JP2022017550A - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device Download PDF

Info

Publication number
JP2022017550A
JP2022017550A JP2021183093A JP2021183093A JP2022017550A JP 2022017550 A JP2022017550 A JP 2022017550A JP 2021183093 A JP2021183093 A JP 2021183093A JP 2021183093 A JP2021183093 A JP 2021183093A JP 2022017550 A JP2022017550 A JP 2022017550A
Authority
JP
Japan
Prior art keywords
silicon carbide
type
carbide semiconductor
semiconductor device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021183093A
Other languages
Japanese (ja)
Other versions
JP7276407B2 (en
Inventor
卓巳 藤本
Takumi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017228293A external-priority patent/JP7052322B2/en
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2021183093A priority Critical patent/JP7276407B2/en
Publication of JP2022017550A publication Critical patent/JP2022017550A/en
Application granted granted Critical
Publication of JP7276407B2 publication Critical patent/JP7276407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide semiconductor device, capable of suppressing the expansion of stacking defects stably at low cost.
SOLUTION: A silicon carbide semiconductor device includes a semiconductor substrate 16 of a second conductivity type, a first semiconductor layer 3 of a first conductivity type, a second semiconductor layer 4 of the second conductivity type, a first semiconductor region 17 of the first conductivity type, a gate insulating film 5, and a gate electrode 6. Protons are injected into: a first region having a predetermined depth from the surface of the semiconductor substrate 16 on the side of the first semiconductor layer 3; a second region having a predetermined depth from the surface of the first semiconductor layer 3 on the side of the semiconductor substrate 16; a third region having a predetermined depth from the surface of the first semiconductor layer 3 on the side of the second semiconductor layer 4; and a fourth region having a predetermined depth from the surface of the second semiconductor layer 4 on the side of the first semiconductor layer 3.
SELECTED DRAWING: Figure 20
COPYRIGHT: (C)2022,JPO&INPIT

Description

この発明は、炭化珪素半導体装置に関する。 The present invention relates to silicon carbide semiconductor devices.

従来、高電圧や大電流を制御するパワー半導体装置の構成材料として、シリコン(Si)が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。 Conventionally, silicon (Si) has been used as a constituent material of a power semiconductor device that controls a high voltage or a large current. There are multiple types of power semiconductor devices such as bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors: Insulated Gate Bipolar Transistors), and MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), which can be used according to the application. Has been done.

例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。 For example, bipolar transistors and IGBTs have a higher current density than MOSFETs and can increase the current, but they cannot be switched at high speed. Specifically, the bipolar transistor is limited to use at a switching frequency of about several kHz, and the IGBT is limited to use at a switching frequency of about several tens of kHz. On the other hand, the power MOSFET has a lower current density than the bipolar transistor and the IGBT, and it is difficult to increase the current, but high-speed switching operation up to about several MHz is possible.

しかしながら、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている。 However, there is a strong demand in the market for power semiconductor devices that have both high current and high speed, and efforts are being made to improve IGBTs and power MOSFETs, and development is now progressing to near the material limit. .. Silicon carbide (SiC) is being studied as a semiconductor material that can replace silicon from the viewpoint of power semiconductor devices, and can manufacture (manufacture) next-generation power semiconductor devices with excellent low on-voltage, high-speed characteristics, and high-temperature characteristics. Is attracting attention.

その背景には、SiCは化学的に非常に安定な材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用できる。また、最大電界強度もシリコンより1桁以上大きいからである。SiCはシリコンにおける材料限界を超える可能性大であることからパワー半導体用途、特にMOSFETでは今後の伸長が大きく期待される。特にそのオン抵抗が小さいことが期待されているが高耐圧特性を維持したままより一層の低オン抵抗を有する炭化珪素MOSFETが期待できる。 In the background, SiC is a chemically stable material, has a wide bandgap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures. This is also because the maximum electric field strength is one order of magnitude higher than that of silicon. Since SiC has a high possibility of exceeding the material limit of silicon, future growth is expected in power semiconductor applications, especially MOSFETs. In particular, it is expected that the on-resistance is small, but a silicon carbide MOSFET having a lower on-resistance while maintaining high withstand voltage characteristics can be expected.

従来の炭化珪素半導体装置の構造について、トレンチ構造の縦型MOSFETを例に説明する。図30は、従来の炭化珪素半導体装置の構造を示す断面図である。図30に示すように、n+型炭化珪素半導体基板101のおもて面に高濃度n型エピタキシャル層102が堆積され、高濃度n型エピタキシャル層102の表面にn-型ドリフト層103が堆積される。n-型ドリフト層103の表面にp+型ベース領域104が選択的に設けられる。 The structure of a conventional silicon carbide semiconductor device will be described by taking a vertical MOSFET having a trench structure as an example. FIG. 30 is a cross-sectional view showing the structure of a conventional silicon carbide semiconductor device. As shown in FIG. 30, a high-concentration n-type epitaxial layer 102 is deposited on the front surface of the n + type silicon carbide semiconductor substrate 101, and an n - type drift layer 103 is deposited on the surface of the high-concentration n-type epitaxial layer 102. Will be done. A p + type base region 104 is selectively provided on the surface of the n - type drift layer 103.

炭化珪素半導体装置のp+型ベース領域104側には、トレンチ構造が形成されている。具体的には、トレンチ115は、p+型ベース領域104のn+型炭化珪素半導体基板101側に対して反対側の表面からp+型ベース領域104を貫通してn-型ドリフト層103に達する。トレンチ115の内壁に沿って、トレンチ115の底部および側壁にゲート絶縁膜105が形成されており、トレンチ115内のゲート絶縁膜105の内側にゲート電極106が形成されている。また、p+型ベース層104の表面にn+型ソース領域108、p+型コンタクト領域107が選択的に設けられる。 A trench structure is formed on the p + type base region 104 side of the silicon carbide semiconductor device. Specifically, the trench 115 penetrates the p + type base region 104 from the surface opposite to the n + type silicon carbide semiconductor substrate 101 side of the p + type base region 104 to form the n - type drift layer 103. Reach. A gate insulating film 105 is formed on the bottom and side walls of the trench 115 along the inner wall of the trench 115, and a gate electrode 106 is formed inside the gate insulating film 105 in the trench 115. Further, the n + type source region 108 and the p + type contact region 107 are selectively provided on the surface of the p + type base layer 104.

ここで、図31は、従来の炭化珪素半導体装置の不純物濃度を示すグラフである。図31は、図30のA-A1部分の不純物濃度を示し、縦軸はp+型コンタクト領域107の表面からの深さを示し、横軸は不純物濃度を示す。また、横軸の点線は、n+型炭化珪素半導体基板101と高濃度n型エピタキシャル層102との界面を示す。図31に示すように、p+型コンタクト領域107の不純物濃度はp+型ベース領域104の不純物濃度より高く、n-型ドリフト層103、高濃度n型エピタキシャル層102、n+型炭化珪素半導体基板101の順に不純物濃度が高くなっている。 Here, FIG. 31 is a graph showing the impurity concentration of the conventional silicon carbide semiconductor device. FIG. 31 shows the impurity concentration of the AA1 portion of FIG. 30, the vertical axis shows the depth from the surface of the p + type contact region 107, and the horizontal axis shows the impurity concentration. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 101 and the high-concentration n-type epitaxial layer 102. As shown in FIG. 31, the impurity concentration of the p + type contact region 107 is higher than the impurity concentration of the p + type base region 104, and the n - type drift layer 103, the high concentration n-type epitaxial layer 102, and the n + type silicon carbide semiconductor The impurity concentration increases in the order of the substrate 101.

また、層間絶縁膜109は、トレンチ115に埋め込まれたゲート電極106を覆うように設けられている。ソース電極110は、層間絶縁膜109に開口されたコンタクトホールを介して、n+型ソース領域108およびp+型コンタクト領域107に接する。n+型炭化珪素半導体基板101の裏面には、ドレイン電極(不図示)が設けられている。 Further, the interlayer insulating film 109 is provided so as to cover the gate electrode 106 embedded in the trench 115. The source electrode 110 is in contact with the n + type source region 108 and the p + type contact region 107 through the contact hole opened in the interlayer insulating film 109. A drain electrode (not shown) is provided on the back surface of the n + type silicon carbide semiconductor substrate 101.

このような構造の縦型MOSFETは、ソース-ドレイン間にボディーダイオードとしてp+型ベース領域104とn-型ドリフト層103とで形成される寄生pnダイオードを内蔵する。この寄生pnダイオードは、ソース電極110に高電位を印加することで動作させることができ、p+型コンタクト領域107からp+型ベース領域104とn-型ドリフト層103と高濃度n型エピタキシャル層102とを経由してn+型炭化珪素半導体基板101への方向(図30において矢印Bで示す方向)に電流が流れる。このように、MOSFETではIGBTと異なり、寄生pnダイオードを内蔵しているため、インバータに用いる還流ダイオード(FWD:Free Wheeling Diode)を省略することができ、低コスト化および小型化に貢献する。これ以降、MOSFETの寄生pnダイオードを内蔵ダイオードと称する。 A vertical MOSFET having such a structure incorporates a parasitic pn diode formed by a p + type base region 104 and an n - type drift layer 103 as a body diode between a source and a drain. This parasitic pn diode can be operated by applying a high potential to the source electrode 110, from the p + type contact region 107 to the p + type base region 104, the n - type drift layer 103, and the high concentration n-type epitaxial layer. A current flows in the direction toward the n + type silicon carbide semiconductor substrate 101 (the direction indicated by the arrow B in FIG. 30) via the 102. As described above, unlike the IGBT, the MOSFET has a built-in parasitic pn diode, so that the freewheeling diode (FWD: Free Wheeling Diode) used for the inverter can be omitted, which contributes to cost reduction and miniaturization. Hereinafter, the parasitic pn diode of the MOSFET is referred to as a built-in diode.

図32は、従来の炭化珪素半導体装置のホール密度を示すグラフである。また、図33は、従来の炭化珪素半導体装置の電子密度を示すグラフである。図32、図33は、図30のA-A1部分のホール密度、電子密度を示し、縦軸はp+型コンタクト領域107の表面からの深さを示し、横軸はそれぞれホール密度、電子密度を示す。また、横軸の点線は、n+型炭化珪素半導体基板101と高濃度n型エピタキシャル層102との界面を示す。 FIG. 32 is a graph showing the hole density of a conventional silicon carbide semiconductor device. Further, FIG. 33 is a graph showing the electron density of the conventional silicon carbide semiconductor device. 32 and 33 show the hole density and the electron density of the AA1 portion of FIG. 30, the vertical axis shows the depth from the surface of the p + type contact region 107, and the horizontal axis shows the hole density and the electron density, respectively. Is shown. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 101 and the high-concentration n-type epitaxial layer 102.

