JP2022016707A - Noncontact electric power supply robot - Google Patents

Noncontact electric power supply robot Download PDF

Info

Publication number
JP2022016707A
JP2022016707A JP2021193690A JP2021193690A JP2022016707A JP 2022016707 A JP2022016707 A JP 2022016707A JP 2021193690 A JP2021193690 A JP 2021193690A JP 2021193690 A JP2021193690 A JP 2021193690A JP 2022016707 A JP2022016707 A JP 2022016707A
Authority
JP
Japan
Prior art keywords
transmitter
control signal
pair
feeding robot
power feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021193690A
Other languages
Japanese (ja)
Other versions
JP7158074B2 (en
Inventor
郁雄 粟井
Ikuo Awai
健太朗 川辺
Kentaro Kawabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujiwaves Co Ltd
Original Assignee
Fujiwaves Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujiwaves Co Ltd filed Critical Fujiwaves Co Ltd
Publication of JP2022016707A publication Critical patent/JP2022016707A/en
Application granted granted Critical
Publication of JP7158074B2 publication Critical patent/JP7158074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact electric power supply robot that transmits electric power and control signals in a noncontact manner between adjacent joint components, uses a small device at a joint, and is lightweight.
SOLUTION: A noncontact electric power supply robot 1 comprises a power transmitter 2 having a power transmission resonator 21 and sending electric power, electric wire lines 4 and 4 respectively provided for adjacent joint components 1a and 1a, a transmitter 5 that is formed by a pair of transmitter plate bodies 51 and 51 fixed to the respective adjacent joint components 1a and 1a and positioned opposite each other, and by the electric wire lines 4 and 4 connected to the pair of transmitter plate bodies 51 and 51 respectively and that transmits at least electric power in a noncontact manner between the pair of transmitter plate bodies 51 and 51, and a power receiver 6 having a power receiving resonator 61 that resonates with the power transmission resonator 21, receiving electric power via the electric wire line 4 and supplying electric power to a joint driving controller 8 capable of changing an angle between the adjacent joint components 1a and 1a.
SELECTED DRAWING: Figure 6
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、関節を非接触で経由して給電する非接触給電ロボットに関する。 The present invention relates to a non-contact power feeding robot that feeds power via a non-contact joint.

ロボットの関節は、頻繁にしかも高速で動作するものである。一般に、ロボットの関節を構成するところの隣接する関節構成部材の間では、各々の関節構成部材を通って来た電気配線は、曲がったり捩れたりできるように位置が固定されずに空中配線されており、頻繁かつ高速の動作に耐え得るように、経時劣化が少なく耐久性が高くなるように用いられている。 Robot joints move frequently and at high speeds. In general, between adjacent joint components that make up a joint of a robot, the electrical wiring that has passed through each joint component is routed in the air without being fixed in position so that it can be bent or twisted. Therefore, it is used so that it can withstand frequent and high-speed operation, has less deterioration over time, and has high durability.

しかしながら、隣接する関節構成部材の間に位置が固定されずに空中配線された電気配線にかかる力は原理的に無くなることはないので、経時劣化により接触不良又は断線が起こる可能性が残る。そのため、空中配線の電気配線をなくして、隣接する関節構成部材の間での電力及び制御信号の伝送を非接触で行う試みもなされている。例えば、特許文献1では、隣接する関節構成部材の間で電磁誘導により電力を伝送し、電磁誘導又は光伝送により制御信号を伝送する非接触給電ロボットが開示されている。また、特許文献2では、隣接する関節構成部材の間での電気的接続を、回転部と固定部との間にロータリトランスを挿入して電磁誘導で行う非接触給電ロボットが開示されている。 However, since the force applied to the electrical wiring that is wired in the air without being fixed in position between the adjacent joint constituent members does not disappear in principle, there remains a possibility that poor contact or disconnection may occur due to deterioration over time. Therefore, attempts have been made to eliminate the electrical wiring of the aerial wiring and to transmit power and control signals between adjacent joint components in a non-contact manner. For example, Patent Document 1 discloses a non-contact power feeding robot that transmits electric power by electromagnetic induction between adjacent joint components and transmits a control signal by electromagnetic induction or optical transmission. Further, Patent Document 2 discloses a non-contact power feeding robot in which a rotary transformer is inserted between a rotating portion and a fixed portion to perform electrical connection between adjacent joint components by electromagnetic induction.

特開平07-100786号公報Japanese Unexamined Patent Publication No. 07-100786 特開2003-117877号公報Japanese Patent Application Laid-Open No. 2003-117877

しかしながら、特許文献1及び特許文献2に開示される非接触給電ロボットでは、電磁誘導のための素子が大きく、かつ、非常に重くなるので、関節における頻繁かつ高速の動作には不利である。また、関節の数が増え、電磁誘導の素子が多段に接続されるのに応じて、インピーダンスが高くなってしまい、電力伝送の効率の低下が大きいと考えられる。なお、電磁誘導の周波数は比較的低いため、制御信号の伝送には、実用的な情報量とするために、他の手段(特許文献1での例では、光伝送)が用いられる。 However, in the non-contact power feeding robot disclosed in Patent Document 1 and Patent Document 2, since the element for electromagnetic induction is large and very heavy, it is disadvantageous for frequent and high-speed operation in joints. Further, as the number of joints increases and the electromagnetic induction elements are connected in multiple stages, the impedance increases, and it is considered that the efficiency of power transmission is greatly reduced. Since the frequency of electromagnetic induction is relatively low, another means (optical transmission in the example of Patent Document 1) is used for the transmission of the control signal in order to obtain a practical amount of information.

本発明は、係る事由に鑑みてなされたものであり、その目的は、隣接する関節構成部材の間で電力及び制御信号の伝送を非接触で行い、関節における素子が小さく、かつ、軽量である非接触給電ロボットを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to transmit electric power and control signals between adjacent joint components in a non-contact manner, and the elements in the joints are small and lightweight. The purpose is to provide a non-contact power feeding robot.

上記目的を達成するために、請求項1に記載の非接触給電ロボットは、電力を送る送電器と、隣接する関節構成部材の各々に設けられた電気配線と、前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、前記送電共振器に共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、を備えてなることを特徴とする。 In order to achieve the above object, the non-contact power feeding robot according to claim 1 has a power transmitter for transmitting electric power, electrical wiring provided for each of the adjacent joint constituent members, and each of the adjacent joint constituent members. A pair of flat plates for transmitters fixed to each other are provided so as to face each other, and the electrical wiring is connected to each of the pair of flat plates for transmitters, so that at least the electric power is provided between the pair of flat plates for transmitters. A joint drive that has a transmitter that performs non-contact transmission and a power receiving resonator that resonates with the transmission resonator, receives the power through the electrical wiring, and can change the angle between the adjacent joint components. It is characterized by being equipped with a power receiver that supplies electric power to the controller.

請求項2に記載の非接触給電ロボットは、請求項1に記載の非接触給電ロボットにおいて、制御信号送信共振器を有し制御信号送信器用平板体を介して制御信号を送る制御信号送信器と、前記制御信号送信共振器に共振する制御信号受信共振器を有し、前記電気配線に接続された制御信号受信器用平板体を介して前記制御信号を受信し、前記関節駆動制御器に前記制御信号を送る制御信号受信器と、を更に備えてなり、前記伝送器は、前記一対の伝送器用平板体の間で更に前記制御信号の伝送を非接触で行うことを特徴とする。 The non-contact power feeding robot according to claim 2 is the non-contact feeding robot according to claim 1, which has a control signal transmission resonator and a control signal transmitter that sends a control signal via a flat plate for a control signal transmitter. It has a control signal receiving resonator that resonates with the control signal transmitting resonator, receives the control signal via a flat plate for a control signal receiver connected to the electrical wiring, and controls the joint drive controller. A control signal receiver for transmitting a signal is further provided, and the transmitter is characterized in that the control signal is further transmitted non-contactly between the pair of transmitter flat plates.

請求項3に記載の非接触給電ロボットは、請求項1又は2に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、円板状であることを特徴とする。 The non-contact power feeding robot according to claim 3 is the non-contact power feeding robot according to claim 1, wherein the pair of flat plates for a transmitter has a disk shape.

請求項4に記載の非接触給電ロボットは、請求項1~3のいずれか1項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体の各々は、1個のもの又は並列配置された複数個のものであることを特徴とする。 The non-contact power feeding robot according to claim 4 is the non-contact power feeding robot according to any one of claims 1 to 3, wherein each of the pair of flat plate bodies for a transmitter is one or arranged in parallel. It is characterized by having a plurality of things.

