JP2022015632A - Hot blast tube and hot blast stove - Google Patents

Hot blast tube and hot blast stove Download PDF

Info

Publication number
JP2022015632A
JP2022015632A JP2020118604A JP2020118604A JP2022015632A JP 2022015632 A JP2022015632 A JP 2022015632A JP 2020118604 A JP2020118604 A JP 2020118604A JP 2020118604 A JP2020118604 A JP 2020118604A JP 2022015632 A JP2022015632 A JP 2022015632A
Authority
JP
Japan
Prior art keywords
hot air
pipe
air
tube
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020118604A
Other languages
Japanese (ja)
Inventor
昭二 古舘
Shoji Koyakata
竜馬 桑山
Ryuma Kuwayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2020118604A priority Critical patent/JP2022015632A/en
Priority to KR1020210088440A priority patent/KR20220007016A/en
Publication of JP2022015632A publication Critical patent/JP2022015632A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains
    • C21B9/12Hot-blast valves or slides for blast furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L51/00Expansion-compensation arrangements for pipe-lines
    • F16L51/02Expansion-compensation arrangements for pipe-lines making use of bellows or an expansible folded or corrugated tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

To provide a hot blast tube and a hot blast stove capable of preventing a failure in an expansion tube due to hot blast.SOLUTION: Hot blast tubes 21, 22, 23 for supplying hot blast from hot blast stoves 11, 12, 13 to a blast furnace 1 have hot blast tube bodies 210, 220, 230, hot blast valves 213, 223, 233 installed in the middle of the hot blast tube bodies 210, 220, 230, expansion tubes 212, 222, 232 installed on the upstream side of the hot blast valves 213, 223, 233 of the hot blast tube bodies 210, 220, 230, and pressure lines 51, 52, 53 for supplying pressurized air higher in pressure than the hot blast passed through the hot blast tube bodies 210, 220, 230 to the expansion tubes 212, 222, 232.SELECTED DRAWING: Figure 1

Description

本発明は熱風管および熱風炉に関する。 The present invention relates to a hot air tube and a hot air furnace.

高炉には、熱風管を介して熱風炉が接続される。熱風管の途中には熱風弁および伸縮管が設置される(特許文献1参照)。このような熱風管では、伸縮管により、熱風炉の運転切り替え時の熱膨張を吸収でき、熱風弁の交換時の作業隙間が確保できる。
熱風管の内部は、送風運転時は熱風により内部が高圧となり、蓄熱運転時には熱風が通らないため低圧となる。特許文献1の熱風管では、伸縮管として均圧室を有する均圧型とし、熱風管内の圧力による伸縮方向の力を均圧室の圧力で相殺している。
A hot air furnace is connected to the blast furnace via a hot air pipe. A hot air valve and a telescopic pipe are installed in the middle of the hot air pipe (see Patent Document 1). In such a hot air pipe, the expansion pipe can absorb the thermal expansion when the operation of the hot air furnace is switched, and a work gap at the time of replacing the hot air valve can be secured.
The inside of the hot air pipe becomes high pressure due to the hot air during the blower operation, and becomes low pressure because the hot air does not pass during the heat storage operation. In the hot air tube of Patent Document 1, a pressure equalizing type having a pressure equalizing chamber is used as the expansion / contraction tube, and the force in the expansion / contraction direction due to the pressure in the hot air tube is canceled by the pressure of the pressure equalizing chamber.

特開昭62-267405号公報Japanese Unexamined Patent Publication No. 62-267405

前述した熱風管では、伸縮管を含む熱風管の内側に耐熱煉瓦が張られる。しかし、熱風管内の高温高圧の熱風が、耐熱煉瓦の隙間を通って熱風管本体まで達することがある。
伸縮管には、伸縮を可能とするためにベローズなど蛇腹状の伸縮部材が用いられ、その内側の耐火部材として可撓性を有するセラミックウールなどが用いられる。セラミックウールは、設置時に伸縮部材の空隙部に充填されているが、経時的変化で劣化脱落し、空隙部が残されるようになる。このような空隙部においては、熱風炉の送風運転と蓄熱運転との圧力変動によって熱風が流入し、流入した熱風の高熱によって伸縮部材の表面が赤熱するという問題があった。
In the hot air pipe described above, heat-resistant bricks are stretched inside the hot air pipe including the expansion pipe. However, high-temperature and high-pressure hot air in the hot air pipe may reach the hot air pipe body through the gaps between the heat-resistant bricks.
A bellows-shaped expansion / contraction member such as a bellows is used for the expansion / contraction tube, and a flexible ceramic wool or the like is used as the fireproof member inside the expansion / contraction tube. The ceramic wool is filled in the voids of the elastic member at the time of installation, but deteriorates and falls off due to changes over time, leaving the voids. In such a gap, there is a problem that hot air flows in due to pressure fluctuations between the blowing operation and the heat storage operation of the hot air furnace, and the surface of the expansion / contraction member becomes reddish due to the high heat of the inflowing hot air.

