon carbide sintered parts, typical manufacturing processes for silicon carbide include a normal pressure sintering method using a sintering aid, an atmospheric pressure sintering method, a hot press method, and a HIP. Examples include the method and the reaction sintering method.
In particular, in the reaction sintering method (RS method), molten metallic silicon is impregnated into a green compact consisting of silicon carbide (SiC) powder and carbon (C) powder of aggregate, and the reaction of Si + C → SiC is carried out. A dense sintered body can be obtained by forming SiC and filling the pores around the SiC with free silicon (Si).
Therefore, the RS method contains 10 to 40 wt% of free Si in addition to SIC. RS-SiC is a powder sintering method such as normal pressure sintering method, atmospheric pressure sintering method, hot press method, and HIP method. It has been reported that the strength and fracture toughness values are generally lower and the thermal conductivity is higher than that of the SiC prepared in. Also, the RS method is compared with the powder sintering method using a sintering aid. Since the sintering temperature is low and it can be densified without adding an auxiliary agent, low cost and high purity can be expected. Furthermore, there is almost no dimensional change due to sintering, and large complex shaped objects can be sintered into a near net.
For this reason, RS-SiC is often used as a jig for a sintering furnace because the manufacturing cost can be kept low as compared with other construction methods.
However, RS-SiC obtained by the RS method has lower strength than the normal pressure sintering method, atmospheric pressure sintering method, hot press method and HIP method, and is used for a gantry for a sintering furnace. It is necessary to increase the wall thickness, the weight is also heavy, and the manufacturing cost is increased.
Currently, as described in Technical Paper 1 Patent Documents 1 to 4, a mixed powder of silicon carbide having a particle size of 0.1 μm to 10 μm and a carbon powder having an average particle size of 0.005 μm to 1 μm is used. The product is obtained by press molding with the addition of an organic binder. The finer the particle size, the higher the sintering density and the higher the strength, but in extrusion molding and casting molding, it is necessary to increase the amount of binder added, and cracks and swelling during degreasing are likely to occur, so degreasing and drying The time needs to be longer than 24 hours.
したがって、本発明は健全な高強度の反応焼結炭化ケイ素焼結体を押出成形及び鋳込み成形方法で得るために、最適な炭化ケイ素粉末、カーボン粉末組成並びに最適な炭化ケイ素粉末粒径を用いる事を課題とする。 Therefore, the present invention uses the optimum silicon carbide powder, carbon powder composition and optimum silicon carbide powder particle size in order to obtain a sound high-strength reaction-sintered silicon carbide sintered body by extrusion molding and casting molding methods. Is the subject.
本発明者らは、粒径を調整した炭化ケイ素粉末とカーボン粉末並びに有機バインダを混合したものを原料として、鋳込み成形もしくは押出成形を行い、高強度の反応焼結炭化ケイ素を得る方法において、粒径が炭化ケイ素原料粉末に平均粒径2~5μmからなる粉末且つ最大粒径が10μm以下である炭化ケイ素粉末(a)と平均粒径0.1~0.5μmからなる粉末且つ最大粒径が5μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.001~0.1μm以下のカーボンブラック(c)を添加した粉末組成に有機バインダを用いて成形、脱脂、焼結を行うことで、高強度の欠陥のない焼結体を得ることができる。 The present inventors perform casting molding or extrusion molding using a mixture of silicon carbide powder having an adjusted particle size, carbon powder, and an organic binder as a raw material to obtain high-strength reaction sintered silicon carbide. A silicon carbide raw material powder having an average particle size of 2 to 5 μm and a maximum particle size of 10 μm or less, and a silicon carbide powder (a) having an average particle size of 0.1 to 0.5 μm and a maximum particle size of 5 μm or less. A certain silicon carbide powder (b) is used, and an organic binder is used in the powder composition obtained by adding carbon black (c) having an average particle size of 0.001 to 0.1 μm or less as carbon to the silicon carbide powders (a) and (b). By molding, degreasing, and sintering, a high-strength, defect-free sintered body can be obtained.
すなわち、本発明に用いられる炭化ケイ素粉末には粒径が炭化ケイ素原料粉末に平均粒径2~5μmからなる粉末且つ最大粒径が10μm以下である炭化ケイ素粉末(a)と平均粒径0.1~0.5μmからなる粉末且つ最大粒径が5μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.001~0.1μm以下のカーボンブラック(c)を添加した粉末組成に有機バインダを添加して成形、脱脂、焼結を行うことで、高強度の欠陥のない反応焼結炭化ケイ素を得ることができる。 That is, the silicon carbide powder used in the present invention includes silicon carbide powder (a) having an average particle size of 2 to 5 μm and a maximum particle size of 10 μm or less, and an average particle size of 0.1 to 0.1 to the silicon carbide raw material powder. Using a silicon carbide powder (b) having a maximum particle size of 5 μm or less and a powder consisting of 0.5 μm, carbon black having an average particle size of 0.001 to 0.1 μm or less is used as carbon for the silicon carbide powders (a) and (b). By adding an organic binder to the powder composition to which (c) is added and performing molding, degreasing, and sintering, high-strength, defect-free reactive sintered silicon carbide can be obtained.