請求項5に記載の非接触給電ロボットは、請求項1~4のいずれか1項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、その間隙に誘電体を挟んでいることを特徴とする。 The non-contact power feeding robot according to claim 5 is the non-contact power feeding robot according to any one of claims 1 to 4, wherein the pair of flat plate bodies for a transmitter sandwich a dielectric in the gap thereof. It is characterized by.

請求項6に記載の非接触給電ロボットは、請求項1~5のいずれか1項に記載の非接触給電ロボットにおいて、隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、前記伝送器は、グランド用円筒体が互いに同軸状に一対に設けられ、該一対のグランド用円筒体の各々に前記グランド線が接続されてなることを特徴とする。 The non-contact power feeding robot according to claim 6 is the non-contact power feeding robot according to any one of claims 1 to 5, further comprising a ground wire provided for each of the adjacent joint constituent members. The transmitter is characterized in that a pair of ground cylinders are provided coaxially with each other, and the ground wire is connected to each of the pair of ground cylinders.

請求項7に記載の非接触給電ロボットは、請求項1~6のいずれか1項に記載の非接触給電ロボットにおいて、前記伝送器用平板体に代えて伝送器用円筒体が互いに同軸状に一対に設けられていることを特徴とする。 The non-contact power feeding robot according to claim 7 is the non-contact power feeding robot according to any one of claims 1 to 6, wherein instead of the flat plate body for the transmitter, cylindrical bodies for the transmitter are coaxially paired with each other. It is characterized by being provided.

本発明の非接触給電ロボットによれば、隣接する関節構成部材の間で少なくとも電力の伝送を非接触で行い、関節における素子が小さく、かつ、軽量にすることができる。 According to the non-contact power feeding robot of the present invention, at least electric power can be transmitted non-contactly between adjacent joint components, and the element in the joint can be made small and lightweight.

本発明の実施形態に係る非接触給電ロボットの例の概略を示す側面図である。It is a side view which shows the outline of the example of the non-contact power feeding robot which concerns on embodiment of this invention. 同上の非接触給電ロボットの送電器と制御信号送信器を示す模式的な斜視図であって、(a)が送電器、(b)が制御信号送信器である。It is a schematic perspective view which shows the transmitter and the control signal transmitter of the non-contact power feeding robot as above, where (a) is a transmitter and (b) is a control signal transmitter. 同上の非接触給電ロボットの送電器の変形例を示す模式的な斜視図である。It is a schematic perspective view which shows the modification of the transmitter of the non-contact power feeding robot of the same above. 同上の非接触給電ロボットの送電器の更なる変形例を示す模式図である。It is a schematic diagram which shows the further modification of the transmitter of the non-contact power feeding robot of the same above. 同上の非接触給電ロボットの伝送器を示すものであって。(a)が側面図、(b)が模式的な斜視図である。It shows the transmitter of the same non-contact power feeding robot. (A) is a side view, and (b) is a schematic perspective view. 同上の非接触給電ロボットの関節及びその周辺の概略を示すものであって、(a)が平面図、(b)がその一部の平面視拡大断面図である。The outline of the joint of the non-contact power feeding robot and its surroundings is shown, and (a) is a plan view and (b) is a partially enlarged cross-sectional view of the plan view. 同上の非接触給電ロボットの伝送器についての変形例を示す側面図であって、(a)は伝送器用平板体と電気配線の接続位置を変えたもの、(b)は伝送器用平板体を並列配置したものである。It is a side view showing the modification of the transmitter of the non-contact power feeding robot as above, in which (a) is the one in which the connection position of the flat plate body for a transmitter and the electric wiring is changed, and (b) is the flat plate body for a transmitter in parallel. It is the one that was placed. 同上の非接触給電ロボットの受電器と制御信号受信器を示す模式的な斜視図であって、(a)が受電器、(b)が制御信号受信器である。It is a schematic perspective view which shows the power receiver and the control signal receiver of the non-contact power feeding robot as above, (a) is a power receiver, (b) is a control signal receiver. 同上の非接触給電ロボットの関節及びその周辺の他の例の概略を示すものであって。(a)が平面図、(b)がその一部の平面視拡大断面図である。It outlines other examples of the joints of the non-contact power feeding robot and its surroundings as above. (A) is a plan view, and (b) is a partially enlarged cross-sectional view of the plan view. 同上の非接触給電ロボットの関節及びその周辺の更に他の例の概略を示すものであって。(a)が平面図、(b)がその一部の平面視拡大断面図である。It outlines still other examples of the joints of the non-contact power feeding robot and its surroundings as above. (A) is a plan view, and (b) is a partially enlarged cross-sectional view of the plan view. 同上の非接触給電ロボットに関連する第1のシミュレーションの構成を示すブロック図である。It is a block diagram which shows the structure of the 1st simulation which concerns on the non-contact power feeding robot of the same above. 同上の非接触給電ロボットに関連する第1のシミュレーションの結果を示す特性図である。It is a characteristic diagram which shows the result of the 1st simulation related to the said non-contact power feeding robot. 同上の非接触給電ロボットに関連する第2のシミュレーションの構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd simulation which concerns on the non-contact power feeding robot of the same above. 同上の非接触給電ロボットに関連する第2のシミュレーションの結果を示す特性図である。It is a characteristic diagram which shows the result of the 2nd simulation related to the said non-contact power feeding robot. 同上の非接触給電ロボットの伝送器にグランド用円筒体を設けた変形例を示すものであって。(a)が断面図、(b)が模式的な斜視図である。It shows a modified example in which a ground cylinder is provided in the transmitter of the non-contact power feeding robot as described above. (A) is a cross-sectional view, and (b) is a schematic perspective view. 同上の非接触給電ロボットの伝送器の伝送器用平板体を分割した変形例を示すものであって。(a)が断面図、(b)が模式的な斜視図である。It shows a modification of the above-mentioned non-contact power feeding robot transmitter in which the flat plate for the transmitter is divided. (A) is a cross-sectional view, and (b) is a schematic perspective view. 同上の非接触給電ロボットの伝送器に伝送器用円筒体を用いた変形例を示すものであって。(a)が断面図、(b)が(a)を更に変形した断面図、(c)が模式的な斜視図である。It shows a modified example in which a cylinder for a transmitter is used for the transmitter of the non-contact power feeding robot as described above. (A) is a cross-sectional view, (b) is a cross-sectional view obtained by further modifying (a), and (c) is a schematic perspective view.

以下、本発明を実施するための形態を図面を参照しながら説明する。本発明の実施形態に係る非接触給電ロボット1は、図1に例示するように、複数の関節を有する多関節のものであって、各関節は、隣接する関節構成部材1a、1aによって構成される。関節構成部材1aとしては、台座1a、アーム部材1a、又は先端部材(物体に接触して所要の作業を行う部材)1aなどが適用可能である(図1参照)。非接触給電ロボット1は、送電器2、制御信号送信器3、電気配線4、伝送器5、受電器6、制御信号受信器7、関節駆動制御器8を備えてなる。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. As illustrated in FIG. 1, the non-contact power feeding robot 1 according to the embodiment of the present invention is a multi-joint having a plurality of joints, and each joint is composed of adjacent joint constituent members 1a and 1a. To. As the joint constituent member 1a, a pedestal 1a 1 or an arm member 1a 2 or a tip member (a member that contacts an object to perform a required work) 1a 3 or the like can be applied (see FIG. 1). The non-contact power feeding robot 1 includes a transmitter 2, a control signal transmitter 3, an electric wiring 4, a transmitter 5, a power receiver 6, a control signal receiver 7, and a joint drive controller 8.

送電器2は、図2(a)に示すように、送電共振器21を有し、送電器用平板体22を介して電力を送る。送電共振器21の共振周波数は、限定されるものではないが、例えば、1MHz~50MHzの範囲の一つの周波数にすることができる。送電器用平板体22は、送電共振器21に対向するように配置されており、後述する電気配線4が接続されている。なお、送電器2は、定数等の合わせこみにより、図3に示すように、送電器用平板体22を介さず送電共振器21に電気配線4を接続して電力を送ることも場合によっては可能である。 As shown in FIG. 2A, the power transmission 2 has a power transmission resonator 21 and transmits electric power via the flat plate body 22 for the power transmission. The resonance frequency of the power transmission resonator 21 is not limited, but can be, for example, one frequency in the range of 1 MHz to 50 MHz. The flat plate body 22 for a power transmission is arranged so as to face the power transmission resonator 21, and an electric wiring 4 described later is connected to the flat plate body 22. As shown in FIG. 3, the power transmission 2 may transmit electric power by connecting the electric wiring 4 to the power transmission resonator 21 without passing through the flat plate body 22 for the power transmission, by adjusting the constants and the like. It is possible.