図32、図33に示すように、p+型コンタクト領域107にホールが存在し、n+型炭化珪素半導体基板101と高濃度n型エピタキシャル層102に電子が存在する、このため、内蔵ダイオードに電流が流れると、p+型コンタクト領域107からホールが注入され、n-型ドリフト層103またはn+型炭化珪素半導体基板101中で電子およびホールの再結合が発生する。このとき、n+型炭化珪素半導体基板101の結晶に欠陥があると、発生するバンドギャップ相当の再結合エネルギー(3eV)により、n+型炭化珪素半導体基板101に存在する結晶欠陥の一種である基底面転位が移動し、2つの基底面転位に挟まれる積層欠陥が拡張する。ここで、図34は、従来の炭化珪素半導体装置の積層欠陥を示す断面図である。図35は、従来の炭化珪素半導体装置の積層欠陥を示す上面図である。図34では、基底面転位111が積層欠陥112に成長する例を示す。図35は、電流印加後に積層欠陥が発生した素子のPL(Photo Luminescence)画像の例であり、三角積層欠陥113および帯状積層欠陥114が発生していることがわかる。 As shown in FIGS. 32 and 33, holes are present in the p + type contact region 107, and electrons are present in the n + type silicon carbide semiconductor substrate 101 and the high concentration n-type epitaxial layer 102. Therefore, the built-in diode has a hole. When a current flows, holes are injected from the p + type contact region 107, and electron and hole recombination occurs in the n type drift layer 103 or the n + type silicon carbide semiconductor substrate 101. At this time, if there is a defect in the crystal of the n + type silicon carbide semiconductor substrate 101, it is a kind of crystal defect existing in the n + type silicon carbide semiconductor substrate 101 due to the generated recombination energy (3eV) corresponding to the band gap. The basal plane dislocations move and the stacking defects sandwiched between the two basal plane dislocations expand. Here, FIG. 34 is a cross-sectional view showing a stacking defect of a conventional silicon carbide semiconductor device. FIG. 35 is a top view showing a stacking defect of a conventional silicon carbide semiconductor device. FIG. 34 shows an example in which the basal plane dislocations 111 grow into stacking defects 112. FIG. 35 is an example of a PL (Photoluminescence) image of an element in which a stacking defect has occurred after a current is applied, and it can be seen that a triangular stacking defect 113 and a strip-shaped stacking defect 114 have occurred.

積層欠陥が拡張すると、積層欠陥は電流を流しにくいため、MOSFETのオン抵抗および内蔵ダイオードの順方向電圧が上昇する。このような動作が継続すると積層欠陥は累積的に拡張するため、インバータ回路に発生する損失は経時的に増加し、発熱量も大きくなるため、装置故障の原因となる。この問題を防ぐためにMOSFETと逆並列にSiC-SBD(Schottky Barrier Diode:ショットキーバリアダイオード)を接続し、電流がMOSFETの内蔵ダイオードに流れないように対策することができる。 When the stacking defect expands, the stacking defect does not easily carry current, so that the on-resistance of the MOSFET and the forward voltage of the built-in diode increase. If such an operation continues, the stacking defects are cumulatively expanded, so that the loss generated in the inverter circuit increases with time and the amount of heat generated also increases, which causes a device failure. In order to prevent this problem, a SiC-SBD (Schottky Barrier Diode) can be connected in antiparallel to the MOSFET so that current does not flow to the built-in diode of the MOSFET.

また、図30のように、高濃度n型エピタキシャル層102を設けることで、積層欠陥を成長しないようにすることができる。このような高ドーピング層を形成することで、ライフタイムキラーを導入し、n-型ドリフト層103からのホールを捕捉して、積層欠陥
の発生およびその面積拡大を抑制している。
Further, as shown in FIG. 30, by providing the high-concentration n-type epitaxial layer 102, it is possible to prevent the growth of stacking defects. By forming such a high doping layer, a lifetime killer is introduced to capture holes from the n - type drift layer 103, and the generation of stacking defects and the expansion of the area thereof are suppressed.

また、エピタキシャル成長時またはエピタキシャル成長後に、遷移金属ドーピング、または電子若しくはプロトン照射技術による固有内部成長欠陥若しくは外部生成固有欠陥のいずれかを用いて、ライフタイムキラーを導入することにより、境界層内で少数キャリアを減少させる技術が存在する(下記、特許文献1参照)。また、少なくともプロトン(proton)、ヘリウム(He)、希ガス、白金(Pt)、バナジウム(V)、4属イオン等を炭化珪素半導体基板に注入することにより結晶欠陥を形成する技術が存在する(下記、特許文献2参照)。 Also, minority carriers in the boundary layer can be introduced by introducing a lifetime killer using either transition metal doping or intrinsic internal growth defects or externally generated intrinsic defects by electron or proton irradiation techniques during or after epitaxial growth. There is a technique for reducing the number of substances (see Patent Document 1 below). Further, there is a technique for forming crystal defects by injecting at least a proton, helium (He), rare gas, platinum (Pt), vanadium (V), group 4 ion or the like into a silicon carbide semiconductor substrate ( See Patent Document 2 below).

特許第4939777号公報Japanese Patent No. 4939777 米国特許出願公開第2017/0012102号明細書U.S. Patent Application Publication No. 2017/0012102

しかしながら、高濃度n型エピタキシャル層102は、例えば、5μm~10μmの膜厚と2×1018/cm3以上の不純物濃度が必要となる。このように厚い高濃度n型エピタキシャル層102の成膜は、エピタキシャル成長のスループット低下によるコスト増大、欠陥密度増加による歩留まり低下および基板の抵抗増大につながるという問題がある。また、高濃度n型エピタキシャル層102による、ライフタイムの精度は濃度、膜厚に依存してばらつきが大きいという問題がある。 However, the high-concentration n-type epitaxial layer 102 requires, for example, a film thickness of 5 μm to 10 μm and an impurity concentration of 2 × 10 18 / cm 3 or more. The film formation of such a thick high-concentration n-type epitaxial layer 102 has problems that it leads to an increase in cost due to a decrease in throughput of epitaxial growth, a decrease in yield due to an increase in defect density, and an increase in resistance of a substrate. Further, there is a problem that the accuracy of the lifetime due to the high-concentration n-type epitaxial layer 102 varies greatly depending on the density and the film thickness.

この発明は、上述した従来技術による問題点を解消するため、低コストで安定して積層欠陥の拡張を抑制することができる炭化珪素半導体装置を提供することを目的とする。 An object of the present invention is to provide a silicon carbide semiconductor device capable of stably suppressing expansion of stacking defects at low cost in order to solve the above-mentioned problems caused by the prior art.

上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第2導電型の半導体基板上に、第1導電型の第1半導体層が設けられる。前記第1半導体層の、前記半導体基板側に対して反対側に、第2導電型の第2半導体層が設けられる。前記第2半導体層の、前記第1半導体層に対して反対側の表面層に選択的に、前記第1半導体層より高不純物濃度の第1導電型の第1半導体領域が設けられる。前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介してゲート電極が設けられる。前記半導体基板の、前記第1半導体層側の表面から所定の深さの第1領域、前記第1半導体層の、前記半導体基板側の表面から所定の深さの第2領域、前記第1半導体層の、前記第2半導体層側の表面から所定の深さの第3領域、および、前記第2半導体層の、前記第1半導体層側の表面から所定の深さの第4領域にプロトンが注入されている。 In order to solve the above-mentioned problems and achieve the object of the present invention, the silicon carbide semiconductor device according to the present invention has the following features. A first conductive type first semiconductor layer is provided on the second conductive type semiconductor substrate. A second conductive type second semiconductor layer is provided on the side of the first semiconductor layer opposite to the semiconductor substrate side. The surface layer of the second semiconductor layer opposite to the first semiconductor layer is selectively provided with a first conductive type first semiconductor region having a higher impurity concentration than the first semiconductor layer. A gate electrode is provided at least a part on the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer via a gate insulating film. A first region of the semiconductor substrate having a predetermined depth from the surface of the first semiconductor layer side, a second region of the first semiconductor layer having a predetermined depth from the surface of the semiconductor substrate side, the first semiconductor. Protons are generated in the third region of the layer at a predetermined depth from the surface on the second semiconductor layer side and in the fourth region of the second semiconductor layer from the surface on the first semiconductor layer side to a predetermined depth. It has been injected.

また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板の、前記第1半導体層側の表面から2μm以上の前記第1領域、および、前記第1半導体層の、前記半導体基板側の表面から3μm以上の前記第2領域に、1×1013/cm3以上1×1015/cm3以下の濃度のプロトンが注入されていることを特徴とする。 Further, in the above-described invention, the silicon carbide semiconductor device according to the present invention is the semiconductor of the first region of the semiconductor substrate, which is 2 μm or more from the surface of the first semiconductor layer side, and the first semiconductor layer. It is characterized in that protons having a concentration of 1 × 10 13 / cm 3 or more and 1 × 10 15 / cm 3 or less are injected into the second region of 3 μm or more from the surface on the substrate side.

上述した発明によれば、第2導電型の半導体基板と第1導電型の第1半導体層との界面近傍、および第1導電型の第1半導体層と第2導電型の第2半導体層との界面近傍にライフタイムキラーとして、プロトンが注入されている。これにより、第2導電型の半導体基板と第1導電型の第1半導体層との界面、および第1導電型の第1半導体層と第2導電型の第2半導体層との界面のホール密度を低下させ、結晶欠陥の成長を抑制させることができる。 According to the above-mentioned invention, the vicinity of the interface between the second conductive type semiconductor substrate and the first conductive type first semiconductor layer, and the first conductive type first semiconductor layer and the second conductive type second semiconductor layer. Protons are injected near the interface of the semiconductor as a lifetime killer. As a result, the hole density at the interface between the second conductive type semiconductor substrate and the first conductive type first semiconductor layer, and the interface between the first conductive type first semiconductor layer and the second conductive type second semiconductor layer. Can be reduced and the growth of crystal defects can be suppressed.

また、エピタキシャル成長で第1導電型の第1半導体層を形成する際、ライフタイムの精度は濃度、膜厚に依存してばらつきが大きい。一方、本発明では、プロトン照射をイオン注入で行うため、ライフタイムキラーのコントロール性がよく、安定して形成可能である。また、イオン注入で行うため、エピタキシャル成長より低コストで作成可能である。 Further, when the first conductive type first semiconductor layer is formed by epitaxial growth, the accuracy of the lifetime varies greatly depending on the concentration and the film thickness. On the other hand, in the present invention, since proton irradiation is performed by ion implantation, the lifetime killer has good controllability and can be stably formed. Moreover, since it is performed by ion implantation, it can be produced at a lower cost than epitaxial growth.

本発明にかかる炭化珪素半導体装置によれば、低コストで安定して積層欠陥の拡張を抑制することができるという効果を奏する。 According to the silicon carbide semiconductor device according to the present invention, there is an effect that expansion of stacking defects can be stably suppressed at low cost.