特に、前記炭化ケイ素粉末(a)と炭化ケイ素粉末(b)の添加割合が、炭化ケイ素粉末(a)が50~90wt%及び炭化ケイ素粉末(b)が10~50wt%である。また前記炭化ケイ素粉末(a)と炭化ケイ素粉末(b)の合計に対してカーボンブラックの混合比が重量割合で20wt%~40wt%とし、これらの粉末組成に有機バインダを添加して高強度の欠陥のない反応焼結炭化ケイ素を得ることができる。 In particular, the addition ratio of the silicon carbide powder (a) and the silicon carbide powder (b) is 50 to 90 wt% for the silicon carbide powder (a) and 10 to 50 wt% for the silicon carbide powder (b). Further, the mixing ratio of carbon black is 20 wt% to 40 wt% by weight with respect to the total of the silicon carbide powder (a) and the silicon carbide powder (b), and an organic binder is added to these powder compositions to obtain high strength. Defect-free reaction sintered silicon carbide can be obtained.
本発明にかかる粉末組成によれば添加するバインダを少なくして、高強度の反応炭化ケイ素焼結体を押出成形並びに鋳込み成形により得ることができる。 According to the powder composition according to the present invention, the amount of binder added can be reduced, and a high-strength reactive silicon carbide sintered body can be obtained by extrusion molding and casting molding.
本発明にかかる炭化ケイ素原料粉末にはβ炭化ケイ素もしくはα炭化ケイ素のいずれかもしくは両方を原料として用いることができる。平均粒径2~5μmからなる粉末且つ最大粒径が10μm以下である炭化ケイ素粉末(a)と平均粒径0.1~0.5μmからなる粉末且つ最大粒径が5μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.001~0.1μm以下のカーボンブラック(c)を用いる。
成形するための有機バインダには水溶性高分子材料が望ましく、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコールが少なくとも一種類以上からなる水溶性高分子が用いられる。これらの水溶性高分子の中でもメチルセルロース類が望ましく、特にヒドロキシプロピルメチルセルロースが最も望ましい。
これら有機バインダに可塑剤並びに水を添加する。
可塑剤としてはグリセリン、ポリオキシエチレンモノブチルエーテル等の少なくとも一種以上からなる有機材料が用いられる。
In the silicon carbide raw material powder according to the present invention, either or both of β-silicon carbide and α-silicon carbide can be used as a raw material. A powder having an average particle size of 2 to 5 μm and a maximum particle size of 10 μm or less (a) and a powder having an average particle size of 0.1 to 0.5 μm and a maximum particle size of 5 μm or less (b). , And carbon black (c) having an average particle size of 0.001 to 0.1 μm or less is used as carbon for the silicon carbide powders (a) and (b).
A water-soluble polymer material is desirable for the organic binder for molding, and a water-soluble polymer composed of at least one kind of methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, and polyvinyl alcohol is used. Among these water-soluble polymers, methyl celluloses are desirable, and hydroxypropyl methyl cellulose is particularly preferable.
A plasticizer and water are added to these organic binders.
As the plasticizer, an organic material composed of at least one kind such as glycerin and polyoxyethylene monobutyl ether is used.
炭化ケイ素の粒径が(a)平均粒径2~5μm及び(b)平均粒径0.1~0.5μmであり、炭化ケイ素粉末(a)と炭化ケイ素粉末(b)の添加割合が、炭化ケイ素粉末(a)が50~90wt%及び炭化ケイ素粉末(b)が10~50wt%であることにより、焼結体の強度を向上することができる。炭化ケイ素粉末(a)の添加量が50wt%未満の場合には添加するバインダ量が多くなり、乾燥及び脱脂に長時間を要する。また、炭化ケイ素粉末(a)の添加量が10wt%未満の場合には焼結体の強度が十分向上しない。望ましい炭化ケイ素粉末(a)は60~80wt%及び炭化ケイ素粉末(b)が20~40wt%である。
また、炭化ケイ素粉末(a)の最大粒径が10μmよりも大きく、炭化ケイ素粉末(b)の最大粒径が5μmよりも大きくなる場合には焼結密度が低下する。
The particle size of silicon carbide is (a) an average particle size of 2 to 5 μm and (b) an average particle size of 0.1 to 0.5 μm, and the addition ratio of the silicon carbide powder (a) and the silicon carbide powder (b) is the silicon carbide powder. When (a) is 50 to 90 wt% and the silicon carbide powder (b) is 10 to 50 wt%, the strength of the sintered body can be improved. When the amount of the silicon carbide powder (a) added is less than 50 wt%, the amount of binder added is large, and it takes a long time to dry and degreas. Further, when the amount of the silicon carbide powder (a) added is less than 10 wt%, the strength of the sintered body is not sufficiently improved. The desired silicon carbide powder (a) is 60 to 80 wt% and the silicon carbide powder (b) is 20 to 40 wt%.
Further, when the maximum particle size of the silicon carbide powder (a) is larger than 10 μm and the maximum particle size of the silicon carbide powder (b) is larger than 5 μm, the sintering density decreases.
これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.001~0.1μm以下のカーボンブラック(c)を用いる。前記炭化ケイ素粉末(a)と炭化ケイ素粉末(b)の合計に対してカーボンブラックの混合比が重量割合で20wt%~40wt%であることを特徴とする。カーボンブラックの添加量が20wt%未満の場合には未反応の金属シリコンが焼結体中に多く残存し、強度が低下する。また、カーボンブラックの添加量が40wt%よりも多い場合には焼結体中に未反応のカーボンが多く残存し、強度が低下する。カーボンブラックの粒子径が0.001μm以下の場合には均一にカーボンを分散させることが困難である。また、カーボンブラックの粒径が0.1μm以上の場合には焼結工程において金属シリコンとの反応が均一に行われず、焼結体の強度が向上しない。 Carbon black (c) having an average particle size of 0.001 to 0.1 μm or less is used as carbon for the silicon carbide powders (a) and (b). The mixing ratio of carbon black to the total of the silicon carbide powder (a) and the silicon carbide powder (b) is 20 wt% to 40 wt% by weight. When the amount of carbon black added is less than 20 wt%, a large amount of unreacted metallic silicon remains in the sintered body, and the strength is lowered. Further, when the amount of carbon black added is more than 40 wt%, a large amount of unreacted carbon remains in the sintered body, and the strength is lowered. When the particle size of carbon black is 0.001 μm or less, it is difficult to disperse carbon uniformly. Further, when the particle size of carbon black is 0.1 μm or more, the reaction with metallic silicon is not uniformly performed in the sintering step, and the strength of the sintered body is not improved.
本発明の有機バインダには水溶性高分子材料が望ましく、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコールが少なくとも一種類以上からなる水溶性高分子が用いられる。水溶性高分子の添加量は炭化ケイ素とカーボン粉末を100部としたときに1~10部が望ましく、2~5部がさらに望ましい。水溶性高分子の添加量が1部未満の場合には、成形体の強度が低くなり、押出成形中に変形が生じやすい。水溶性高分子の添加量が10部を超える場合には加熱脱脂の際に熱分解が十分に進行せず、成形体にクラックが発生し炭化物が残留する。 A water-soluble polymer material is desirable for the organic binder of the present invention, and a water-soluble polymer composed of at least one kind of methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, and polyvinyl alcohol is used. The amount of the water-soluble polymer added is preferably 1 to 10 parts, and more preferably 2 to 5 parts when the amount of silicon carbide and carbon powder is 100 parts. When the amount of the water-soluble polymer added is less than one part, the strength of the molded product is low and deformation is likely to occur during extrusion molding. If the amount of the water-soluble polymer added exceeds 10 parts, thermal decomposition does not proceed sufficiently during heat degreasing, cracks occur in the molded product, and carbides remain.
本発明の可塑剤の添加量としては0.5~7部が望ましく、1~4部がさらに望ましい。可塑剤の添加量が0.5部未満の場合には成形体が脆く、成形体の流動性も悪くなる。可塑剤の添加量が7部を超える場合には押出成形体が柔らかくなり、成形体の形状を保持することが困難になる。
本発明に用いられる水は成形体の粘度を下げ、流動性を付与する。望ましい水の添加量は5~15部であり、望ましい添加量は7~12部である。水の添加量が5部未満の場合には成形体に流動性を付与することが困難であり、水の添加量が15部を超える場合には押出成形時に成形体の形状を保持することが困難となる。
The amount of the plasticizer added in the present invention is preferably 0.5 to 7 parts, and more preferably 1 to 4 parts. When the amount of the plasticizer added is less than 0.5 part, the molded product is brittle and the fluidity of the molded product is deteriorated. When the amount of the plasticizer added exceeds 7 parts, the extruded molded product becomes soft and it becomes difficult to maintain the shape of the molded product.
The water used in the present invention lowers the viscosity of the molded product and imparts fluidity. The desired amount of water added is 5 to 15 parts, and the desired amount of water added is 7 to 12 parts. When the amount of water added is less than 5 parts, it is difficult to impart fluidity to the molded body, and when the amount of water added exceeds 15 parts, the shape of the molded body can be maintained during extrusion molding. It will be difficult.
本発明の炭化ケイ素粉末にカーボン粉末を加えたものに、可塑剤、水を添加して常温でヘンシェルミキサー等の混練機を用いて混合する混合した材料はニーダーもしくは3本ロールにて材料を分散させる。必要に応じて1~2日程度材料の養生を行い、真空脱気できる押出成形を用いて所望の形状に押出成形を行う。押出成形機にはスクリュ式真空押出成形機もしくはピストン式真空押出成形機を用いる。
必要な長さに切断し、乾燥機を用いて水溶性高分子をゲル化させるとともに、水分を除去する。
The silicon carbide powder of the present invention is added with carbon powder, and a plasticizer and water are added and mixed at room temperature using a kneader such as a Henshell mixer. The mixed material is dispersed with a kneader or three rolls. Let me. If necessary, cure the material for about 1 to 2 days, and then perform extrusion molding into a desired shape using extrusion molding that can be evacuated. A screw type vacuum extrusion molding machine or a piston type vacuum extrusion molding machine is used as the extrusion molding machine.