送電共振器21は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図2(a)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。1/4波長共振の方が、同じ共振周波数ならば、スパイラルコイルのサイズを小さくできる。送電共振器21は、インピーダンスの整合を行うインピーダンス整合手段23、24を介して、電力用高周波電源25の信号によって励振される。インピーダンス整合手段23、24は、典型的には、送電共振器21に電磁誘導結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに送電共振器21に直結する形態など)であってもよい。なお、送電器2は、定数等の合わせこみにより、図4に示すように、電力用高周波電源25に電気配線4を接続して電力を送ることも場合によっては可能である。 The power transmission resonator 21 can be, but is not limited to, a coil formed by winding electric conductors in a planar and spiral shape, that is, a spiral coil (see FIG. 2A). The spiral coil is capable of 1/2 wavelength resonance when both ends are opened, and 1/4 wavelength resonance is possible when one end is opened and the other end is grounded. If the 1/4 wavelength resonance has the same resonance frequency, the size of the spiral coil can be reduced. The power transmission resonator 21 is excited by the signal of the high frequency power supply 25 for electric power via the impedance matching means 23 and 24 for impedance matching. Impedance matching means 23, 24 can typically use a coupling loop that is electromagnetically induced coupled to the power transmission resonator 21 and a capacitor that is connected in series with it, but in other forms (eg, without the coupling loop). It may be in the form of being directly connected to the power transmission resonator 21). As shown in FIG. 4, the transmitter 2 may connect the electric wiring 4 to the high frequency power supply 25 for electric power to transmit electric power by adjusting the constants and the like.

送電器用平板体22は、通常、金属製(例えば、銅製など)の円板状のものである。また、送電器用平板体22の表面(送電共振器21に対向する面)は、通常、凹凸がなく平坦である。 The flat plate body 22 for a transmitter is usually made of a metal (for example, copper) and has a disk shape. Further, the surface of the flat plate for power transmission 22 (the surface facing the power transmission resonator 21) is usually flat without unevenness.

制御信号送信器3は、図2(b)に示すように、制御信号送信共振器31を有し、制御信号送信器用平板体32を介して制御信号を送る。制御信号送信共振器31の共振周波数は、限定されるものではないが、例えば、100MHz~200MHzの範囲の一つの周波数にすることができる。制御信号送信器用平板体32は、制御信号送信共振器31に対向するように配置されており、電気配線4が接続されている。 As shown in FIG. 2B, the control signal transmitter 3 has a control signal transmission resonator 31 and transmits a control signal via the control signal transmitter flat plate 32. The resonance frequency of the control signal transmission resonator 31 is not limited, but may be, for example, one frequency in the range of 100 MHz to 200 MHz. The flat plate body 32 for the control signal transmitter is arranged so as to face the control signal transmission resonator 31, and the electrical wiring 4 is connected to the flat plate body 32.

制御信号送信共振器31は、限定されるものではないが、図2(b)に示すように、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。制御信号送信共振器31は、インピーダンスの整合を行うインピーダンス整合手段33、34を介して、制御信号用高周波電源35の信号によって励振される。インピーダンス整合手段33、34は、典型的には、制御信号送信共振器31に電磁誘導結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに制御信号送信共振器31に直結する形態など)であってもよい。 The control signal transmission resonator 31 is not limited, but as shown in FIG. 2 (b), the control signal transmission resonator 31 may be a coil formed by winding electric conductors in a planar and spiral shape, that is, a spiral coil. can. The spiral coil is capable of 1/2 wavelength resonance when both ends are opened, and 1/4 wavelength resonance is possible when one end is opened and the other end is grounded. The control signal transmission resonator 31 is excited by the signal of the high frequency power supply 35 for control signals via the impedance matching means 33 and 34 for impedance matching. Impedance matching means 33, 34 can typically use a coupling loop that is electromagnetically induced coupled to the control signal transmission resonator 31 and a capacitor that is connected in series with it, but other forms (eg, coupling loops are used). Instead, it may be in a form of being directly connected to the control signal transmission resonator 31).

制御信号送信器用平板体32は、通常、金属製(例えば、銅製など)の円板状のものである。また、制御信号送信器用平板体32の表面(制御信号送信共振器31に対向する面))は、通常、凹凸がなく平坦である。 The flat plate body 32 for a control signal transmitter is usually made of a metal (for example, copper or the like) and has a disk shape. Further, the surface of the flat plate body 32 for the control signal transmitter (the surface facing the control signal transmission resonator 31) is usually flat without unevenness.

電気配線4は、各関節を構成する関節構成部材1aの中に設けられ、関節構成部材1aに固定されている。電気配線4は、グランド線を伴わない単線でよいが、同軸線路構造にして外部導体を関節構成部材1aの金属部分などに接続してグランドとすることも可能である。また、適宜、折り曲げることが可能である。 The electric wiring 4 is provided in the joint constituent member 1a constituting each joint and is fixed to the joint constituent member 1a. The electric wiring 4 may be a single wire without a ground wire, but it is also possible to form a coaxial line structure and connect an external conductor to a metal portion of the joint constituent member 1a to form a ground. In addition, it can be bent as appropriate.

伝送器5は、隣接する関節構成部材1a、1aの間で電力及び制御信号の伝送を非接触で行うものである。伝送器5は、図5(a)、(b)に示すように、互いに対向する一対の伝送器用平板体51、51が設けられ、これら一対の伝送器用平板体51、51の各々に電気配線4、4が接続されている。一対の伝送器用平板体51、51の間で電力及び制御信号の伝送が非接触で行われる。一対の伝送器用平板体51、51は、通常、金属製(例えば、銅製など)の円板状のものである。一対の伝送器用平板体51、51の表面(互いに対向する面)は、通常、凹凸がなく平坦である。 The transmitter 5 transmits power and control signals between adjacent joint constituent members 1a and 1a in a non-contact manner. As shown in FIGS. 5A and 5B, the transmitter 5 is provided with a pair of flat plate bodies 51, 51 for transmitters facing each other, and electrical wiring is provided to each of the pair of flat plate bodies 51, 51 for transmitters. 4 and 4 are connected. Power and control signals are transmitted non-contact between the pair of transmitter flat plates 51, 51. The pair of flat plate bodies 51, 51 for a transmitter are usually made of metal (for example, made of copper) in the shape of a disk. The surfaces (surfaces facing each other) of the pair of transmitter flat plates 51 and 51 are usually flat without unevenness.

一対の伝送器用平板体51、51は、中心軸が一致する、つまり同軸になるように配置されている。更には、一対の伝送器用平板体51、51は、図6(a)、(b)に示すように、それらの中心軸が関節の回動軸Cに一致するように配置される。一対の伝送器用平板体51、51の各々は、各々の関節構成部材1aに固定される。図6(b)では、一対の伝送器用平板体51、51の各々が頑丈な電気配線4を介して各々の関節構成部材1aに固定されるものを示している。一対の伝送器用平板体51、51の各々が、固定用部材(図示せず。)を介して各々の関節構成部材1aに固定されるようにしてもよい。 The pair of transmitter flat plates 51, 51 are arranged so that their central axes coincide with each other, that is, they are coaxial. Further, the pair of transmitter flat plates 51, 51 are arranged so that their central axes coincide with the rotation axis C of the joint, as shown in FIGS. 6A and 6B. Each of the pair of transmitter flat plates 51, 51 is fixed to each joint component 1a. FIG. 6B shows a pair of flat plate bodies 51, 51 for transmitters, each of which is fixed to each joint component 1a via a sturdy electric wiring 4. Each of the pair of transmitter flat plates 51, 51 may be fixed to each joint constituent member 1a via a fixing member (not shown).