実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1にかかる炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1にかかる炭化珪素半導体装置のDLTS信号を示すグラフである。It is a graph which shows the DLTS signal of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1にかかる炭化珪素半導体装置の製造の一部を示すフローチャートである。It is a flowchart which shows a part of manufacturing of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その1)。It is sectional drawing which shows the state in the manufacturing process of the silicon carbide semiconductor device which concerns on Embodiment 1 (the 1). 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その2)。It is sectional drawing which shows the state in the manufacturing process of the silicon carbide semiconductor device which concerns on Embodiment 1 (the 2). 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その3)。It is sectional drawing which shows the state in the manufacturing process of the silicon carbide semiconductor device which concerns on Embodiment 1 (the 3). 実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the silicon carbide semiconductor device which concerns on Embodiment 2. FIG. 実施の形態2にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device which concerns on Embodiment 2. 実施の形態2にかかる炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device which concerns on Embodiment 2. 実施の形態2にかかる炭化珪素半導体装置の内蔵ダイオードの特性を示すグラフである。It is a graph which shows the characteristic of the built-in diode of the silicon carbide semiconductor device which concerns on Embodiment 2. 実施の形態2にかかる炭化珪素半導体装置の逆回復時の電流特性を示すグラフである。It is a graph which shows the current characteristic at the time of the reverse recovery of the silicon carbide semiconductor device which concerns on Embodiment 2. 実施の形態3にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。It is sectional drawing which shows the state in the manufacturing process of the silicon carbide semiconductor device which concerns on Embodiment 3. FIG. 実施の形態3にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device which concerns on Embodiment 3. 実施の形態3にかかる炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device which concerns on Embodiment 3. FIG. 実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the silicon carbide semiconductor device which concerns on Embodiment 4. FIG. 実施の形態4にかかる炭化珪素半導体装置のヘリウム濃度を示すグラフである。It is a graph which shows the helium concentration of the silicon carbide semiconductor device which concerns on Embodiment 4. 実施の形態4にかかる炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device which concerns on Embodiment 4. 実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the silicon carbide semiconductor device which concerns on Embodiment 5. 実施の形態5にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device which concerns on Embodiment 5. 実施の形態5にかかる炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device which concerns on Embodiment 5. 実施の形態5にかかる炭化珪素半導体装置のIcVce特性を示すグラフである。It is a graph which shows the IcVce characteristic of the silicon carbide semiconductor device which concerns on Embodiment 5. 実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the silicon carbide semiconductor device which concerns on Embodiment 6. 実施の形態6にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device which concerns on Embodiment 6. 実施の形態6にかかる炭化珪素半導体装置のCV特性を示すグラフである。It is a graph which shows the CV characteristic of the silicon carbide semiconductor device which concerns on Embodiment 6. 実施例の炭化珪素半導体装置のプロトン濃度を示すグラフである。It is a graph which shows the proton concentration of the silicon carbide semiconductor device of an Example. 実施例の炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device of an Example. 従来例の炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the silicon carbide semiconductor device of the conventional example. 従来の炭化珪素半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional silicon carbide semiconductor device. 従来の炭化珪素半導体装置の不純物濃度を示すグラフである。It is a graph which shows the impurity concentration of the conventional silicon carbide semiconductor device. 従来の炭化珪素半導体装置のホール密度を示すグラフである。It is a graph which shows the hole density of the conventional silicon carbide semiconductor device. 従来の炭化珪素半導体装置の電子密度を示すグラフである。It is a graph which shows the electron density of the conventional silicon carbide semiconductor device. 従来の炭化珪素半導体装置の積層欠陥を示す断面図である。It is sectional drawing which shows the stacking defect of the conventional silicon carbide semiconductor device. 従来の炭化珪素半導体装置の積層欠陥を示す上面図である。It is a top view which shows the stacking defect of the conventional silicon carbide semiconductor device.

以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数をあらわしている。 Hereinafter, preferred embodiments of the silicon carbide semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the accompanying drawings, it means that the electron or hole is a large number of carriers in the layer or region marked with n or p, respectively. Further, + and-attached to n and p mean that the concentration of impurities is higher and the concentration of impurities is lower than that of the layer or region to which it is not attached, respectively. In the following description of the embodiment and the accompanying drawings, the same reference numerals are given to the same configurations, and duplicate description will be omitted. Further, in the present specification, in the notation of the Miller index, "-" means a bar attached to the index immediately after that, and a negative index is represented by adding "-" in front of the index.

(実施の形態1)
図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態1では、炭化珪素半導体装置が、MOSFETの場合を示す。図1に示すように、実施の形態1にかかる炭化珪素半導体装置は、n+型炭化珪素半導体基板(第1導電型の半導体基板)1の第1主面(おもて面)、例えば(0001)面(Si面)、にn型境界層2、n-型ドリフト層(第1導電型の第1半導体層)3が堆積されている。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the first embodiment. In the first embodiment, the case where the silicon carbide semiconductor device is a MOSFET is shown. As shown in FIG. 1, the silicon carbide semiconductor device according to the first embodiment is a first main surface (front surface) of an n + type silicon carbide semiconductor substrate (first conductive type semiconductor substrate) 1, for example, ( An n-type boundary layer 2 and an n - type drift layer (first conductive type first semiconductor layer) 3 are deposited on the 0001) plane (Si plane).

+型炭化珪素半導体基板1は、例えば窒素(N)がドーピングされた炭化珪素単結晶基板である。n型境界層2は、n+型炭化珪素半導体基板1よりも低い不純物濃度で、例えば窒素がドーピングされている。n型境界層2は、n+型炭化珪素半導体基板1の結晶欠陥がn-型ドリフト層3に伝わらないようにするために設けられている。n-型ドリフト層3は、n+型炭化珪素半導体基板1よりも低い不純物濃度で、例えば窒素がドーピングされている低濃度n型ドリフト層である。以下、n+型炭化珪素半導体基板1とn型境界層2とn-型ドリフト層3と後述するp+型ベース領域(第2導電型の第2半導体層)4とを併せて炭化珪素半導体基体とする。 The n + type silicon carbide semiconductor substrate 1 is, for example, a silicon carbide single crystal substrate doped with nitrogen (N). The n-type boundary layer 2 is doped with nitrogen, for example, at an impurity concentration lower than that of the n + type silicon carbide semiconductor substrate 1. The n-type boundary layer 2 is provided so that the crystal defects of the n + type silicon carbide semiconductor substrate 1 are not transmitted to the n - type drift layer 3. The n - type drift layer 3 is a low-concentration n-type drift layer in which an impurity concentration lower than that of the n + type silicon carbide semiconductor substrate 1 and, for example, nitrogen is doped. Hereinafter, the n + type silicon carbide semiconductor substrate 1, the n-type boundary layer 2, the n - type drift layer 3, and the p + type base region (second conductive type second semiconductor layer) 4 described later are combined to form a silicon carbide semiconductor. Use as a substrate.

+型炭化珪素半導体基板1の第2主面(裏面、すなわち炭化珪素半導体基体の裏面)には、裏面電極(不図示)が設けられている。裏面電極は、ドレイン電極を構成する。裏面電極の表面には、ドレイン電極パッド(不図示)が設けられている。 A back surface electrode (not shown) is provided on the second main surface (back surface, that is, the back surface of the silicon carbide semiconductor substrate) of the n + type silicon carbide semiconductor substrate 1. The back electrode constitutes a drain electrode. A drain electrode pad (not shown) is provided on the surface of the back surface electrode.

炭化珪素半導体基体の第1主面側(p+型ベース領域4側)には、トレンチ構造が形成されている。具体的には、トレンチ15は、p+型ベース領域4のn+型炭化珪素半導体基板1側に対して反対側(炭化珪素半導体基体の第1主面側)の表面からp+型ベース領域4を貫通してn-型ドリフト層3に達する。トレンチ15の内壁に沿って、トレンチ15の底部および側壁にゲート絶縁膜5が形成されており、トレンチ15内のゲート絶縁膜5の内側にゲート電極6が形成されている。ゲート絶縁膜5によりゲート電極6が、n-型ドリフト層3およびp+型ベース領域4と絶縁されている。ゲート電極6の一部は、トレンチ15上方(ソース電極10側)からソース電極10側に突出してもよい。 A trench structure is formed on the first main surface side (p + type base region 4 side) of the silicon carbide semiconductor substrate. Specifically, the trench 15 is a p + type base region from the surface of the p + type base region 4 opposite to the n + type silicon carbide semiconductor substrate 1 side (the first main surface side of the silicon carbide semiconductor substrate). It penetrates 4 and reaches the n - type drift layer 3. A gate insulating film 5 is formed on the bottom and side walls of the trench 15 along the inner wall of the trench 15, and a gate electrode 6 is formed inside the gate insulating film 5 in the trench 15. The gate electrode 6 is insulated from the n type drift layer 3 and the p + type base region 4 by the gate insulating film 5. A part of the gate electrode 6 may protrude from above the trench 15 (source electrode 10 side) toward the source electrode 10.

-型ドリフト層3の基体第1主面側には、p+型ベース領域4が設けられている。p+型ベース領域4の内部には、基体第1主面側にn+型ソース領域(第1導電型の第1半導体領域)8およびp+型コンタクト領域7が選択的に設けられている。n+型ソース領域8はトレンチ15に接している。また、n+型ソース領域8およびp+型コンタクト領域7は互いに接する。 A p + type base region 4 is provided on the first main surface side of the substrate of the n type drift layer 3. Inside the p + type base region 4, an n + type source region (first conductive type first semiconductor region) 8 and a p + type contact region 7 are selectively provided on the first main surface side of the substrate. .. The n + type source region 8 is in contact with the trench 15. Further, the n + type source region 8 and the p + type contact region 7 are in contact with each other.

図1では、4つのトレンチMOS構造のみを図示しているが、さらに多くのトレンチ構造のMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造が並列に配置されていてもよい。 Although only four trench MOS structures are shown in FIG. 1, more MOS gate (insulated gates made of metal-oxide film-semiconductor) structures of trench structures may be arranged in parallel.

層間絶縁膜9は、炭化珪素半導体基体の第1主面側の全面に、トレンチ15に埋め込まれたゲート電極6を覆うように設けられている。ソース電極10は、層間絶縁膜9に開口されたコンタクトホールを介して、n+型ソース領域8およびp+型コンタクト領域7に接する。ソース電極10は、層間絶縁膜9によって、ゲート電極6と電気的に絶縁されている。ソース電極10上には、ソース電極パッド(不図示)が設けられている。ソース電極10と層間絶縁膜9との間に、例えばソース電極10からゲート電極5側への金属原子の拡散を防止するバリアメタル(不図示)が設けられていてもよい。 The interlayer insulating film 9 is provided on the entire surface of the silicon carbide semiconductor substrate on the first main surface side so as to cover the gate electrode 6 embedded in the trench 15. The source electrode 10 is in contact with the n + type source region 8 and the p + type contact region 7 through the contact hole opened in the interlayer insulating film 9. The source electrode 10 is electrically insulated from the gate electrode 6 by the interlayer insulating film 9. A source electrode pad (not shown) is provided on the source electrode 10. A barrier metal (not shown) may be provided between the source electrode 10 and the interlayer insulating film 9 to prevent the diffusion of metal atoms from the source electrode 10 to the gate electrode 5 side, for example.