本発明の目的は、熱風による伸縮管の不具合を防止できる熱風管および熱風炉を提供することにある。 An object of the present invention is to provide a hot air tube and a hot air furnace capable of preventing a malfunction of the expansion tube due to hot air.

本発明の熱風管は、熱風炉から高炉に熱風を供給する熱風管であって、熱風管本体と、
前記熱風管本体の途中に設置された熱風弁と、前記熱風管本体の前記熱風弁よりも上流側に設置された伸縮管と、前記熱風管本体に通される熱風よりも高圧の加圧空気を前記伸縮管に供給する加圧ラインと、を有することを特徴とする。
このような本発明では、加圧ラインから供給される加圧空気により、伸縮管の内側を高圧に保ち、熱風管を通る熱風が煉瓦隙間を通して伸縮管まで達することを防止ないし抑制できる。その結果、伸縮管の熱風による影響を防止できる。
The hot air pipe of the present invention is a hot air pipe that supplies hot air from a hot air furnace to a blast furnace, and has a hot air pipe main body and a hot air pipe main body.
A hot air valve installed in the middle of the hot air pipe body, an expansion tube installed upstream of the hot air valve of the hot air tube body, and pressurized air having a higher pressure than the hot air passed through the hot air tube body. It is characterized by having a pressurizing line for supplying the telescopic tube.
In the present invention as described above, the pressurized air supplied from the pressurizing line keeps the inside of the telescopic pipe at a high pressure, and can prevent or suppress the hot air passing through the hot air pipe from reaching the telescopic pipe through the brick gap. As a result, it is possible to prevent the influence of hot air from the expansion tube.

本発明の熱風管において、前記加圧ラインは、途中に逆止弁を有することが好ましい。
このような本発明では、加圧空気の意図しない圧力低下があった場合でも、熱風管からの熱風の侵入ないし加圧空気源への逆流を防止できる。
In the hot air tube of the present invention, it is preferable that the pressurizing line has a check valve in the middle.
In the present invention as described above, even if there is an unintended pressure drop of the pressurized air, it is possible to prevent the intrusion of the hot air from the hot air pipe or the backflow to the pressurized air source.

本発明の熱風管において、前記加圧空気は、前記熱風炉の送風運転時に前記熱風炉に供給される送風用の空気であることが好ましい。
このような本発明では、専用の加圧空気供給装置が不要であり、装置構成の簡素化を図ることができる。また、同じ送風用の空気を用いることで、熱風管本体に通される熱風よりも高圧の加圧空気を自動的に供給できる。すなわち、送風用の空気のうち熱風炉に導入された分は、伸縮管に達した際に熱風炉の圧損だけ低圧になる。これに対し、加圧空気として利用する分は、元の送風用の空気の圧力が維持され、これにより熱風管本体を通る熱風よりも自動的に高圧となる。
In the hot air pipe of the present invention, the pressurized air is preferably air for blowing air supplied to the hot air furnace during the blowing operation of the hot air furnace.
In the present invention as described above, a dedicated pressurized air supply device is not required, and the device configuration can be simplified. Further, by using the same air for blowing air, it is possible to automatically supply pressurized air having a higher pressure than the hot air passed through the hot air pipe main body. That is, the portion of the air for blowing that is introduced into the hot air furnace becomes low pressure by the pressure loss of the hot air furnace when it reaches the expansion pipe. On the other hand, the pressure of the original air for blowing is maintained for the amount used as the pressurized air, so that the pressure is automatically higher than that of the hot air passing through the hot air pipe main body.

本発明の熱風管において、前記熱風炉には前記送風用の空気を前記熱風炉に供給する送風管が接続され、前記送風管の途中には送風弁が設置され、前記加圧空気は、前記送風管の前記送風弁から前記熱風炉までの部分から取り出されることが好ましい。
このような本発明では、熱風炉から熱風を送り出す送風運転時には、送風管から加圧ラインを経て伸縮管へ加圧空気が自動的に供給される。一方、送風運転のための送風が停止された際には、加圧ラインへの加圧空気が自動的に停止される。従って、加圧空気の断続切り替え操作を自動化することができる。
In the hot air pipe of the present invention, a blower pipe for supplying the air for blowing to the hot air furnace is connected to the hot air furnace, a blower valve is installed in the middle of the blower pipe, and the pressurized air is the said. It is preferable that the air is taken out from the portion of the air pipe from the air valve to the hot air furnace.
In the present invention as described above, pressurized air is automatically supplied from the blower pipe to the expansion / contraction pipe via the pressurizing line during the blowing operation for blowing hot air from the hot air furnace. On the other hand, when the blowing for the blowing operation is stopped, the pressurized air to the pressurizing line is automatically stopped. Therefore, it is possible to automate the intermittent switching operation of the pressurized air.