電気配線4、4は、図5(a)、(b)においては一対の伝送器用平板体51、51の裏面(互いに対向する面の反対面)の中央部に接続されているが、例えば、図7(a)に示すように外側面などに接続しても構わない。また、一対の伝送器用平板体51、51は、その各々が、図5(a)、(b)に示すような1個のものに限らず、図7(b)に示すように、並列配置された複数個のものとすることも可能である。そうすると、伝送器5のサイズを小さくすることができる。 In FIGS. 5A and 5B, the electrical wirings 4 and 4 are connected to the central portion of the back surfaces (opposite surfaces of the surfaces facing each other) of the pair of flat plate bodies 51 and 51 for transmitters. As shown in FIG. 7A, it may be connected to an outer surface or the like. Further, the pair of flat plate bodies for transmitters 51 and 51 are not limited to one as shown in FIGS. 5 (a) and 5 (b), but are arranged in parallel as shown in FIG. 7 (b). It is also possible to have a plurality of the same. Then, the size of the transmitter 5 can be reduced.

また、一対の伝送器用平板体51、51の間隙に、誘電体を挟むことも可能である。この誘電体は、固体のものでも可能であるが、シリコンオイルなどの潤滑油でも可能である。潤滑油は、例えば、図6(b)に示す空間Sを密封可能にしてそこに潤滑油を注入することで、一対の伝送器用平板体51、51の間隙に存在させ得る。この誘電体は、過度の振動が起こったとき、一対の伝送器用平板体51、51が互いに接触することを防止するとともに、一対の伝送器用平板体51、51の間隙を小さくするのと同様の特性の効果を得ることができる。 It is also possible to sandwich the dielectric in the gap between the pair of transmitter flat plates 51, 51. This dielectric can be a solid one, but it can also be a lubricating oil such as silicone oil. The lubricating oil can be present in the gap between the pair of flat plate bodies 51, 51 for a transmitter, for example, by making the space S shown in FIG. 6B hermetically sealable and injecting the lubricating oil into the space S. This dielectric prevents the pair of transmitter flat plates 51 and 51 from coming into contact with each other when excessive vibration occurs, and is similar to reducing the gap between the pair of transmitter flat plates 51 and 51. The effect of the property can be obtained.

このような伝送器5は、隣接する関節構成部材1a、1aの間の角度が変わっても、つまり、隣接する関節構成部材1a、1aが回動軸Cのまわりに回動しても、伝送器用平板体51、51の間の外観及び電気的関係が変化しないようにすることができ、従って、電力及び制御信号の伝送の特性が変化しないようにすることができる。また、伝送器5は、隣接する関節構成部材1a、1aの間には位置が固定されずに空中配線された電気配線がないので、関節の動作が頻繁かつ高速であってもそれに耐え得、経時劣化が少なく耐久性が高くなる。また、伝送器5を構成する一対の伝送器用平板体51、51は、素子として小さく、かつ、軽量である。 Such a transmitter 5 transmits even if the angle between the adjacent joint constituent members 1a and 1a changes, that is, even if the adjacent joint constituent members 1a and 1a rotate around the rotation axis C. The appearance and electrical relationship between the dexterous plates 51, 51 can be kept unchanged, and thus the transmission characteristics of the power and control signals can be kept unchanged. Further, since the transmitter 5 has no electrical wiring whose position is not fixed and is wired in the air between the adjacent joint constituent members 1a and 1a, the transmitter 5 can withstand the frequent and high-speed joint movements. There is little deterioration over time and durability is high. Further, the pair of flat plate bodies 51, 51 for a transmitter constituting the transmitter 5 are small and lightweight as elements.

受電器6は、図8(a)に示すように、送電共振器21に共振する受電共振器61を有し、受電器用平板体62を介して電力を受ける。受電器用平板体62は、送電共振器61に対向するように配置されており、電気配線4に接続されている。なお、末端の関節構成部材1aなどでは、受電器6は、受電器用平板体62を介さず受電共振器61に電気配線4を接続して電力を受けることも可能である。 As shown in FIG. 8A, the power receiving device 6 has a power receiving resonator 61 that resonates with the power transmission resonator 21, and receives power via the power receiving flat plate body 62. The plate body 62 for a power receiver is arranged so as to face the power transmission resonator 61 and is connected to the electric wiring 4. In the joint constituent member 1a or the like at the end, the power receiving device 6 can receive electric power by connecting the electric wiring 4 to the power receiving resonator 61 without passing through the power receiving flat plate body 62.

受電共振器61は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図8(a)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。受電共振器61が受けた電力は、インピーダンスの整合を行うインピーダンス整合手段63、64を介して、関節駆動制御器8に供給される。インピーダンス整合手段63、64は、典型的には、受電共振器61に電磁界結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに受電共振器61に直結する形態など)であってもよい。 The power receiving resonator 61 can be, but is not limited to, a coil formed by winding an electric conducting wire in a plane and a spiral shape, that is, a spiral coil (see FIG. 8A). The spiral coil is capable of 1/2 wavelength resonance when both ends are opened, and 1/4 wavelength resonance is possible when one end is opened and the other end is grounded. The electric power received by the power receiving resonator 61 is supplied to the joint drive controller 8 via the impedance matching means 63 and 64 that perform impedance matching. Impedance matching means 63, 64 can typically use a coupling loop that is electromagnetically coupled to the powered resonator 61 and a capacitor that is connected in series with it, but in other forms (eg, without the coupling loop). It may be in the form of being directly connected to the power receiving resonator 61).

受電器用平板体62は、通常、金属製(例えば、銅製など)の円板状のものである。また、受電器用平板体62の表面(受電共振器61に対向する面)は、通常、凹凸がなく平坦である。 The flat plate body 62 for a power receiving device is usually made of a metal (for example, copper or the like) and has a disk shape. Further, the surface of the flat plate body 62 for a power receiver (the surface facing the power receiving resonator 61) is usually flat without unevenness.

制御信号受信器7は、図8(b)に示すように、制御信号送信共振器31に共振する制御信号受信共振器71を有し、制御信号受信器用平板体72を介して制御信号を受ける。制御信号受信器用平板体72は、制御信号受信共振器71に対向するように配置されており、電気配線4に接続されている。 As shown in FIG. 8B, the control signal receiver 7 has a control signal receiving resonator 71 that resonates with the control signal transmitting resonator 31, and receives a control signal via the flat plate body 72 for the control signal receiver. .. The flat plate body 72 for the control signal receiver is arranged so as to face the control signal reception resonator 71, and is connected to the electric wiring 4.

制御信号受信共振器71は、限定されるものではないが、電気導線が平面的でスパイラル状に巻かれて形成されるコイル、すなわちスパイラルコイルとすることができる(図8(b)参照)。スパイラルコイルは、両端を開放すると1/2波長共振、一方端を開放し他方端を接地すると1/4波長共振が可能である。制御信号受信共振器71が受けた制御信号は、インピーダンスの整合を行うインピーダンス整合手段73、74を介して、関節駆動制御器8に送られる。インピーダンス整合手段73、74は、典型的には、制御信号受信共振器71に電磁界結合する結合ループ及びそれと直列接続されるコンデンサを用いることができるが、他の形態(例えば、結合ループを用いずに制御信号受信共振器71に直結する形態など)であってもよい。 The control signal receiving resonator 71 may be, but is not limited to, a coil formed by winding electric conductors in a planar and spiral shape, that is, a spiral coil (see FIG. 8 (b)). The spiral coil is capable of 1/2 wavelength resonance when both ends are opened, and 1/4 wavelength resonance is possible when one end is opened and the other end is grounded. The control signal received by the control signal receiving resonator 71 is sent to the joint drive controller 8 via the impedance matching means 73 and 74 that perform impedance matching. Impedance matching means 73, 74 can typically use a coupled loop that is electromagnetically coupled to the control signal receiving resonator 71 and a capacitor that is connected in series with it, but other forms (eg, coupling loops are used). It may be in the form of being directly connected to the control signal receiving resonator 71, etc.).

制御信号受信器用平板体72は、通常、金属製(例えば、銅製など)の円板状のものである。また、制御信号受信器用平板体72の表面(制御信号受信共振器71に対向する面)は、通常、凹凸がなく平坦である。 The flat plate body 72 for a control signal receiver is usually made of a metal (for example, copper or the like) and has a disk shape. Further, the surface of the flat plate body 72 for the control signal receiver (the surface facing the control signal reception resonator 71) is usually flat without unevenness.