実施の形態1の炭化珪素半導体装置では、n+型炭化珪素半導体基板1とn型境界層2との界面近傍にライフタイムキラーとして、プロトンが注入されている。このプロトンがライフタイムキラーとなり、n+型炭化珪素半導体基板1とn型境界層2との界面のホール密度を2桁以上低下させることができる。これにより、ホールと電子の再結合を減少させ、結晶欠陥の成長を抑制させることができる。 In the silicon carbide semiconductor device of the first embodiment, protons are injected as a lifetime killer in the vicinity of the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. This proton serves as a lifetime killer and can reduce the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 by two orders of magnitude or more. This can reduce the recombination of holes and electrons and suppress the growth of crystal defects.

図2は、実施の形態1にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。図2は、図1のA-A1部分のプロトン濃度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はプロトン濃度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。 FIG. 2 is a graph showing the proton concentration of the silicon carbide semiconductor device according to the first embodiment. FIG. 2 shows the proton concentration of the AA1 portion of FIG. 1, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the proton concentration. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2.

図1、図2に示すように、プロトンは、例えば、n+型炭化珪素半導体基板1の、n型境界層2側の表面から深さh1(例えば、2μm)以上の領域、および、n型境界層2の、n+型炭化珪素半導体基板1側の表面から深さh2(例えば、3μm)以上の領域にプロトンが注入されている。プロトンは、1×1013/cm3以上1×1015/cm3以下の濃度である。濃度が1×1013/cm3より低いとライフタイムキラーとして十分に機能せず、1×1015/cm3より高いと内蔵ダイオードに電流が流れなくなるためである。 As shown in FIGS. 1 and 2, for example, the proton is a region of the n + type silicon carbide semiconductor substrate 1 having a depth of h1 (for example, 2 μm) or more from the surface on the n-type boundary layer 2 side, and an n-type. Protons are injected from the surface of the boundary layer 2 on the side of the n + type silicon carbide semiconductor substrate 1 to a region having a depth of h2 (for example, 3 μm) or more. Protons have a concentration of 1 × 10 13 / cm 3 or more and 1 × 10 15 / cm 3 or less. This is because if the concentration is lower than 1 × 10 13 / cm 3 , it does not function sufficiently as a lifetime killer, and if it is higher than 1 × 10 15 / cm 3 , no current flows through the built-in diode.

例えば、プロトンを1×1014/cm3の濃度に設定することで、n+型炭化珪素半導体基板1とn型境界層2との界面でのホール密度を1×1015/cm3以下にすることができ、1500A/cm2での電流密度でも結晶欠陥が発生しないようにすることができる。 For example, by setting the proton to a concentration of 1 × 10 14 / cm 3 , the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 is reduced to 1 × 10 15 / cm 3 or less. It is possible to prevent crystal defects from occurring even at a current density of 1500 A / cm 2 .

また、図3は、実施の形態1にかかる炭化珪素半導体装置のホール密度を示すグラフである。図3は、図1のA-A1部分のホール密度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はホール密度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。図3に示すように、従来例(図32参照)と比較すると、n+型炭化珪素半導体基板1とn型境界層2との界面でのホール密度が低下している。 Further, FIG. 3 is a graph showing the hole density of the silicon carbide semiconductor device according to the first embodiment. FIG. 3 shows the hole density of the AA1 portion of FIG. 1, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the hole density. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. As shown in FIG. 3, the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 is lower than that of the conventional example (see FIG. 32).

ここで、図4は、実施の形態1にかかる炭化珪素半導体装置のDLTS信号を示すグラフである。図4において、縦軸はDLTS信号の強度を示し、横軸は温度を示し、単位はK(ケルビン)である。DLTS(Deep Level Transient Spectroscopy)法は、半導体中の不純物や欠陥を高感度で測定可能な手法であり、図4は、プロトン注入を行った炭化珪素半導体のDLTS信号とプロトン注入を行わなかった炭化珪素半導体のDLTS信号を示す。図4に示すように、プロトン注入を行わなかった炭化珪素半導体では、300Kにピークを持ち、プロトン注入を行った炭化珪素半導体では、300Kと420Kにピークを持つことがわかる。このため、DLTS法により、n+型炭化珪素半導体基板1とn型境界層2との界面にプロトンを注入した炭化珪素半導体装置を検知することが可能になる。 Here, FIG. 4 is a graph showing the DLTS signal of the silicon carbide semiconductor device according to the first embodiment. In FIG. 4, the vertical axis shows the intensity of the DLTS signal, the horizontal axis shows the temperature, and the unit is K (Kelvin). The DLTS (Deep Level Transient Spectroscopy) method is a method that can measure impurities and defects in a semiconductor with high sensitivity. FIG. 4 shows the DLTS signal of a proton-injected silicon carbide semiconductor and carbonization without proton injection. The DLTS signal of the silicon semiconductor is shown. As shown in FIG. 4, it can be seen that the silicon carbide semiconductor without proton injection has a peak at 300K, and the silicon carbide semiconductor with proton injection has a peak at 300K and 420K. Therefore, the DLTS method makes it possible to detect a silicon carbide semiconductor device in which a proton is injected into the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2.

(実施の形態1にかかる炭化珪素半導体装置の製造方法)
次に、実施の形態1にかかる炭化珪素半導体装置の製造方法について説明する。図5は、実施の形態1にかかる炭化珪素半導体装置の製造の一部を示すフローチャートである。図6~図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。図5では、本発明のプロトン照射に関する工程を詳しく記載している。
(Manufacturing method of silicon carbide semiconductor device according to the first embodiment)
Next, a method for manufacturing the silicon carbide semiconductor device according to the first embodiment will be described. FIG. 5 is a flowchart showing a part of manufacturing of the silicon carbide semiconductor device according to the first embodiment. 6 to 8 are cross-sectional views schematically showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment. FIG. 5 describes in detail the steps related to proton irradiation of the present invention.

まず、n型の炭化珪素でできたn+型炭化珪素半導体基板1を用意する。そして、このn+型炭化珪素半導体基板1の第1主面上に、n型の不純物、例えば窒素原子をドーピングしながら炭化珪素でできたn型境界層2を、エピタキシャル成長させる。次に、このn型境界層2上に、n型の不純物、例えば窒素原子をドーピングしながら炭化珪素でできたn-型ドリフト層3を、エピタキシャル成長させる。ここまでの状態が図6に示されている。 First, an n + type silicon carbide semiconductor substrate 1 made of n-type silicon carbide is prepared. Then, an n-type boundary layer 2 made of silicon carbide is epitaxially grown on the first main surface of the n + type silicon carbide semiconductor substrate 1 while doping n-type impurities such as nitrogen atoms. Next, an n - type drift layer 3 made of silicon carbide is epitaxially grown on the n-type boundary layer 2 while doping n-type impurities such as nitrogen atoms. The state up to this point is shown in FIG.

次に、n-型ドリフト層3の表面上に、アルミニウム等のp型不純物をドーピングしたp+型ベース領域4を形成する。次に、p+型ベース領域4の表面上に、フォトリソグラフィによって所定の開口部を有するイオン注入用マスクを例えば酸化膜で形成する。この開口部にリン(P)等のn型の不純物をイオン注入し、p+型ベース領域4の表面の一部にn+型ソース領域8を形成する。n+型ソース領域8の不純物濃度は、p+型ベース領域4の不純物濃度より高くなるように設定する。 Next, a p + type base region 4 doped with a p-type impurity such as aluminum is formed on the surface of the n - type drift layer 3. Next, an ion implantation mask having a predetermined opening is formed on the surface of the p + type base region 4 by photolithography, for example, with an oxide film. An n-type impurity such as phosphorus (P) is ion-implanted into this opening to form an n + -type source region 8 on a part of the surface of the p + -type base region 4. The impurity concentration of the n + type source region 8 is set to be higher than the impurity concentration of the p + type base region 4.

次に、n+型ソース領域8の形成に用いたイオン注入用マスクを除去し、同様の方法で、所定の開口部を有するイオン注入用マスクを形成し、p+型ベース領域4の表面の一部にアルミニウム等のp型の不純物をイオン注入し、p+型コンタクト領域7を形成する。p+型コンタクト領域7の不純物濃度は、p+型ベース領域4の不純物濃度より高くなるように設定する。ここまでの状態が図7に示されている。 Next, the ion implantation mask used for forming the n + type source region 8 is removed, and an ion implantation mask having a predetermined opening is formed by the same method, and the surface of the p + type base region 4 is formed. A p-type impurity such as aluminum is ion-implanted into a part to form a p + type contact region 7. The impurity concentration of the p + type contact region 7 is set to be higher than the impurity concentration of the p + type base region 4. The state up to this point is shown in FIG.

次に、1700℃程度の不活性ガス雰囲気で熱処理(アニール)を行い、n+型ソース領域8、p+型コンタクト領域7の活性化処理を実施する。なお、上述したように1回の熱処理によって各イオン注入領域をまとめて活性化させてもよいし、イオン注入を行うたびに熱処理を行って活性化させてもよい。 Next, heat treatment (annealing) is performed in an inert gas atmosphere of about 1700 ° C. to activate the n + type source region 8 and the p + type contact region 7. As described above, each ion implantation region may be activated collectively by one heat treatment, or may be activated by heat treatment each time ion implantation is performed.

次に、p+型ベース領域4の表面上に、フォトリソグラフィによって所定の開口部を有するトレンチ形成用マスクを例えば酸化膜で形成する。次に、ドライエッチングによってp+型ベース領域4を貫通し、n-型ドリフト層3に達するトレンチ15を形成する。次に、トレンチ形成用マスクを除去する。 Next, a trench forming mask having a predetermined opening is formed on the surface of the p + type base region 4 by photolithography, for example, with an oxide film. Next, a trench 15 is formed by dry etching through the p + type base region 4 and reaching the n type drift layer 3. Next, the trench forming mask is removed.

次に、n+型ソース領域8およびp+型コンタクト領域7の表面と、トレンチ15の底部および側壁と、に沿ってゲート絶縁膜5を形成する。このゲート絶縁膜5は、酸素雰囲気中において1000℃程度の温度の熱処理によって熱酸化によって形成してもよい。また、このゲート絶縁膜5は高温酸化(High Temperature Oxide:HTO)等のような化学反応によって堆積する方法で形成してもよい。 Next, a gate insulating film 5 is formed along the surfaces of the n + type source region 8 and the p + type contact region 7 and the bottom and side walls of the trench 15. The gate insulating film 5 may be formed by thermal oxidation by heat treatment at a temperature of about 1000 ° C. in an oxygen atmosphere. Further, the gate insulating film 5 may be formed by a method of depositing by a chemical reaction such as high temperature oxidation (HTO).