Cut to the required length and use a dryer to gel the water-soluble polymer and remove the water.
乾燥した成形体は焼結炉を用いて焼結を行う。焼結においては、乾燥後の成形体の周囲を粒径が0.05~1mmである金属シリコン粉末で覆う。金属シリコン粉末の粒径が0.05mm未満の場合には焼結体から付着した金属シリコンを除去することが困難になり、金属シリコン粒径が1mm以上の場合には金属シリコンの含侵が均一に行われず、成形体中のカーボンと金属シリコンが均一に反応しない。また、金属シリコンの粒子が1mm以上になると、成形体に金属粒子が食い込んで焼結後に表面にクラック、割れ等の欠陥が生じる。
焼結温度は1400℃以上であり、1400℃~1550℃が望ましく、1400~1500℃が特に望ましい。また、焼結雰囲気は減圧下もしくは不活性ガス雰囲気下で行うことが望ましい。
The dried molded product is sintered using a sintering furnace. In sintering, the periphery of the molded product after drying is covered with a metallic silicon powder having a particle size of 0.05 to 1 mm. When the particle size of the metallic silicon powder is less than 0.05 mm, it becomes difficult to remove the metallic silicon adhering from the sintered body, and when the particle size of the metallic silicon is 1 mm or more, the impregnation of the metallic silicon is uniform. This is not done, and the carbon and metallic silicon in the molded body do not react uniformly. Further, when the metal silicon particles become 1 mm or more, the metal particles bite into the molded body, and defects such as cracks and cracks occur on the surface after sintering.
The sintering temperature is 1400 ° C. or higher, preferably 1400 ° C to 1550 ° C, and particularly preferably 1400 to 1500 ° C. Further, it is desirable that the sintering atmosphere is performed under reduced pressure or under an inert gas atmosphere.
上記の条件で得られた焼結体は従来のRS-SiCと比較して高強度の焼結体を押出成形においても得ることができる。 As for the sintered body obtained under the above conditions, a sintered body having higher strength as compared with the conventional RS-SiC can be obtained by extrusion molding.
以下、実施例及び比較例により発明をさらに説明するが、本発明はこれに限定されるものではない。 Hereinafter, the invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[実施例1]
炭化ケイ素粉末には平均粒径2μmからなるα炭化ケイ素(a)を用いた。なお、粉末最大粒径は8μm以下とした。及び平均粒径0.4μmからなる粉末且つ最大粒径が4μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.05μm以下のカーボンブラック(c)を用いた。
成形するための有機バインダにはヒドロキシエチルメチルセルロース、グリセリンからなる有機材料と水を用いた。
上記炭化ケイ素粉末にカーボンブラック粉末並びに有機バインダと水をヘンシェルミキサを用いて均一に混合を行い、得られた混合物を3本ロールを用いて混練を行った。得られた混練物を24時間養生させた後、スクリュ式真空押出成形機を用いて図に示す直径15mm×長さ200mmの丸棒を作成した。得られた成形体を50℃で乾燥させた後、120℃にして、成形体中の水分を蒸発させた。
得られた乾燥した成形体を粒径0.5mmの金属シリコン粉末中に埋めてカーボントレイの中で1450℃で2時間焼結を行った。
炭化ケイ素組成物
炭化ケイ素(a)平均粒径4μm 58wt%
炭化ケイ素(b)平均粒径0.4μm 42wt%
炭化ケイ素粉末(a)+(b) 70wt%
カーボン粉末 30wt%
バインダ組成(全炭化ケイ素粉末(a)+(b)+カーボン粉末=100部とするときの添加重量部)
ヒドロキシエチルメチルセルロース 3.5重量部
グリセリン 2.5重量部
水 12重量部
得られた焼結体の密度は3.1g/cmであり、内部に空隙の無いち密な焼結体を得ることができた。得られた焼結体の3点曲げ強度は720MPaであり、従来のRS-SiC焼結体では260MPa程度のため、従来のRS-SiCと比較して2倍以上の強度を有するRS-SiCの押出焼結品を得ることができた。
[Example 1]
As the silicon carbide powder, α-silicon carbide (a) having an average particle size of 2 μm was used. The maximum powder particle size was 8 μm or less. And silicon carbide powder (b) having an average particle size of 0.4 μm and a maximum particle size of 4 μm or less is used, and the silicon carbide powders (a) and (b) have an average particle size of 0.05 μm or less as carbon. Carbon black (c) was used.
As the organic binder for molding, an organic material composed of hydroxyethyl methyl cellulose and glycerin and water were used.
The silicon carbide powder was uniformly mixed with carbon black powder, an organic binder and water using a Henschel mixer, and the obtained mixture was kneaded using three rolls. After curing the obtained kneaded product for 24 hours, a round bar having a diameter of 15 mm and a length of 200 mm as shown in the figure was produced using a screw type vacuum extrusion molding machine. The obtained molded product was dried at 50 ° C. and then heated to 120 ° C. to evaporate the water content in the molded product.
The obtained dried molded product was embedded in a metallic silicon powder having a particle size of 0.5 mm and sintered in a carbon tray at 1450 ° C. for 2 hours.