関節駆動制御器8は、受電器6から電力が供給され、また、制御信号受信器7から制御信号を受ける。関節駆動制御器8は、隣接する関節構成部材1a、1aの間の角度、つまり、隣接する関節構成部材1a、1aが回動軸Cのまわりに回動する角度を変え得るものである。具体的には、図6(b)に示すように、関節駆動制御器8は、一方の関節構成部材1aに固定されたステータ9Aを駆動制御し、ロータ9Bを及びそれに固着された回動部材9Cを回動させることができる。他方の関節構成部材1aは、回動部材9Cに固定されおり、回動部材9Cの回動とともに回動することができる。関節駆動制御器8の具体的な構成は、公知のものを用いることができるので、詳細な説明は省略する。 The joint drive controller 8 is supplied with electric power from the power receiver 6 and receives a control signal from the control signal receiver 7. The joint drive controller 8 can change the angle between the adjacent joint constituent members 1a and 1a, that is, the angle at which the adjacent joint constituent members 1a and 1a rotate around the rotation axis C. Specifically, as shown in FIG. 6B, the joint drive controller 8 drives and controls the stator 9A fixed to one of the joint constituent members 1a, and drives the rotor 9B and the rotating member fixed to the rotor 9B. 9C can be rotated. The other joint component 1a is fixed to the rotating member 9C and can rotate with the rotation of the rotating member 9C. As the specific configuration of the joint drive controller 8 can be a known one, detailed description thereof will be omitted.

なお、隣接する関節構成部材1a、1aは、様々な形状が可能である。隣接する関節構成部材1a、1aが図9(a)で示すような場合、内部構成を、図9(b)で示すように、図6(b)と同様な構成にすることが可能である。 The adjacent joint constituent members 1a and 1a can have various shapes. When the adjacent joint constituent members 1a and 1a are as shown in FIG. 9 (a), the internal configuration can be the same as that of FIG. 6 (b) as shown in FIG. 9 (b). ..

また、隣接する関節構成部材1a、1aが図10(a)で示すような場合、図10(b)に示すように、隣接する関節構成部材1a、1aの間の機構や関節駆動制御器8、ステータ9A、ロータ9B、回動部材9Cなどの形状又は位置などを変更することが可能である。なお、図10(b)における符号9C’は、回動部材9Cの対称位置に有って、他方の関節構成部材1a(図においては上側の関節構成部材1a)に固定され、一方の関節構成部材1a(図においては下側の関節構成部材1a)に対して自由に他方の関節構成部材1aが回動するように、一方の関節構成部材1aに結合する回動部材である。更には、回動部材9C’のために別の受電器6、制御信号受信器7、関節駆動制御器8、ステータ9A、及びロータ9Bを設け、そのロータ9Bに回動部材9C’を固着することも可能である。従って、この場合、同じ関節構成部材1aの電気配線4は分岐して、2セットの受電器6及び制御信号受信器7に接続されることになる。 Further, when the adjacent joint constituent members 1a and 1a are shown in FIG. 10 (a), the mechanism and the joint drive controller 8 between the adjacent joint constituent members 1a and 1a are shown in FIG. 10 (b). , The shape or position of the stator 9A, the rotor 9B, the rotating member 9C, and the like can be changed. The reference numeral 9C'in FIG. 10B is located at a symmetrical position of the rotating member 9C, is fixed to the other joint constituent member 1a (upper joint constituent member 1a in the figure), and has one joint configuration. It is a rotating member that is coupled to one joint constituent member 1a so that the other joint constituent member 1a can freely rotate with respect to the member 1a (lower joint constituent member 1a in the figure). Further, another power receiver 6, a control signal receiver 7, a joint drive controller 8, a stator 9A, and a rotor 9B are provided for the rotating member 9C', and the rotating member 9C'is fixed to the rotor 9B. It is also possible. Therefore, in this case, the electric wiring 4 of the same joint component 1a is branched and connected to the two sets of the power receiver 6 and the control signal receiver 7.

このような非接触給電ロボット1は、電力とともに制御信号を同じ電気配線4及び伝送器5を用いて必要な箇所(例えば、非接触給電ロボット1の先端部材1aの関節)まで伝送可能であるが、制御信号送信器3及び制御信号受信器7を省略して、その代わりに他の構成(電波などを用いて通信する構成)を用いることも可能である。 Such a non-contact power feeding robot 1 can transmit a control signal together with electric power to a required location (for example, a joint of the tip member 1a 3 of the non-contact power feeding robot 1) by using the same electric wiring 4 and a transmitter 5. However, it is also possible to omit the control signal transmitter 3 and the control signal receiver 7 and use another configuration (a configuration for communicating using radio waves or the like) instead.

次に、非接触給電ロボット1に関連して行った2つのシミュレーションについて述べる。電気配線4の太さは、直径1mmとした。送電器2の送電共振器21及び受電器6の受電共振器61は、直径15cm、巻き数15のスパイラルコイルを両端とも接地せずに用いた。制御信号送信器3の制御信号送信共振器31及び制御信号受信器7の制御信号受信共振器71は、直径7.5cm、巻き数6のスパイラルコイルを両端とも接地せずに用いた。送電器2の送電器用平板体22、制御信号送信器3の制御信号送信器用平板体32、伝送器5の伝送器用平板体51、受電器6の受電器用平板体62、制御信号受信器7の制御信号受信器用平板体72は、直径7.5cmの円板状のものを用いた。送電器2の送電共振器21と送電器用平板体22の間隔、制御信号送信器3の制御信号送信共振器31と制御信号送信器用平板体32の間隔、受電器6の受電共振器61と受電器用平板体62の間隔、制御信号受信器7の制御信号受信共振器71と制御信号受信器用平板体72、の間隔を5mmとし、伝送器用平板体51、51の間隔を2mmとした。受電器6のインピーダンス整合手段63、64及び制御信号受信器7のインピーダンス整合手段73、74は結合ループのみ用い、それに負荷として50オームの抵抗を接続した。 Next, two simulations performed in relation to the non-contact power feeding robot 1 will be described. The thickness of the electric wiring 4 was 1 mm in diameter. As the power transmitting resonator 21 of the transmitter 2 and the power receiving resonator 61 of the power receiving device 6, a spiral coil having a diameter of 15 cm and a number of turns of 15 was used without grounding at both ends. The control signal transmission resonator 31 of the control signal transmitter 3 and the control signal reception resonator 71 of the control signal receiver 7 used a spiral coil having a diameter of 7.5 cm and a number of turns of 6 without grounding at both ends. The flat plate 22 for the transmitter of the transmitter 2, the flat plate 32 for the control signal transmitter of the control signal transmitter 3, the flat plate 51 for the transmitter of the transmitter 5, the flat plate 62 for the receiver of the receiver 6, and the control signal receiver. As the flat plate body 72 for the control signal receiver of No. 7, a disk-shaped body having a diameter of 7.5 cm was used. The distance between the transmission resonator 21 of the transmitter 2 and the flat plate 22 for the transmitter, the distance between the control signal transmission resonator 31 of the control signal transmitter 3 and the flat plate 32 for the control signal transmitter, and the power receiving resonator 61 of the receiver 6. The distance between the flat plate bodies 62 for the power receiver, the distance between the control signal receiving resonator 71 of the control signal receiver 7 and the flat plate body 72 for the control signal receiver was 5 mm, and the distance between the flat plate bodies 51 and 51 for the transmitter was 2 mm. Impedance matching means 63, 64 of the power receiver 6 and impedance matching means 73, 74 of the control signal receiver 7 used only the coupling loop, and a resistance of 50 ohms was connected to it as a load.

第1のシミュレーションでは、図11に示すように、送電器2に電気配線4を接続し、その電気配線4に伝送器5(5A)を接続し、かつ、中間点Aで分岐させて受電器6(6A)を接続した。また、伝送器5(5A)のもう一方に電気配線4を接続し、その電気配線4に伝送器5(5B)を接続し、かつ、中間点Bで分岐させて受電器6(6B)を接続した。また、伝送器5(5B)のもう一方に電気配線4を接続し、その電気配線4に、中間点Cで折り曲げて受電器6(6C)を接続した。電気配線4の長さは、送電器2と中間点Aの間、中間点Aと伝送器5(5A)の間、中間点Aと受電器6(6A)の間、伝送器5(5A)と中間点Bの間、中間点Bと伝送器5(5B)の間、中間点Bと受電器6(6B)の間、伝送器5(5B)と中間点Cの間、中間点Cと受電器6(6C)の間、でいずれも20cmとした。 In the first simulation, as shown in FIG. 11, the electric wiring 4 is connected to the transmitter 2, the transmitter 5 (5A) is connected to the electric wiring 4, and the power receiver is branched at the intermediate point A. 6 (6A) was connected. Further, the electric wiring 4 is connected to the other side of the transmitter 5 (5A), the transmitter 5 (5B) is connected to the electric wiring 4, and the power receiver 6 (6B) is branched at the intermediate point B. Connected. Further, the electric wiring 4 was connected to the other end of the transmitter 5 (5B), and the electric wiring 4 was bent at the intermediate point C and the power receiver 6 (6C) was connected to the electric wiring 4. The length of the electrical wiring 4 is between the transmitter 2 and the midpoint A, between the midpoint A and the transmitter 5 (5A), between the midpoint A and the receiver 6 (6A), and the transmitter 5 (5A). Between the midpoint B and the midpoint B, between the midpoint B and the transmitter 5 (5B), between the midpoint B and the power receiver 6 (6B), between the transmitter 5 (5B) and the midpoint C, with the midpoint C The distance between the receivers 6 (6C) was set to 20 cm.