次に、ゲート絶縁膜5上に、例えばリン原子がドーピングされた多結晶シリコン層を設ける。この多結晶シリコン層はトレンチ15内を埋めるように形成してもよい。この多結晶シリコン層をフォトリソグラフィによりパターニングし、トレンチ15内部に残すことによって、ゲート電極6を形成する。 Next, a polycrystalline silicon layer doped with, for example, a phosphorus atom is provided on the gate insulating film 5. This polycrystalline silicon layer may be formed so as to fill the inside of the trench 15. The gate electrode 6 is formed by patterning this polycrystalline silicon layer by photolithography and leaving it inside the trench 15.

次に、ゲート絶縁膜5およびゲート電極6を覆うように、例えばリンガラスを1μm程度の厚さで成膜し、層間絶縁膜9を形成する(ステップS1)。次に、層間絶縁膜9を覆うように、チタン(Ti)または窒化チタン(TiN)からなるバリアメタル(不図示)を形成してもよい。次に、層間絶縁膜9およびゲート絶縁膜5をフォトリソグラフィによりパターニングしn+型ソース領域8およびp+型コンタクト領域7を露出させたコンタクトホールを形成する(ステップS2)。その後、熱処理(リフロー)を行って層間絶縁膜9を平坦化する。 Next, for example, phosphorus glass is formed with a thickness of about 1 μm so as to cover the gate insulating film 5 and the gate electrode 6, and an interlayer insulating film 9 is formed (step S1). Next, a barrier metal (not shown) made of titanium (Ti) or titanium nitride (TiN) may be formed so as to cover the interlayer insulating film 9. Next, the interlayer insulating film 9 and the gate insulating film 5 are patterned by photolithography to form a contact hole in which the n + type source region 8 and the p + type contact region 7 are exposed (step S2). After that, heat treatment (reflow) is performed to flatten the interlayer insulating film 9.

次に、炭化珪素半導体基体の第1主面側(p+型ベース領域4側)からプロトンを照射する(ステップS3)。プロトンは、図8の矢印Cのように、n+型炭化珪素半導体基板1とn型境界層2との界面近傍に照射する。ここまでの状態が図8に示されている。 Next, protons are irradiated from the first main surface side (p + type base region 4 side) of the silicon carbide semiconductor substrate (step S3). The protons irradiate the vicinity of the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 as shown by the arrow C in FIG. The state up to this point is shown in FIG.

次に、コンタクトホール内および層間絶縁膜9の上に、ソース電極10となるニッケル(Ni)等の導電性の膜を形成する(ステップS4)。この導電性の膜をフォトリソグラフィによりパターニングし、コンタクトホール内にのみソース電極10を残す。 Next, a conductive film such as nickel (Ni) to be the source electrode 10 is formed in the contact hole and on the interlayer insulating film 9 (step S4). This conductive film is patterned by photolithography, leaving the source electrode 10 only in the contact hole.

次に、n+型炭化珪素半導体基板1の第2主面上に、ニッケル等の裏面電極を設ける。この後、420℃以下の温度で熱処理(アニール)を行う(ステップS5)。420℃より高い温度では、注入したプロトンによる結晶欠陥がなくなり、ライフタイムキラーとして機能しなくなるためである。この後、n+型ソース領域8、p+型コンタクト領域7およびn+型炭化珪素半導体基板1とオーミック接合するソース電極10および裏面電極を形成する。 Next, a back electrode made of nickel or the like is provided on the second main surface of the n + type silicon carbide semiconductor substrate 1. After that, heat treatment (annealing) is performed at a temperature of 420 ° C. or lower (step S5). This is because at a temperature higher than 420 ° C., crystal defects due to the injected protons disappear and the lifetime killer does not function. After that, a source electrode 10 and a back surface electrode for ohmic contact with the n + type source region 8, the p + type contact region 7, and the n + type silicon carbide semiconductor substrate 1 are formed.

次に、n+炭化珪素半導体基板1の第1主面上に、スパッタ法によって5μm程度の厚さのアルミニウム膜を堆積し、フォトリソグラフィによりソース電極10および層間絶縁膜9を覆うようにアルミニウムを除去し、ソース電極パッドを形成する。 Next, an aluminum film having a thickness of about 5 μm is deposited on the first main surface of the n + silicon carbide semiconductor substrate 1 by a sputtering method, and aluminum is applied by photolithography so as to cover the source electrode 10 and the interlayer insulating film 9. Remove to form a source electrode pad.

次に、裏面電極の表面に、例えばチタン(Ti)、ニッケルおよび金(Au)を順に積層することによって、ドレイン電極パッド(不図示)を形成する。以上のようにして、図1に示す炭化珪素半導体装置が完成する。 Next, a drain electrode pad (not shown) is formed by laminating, for example, titanium (Ti), nickel, and gold (Au) in this order on the surface of the back surface electrode. As described above, the silicon carbide semiconductor device shown in FIG. 1 is completed.

以上、説明したように、実施の形態1にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍にライフタイムキラーとして、プロトンが注入されている。これにより、n+型炭化珪素半導体基板とn型境界層との界面のホール密度を低下させ、結晶欠陥の成長を抑制させることができる。このため、実施の形態1にかかる炭化珪素半導体装置は、内蔵ダイオードに電流を流すことができ、内蔵ダイオードに帰還電流が流れるインバータに使用することができる。 As described above, according to the silicon carbide semiconductor device according to the first embodiment, protons are injected as a lifetime killer in the vicinity of the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer. As a result, the hole density at the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer can be reduced, and the growth of crystal defects can be suppressed. Therefore, the silicon carbide semiconductor device according to the first embodiment can be used for an inverter in which a current can flow through the built-in diode and a feedback current flows through the built-in diode.

また、エピタキシャル成長で高濃度n型エピタキシャル層を形成する際、ライフタイムの精度は濃度、膜厚に依存してばらつきが大きい。一方、実施の形態1では、プロトン照射をイオン注入で行うため、ライフタイムキラーのコントロール性がよく、安定して形成可能である。また、イオン注入で行うため、エピタキシャル成長より低コストで作成可能である。 Further, when forming a high-concentration n-type epitaxial layer by epitaxial growth, the accuracy of the lifetime varies greatly depending on the concentration and the film thickness. On the other hand, in the first embodiment, since the proton irradiation is performed by ion implantation, the lifetime killer has good controllability and can be stably formed. Moreover, since it is performed by ion implantation, it can be produced at a lower cost than epitaxial growth.

(実施の形態2)
図9は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、n-型ドリフト層3にもプロトンが注入されていることである。
(Embodiment 2)
FIG. 9 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the second embodiment. The difference between the silicon carbide semiconductor device according to the second embodiment and the silicon carbide semiconductor device according to the first embodiment is that protons are also injected into the n - type drift layer 3.

図9に示すように、n-型ドリフト層3の、n型境界層2側の表面から深さh3の領域にプロトンが注入されている。深さh3は例えば、n-型ドリフト層3の膜厚である。図10は、実施の形態2にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。図10は、図9のA-A1部分のプロトン濃度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はプロトン濃度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。 As shown in FIG. 9, protons are injected into the region of the n - type drift layer 3 at a depth of h3 from the surface on the n-type boundary layer 2 side. The depth h3 is, for example, the film thickness of the n type drift layer 3. FIG. 10 is a graph showing the proton concentration of the silicon carbide semiconductor device according to the second embodiment. FIG. 10 shows the proton concentration of the AA1 portion of FIG. 9, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the proton concentration. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2.

図10に示すように、n-型ドリフト層3のプロトンは、n+型炭化珪素半導体基板1、n型境界層2に注入されるプロトンよりも濃度が低い。n-型ドリフト層3に低濃度のプロトンを注入することにより、炭化珪素半導体装置のQrr(逆回復電荷量)を低下させることができ、インバータ等で使用した場合にスイッチングロスを低下させることができる。 As shown in FIG. 10, the concentration of the protons in the n - type drift layer 3 is lower than that of the protons injected into the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. By injecting a low-concentration proton into the n - type drift layer 3, the Qrr (reverse recovery charge amount) of the silicon carbide semiconductor device can be reduced, and the switching loss can be reduced when used in an inverter or the like. can.

また、図11は、実施の形態2にかかる炭化珪素半導体装置のホール密度を示すグラフである。図11は、図1のA-A1部分のホール密度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はホール密度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。図12は、実施の形態2にかかる炭化珪素半導体装置の内蔵ダイオードの特性を示すグラフである。図12において、縦軸は、順方向電流を示し、単位はAである。また、横軸は、順方向電圧を示し、単位はVである。 Further, FIG. 11 is a graph showing the hole density of the silicon carbide semiconductor device according to the second embodiment. 11 shows the hole density of the AA1 portion of FIG. 1, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the hole density. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. FIG. 12 is a graph showing the characteristics of the built-in diode of the silicon carbide semiconductor device according to the second embodiment. In FIG. 12, the vertical axis indicates the forward current, and the unit is A. Further, the horizontal axis indicates a forward voltage, and the unit is V.

図11に示すようにプロトンを注入した場合、プロトン注入無しの場合と比べてn-型ドリフト層3のホール密度が低下する。しかし、図12に示すように、順方向電流の低下は少なくて、内蔵ダイオードを使用可能な範囲内である。また、図13は、実施の形態2にかかる炭化珪素半導体装置の逆回復時の電流特性を示すグラフである。図13において、縦軸は、電流を示し、横軸は、時間を示す。図13に示すように、プロトンを注入した場合、逆回復時の電流の低下が少なく、Qrrが低下していることわかる。 As shown in FIG. 11, when protons are injected, the hole density of the n - type drift layer 3 is lower than that without proton injection. However, as shown in FIG. 12, the decrease in the forward current is small, and the built-in diode is within the usable range. Further, FIG. 13 is a graph showing the current characteristics of the silicon carbide semiconductor device according to the second embodiment at the time of reverse recovery. In FIG. 13, the vertical axis represents current and the horizontal axis represents time. As shown in FIG. 13, it can be seen that when the proton is injected, the decrease in the current at the time of reverse recovery is small and the Qrr is decreased.

(実施の形態2にかかる炭化珪素半導体装置の製造方法)
実施の形態2にかかる炭化珪素半導体装置は、実施の形態1にかかる炭化珪素半導体装置の製造方法において、炭化珪素半導体基体の第1主面側(p+型ベース領域4側)からn+型炭化珪素半導体基板1とn型境界層2との界面近傍にプロトンを照射する前、または、照射後、n-型ドリフト層3にもプロトンを照射することで製造される。
(Manufacturing method of silicon carbide semiconductor device according to the second embodiment)
The silicon carbide semiconductor device according to the second embodiment is n + type from the first main surface side (p + type base region 4 side) of the silicon carbide semiconductor substrate in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. It is manufactured by irradiating the n - type drift layer 3 with protons before or after irradiating the vicinity of the interface between the silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 with protons.