Silicon Carbide Composition Silicon Carbide (a) Average particle size 4 μm 58 wt%
Silicon Carbide (b) Average particle size 0.4 μm 42 wt%
Silicon carbide powder (a) + (b) 70 wt%
Carbon powder 30wt%
Binder composition (total silicon carbide powder (a) + (b) + carbon powder = 100 parts by weight added)
Hydroxyethyl Methyl Cellulose 3.5 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
The density of the obtained sintered body was 3.1 g / cm, and it was possible to obtain a dense sintered body with no internal voids. The three-point bending strength of the obtained sintered body is 720 MPa, and the conventional RS-SiC sintered body is about 260 MPa, so that RS-SiC has more than twice the strength of the conventional RS-SiC. An extruded sintered product could be obtained.
[実施例2]
炭化ケイ素粉末には平均粒径4μmからなるβ炭化ケイ素(a)を用いた。なお、粉末最大粒径は8μm以下とした。及び平均粒径0.4μmからなる粉末且つ最大粒径が4μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.05μm以下のカーボンブラック(c)を用いた。
成形するための有機バインダにはヒドロキシエチルメチルセルロース、グリセリンからなる有機材料と水を用いた。
上記炭化ケイ素粉末にカーボンブラック粉末並びに有機バインダと水をヘンシェルミキサを用いて均一に混合を行い、得られた混合物を3本ロールを用いて混練を行った。得られた混練物を24時間養生させた後、スクリュ式真空押出成形機を用いて図に示す直径15mm×長さ200mmの丸棒を作成した。得られた成形体を50℃で乾燥させた後、120℃にして、成形体中の水分を蒸発させた。
得られた乾燥した成形体を粒径0.5mmの金属シリコン粉末中に埋めてカーボントレイの中で1450℃で2時間焼結を行った。
炭化ケイ素組成物
炭化ケイ素(a)平均粒径4μm 60wt%
炭化ケイ素(b)平均粒径0.5μm 40wt%
炭化ケイ素粉末(a)+(b) 70wt%
カーボン粉末 30wt%
バインダ組成(全炭化ケイ素粉末(a)+(b)+カーボン粉末=100部とするときの添加重量部)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 12重量部
得られた焼結体の密度は3.1g/cmであり、内部に空隙の無いち密な焼結体を得ることができた。得られた焼結体の3点曲げ強度は680MPaであり、実施例1と同様に従来のRS-SiC焼結体では260MPa程度のため、従来のRS-SiCと比較して2倍以上の強度を有するRS-SiCの押出焼結品を得ることができた。
[Example 2]
As the silicon carbide powder, β-silicon carbide (a) having an average particle size of 4 μm was used. The maximum powder particle size was 8 μm or less. And silicon carbide powder (b) having an average particle size of 0.4 μm and a maximum particle size of 4 μm or less is used, and the silicon carbide powders (a) and (b) have an average particle size of 0.05 μm or less as carbon. Carbon black (c) was used.
As the organic binder for molding, an organic material composed of hydroxyethyl methyl cellulose and glycerin and water were used.
The silicon carbide powder was uniformly mixed with carbon black powder, an organic binder and water using a Henschel mixer, and the obtained mixture was kneaded using three rolls. After curing the obtained kneaded product for 24 hours, a round bar having a diameter of 15 mm and a length of 200 mm as shown in the figure was produced using a screw type vacuum extrusion molding machine. The obtained molded product was dried at 50 ° C. and then heated to 120 ° C. to evaporate the water content in the molded product.
The obtained dried molded product was embedded in a metallic silicon powder having a particle size of 0.5 mm and sintered in a carbon tray at 1450 ° C. for 2 hours.
Silicon Carbide Composition Silicon Carbide (a) Average particle size 4 μm 60 wt%
Silicon Carbide (b) Average particle size 0.5 μm 40 wt%
Silicon carbide powder (a) + (b) 70 wt%
Carbon powder 30wt%
Binder composition (total silicon carbide powder (a) + (b) + carbon powder = 100 parts by weight added)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
The density of the obtained sintered body was 3.1 g / cm, and it was possible to obtain a dense sintered body with no internal voids. The three-point bending strength of the obtained sintered body is 680 MPa, and the conventional RS-SiC sintered body is about 260 MPa as in Example 1, so that the strength is more than twice that of the conventional RS-SiC. It was possible to obtain an extruded sintered product of RS-SiC having the above.