図12において、S11、S21、S31、S41はそれぞれ、反射係数、受電器6(6A)への伝送係数、受電器6(6B)への伝送係数、受電器6(6C)への伝送係数を示している。周波数が約30MHzで共振しており、その周波数における伝送係数は、S21が約-3.5dB(約40%)、S31が約-7dB(約20%)、S41が約-6dB(約25%)であった。よって、関節の数が多くても、電力伝送の効率の低下が少ないことが分かる。 In FIG. 12, S11, S21, S31, and S41 each have a reflection coefficient, a transmission coefficient to the receiver 6 (6A), a transmission coefficient to the receiver 6 (6B), and a transmission coefficient to the receiver 6 (6C), respectively. Shows. The frequency resonates at about 30 MHz, and the transmission coefficient at that frequency is about -3.5 dB (about 40%) for S21, about -7 dB (about 20%) for S31, and about -6 dB (about 25%) for S41. )Met. Therefore, it can be seen that even if the number of joints is large, the decrease in power transmission efficiency is small.

第2のシミュレーションでは、図13に示すように、送電器2に電気配線4を接続し、その電気配線4に受電器6を接続し、かつ、中間点Dで分岐させて更に中間点Eで折り曲げて制御信号送信器3を接続し、かつ、中間点Dよりも受電器6側の中間点Fで分岐させて更に中間点Gで折り曲げて制御信号受信器7を接続した。電気配線4の長さは、送電器2と中間点Dの間で5cm、中間点Dと中間点Eの間で30cm、中間点Eと制御信号送信器3の間で5cm、中間点Dと中間点Fの間で35cm、中間点Fと中間点Gの間で30cm、中間点Gと制御信号受信器7の間で5cm、中間点Fと受電器6の間で5cmとした。 In the second simulation, as shown in FIG. 13, the electric wiring 4 is connected to the transmitter 2, the power receiver 6 is connected to the electric wiring 4, and the electric wiring 4 is branched at the intermediate point D and further at the intermediate point E. The control signal transmitter 3 was connected by bending, and the control signal receiver 7 was connected by branching at the intermediate point F on the power receiving device 6 side of the intermediate point D and further bending at the intermediate point G. The length of the electrical wiring 4 is 5 cm between the transmitter 2 and the midpoint D, 30 cm between the midpoint D and the midpoint E, 5 cm between the midpoint E and the control signal transmitter 3, and the midpoint D. It was 35 cm between the midpoint F, 30 cm between the midpoint F and the midpoint G, 5 cm between the midpoint G and the control signal receiver 7, and 5 cm between the midpoint F and the receiver 6.

図14(a)において、S11、S21はそれぞれ、送電器2の反射係数、送電器2から受電器6への伝送係数を示している。送電器2と受電器6は、周波数が約28MHzで共振しており、その周波数における伝送係数が約―0.6dB(約90%)であった。また、図14(b)において、S33、S43はそれぞれ、制御信号送信器3の反射係数、制御信号送信器3から制御信号受信器7への伝送係数を示している。制御信号送信器3と制御信号受信器7は、周波数が約155MHzで共振しており、その周波数における伝送係数が約―0.6dB(約90%)であった。よって、電力と制御信号が同じ電気配線4を用いて伝送可能であることが分かる。 In FIG. 14A, S11 and S21 show the reflection coefficient of the transmitter 2 and the transmission coefficient from the transmitter 2 to the receiver 6, respectively. The transmitter 2 and the receiver 6 resonated at a frequency of about 28 MHz, and the transmission coefficient at that frequency was about −0.6 dB (about 90%). Further, in FIG. 14B, S33 and S43 show the reflection coefficient of the control signal transmitter 3 and the transmission coefficient from the control signal transmitter 3 to the control signal receiver 7, respectively. The control signal transmitter 3 and the control signal receiver 7 resonated at a frequency of about 155 MHz, and the transmission coefficient at that frequency was about −0.6 dB (about 90%). Therefore, it can be seen that the electric power and the control signal can be transmitted using the same electric wiring 4.

以上、本発明の実施形態に係る非接触給電ロボットについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、関節については、多関節に限らず、少なくとも1個有していれば、本発明は適用可能である。また、多関節の場合、本発明は少なくとも1箇所の関節に適用されればよい。また、当然ではあるが、非接触給電ロボット1の外観は様々なものが可能であり、台座1a、アーム部材1a、及び先端部材1aなどは、非接触給電ロボット1の使用目的に応じて様々な形状や構造が可能である。 Although the non-contact power feeding robot according to the embodiment of the present invention has been described above, the present invention is not limited to the one described in the above-described embodiment, and various matters within the scope of the claims. Design changes are possible. For example, the present invention is applicable not only to multiple joints but also to having at least one joint. Further, in the case of multiple joints, the present invention may be applied to at least one joint. Further, as a matter of course, the appearance of the non-contact power feeding robot 1 can be various, and the pedestal 1a 1 , the arm member 1a 2 , the tip member 1a 3 , and the like can be used according to the purpose of use of the non-contact power feeding robot 1. Various shapes and structures are possible.

また、隣接する前記関節構成部材1a、1aが、合成樹脂製であって金属部分を有さないなどの場合、隣接する前記関節構成部材1a、1aの各々にグランド線9、9を設けることができる。伝送器5は、図15(a)、(b)に示すように、上述した一対の伝送器用平板体51、51を囲むように、一対のグランド用円筒体52A、52Bが互いに同軸状に非接触に設けられるようにすることができる。一対のグランド用円筒体52A、52Bの各々には、グランド線9、9が接続される。一対のグランド用円筒体52A、52Bは、円筒状(図においては有底円筒形状)である。一対のグランド用円筒体52A、52Bは、隣接する関節構成部材1a、1aの各々に固定される。このようにすると、伝送器5においてリターンパスを確保しながら、隣接する関節構成部材1a、1aを回動させることができる。なお、グランド線9は、長く延びてグランドとして用いられるものならば形状は限定されるものではないが、図15(a)、(b)に示すように、同軸線路構造の外部導体を用いればよい。 Further, when the adjacent joint constituent members 1a and 1a are made of synthetic resin and do not have a metal portion, ground wires 9 and 9 may be provided on each of the adjacent joint constituent members 1a and 1a. can. In the transmitter 5, as shown in FIGS. 15A and 15B, the pair of ground cylinders 52A and 52B are not coaxial with each other so as to surround the pair of transmitter flat plates 51 and 51 described above. It can be provided on the contact. Ground wires 9 and 9 are connected to each of the pair of ground cylinders 52A and 52B. The pair of gland cylinders 52A and 52B have a cylindrical shape (bottomed cylindrical shape in the figure). The pair of gland cylinders 52A and 52B are fixed to each of the adjacent joint constituent members 1a and 1a. In this way, the adjacent joint constituent members 1a and 1a can be rotated while ensuring the return path in the transmitter 5. The shape of the ground wire 9 is not limited as long as it extends long and is used as a ground, but as shown in FIGS. 15A and 15B, if an external conductor having a coaxial line structure is used, the ground wire 9 may be used. good.

また、伝送器5においてリターンパスを確保するためには、図16(a)、(b)に示すように、一対の伝送器用平板体51、51を半径方向に分割して、隙間をあけ、電気配線4、4とグランド線9、9を接続することも可能である。図16(a)、(b)においては、中央部分にグランド線9、9が、周辺部分に電気配線4、4が接続されているが、逆も可能である。 Further, in order to secure the return path in the transmitter 5, as shown in FIGS. 16A and 16B, the pair of flat plate bodies 51 and 51 for the transmitter are divided in the radial direction to open a gap. It is also possible to connect the electrical wirings 4 and 4 to the ground wires 9 and 9. In FIGS. 16A and 16B, ground wires 9 and 9 are connected to the central portion and electrical wirings 4 and 4 are connected to the peripheral portions, but the reverse is also possible.