以上、説明したように、実施の形態2にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍にライフタイムキラーとして、プロトンが注入されている。これにより、実施の形態1と同様の効果を有する。また、実施の形態2では、n-型ドリフト層3にもプロトンが注入されている。これにより、炭化珪素半導体装置のQrrを低下させることができ、インバータ等で使用した場合にスイッチングロスを低下させることができる。 As described above, according to the silicon carbide semiconductor device according to the second embodiment, protons are injected as a lifetime killer in the vicinity of the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer. This has the same effect as that of the first embodiment. Further, in the second embodiment, the proton is also injected into the n - type drift layer 3. As a result, the Qrr of the silicon carbide semiconductor device can be reduced, and the switching loss can be reduced when used in an inverter or the like.

(実施の形態3)
実施の形態3にかかる炭化珪素半導体装置の構造は、実施の形態1にかかる炭化珪素半導体装置の構造と同様であるために記載は省略する。実施の形態3にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、裏面からプロトンが注入されていることである。
(Embodiment 3)
Since the structure of the silicon carbide semiconductor device according to the third embodiment is the same as the structure of the silicon carbide semiconductor device according to the first embodiment, the description thereof will be omitted. The difference between the silicon carbide semiconductor device according to the third embodiment and the silicon carbide semiconductor device according to the first embodiment is that protons are injected from the back surface.

(実施の形態3にかかる炭化珪素半導体装置の製造方法)
図14は、実施の形態3にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。実施の形態3にかかる炭化珪素半導体装置は、実施の形態1にかかる炭化珪素半導体装置の製造方法において、n+型炭化珪素半導体基板1とn型境界層2との界面近傍にプロトンを照射する際に、図14の矢印Cのようにn+型炭化珪素半導体基板1の第2主面(裏面、すなわち炭化珪素半導体基体の裏面)から、プロトンを照射することで製造される。
(Manufacturing method of silicon carbide semiconductor device according to the third embodiment)
FIG. 14 is a cross-sectional view showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the third embodiment. The silicon carbide semiconductor device according to the third embodiment irradiates protons in the vicinity of the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. At this time, it is manufactured by irradiating protons from the second main surface (the back surface, that is, the back surface of the silicon carbide semiconductor substrate) of the n + type silicon carbide semiconductor substrate 1 as shown by the arrow C in FIG.

裏面からプロトンを照射する場合、例えば基板が100μmの膜厚である場合、4MeVの加速電圧でプロトンを照射する。裏面からプロトンを照射することで、ゲート絶縁膜5にプロトンが入ることを防止でき、炭化珪素半導体装置のしきい値が変化しない。 When irradiating protons from the back surface, for example, when the substrate has a film thickness of 100 μm, the protons are irradiated with an acceleration voltage of 4 MeV. By irradiating the protons from the back surface, it is possible to prevent the protons from entering the gate insulating film 5, and the threshold value of the silicon carbide semiconductor device does not change.

ここで、図15は、実施の形態3にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。図16は、実施の形態3にかかる炭化珪素半導体装置のホール密度を示すグラフである。図15、図16は、図1のA-A1部分のプロトン濃度、ホール密度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はそれぞれプロトン濃度、ホール密度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。図15、図16に示すように、裏面からプロトンを照射する場合も、プロトン濃度、ホール密度は、第1主面側からプロトンを照射した場合と同様になる。 Here, FIG. 15 is a graph showing the proton concentration of the silicon carbide semiconductor device according to the third embodiment. FIG. 16 is a graph showing the hole density of the silicon carbide semiconductor device according to the third embodiment. 15 and 16 show the proton concentration and hole density of the AA1 portion of FIG. 1, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the proton concentration and hole density, respectively. Is shown. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. As shown in FIGS. 15 and 16, even when the protons are irradiated from the back surface, the proton concentration and the hole density are the same as when the protons are irradiated from the first main surface side.

以上、説明したように、実施の形態3にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍にライフタイムキラーとして、裏面からプロトンが注入されている。これにより、実施の形態1と同様の効果を有する。また、実施の形態3では、ゲート絶縁膜にプロトンが入ることが防止されるため、炭化珪素半導体装置のしきい値が変化しない。 As described above, according to the silicon carbide semiconductor device according to the third embodiment, protons are injected from the back surface as a lifetime killer near the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer. There is. This has the same effect as that of the first embodiment. Further, in the third embodiment, since protons are prevented from entering the gate insulating film, the threshold value of the silicon carbide semiconductor device does not change.

(実施の形態4)
図17は、実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態4にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、プロトンの代わりにヘリウム(He)が注入されていることである。
(Embodiment 4)
FIG. 17 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fourth embodiment. The difference between the silicon carbide semiconductor device according to the fourth embodiment and the silicon carbide semiconductor device according to the first embodiment is that helium (He) is injected instead of the proton.

図17に示すように、ヘリウムは、例えば、n+型炭化珪素半導体基板1の、n型境界層2側の表面から深さh1’以上の領域、および、n型境界層2の、n+型炭化珪素半導体基板1側の表面から深さh2’以上の領域にプロトンが注入されている。ここで、h1’、h2’の値は、プロトン場合のh1(例えば、2μm)、h2(例えば、3μm)と同様の値でよい。 As shown in FIG. 17, helium is, for example, a region of the n + type silicon carbide semiconductor substrate 1 having a depth of h1'or more from the surface on the n-type boundary layer 2 side, and n + of the n-type boundary layer 2. Protons are injected into a region having a depth of h2'or more from the surface of the type silicon carbide semiconductor substrate 1 side. Here, the values of h1'and h2' may be the same values as h1 (for example, 2 μm) and h2 (for example, 3 μm) in the case of protons.

プロトンと同様にヘリウムがライフタイムキラーとなり、n+型炭化珪素半導体基板1とn型境界層2との界面のホール密度を2桁以上低下させることができる。これにより、ホールと電子の再結合を減少させ、結晶欠陥の成長を抑制させることができる。 Like protons, helium serves as a lifetime killer, and the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 can be reduced by two orders of magnitude or more. This can reduce the recombination of holes and electrons and suppress the growth of crystal defects.

ここで、図18は、実施の形態4にかかる炭化珪素半導体装置のヘリウム濃度を示すグラフである。図19は、実施の形態4にかかる炭化珪素半導体装置のホール密度を示すグラフである。図18、図19は、図17のA-A1部分のヘリウム濃度、ホール密度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はそれぞれヘリウム濃度、ホール密度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。図18、図19に示すように、ヘリウムを注入した場合でも、n+型炭化珪素半導体基板1とn型境界層2との界面のホール密度を2桁以上低下させることができる。 Here, FIG. 18 is a graph showing the helium concentration of the silicon carbide semiconductor device according to the fourth embodiment. FIG. 19 is a graph showing the hole density of the silicon carbide semiconductor device according to the fourth embodiment. 18 and 19 show the helium concentration and the hole density of the AA1 portion of FIG. 17, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the helium concentration and the hole density, respectively. Is shown. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. As shown in FIGS. 18 and 19, even when helium is injected, the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 can be reduced by two orders of magnitude or more.

(実施の形態4にかかる炭化珪素半導体装置の製造方法)
実施の形態4にかかる炭化珪素半導体装置は、実施の形態4にかかる炭化珪素半導体装置の製造方法において、炭化珪素半導体基体の第1主面側(p+型ベース領域4側)からn+型炭化珪素半導体基板1とn型境界層2との界面近傍にプロトンを照射する代わりに、ヘリウムを照射することで製造される。ヘリウムは、例えば、3.5MeVの加速電圧で照射する。
(Manufacturing method of silicon carbide semiconductor device according to the fourth embodiment)
The silicon carbide semiconductor device according to the fourth embodiment is n + type from the first main surface side (p + type base region 4 side) of the silicon carbide semiconductor substrate in the method for manufacturing the silicon carbide semiconductor device according to the fourth embodiment. It is manufactured by irradiating helium instead of irradiating the vicinity of the interface between the silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 with protons. Helium is irradiated with, for example, an acceleration voltage of 3.5 MeV.

以上、説明したように、実施の形態4にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍にライフタイムキラーとして、ヘリウムが注入されている。これにより、実施の形態1と同様の効果を有する。 As described above, according to the silicon carbide semiconductor device according to the fourth embodiment, helium is injected as a lifetime killer in the vicinity of the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer. This has the same effect as that of the first embodiment.

(実施の形態5)
図20は、実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態5では、炭化珪素半導体装置が、IGBTの場合を示す。図20に示すように、p型炭化珪素半導体基板16が設けられ、p+型ベース領域4の内部には、基体第1主面側にn+型エミッタ領域17が選択的に設けられている。
(Embodiment 5)
FIG. 20 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the fifth embodiment. In the fifth embodiment, the case where the silicon carbide semiconductor device is an IGBT is shown. As shown in FIG. 20, a p-type silicon carbide semiconductor substrate 16 is provided, and an n + type emitter region 17 is selectively provided inside the p + type base region 4 on the first main surface side of the substrate. ..

また、エミッタ電極18が、層間絶縁膜9に開口されたコンタクトホールを介して、n+型エミッタ領域17およびp+型コンタクト領域7に接する。p型炭化珪素半導体基板16の第2主面(裏面、すなわち炭化珪素半導体基体の裏面)には、裏面電極(不図示)が設けられている。裏面電極は、コレクタ電極を構成する。裏面電極の表面には、コレクタ電極パッド(不図示)が設けられている。実施の形態5にかかる炭化珪素半導体装置の他の構造は、実施の形態1にかかる炭化珪素半導体装置と同様である。 Further, the emitter electrode 18 is in contact with the n + type emitter region 17 and the p + type contact region 7 through the contact hole opened in the interlayer insulating film 9. A back surface electrode (not shown) is provided on the second main surface (back surface, that is, the back surface of the silicon carbide semiconductor substrate) of the p-type silicon carbide semiconductor substrate 16. The back electrode constitutes a collector electrode. A collector electrode pad (not shown) is provided on the surface of the back surface electrode. The other structure of the silicon carbide semiconductor device according to the fifth embodiment is the same as that of the silicon carbide semiconductor device according to the first embodiment.