[比較例1]
炭化ケイ素粉末には平均粒径10μmからなるβ炭化ケイ素を用いた。なお、粉末最大粒径は20μm以下とした。平均粒径0.05μm以下のカーボンブラック(c)を用いた。
成形するための有機バインダにはヒドロキシエチルメチルセルロース、グリセリンからなる有機材料と水を用いた。
上記炭化ケイ素粉末にカーボンブラック粉末並びに有機バインダと水をヘンシェルミキサを用いて均一に混合を行い、得られた混合物を3本ロールを用いて混練を行った。得られた混練物を24時間養生させた後、スクリュ式真空押出成形機を用いて図に示す直径15mm×長さ200mmの丸棒を作成した。得られた成形体を50℃で乾燥させた後、120℃にして、成形体中の水分を蒸発させた。
得られた乾燥した成形体を粒径0.5mmの金属シリコン粉末中に埋めてカーボントレイの中で1450℃で2時間焼結を行った。
炭化ケイ素組成物
炭化ケイ素(平均粒径10μm) 100wt%
炭化ケイ素粉末(a)+(b) 70wt%
カーボン粉末 30wt%
バインダ組成(全炭化ケイ素粉末+カーボン粉末=100部とするときの添加重量部)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 10重量部
得られた焼結体の密度は3.0g/cmであり、内部には空隙はほとんど確認できなかったものの、得られた焼結体の3点曲げ強度は250MPaであり、従来のRS-SiC焼結体が260MPa程度のため、従来のRS-SiCと比較して強度の向上は確認できなかった。
[Comparative Example 1]
As the silicon carbide powder, β-silicon carbide having an average particle size of 10 μm was used. The maximum powder particle size was 20 μm or less. Carbon black (c) having an average particle size of 0.05 μm or less was used.
As the organic binder for molding, an organic material composed of hydroxyethyl methyl cellulose and glycerin and water were used.
The silicon carbide powder was uniformly mixed with carbon black powder, an organic binder and water using a Henschel mixer, and the obtained mixture was kneaded using three rolls. After curing the obtained kneaded product for 24 hours, a round bar having a diameter of 15 mm and a length of 200 mm as shown in the figure was produced using a screw type vacuum extrusion molding machine. The obtained molded product was dried at 50 ° C. and then heated to 120 ° C. to evaporate the water content in the molded product.
The obtained dried molded product was embedded in a metallic silicon powder having a particle size of 0.5 mm and sintered in a carbon tray at 1450 ° C. for 2 hours.
Silicon Carbide Composition Silicon Carbide (Average Particle Size 10 μm) 100 wt%
Silicon carbide powder (a) + (b) 70 wt%
Carbon powder 30wt%
Binder composition (total silicon carbide powder + carbon powder = 100 parts by weight added)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 10 parts by weight
The density of the obtained sintered body was 3.0 g / cm, and although no voids could be confirmed inside, the three-point bending strength of the obtained sintered body was 250 MPa, and the conventional RS-SiC. Since the sintered body is about 260 MPa, no improvement in strength can be confirmed as compared with the conventional RS-SiC.
[比較例2]
炭化ケイ素粉末には平均粒径4μmからなるβ炭化ケイ素(a)を用いた。なお、粉末最大粒径は8μm以下とした。及び平均粒径0.4μmからなる粉末且つ最大粒径が4μm以下である炭化ケイ素粉末(b)を用い、これら(a),(b)の炭化ケイ素粉末にカーボンとして、平均粒径0.05μm以下のカーボンブラック(c)を用いた。
成形するための有機バインダにはヒドロキシエチルメチルセルロース、グリセリンからなる有機材料と水を用いた。
上記炭化ケイ素粉末にカーボンブラック粉末並びに有機バインダと水をヘンシェルミキサを用いて均一に混合を行い、得られた混合物を3本ロールを用いて混練を行った。得られた混練物を24時間養生させた後、スクリュ式真空押出成形機を用いて図に示す直径15mm×長さ200mmの丸棒を作成した。得られた成形体を50℃で乾燥させた後、120℃にして、成形体中の水分を蒸発させた。
得られた乾燥した成形体を粒径0.5mmの金属シリコン粉末中に埋めてカーボントレイの中で1450℃で2時間焼結を行った。
炭化ケイ素組成物
炭化ケイ素(a)平均粒径4μm 60wt%
炭化ケイ素(b)平均粒径0.5μm 40wt%
炭化ケイ素粉末(a)+(b) 90wt%
カーボン粉末 10wt%
バインダ組成(全炭化ケイ素粉末(a)+(b)+カーボン粉末=100部とするときの添加重量部)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 12重量部
得られた焼結体の密度は2.9g/cmであり、内部に空隙が生じていた。得られた焼結体の3点曲げ強度は230MPaであり、従来のRS-SiC焼結体では260MPa程度のため、従来のRS-SiCと比較して強度向上は確認できなかった。
[Comparative Example 2]
As the silicon carbide powder, β-silicon carbide (a) having an average particle size of 4 μm was used. The maximum powder particle size was 8 μm or less. And silicon carbide powder (b) having an average particle size of 0.4 μm and a maximum particle size of 4 μm or less is used, and the silicon carbide powders (a) and (b) have an average particle size of 0.05 μm or less as carbon. Carbon black (c) was used.
As the organic binder for molding, an organic material composed of hydroxyethyl methyl cellulose and glycerin and water were used.
The silicon carbide powder was uniformly mixed with carbon black powder, an organic binder and water using a Henschel mixer, and the obtained mixture was kneaded using three rolls. After curing the obtained kneaded product for 24 hours, a round bar having a diameter of 15 mm and a length of 200 mm as shown in the figure was produced using a screw type vacuum extrusion molding machine. The obtained molded product was dried at 50 ° C. and then heated to 120 ° C. to evaporate the water content in the molded product.