また、伝送器5の一対の伝送器用平板体51、51を一対の伝送器用円筒体53A、53Bに代えることも場合によっては可能である。一対の伝送器用円筒体53A、53Bは、図17(a)、(b)、(c)に示すように、互いに同軸状に非接触に設けられる。一対の伝送器用円筒体53A、53Bは、円筒状(図においては有底円筒形状)であり、多重(図17(b)参照)にすることも可能である。 Further, in some cases, it is possible to replace the pair of flat plate bodies 51 and 51 for the transmitter of the transmitter 5 with the pair of cylindrical bodies 53A and 53B for the transmitter. As shown in FIGS. 17A, 17B, and 17B, the pair of transmitter cylinders 53A and 53B are provided coaxially and non-contactly with each other. The pair of transmitter cylinders 53A and 53B have a cylindrical shape (bottomed cylindrical shape in the figure), and can be multiplexed (see FIG. 17B).

1 非接触給電ロボット
1a 関節構成部材
2 送電器
21 送電共振器
22 送電器用平板体
3 制御信号送信器
31 制御信号送信共振器
32 制御信号送信器用平板体
4 電気配線
5 伝送器
51 伝送器用平板体
52A、52B グランド用円筒体
53A、53B 伝送器用円筒体
6 受電器
61 受電共振器
62 受電器用平板体
7 制御信号受信器
71 制御信号受信共振器
72 制御信号受信器用平板体
8 関節駆動制御器
9 グランド線
1 Non-contact power feeding robot 1a Joint component 2 Transmitter 21 Transmission resonator 22 Flat plate for transmitter 3 Control signal transmitter 31 Control signal transmitter resonator 32 Flat plate for control signal transmitter 4 Electrical wiring 5 Transmitter 51 Flat plate for transmitter Body 52A, 52B Ground cylinder 53A, 53B Transmitter cylinder 6 Power receiver 61 Power receiving resonator 62 Power receiving flat plate 7 Control signal receiver 71 Control signal receiving resonator 72 Control signal receiver flat plate 8 Joint drive control Vessel 9 ground line

上記目的を達成するために、請求項1に記載の非接触給電ロボットは、隣接する関節構成部材によって構成される関節を複数有し、所定の周波数の電力を送る送電器と、前記隣接する関節構成部材の各々に設けられた電気配線と、前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、前記関節の各々について設けられ、前記電力を受けて共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、を備えてなり、制御信号送信共振器を有し制御信号送信器用平板体を介して制御信号を送る制御信号送信器と、前記制御信号送信共振器に共振する制御信号受信共振器を有し、前記電気配線に接続された制御信号受信器用平板体を介して前記制御信号を受信し、前記関節駆動制御器に前記制御信号を送る制御信号受信器と、を更に備えてなり、前記伝送器は、前記一対の伝送器用平板体の間で更に前記制御信号の伝送を非接触で行うことを特徴とする。 In order to achieve the above object, the non-contact power feeding robot according to claim 1 has a plurality of joints composed of adjacent joint components, and a transmitter that sends electric power of a predetermined frequency and the adjacent joints. The electrical wiring provided in each of the constituent members and the transmitter flat plate fixed to each of the adjacent joint constituents are provided in pairs facing each other, and the electric power is provided in each of the pair of transmitter flat plates. A transmitter in which wiring is connected to perform at least the power transmission between the pair of transmitter flat plates in a non-contact manner, and a power receiving resonator provided for each of the joints and resonating by receiving the power. It comprises a power receiver that receives the power through the electrical wiring and supplies power to the joint drive controller that can change the angle between the adjacent joint components, and comprises a control signal transmission resonator. It has a control signal transmitter that sends a control signal via a flat plate for a control signal transmitter, and a control signal reception resonator that resonates with the control signal transmission resonator, and receives a control signal connected to the electrical wiring. A control signal receiver that receives the control signal via the dexterous flat plate and sends the control signal to the joint drive controller is further provided, and the transmitter is provided between the pair of transmitter flat plates. Further, the control signal is transmitted in a non-contact manner.

請求項に記載の非接触給電ロボットは、請求項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、円板状であることを特徴とする。 The non-contact power feeding robot according to claim 2 is the non-contact power feeding robot according to claim 1 , wherein the pair of flat plates for a transmitter has a disk shape.

請求項に記載の非接触給電ロボットは、請求項1又は2に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体の各々は、1個のもの又は並列配置された複数個のものであることを特徴とする。 The non-contact power feeding robot according to claim 3 is the non-contact power feeding robot according to claim 1, wherein each of the pair of flat plate bodies for a transmitter is one or a plurality of robots arranged in parallel. It is characterized by being.

請求項に記載の非接触給電ロボットは、請求項1~のいずれか1項に記載の非接触給電ロボットにおいて、前記一対の伝送器用平板体は、その間隙に誘電体を挟んでいることを特徴とする。 The non-contact power feeding robot according to claim 4 is the non-contact power feeding robot according to any one of claims 1 to 3 , wherein the pair of flat plate bodies for a transmitter sandwich a dielectric in the gap thereof. It is characterized by.

請求項に記載の非接触給電ロボットは、隣接する関節構成部材によって構成される関節を複数有し、所定の周波数の電力を送る送電器と、前記隣接する関節構成部材の各々に設けられた電気配線と、前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、前記関節の各々について設けられ、前記電力を受けて共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、を備えてなり、隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、前記伝送器は、グランド用円筒体が互いに同軸状に一対に設けられ、該一対のグランド用円筒体の各々に前記グランド線が接続されてなることを特徴とする。 The non-contact power feeding robot according to claim 5 has a plurality of joints composed of adjacent joint constituent members, and is provided in each of a transmitter that transmits electric power of a predetermined frequency and the adjacent joint constituent members. An electric wiring and a pair of flat plates for a transmitter fixed to each of the adjacent joint constituent members are provided so as to face each other, and the electric wiring is connected to each of the pair of flat plates for a transmitter. It has a transmitter that transmits at least the electric power between a pair of flat plates for a transmitter in a non-contact manner, and a power receiving resonator that is provided for each of the joints and resonates by receiving the electric power. A ground wire provided on each of the adjacent joint components, comprising a power receiver that receives power and supplies power to the joint drive controller that can change the angle between the adjacent joint components. Further, the transmitter is characterized in that a pair of ground cylinders are provided coaxially with each other, and the ground wire is connected to each of the pair of ground cylinders.

請求項に記載の非接触給電ロボットは、請求項1~のいずれか1項に記載の非接触給電ロボットにおいて、前記伝送器用平板体に代えて伝送器用円筒体が互いに同軸状に一対に設けられていることを特徴とする。 The non-contact power feeding robot according to claim 6 is the non-contact power feeding robot according to any one of claims 1 to 5 , wherein instead of the flat plate body for the transmitter, cylindrical bodies for the transmitter are coaxially paired with each other. It is characterized by being provided.

請求項7に記載の非接触給電ロボットは、隣接する関節構成部材によって構成される関節を複数有し、所定の周波数の電力を送る送電器と、前記隣接する関節構成部材の各々に設けられた電気配線と、前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、前記関節の各々について設けられ、前記電力を受けて共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、を備えてなり、隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、前記伝送器は、前記伝送器用平板体が半径方向に隙間をあけて分割され、その中央部分に前記電気配線及び前記グランド線の一方が、その周辺部分に前記電気配線及び前記グランド線の他方が接続されてなることを特徴とする。 The non-contact power feeding robot according to claim 7 has a plurality of joints composed of adjacent joint constituent members, and is provided in each of a transmitter that transmits electric power of a predetermined frequency and the adjacent joint constituent members. An electric wiring and a pair of flat plates for a transmitter fixed to each of the adjacent joint constituent members are provided facing each other, and the electric wiring is connected to each of the pair of flat plates for a transmitter. It has a transmitter that transmits at least the power in a non-contact manner between a pair of flat plates for a transmitter, and a power receiving resonator that is provided for each of the joints and resonates by receiving the power. A ground wire provided for each of the adjacent joint components, comprising a power receiver that receives power and supplies power to the joint drive controller that can change the angle between the adjacent joint components. Further, in the transmitter, the flat plate for the transmitter is divided with a gap in the radial direction, and one of the electric wiring and the ground wire is provided in the central portion thereof, and the electric wiring and the peripheral portion thereof are provided in the peripheral portion thereof. The other of the ground wires is connected.