実施の形態5の炭化珪素半導体装置では、p型炭化珪素半導体基板16とn型境界層2との界面近傍およびn-型ドリフト層3とp+型ベース領域4との界面近傍にライフタイムキラーとして、プロトンが注入されている。IGBTはバイポーラ動作するため、n-型ドリフト層3とp+型ベース領域4との界面からも結晶欠陥が成長するため、n-型ドリフト層3とp+型ベース領域4との界面近傍にもプロトンが注入されている。 In the silicon carbide semiconductor device of the fifth embodiment, the lifetime killer is located near the interface between the p-type silicon carbide semiconductor substrate 16 and the n-type boundary layer 2 and near the interface between the n - type drift layer 3 and the p + type base region 4. As a proton is injected. Since the IGBT operates bipolarly, crystal defects grow from the interface between the n - type drift layer 3 and the p + type base region 4, so that the vicinity of the interface between the n - type drift layer 3 and the p + type base region 4 Is also injected with protons.

このプロトンがライフタイムキラーとなり、p型炭化珪素半導体基板16とn型境界層2との界面およびn-型ドリフト層3とp+型ベース領域4との界面のホール密度を低下させることができる。これにより、ホールと電子の再結合を減少させ、結晶欠陥の成長を抑制させることができる。 This proton serves as a lifetime killer and can reduce the hole density at the interface between the p-type silicon carbide semiconductor substrate 16 and the n-type boundary layer 2 and the interface between the n - type drift layer 3 and the p + type base region 4. .. This can reduce the recombination of holes and electrons and suppress the growth of crystal defects.

図21は、実施の形態5にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。図21は、図20のA-A1部分のプロトン濃度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はプロトン濃度を示す。また、横軸の点線L1は、n+型炭化珪素半導体基板1とn型境界層2との界面を示し、横軸の点線L2は、n-型ドリフト層3とp+型ベース領域4との界面を示す。 FIG. 21 is a graph showing the proton concentration of the silicon carbide semiconductor device according to the fifth embodiment. 21 shows the proton concentration of the AA1 portion of FIG. 20, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the proton concentration. The dotted line L1 on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2, and the dotted line L2 on the horizontal axis represents the n - type drift layer 3 and the p + type base region 4. Indicates the interface of.

図20、図21に示すように、プロトンは、例えば、n+型炭化珪素半導体基板1の、n型境界層2側の表面から深さh1”以上の領域、および、n型境界層2の、n+型炭化珪素半導体基板1側の表面から深さh2”以上の領域にプロトンが注入されている。また、プロトンは、例えば、n-型ドリフト層3の、p+型ベース領域4側の表面から深さh4”以上の領域、および、p+型ベース領域4の、n-型ドリフト層3側の表面から深さh3”以上の領域にプロトンが注入されている。 As shown in FIGS. 20 and 21, the protons are present in, for example, a region of the n + type silicon carbide semiconductor substrate 1 having a depth of h1 ″ or more from the surface on the n-type boundary layer 2 side, and the n-type boundary layer 2. , N + type silicon carbide Protons are injected from the surface on the semiconductor substrate 1 side into a region having a depth of h2 ″ or more. Further, the protons are, for example, a region of the n - type drift layer 3 having a depth of h4 "or more from the surface on the p + type base region 4 side, and a region of the p + type base region 4 on the n - type drift layer 3 side. Protons are injected into the region at a depth of h3 "or more from the surface of the.

また、図22は、実施の形態5にかかる炭化珪素半導体装置のホール密度を示すグラフである。図22は、図20のA-A1部分のホール密度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はホール密度を示す。また、横軸の点線L1は、n+型炭化珪素半導体基板1とn型境界層2との界面を示し、横軸の点線L2は、n-型ドリフト層3とp+型ベース領域4との界面を示す。図22に示すように、n+型炭化珪素半導体基板1とn型境界層2との界面、およびn-型ドリフト層3とp+型ベース領域4との界面でのホール密度が低下している。 Further, FIG. 22 is a graph showing the hole density of the silicon carbide semiconductor device according to the fifth embodiment. 22 shows the hole density of the AA1 portion of FIG. 20, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the hole density. The dotted line L1 on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2, and the dotted line L2 on the horizontal axis represents the n - type drift layer 3 and the p + type base region 4. Indicates the interface of. As shown in FIG. 22, the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 and the interface between the n - type drift layer 3 and the p + type base region 4 decreases. There is.

図23は、実施の形態5にかかる炭化珪素半導体装置のIcVce特性を示すグラフである。図23では、縦軸はコレクタ電流Icを示し、単位はAである。また、横軸はコレクタ-エミッタ間電圧を示し、単位はVである。図23に示すように、プロトンを注入してホール密度を減少させた場合でも、IGBTの特性を大きく変えることがない。 FIG. 23 is a graph showing the IcVce characteristics of the silicon carbide semiconductor device according to the fifth embodiment. In FIG. 23, the vertical axis represents the collector current Ic, and the unit is A. The horizontal axis indicates the collector-emitter voltage, and the unit is V. As shown in FIG. 23, even when the hole density is reduced by injecting a proton, the characteristics of the IGBT are not significantly changed.

(実施の形態5にかかる炭化珪素半導体装置の製造方法)
実施の形態5にかかる炭化珪素半導体装置は、実施の形態1にかかる炭化珪素半導体装置の製造方法において、n+型炭化珪素半導体基板1とn型境界層2との界面近傍にプロトンを照射する前、または、照射した後に、n-型ドリフト層3とp+型ベース領域4との界面近傍にプロトンを照射することで製造される。
(Manufacturing method of silicon carbide semiconductor device according to the fifth embodiment)
The silicon carbide semiconductor device according to the fifth embodiment irradiates protons in the vicinity of the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. It is produced by irradiating the vicinity of the interface between the n - type drift layer 3 and the p + type base region 4 with protons before or after irradiation.

以上、説明したように、実施の形態5にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍、およびn-型ドリフト層とp+型ベース領域との界面近傍にライフタイムキラーとして、プロトンが注入されている。これにより、IGBTにおいても実施の形態1と同様の効果を有する。 As described above, according to the silicon carbide semiconductor device according to the fifth embodiment, the vicinity of the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer, and the n - type drift layer and the p + type base region. Protons are injected near the interface with and as a lifetime killer. As a result, the IGBT has the same effect as that of the first embodiment.

(実施の形態6)
図24は、実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態6にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置と異なる点は、ゲート絶縁膜5にもプロトンが注入されていることである。
(Embodiment 6)
FIG. 24 is a cross-sectional view showing the structure of the silicon carbide semiconductor device according to the sixth embodiment. The difference between the silicon carbide semiconductor device according to the sixth embodiment and the silicon carbide semiconductor device according to the first embodiment is that protons are also injected into the gate insulating film 5.

図25は、実施の形態6にかかる炭化珪素半導体装置のプロトン濃度を示すグラフである。図25は、図24のA-A1部分のプロトン濃度を示し、縦軸はp+型コンタクト領域7の表面からの深さを示し、横軸はプロトン濃度を示す。また、横軸の点線は、n+型炭化珪素半導体基板1とn型境界層2との界面を示す。図24、図25に示すように、p+型ベース領域4のソース電極10側の表面から深さh3の領域にプロトンが注入されている。深さh3は、ゲート絶縁膜5が設けられているトレンチ15の深さである。 FIG. 25 is a graph showing the proton concentration of the silicon carbide semiconductor device according to the sixth embodiment. FIG. 25 shows the proton concentration of the AA1 portion of FIG. 24, the vertical axis shows the depth from the surface of the p + type contact region 7, and the horizontal axis shows the proton concentration. The dotted line on the horizontal axis indicates the interface between the n + type silicon carbide semiconductor substrate 1 and the n-type boundary layer 2. As shown in FIGS. 24 and 25, protons are injected into the region at a depth of h3 from the surface of the p + type base region 4 on the source electrode 10 side. The depth h3 is the depth of the trench 15 in which the gate insulating film 5 is provided.

図26は、実施の形態6にかかる炭化珪素半導体装置のCV特性を示すグラフである。図26において、縦軸はゲート絶縁膜5の容量を示し、単位はFである。横軸はゲート電圧を示し、単位はVである。図26に示すように、プロトン注入によりゲート絶縁膜5のホール密度が低下することにより、CV特性が向上している。このため、プロトン注入により品質のよいゲート絶縁膜5を製造できる。 FIG. 26 is a graph showing the CV characteristics of the silicon carbide semiconductor device according to the sixth embodiment. In FIG. 26, the vertical axis represents the capacitance of the gate insulating film 5, and the unit is F. The horizontal axis represents the gate voltage, and the unit is V. As shown in FIG. 26, the CV characteristics are improved by reducing the hole density of the gate insulating film 5 by injecting protons. Therefore, a high-quality gate insulating film 5 can be manufactured by proton injection.

(実施の形態6にかかる炭化珪素半導体装置の製造方法)
実施の形態6にかかる炭化珪素半導体装置は、実施の形態1にかかる炭化珪素半導体装置の製造方法において、炭化珪素半導体基体の第1主面側(p+型ベース領域4側)からn+型炭化珪素半導体基板1とn型境界層2との界面近傍にプロトンを照射する前、または、照射後、ゲート絶縁膜5にもプロトンを照射することで製造される。
(Method for Manufacturing Silicon Carbide Semiconductor Device According to Embodiment 6)
The silicon carbide semiconductor device according to the sixth embodiment is n + type from the first main surface side (p + type base region 4 side) of the silicon carbide semiconductor substrate in the method for manufacturing the silicon carbide semiconductor device according to the first embodiment. It is manufactured by irradiating the gate insulating film 5 with protons before or after irradiating the vicinity of the interface between the silicon carbide semiconductor substrate 1 and the n-type boundary layer 2 with protons.

以上、説明したように、実施の形態6にかかる炭化珪素半導体装置によれば、n+型炭化珪素半導体基板とn型境界層との界面近傍にライフタイムキラーとして、プロトンが注入されている。これにより、実施の形態1と同様の効果を有する。また、実施の形態6では、ゲート絶縁膜5にもプロトンが注入されている。これにより、品質のよいゲート絶縁膜5を製造でき、CV特性を向上させることができる。 As described above, according to the silicon carbide semiconductor device according to the sixth embodiment, protons are injected as a lifetime killer in the vicinity of the interface between the n + type silicon carbide semiconductor substrate and the n-type boundary layer. This has the same effect as that of the first embodiment. Further, in the sixth embodiment, the proton is also injected into the gate insulating film 5. As a result, the gate insulating film 5 with good quality can be manufactured, and the CV characteristics can be improved.

(実施例)
図27は、実施例の炭化珪素半導体装置のプロトン濃度を示すグラフである。また、図28は、実施例の炭化珪素半導体装置のホール密度を示すグラフである。また、図29は、従来例の炭化珪素半導体装置のホール密度を示すグラフである。図27において、縦軸はプロトン濃度を示し、単位は/cm3である。また、横軸はn-型ドリフト層3の表面からの深さを示し、単位はμmである。図28、図29において、縦軸はホール密度を示し、単位は/cm3である。また、横軸はn-型ドリフト層3の表面からの深さを示し、単位はμmである。
(Example)
FIG. 27 is a graph showing the proton concentration of the silicon carbide semiconductor device of the example. Further, FIG. 28 is a graph showing the hole density of the silicon carbide semiconductor device of the embodiment. Further, FIG. 29 is a graph showing the hole density of the conventional silicon carbide semiconductor device. In FIG. 27, the vertical axis indicates the proton concentration, and the unit is / cm 3 . The horizontal axis indicates the depth of the n - type drift layer 3 from the surface, and the unit is μm. In FIGS. 28 and 29, the vertical axis indicates the hole density, and the unit is / cm 3 . The horizontal axis indicates the depth of the n - type drift layer 3 from the surface, and the unit is μm.