The obtained dried molded product was embedded in a metallic silicon powder having a particle size of 0.5 mm and sintered in a carbon tray at 1450 ° C. for 2 hours.
Silicon Carbide Composition Silicon Carbide (a) Average particle size 4 μm 60 wt%
Silicon Carbide (b) Average particle size 0.5 μm 40 wt%
Silicon Carbide Powder (a) + (b) 90wt%
Carbon powder 10wt%
Binder composition (total silicon carbide powder (a) + (b) + carbon powder = 100 parts by weight added)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
The density of the obtained sintered body was 2.9 g / cm, and voids were formed inside. The three-point bending strength of the obtained sintered body was 230 MPa, and that of the conventional RS-SiC sintered body was about 260 MPa, so that the strength improvement could not be confirmed as compared with the conventional RS-SiC.
[実施例4~9、比較例3~5]
さらに、炭化ケイ素粉末とカーボン粉末の割合を種々変更して実験を行った。用いた炭化ケイ素粉末とカーボン粉末の組成を下部に、押出成形品の焼結体の結果を表1に示す。なお、混練の条件、脱脂の条件並びに焼結の条件は実施例1~3に準じて行った。成形体形状については図1に記載の形状で行った。
炭化ケイ素組成物
炭化ケイ素(a)平均粒径: 4μm
炭化ケイ素(b)平均粒径:0.5μm
カーボン粉末 平均粒径: 0.03μm
有機バインダ成分表(体積%)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 12重量部
Furthermore, the experiment was carried out by changing the ratio of the silicon carbide powder and the carbon powder in various ways. The composition of the silicon carbide powder and the carbon powder used is shown at the bottom, and Table 1 shows the results of the sintered body of the extruded product. The kneading conditions, degreasing conditions, and sintering conditions were the same as in Examples 1 to 3. As for the shape of the molded body, the shape shown in FIG. 1 was used.
Silicon Carbide Composition Silicon Carbide (a) Average particle size: 4 μm
Silicon Carbide (b) Average particle size: 0.5 μm
Carbon powder average particle size: 0.03 μm
Organic binder composition table (% by volume)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
実施例4~9に関しては焼結体の密度は3.1以上でありち密化しており、3点曲げ強度も640MPa以上と高い値を示した。一方炭化ケイ素の粗粉末(a)と微粉末(b)の割合が特許指定の範囲外の場合には曲げ強度が250MPa以下であり、微粉末(b)の添加割合が多い比較例3,4については焼結密度も3.0g/cm3以下と低い値であった。 In Examples 4 to 9, the density of the sintered body was 3.1 or more, which was dense, and the three-point bending strength was 640 MPa or more, which was a high value. On the other hand, when the ratio of the coarse powder (a) and the fine powder (b) of silicon carbide is out of the range specified by the patent, the bending strength is 250 MPa or less, and the ratio of the fine powder (b) added is large in Comparative Examples 3 and 4. The sintering density was as low as 3.0 g / cm3 or less.
[実施例10~13、比較例6~8]
さらに、炭化ケイ素粉末の粒径を種々変更して実験を行った。用いた炭化ケイ素粉末とカーボン粉末の組成を下部に、押出成形品の焼結体の結果を表2に示す。なお、混練の条件、脱脂の条件並びに焼結の条件は実施例1~3に準じて行った。成形体の形状については図1に記載の形状で行った。
粉末材料成分
炭化ケイ素(a)大粒径 60wt%
炭化ケイ素(b)小粒径 40wt%
炭化ケイ素粉末(a)+(b) 90wt%
カーボン粉末 30wt%
有機バインダ成分表(体積%)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 12重量部
Furthermore, the experiment was carried out by changing the particle size of the silicon carbide powder in various ways. The composition of the silicon carbide powder and the carbon powder used is shown at the bottom, and Table 2 shows the results of the sintered body of the extruded product. The kneading conditions, degreasing conditions, and sintering conditions were the same as in Examples 1 to 3. The shape of the molded body was the shape shown in FIG.
Powder material component Silicon carbide (a) Large particle size 60 wt%
Silicon Carbide (b) Small particle size 40 wt%
Silicon Carbide Powder (a) + (b) 90wt%
Carbon powder 30wt%
Organic binder composition table (% by volume)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
実施例10~13に関しては焼結体の密度は3.1以上でありち密化しており、3点曲げ強度も650MPa以上と高い値を示した。一方炭化ケイ素の粗粉末(a)と微粉末(b)の大きさが特許指定の範囲外の比較例6~8については曲げ強度が300MPa以下であった。 In Examples 10 to 13, the density of the sintered body was 3.1 or more, which was dense, and the three-point bending strength was 650 MPa or more, which was a high value. On the other hand, in Comparative Examples 6 to 8 in which the sizes of the coarse powder (a) and the fine powder (b) of silicon carbide were outside the range specified by the patent, the bending strength was 300 MPa or less.