Claims (7)

電力を送る送電器と、
隣接する関節構成部材の各々に設けられた電気配線と、
前記隣接する関節構成部材の各々に固定された伝送器用平板体が互いに対向して一対に設けられ、該一対の伝送器用平板体の各々に前記電気配線が接続されてなり、該一対の伝送器用平板体の間で少なくとも前記電力の伝送を非接触で行う伝送器と、
前記送電共振器に共振する受電共振器を有し、前記電気配線により前記電力を受信し、前記隣接する関節構成部材の間の角度を変え得る関節駆動制御器に電力を供給する受電器と、
を備えてなることを特徴とする非接触給電ロボット。
A transmitter that sends electric power,
The electrical wiring provided on each of the adjacent joint components,
A pair of transmitter flat plates fixed to each of the adjacent joint constituent members are provided facing each other, and the electrical wiring is connected to each of the pair of transmitter flat plates, for the pair of transmitters. A transmitter that transmits at least the power between the flat plates in a non-contact manner,
A power receiver that has a power receiving resonator that resonates with the power transmission resonator, receives the power through the electrical wiring, and supplies power to a joint drive controller that can change the angle between the adjacent joint components.
A non-contact power supply robot characterized by being equipped with.
請求項1に記載の非接触給電ロボットにおいて、
制御信号送信共振器を有し制御信号送信器用平板体を介して制御信号を送る制御信号送信器と、
前記制御信号送信共振器に共振する制御信号受信共振器を有し、前記電気配線に接続された制御信号受信器用平板体を介して前記制御信号を受信し、前記関節駆動制御器に前記制御信号を送る制御信号受信器と、
を更に備えてなり、
前記伝送器は、前記一対の伝送器用平板体の間で更に前記制御信号の伝送を非接触で行うことを特徴とする非接触給電ロボット。
In the non-contact power feeding robot according to claim 1,
A control signal transmitter having a control signal transmission resonator and transmitting a control signal via a flat plate for the control signal transmitter.
It has a control signal receiving resonator that resonates with the control signal transmitting resonator, receives the control signal via a flat plate for a control signal receiver connected to the electrical wiring, and receives the control signal to the joint drive controller. With a control signal receiver to send
Be prepared for more
The transmitter is a non-contact power feeding robot that further transmits the control signal between the pair of flat plates for a transmitter in a non-contact manner.
請求項1又は2に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体は、円板状であることを特徴とする非接触給電ロボット。
In the non-contact power feeding robot according to claim 1 or 2.
The pair of flat plates for a transmitter is a non-contact power feeding robot characterized in that it has a disk shape.
請求項1~3のいずれか1項に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体の各々は、1個のもの又は並列配置された複数個のものであることを特徴とする非接触給電ロボット。
In the non-contact power feeding robot according to any one of claims 1 to 3, the non-contact power feeding robot
A non-contact power feeding robot, wherein each of the pair of flat plate bodies for a transmitter is one or a plurality of ones arranged in parallel.
請求項1~4のいずれか1項に記載の非接触給電ロボットにおいて、
前記一対の伝送器用平板体は、その間隙に誘電体を挟んでいることを特徴とする非接触給電ロボット。
In the non-contact power feeding robot according to any one of claims 1 to 4, the non-contact power feeding robot
The pair of flat plate bodies for a transmitter is a non-contact power feeding robot characterized in that a dielectric is sandwiched between the flat plates.
請求項1~5のいずれか1項に記載の非接触給電ロボットにおいて、
隣接する前記関節構成部材の各々に設けられたグランド線を更に備えており、
前記伝送器は、グランド用円筒体が互いに同軸状に一対に設けられ、該一対のグランド用円筒体の各々に前記グランド線が接続されてなることを特徴とする非接触給電ロボット。
The non-contact power feeding robot according to any one of claims 1 to 5.
Further, a ground wire provided for each of the adjacent joint components is provided.
The transmitter is a non-contact power feeding robot characterized in that a pair of ground cylinders are provided coaxially with each other and the ground wire is connected to each of the pair of ground cylinders.
請求項1~6のいずれか1項に記載の非接触給電ロボットにおいて、
前記伝送器用平板体に代えて伝送器用円筒体が互いに同軸状に一対に設けられていることを特徴とする非接触給電ロボット。
In the non-contact power feeding robot according to any one of claims 1 to 6.
A non-contact power feeding robot characterized in that a pair of cylinders for a transmitter are provided coaxially with each other in place of the flat plate for a transmitter.
JP2021193690A 2016-08-31 2021-11-29 Contactless power supply robot Active JP7158074B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2016170408 2016-08-31
JP2016170408 2016-08-31
JP2016226377 2016-11-21
JP2016226377 2016-11-21
JP2017062125 2017-03-28
JP2017062125 2017-03-28
JP2017168091A JP2018153909A (en) 2016-08-31 2017-08-31 Noncontact electric power supply robot

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017168091A Division JP2018153909A (en) 2016-08-31 2017-08-31 Noncontact electric power supply robot

Publications (2)

Publication Number Publication Date
JP2022016707A true JP2022016707A (en) 2022-01-21
JP7158074B2 JP7158074B2 (en) 2022-10-21

Family

ID=63717598

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017168091A Pending JP2018153909A (en) 2016-08-31 2017-08-31 Noncontact electric power supply robot
JP2021193690A Active JP7158074B2 (en) 2016-08-31 2021-11-29 Contactless power supply robot

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017168091A Pending JP2018153909A (en) 2016-08-31 2017-08-31 Noncontact electric power supply robot

Country Status (1)

Country Link
JP (2) JP2018153909A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024161459A1 (en) * 2023-01-30 2024-08-08 ファナック株式会社 Joint mechanism unit and robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276392A (en) * 1995-04-06 1996-10-22 Mitsubishi Electric Corp Robot device
JP2001077733A (en) * 1999-09-03 2001-03-23 Japan Science & Technology Corp Transmitter and receiver for ac power and information signal
WO2012077296A1 (en) * 2010-12-07 2012-06-14 株式会社アルバック Power supply device
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device
JP5802424B2 (en) * 2011-04-22 2015-10-28 矢崎総業株式会社 Resonant contactless power supply system
US9358684B1 (en) * 2015-02-18 2016-06-07 Merry Electronics Co., Ltd. Wireless transmission device and robot arm using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276392A (en) * 1995-04-06 1996-10-22 Mitsubishi Electric Corp Robot device
JP2001077733A (en) * 1999-09-03 2001-03-23 Japan Science & Technology Corp Transmitter and receiver for ac power and information signal
WO2012077296A1 (en) * 2010-12-07 2012-06-14 株式会社アルバック Power supply device
JP2015023638A (en) * 2013-07-17 2015-02-02 株式会社リューテック Wireless power transmission system

Also Published As

Publication number Publication date
JP2018153909A (en) 2018-10-04
JP7158074B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
US9478846B2 (en) Antenna device
JP6080158B2 (en) Wireless power transmission system
JP6927293B2 (en) Antenna and MIMO antenna
JP5981202B2 (en) Power transmission system
JP2009017284A (en) Antenna device
JPWO2016148274A1 (en) Antenna and wireless communication device
WO2011034205A1 (en) High frequency coupler
JP2016105584A (en) Antenna device, radio communication device and rader device
JP2022016707A (en) Noncontact electric power supply robot
JP6762886B2 (en) Antenna and antenna module
JP5730840B2 (en) Wireless power transmission system, power transmission device, and power reception device
JP5354874B2 (en) Inductive power supply system
US8674553B2 (en) Electromagnetic transmission apparatus
US9647711B2 (en) Electronic device
JP4311450B2 (en) Antenna device
TWI381577B (en) Rfid tag and method for manufacturing rfid tag
JP6729920B1 (en) Resonance device, power transmission device, and power transmission method
JP5662525B2 (en) ANTENNA DEVICE AND ITS FEEDING STRUCTURE
WO2019107553A1 (en) Communication device
JPWO2020100402A1 (en) Antenna, wireless communication equipment and antenna formation method
JP6126494B2 (en) Substrate antenna
JP2022188240A (en) Non-contact power supply device
JP7261517B1 (en) Impedance converter
JP2022139153A (en) Coupled-resonant wireless power transmission system
JP7100844B2 (en) Resonator, power transmission device, and power transmission method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7158074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150