図27は、実施の形態1の炭化珪素半導体装置をシミュレーションした場合のプロトン濃度である。図28は、実施の形態1の炭化珪素半導体装置および従来例の炭化珪素半導体装置をシミュレーションした場合のホール密度である。図27、図28は、実施の形態1の炭化珪素半導体装置でn型境界層2を設けない場合の例である。また、図29は、従来例の炭化珪素半導体装置をシミュレーションした場合のホール密度である。 FIG. 27 shows the proton concentration when the silicon carbide semiconductor device of the first embodiment is simulated. FIG. 28 shows the hole densities when the silicon carbide semiconductor device of the first embodiment and the conventional silicon carbide semiconductor device are simulated. 27 and 28 are examples of the case where the n-type boundary layer 2 is not provided in the silicon carbide semiconductor device of the first embodiment. Further, FIG. 29 shows the hole density when simulating a conventional silicon carbide semiconductor device.

図28、図29に示すようにプロトンがライフタイムキラーとなり、n+型炭化珪素半導体基板1とn-型ドリフト層3との界面でホール密度が、プロトン注入がない場合よりも低下していることがわかる。 As shown in FIGS. 28 and 29, protons become a lifetime killer, and the hole density at the interface between the n + type silicon carbide semiconductor substrate 1 and the n - type drift layer 3 is lower than that without proton injection. You can see that.

以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。また、本発明は、MOS構造を有する半導体装置について説明してきたが、バイポーラ半導体装置にも適用可能である。 In the above, the present invention can be variously modified without departing from the spirit of the present invention, and in each of the above-described embodiments, for example, the dimensions of each part, the impurity concentration, and the like are set variously according to the required specifications and the like. Further, in each embodiment, the first conductive type is n-type and the second conductive type is p-type, but in the present invention, the first conductive type is p-type and the second conductive type is n-type. It holds. Further, although the present invention has described a semiconductor device having a MOS structure, the present invention can also be applied to a bipolar semiconductor device.

以上のように、本発明にかかる炭化珪素半導体装置は、炭化珪素MOSFETにダイオードを逆並列に接続したインバータ回路を用いる電力変換装置や種々の産業用機械などの電源装置などに有用である。 As described above, the silicon carbide semiconductor device according to the present invention is useful for a power conversion device using an inverter circuit in which a diode is connected in antiparallel to a silicon carbide MOSFET, a power supply device for various industrial machines, and the like.

1、101 n+型炭化珪素半導体基板
2 n型境界層
3、103 n-型ドリフト層
4、104 p+型ベース領域
5、105 ゲート絶縁膜
6、106 ゲート電極
7、107 p+型コンタクト領域
8、108 n+型ソース領域
9、109 層間絶縁膜
10、110 ソース電極
15、115 トレンチ
16 p型炭化珪素半導体基板
17 n+型エミッタ領域
18 エミッタ電極
102 高濃度n型エピタキシャル層
111 基底面転位
112 積層欠陥
113 三角積層欠陥
114 帯状積層欠陥
1, 101 n + type silicon carbide semiconductor substrate 2 n type boundary layer 3, 103 n - type drift layer 4, 104 p + type base region 5, 105 gate insulating film 6, 106 gate electrode 7, 107 p + type contact region 8, 108 n + type source region 9, 109 interlayer insulating film 10, 110 source electrode 15, 115 trench 16 p-type silicon carbide semiconductor substrate 17 n + type emitter region 18 emitter electrode 102 high concentration n-type epitaxial layer 111 basal plane rearrangement 112 Stacking defect 113 Triangular stacking defect 114 Band-shaped stacking defect

Claims (2)

第2導電型の半導体基板と、
前記半導体基板上に設けられた、第1導電型の第1半導体層と、
前記第1半導体層の、前記半導体基板側に対して反対側に設けられた、第2導電型の第2半導体層と、
前記第2半導体層の、前記第1半導体層に対して反対側の表面層に選択的に設けられた、前記第1半導体層より高不純物濃度の第1導電型の第1半導体領域と、
前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介して設けられたゲート電極と、
を備え、
前記半導体基板の、前記第1半導体層側の表面から所定の深さの第1領域、前記第1半導体層の、前記半導体基板側の表面から所定の深さの第2領域、前記第1半導体層の、前記第2半導体層側の表面から所定の深さの第3領域、および、前記第2半導体層の、前記第1半導体層側の表面から所定の深さの第4領域にプロトンが注入されていることを特徴とする炭化珪素半導体装置。
The second conductive type semiconductor substrate and
A first conductive type first semiconductor layer provided on the semiconductor substrate,
A second conductive type second semiconductor layer provided on the opposite side of the first semiconductor layer with respect to the semiconductor substrate side,
A first conductive type first semiconductor region having a higher impurity concentration than the first semiconductor layer, which is selectively provided on the surface layer of the second semiconductor layer on the opposite side of the first semiconductor layer.
A gate electrode provided via a gate insulating film on at least a part of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer.
Equipped with
A first region of the semiconductor substrate having a predetermined depth from the surface of the first semiconductor layer side, a second region of the first semiconductor layer having a predetermined depth from the surface of the semiconductor substrate side, and the first semiconductor. Protons are generated in the third region of the layer at a predetermined depth from the surface on the second semiconductor layer side and in the fourth region of the second semiconductor layer from the surface on the first semiconductor layer side to a predetermined depth. A silicon carbide semiconductor device characterized by being injected.
前記半導体基板の、前記第1半導体層側の表面から2μm以上の前記第1領域、および、前記第1半導体層の、前記半導体基板側の表面から3μm以上の前記第2領域に、1×1013/cm3以上1×1015/cm3以下の濃度のプロトンが注入されていることを特徴とする請求項1に記載の炭化珪素半導体装置。 1 × 10 in the first region of the semiconductor substrate, which is 2 μm or more from the surface of the first semiconductor layer side, and in the second region of the first semiconductor layer, which is 3 μm or more from the surface of the semiconductor substrate side. The silicon carbide semiconductor device according to claim 1, wherein a proton having a concentration of 13 / cm 3 or more and 1 × 10 15 / cm 3 or less is injected.
JP2021183093A 2017-11-28 2021-11-10 Silicon carbide semiconductor device Active JP7276407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021183093A JP7276407B2 (en) 2017-11-28 2021-11-10 Silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017228293A JP7052322B2 (en) 2017-11-28 2017-11-28 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP2021183093A JP7276407B2 (en) 2017-11-28 2021-11-10 Silicon carbide semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017228293A Division JP7052322B2 (en) 2017-11-28 2017-11-28 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device

Publications (2)

Publication Number Publication Date
JP2022017550A true JP2022017550A (en) 2022-01-25
JP7276407B2 JP7276407B2 (en) 2023-05-18

Family

ID=87852287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021183093A Active JP7276407B2 (en) 2017-11-28 2021-11-10 Silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP7276407B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276953A (en) * 2004-03-23 2005-10-06 National Institute Of Advanced Industrial & Technology BIPOLAR SiC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD
JP2011503889A (en) * 2007-11-14 2011-01-27 アーベーベー・テヒノロギー・アーゲー Method for manufacturing reverse conducting insulated gate bipolar transistor
WO2012056536A1 (en) * 2010-10-27 2012-05-03 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2013074181A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Semiconductor device and manufacturing method of the same
JP2013102111A (en) * 2011-10-17 2013-05-23 Rohm Co Ltd Semiconductor device and manufacturing method of the same
JP2014090072A (en) * 2012-10-30 2014-05-15 Fuji Electric Co Ltd Reverse-blocking mos type semiconductor device and method for manufacturing the same
WO2016039071A1 (en) * 2014-09-08 2016-03-17 富士電機株式会社 Semiconductor device and method for manufacturing same
JP2017168506A (en) * 2016-03-14 2017-09-21 富士電機株式会社 Semiconductor device and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276953A (en) * 2004-03-23 2005-10-06 National Institute Of Advanced Industrial & Technology BIPOLAR SiC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD
JP2011503889A (en) * 2007-11-14 2011-01-27 アーベーベー・テヒノロギー・アーゲー Method for manufacturing reverse conducting insulated gate bipolar transistor
WO2012056536A1 (en) * 2010-10-27 2012-05-03 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2013074181A (en) * 2011-09-28 2013-04-22 Toyota Motor Corp Semiconductor device and manufacturing method of the same
JP2013102111A (en) * 2011-10-17 2013-05-23 Rohm Co Ltd Semiconductor device and manufacturing method of the same
JP2014090072A (en) * 2012-10-30 2014-05-15 Fuji Electric Co Ltd Reverse-blocking mos type semiconductor device and method for manufacturing the same
WO2016039071A1 (en) * 2014-09-08 2016-03-17 富士電機株式会社 Semiconductor device and method for manufacturing same
JP2017168506A (en) * 2016-03-14 2017-09-21 富士電機株式会社 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP7276407B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7052322B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP6903931B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6766889B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6880669B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
WO2020110514A1 (en) Super-junction silicon carbide semiconductor device and method for manufacturing super-junction silicon carbide semiconductor device
US8367507B1 (en) Manufacturing method of semiconductor device
JP7106881B2 (en) Silicon carbide substrate and silicon carbide semiconductor device
JP2017092368A (en) Semiconductor device and semiconductor device manufacturing method
JP6658137B2 (en) Semiconductor device and manufacturing method thereof
JP6766512B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
CN104779278A (en) Bipolar semiconductor device and method of manufacturing thereof
JP7263740B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
US10516017B2 (en) Semiconductor device, and manufacturing method for same
JP2017191918A (en) Silicon carbide semiconductor device, method of manufacturing the same, and method of controlling the same
JP2019003969A (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
WO2018117061A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2019080035A (en) Silicon carbide semiconductor device and manufacturing method of the same
US20150008478A1 (en) Semiconductor device and manufacturing method of the same
US8994034B2 (en) Semiconductor device and method of manufacturing the same
JP2015056644A (en) Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP2022060802A (en) Silicon carbide semiconductor device
JP2019029501A (en) Semiconductor device and semiconductor device manufacturing method
JP2020155438A (en) Silicon carbide semiconductor device and manufacturing method of silicon carbide semiconductor device
JP7276407B2 (en) Silicon carbide semiconductor device
JPWO2018135146A1 (en) Semiconductor device and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150