[実施例14~17、比較例9~12]
さらに、カーボン粉末の添加割合を種々変更して実験を行った。用いた炭化ケイ素粉末とカーボン粉末の組成を下部に、押出成形品の焼結体の結果を表1に示す。なお、混練の条件、脱脂の条件並びに焼結の条件は実施例1~3に準じて行った。成形体の肉厚については図1に記載の形状で行った。
炭化ケイ素組成物
炭化ケイ素(a)平均粒径: 4μm
炭化ケイ素(b)平均粒径:0.5μm
カーボン粉末 平均粒径: 0.03μm
有機バインダ成分表(体積%)
ヒドロキシエチルメチルセルロース 4重量部
グリセリン 2.5重量部
水 12重量部
Furthermore, the experiment was carried out by changing the addition ratio of the carbon powder in various ways. The composition of the silicon carbide powder and the carbon powder used is shown at the bottom, and Table 1 shows the results of the sintered body of the extruded product. The kneading conditions, degreasing conditions, and sintering conditions were the same as in Examples 1 to 3. The wall thickness of the molded product was the shape shown in FIG.
Silicon Carbide Composition Silicon Carbide (a) Average particle size: 4 μm
Silicon Carbide (b) Average particle size: 0.5 μm
Carbon powder average particle size: 0.03 μm
Organic binder composition table (% by volume)
Hydroxyethyl Methyl Cellulose 4 parts by weight Glycerin 2.5 parts by weight Water 12 parts by weight
本発明を用いることで、従来では得られなかった高強度の反応焼結炭化ケイ素焼結体の押出焼結品を得ることができ、バッチ焼結炉の治具・架台、連続焼結炉の治具・架台として従来の2倍以上の重量物を乗せて焼結してもたわみ、破断を生じることは無く、特に連続炉の搬送ローラーに用いることにより、単位時間当たりの処理量を2倍程度まで増やすことができる。 By using the present invention, it is possible to obtain an extruded sintered product of a high-strength reaction-sintered silicon carbide sintered body, which has not been obtained in the past. Even if an object that is more than twice as heavy as the conventional one is placed on it as a jig / frame and sintered, it will not bend or break. Especially, by using it for the transfer roller of a continuous furnace, the processing amount per unit time is doubled. Can be increased to a degree.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020122465A JP2022018980A (en) | 2020-07-16 | 2020-07-16 | Reactive sintered silicon carbide sintered compact and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020122465A JP2022018980A (en) | 2020-07-16 | 2020-07-16 | Reactive sintered silicon carbide sintered compact and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022018980A true JP2022018980A (en) | 2022-01-27 |
Family
ID=80203979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020122465A Pending JP2022018980A (en) | 2020-07-16 | 2020-07-16 | Reactive sintered silicon carbide sintered compact and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022018980A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116854478A (en) * | 2023-07-20 | 2023-10-10 | 四川硅旺新材料科技有限公司 | Preparation method of reaction sintering silicon carbide |
-
2020
- 2020-07-16 JP JP2020122465A patent/JP2022018980A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116854478A (en) * | 2023-07-20 | 2023-10-10 | 四川硅旺新材料科技有限公司 | Preparation method of reaction sintering silicon carbide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101462880B (en) | Silicon carbide based reinforced composite ceramic and preparation | |
CN108439983B (en) | Forming method of graphite ceramic composite pipe | |
JP4261130B2 (en) | Silicon / silicon carbide composite material | |
CN111574226B (en) | Preparation method of high-density low-free silicon content reaction sintered silicon carbide ceramic material | |
JPH0253387B2 (en) | ||
CN101293772B (en) | Preparation technique for SiC/CNTs composite ceramic | |
JP6358110B2 (en) | Ceramic composite material and manufacturing method thereof | |
CN106986649A (en) | A kind of high-performance SiC/W cermet combining nozzles and preparation method thereof | |
CN113582700B (en) | Preparation method of low-cost titanium boride ceramic composite material | |
KR20190048811A (en) | Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability | |
JP2022018980A (en) | Reactive sintered silicon carbide sintered compact and method for producing the same | |
CN105622102B (en) | Class boron carbide phase silicon carbide or class boron carbide phase silicon carbide boron carbide diphase ceramic material and preparation method thereof | |
CN114213131A (en) | Silicon carbide roller material for roller kiln and preparation method thereof | |
JP3667121B2 (en) | Boron carbide sintered body and manufacturing method thereof | |
JPH05194037A (en) | Water extrusion of silicon nitride | |
JP3830733B2 (en) | Particle-dispersed silicon material and manufacturing method thereof | |
JP4612608B2 (en) | Method for producing silicon / silicon carbide composite material | |
CN113511898A (en) | Preparation method of weldable silicon carbide ceramic barrel | |
JP3297547B2 (en) | Method for producing silicon carbide sintered body | |
CN118146018B (en) | High thermal shock resistance reaction sintering silicon carbide ceramic and preparation method thereof | |
KR20120086184A (en) | Silicon carbide honeycomb and method for preparing the same | |
JPH11236266A (en) | Production of silicon carbide-base sheet | |
JP2006347806A (en) | High rigidity ceramic material, and method for producing the same | |
JP2011213540A (en) | Silicon impregnating silicon carbide ceramics and manufacturing method thereof | |
JPH0483752A (en) | Mixture of sinterable substance |