本発明の熱風管において、前記加圧空気は、前記熱風炉の燃焼時および送風時に常時流されることが好ましい。
このような本発明では、伸縮管に加圧空気が常時流されているため、煉瓦隙間からの熱風の侵入が突然生じた場合でも、伸縮管への到達を確実に防止できる。なお、加圧空気は、熱風炉に送風用の空気を供給する送風管の送風弁よりも上流側から取り出した送風用の空気が利用でき、例えば各熱風炉の送風管が接続される送風本管から取り出した送風用の空気とすることができる。送風管の送風弁よりも上流側から加圧空気を取り出す際には、流量制御弁もしくは圧力制御弁を設けて流量または圧力を調整することが好ましい。
In the hot air pipe of the present invention, it is preferable that the pressurized air is constantly flowed during combustion and blowing of the hot air furnace.
In the present invention as described above, since the pressurized air is constantly flowing through the telescopic pipe, even if hot air suddenly invades from the brick gap, it can be reliably prevented from reaching the telescopic pipe. As the pressurized air, the air for blowing air taken out from the upstream side of the blowing valve of the blowing pipe that supplies the air for blowing to the hot air furnace can be used. It can be the air for ventilation taken out from the pipe. When taking out pressurized air from the upstream side of the blower valve of the blower pipe, it is preferable to provide a flow rate control valve or a pressure control valve to adjust the flow rate or pressure.

本発明の熱風管において、前記加圧空気は、前記熱風管本体に通される熱風よりも低温であることが好ましい。
このような本発明では、伸縮管に供給された際に加圧空気が冷却されて、伸縮管および熱風管の鉄皮が高温により酸化され、強度低下することを防止でき、配管などの劣化を回避することができる。熱風管本体に通される熱風よりも低温とは、例えば摂氏350度以下である。
In the hot air tube of the present invention, it is preferable that the pressurized air has a lower temperature than the hot air passed through the hot air tube main body.
In such an invention, the pressurized air is cooled when it is supplied to the telescopic pipe, and the iron skin of the telescopic pipe and the hot air pipe can be prevented from being oxidized by a high temperature to reduce the strength, and the deterioration of the pipe and the like can be prevented. It can be avoided. The temperature lower than that of the hot air passed through the hot air tube body is, for example, 350 degrees Celsius or less.

本発明の熱風管において、前記加圧空気は、摂氏120度以上であることが好ましい。
このような本発明では、供給された加圧空気の結露に関して、とくに酸の結露防止を図ることができ、配管などの腐食を回避することができる。
In the hot air tube of the present invention, the pressurized air is preferably 120 degrees Celsius or higher.
In such an invention, it is possible to prevent dew condensation of acid in particular with respect to dew condensation of the supplied pressurized air, and it is possible to avoid corrosion of pipes and the like.

本発明の熱風炉は、熱風管を通して高炉に熱風を供給する熱風炉であって、前記熱風管は、熱風管本体と、前記熱風管本体の途中に設置された熱風弁と、前記熱風管本体の前記熱風弁よりも上流側に設置された伸縮管と、前記伸縮管に前記伸縮管の内部よりも高圧の加圧空気を供給する加圧ラインと、を有することを特徴とする。
このような本発明では、前述した本発明の熱風管で説明した通りの効果が得られる。
The hot air furnace of the present invention is a hot air furnace that supplies hot air to the blast furnace through a hot air pipe, and the hot air pipe includes a hot air pipe main body, a hot air valve installed in the middle of the hot air pipe main body, and the hot air pipe main body. It is characterized by having a telescopic pipe installed on the upstream side of the hot air valve and a pressurizing line for supplying pressurized air having a higher pressure than the inside of the telescopic pipe to the telescopic pipe.
In the present invention as described above, the effects as described in the hot air tube of the present invention described above can be obtained.

本発明によれば、熱風による伸縮管の不具合を防止できる熱風管および熱風炉を提供することができる。 According to the present invention, it is possible to provide a hot air tube and a hot air furnace that can prevent a malfunction of the expansion tube due to hot air.

本発明の熱風管および熱風炉の一実施形態を示す平面図。The plan view which shows one Embodiment of the hot air tube and the hot air furnace of this invention. 前記実施形態における伸縮管を示す拡大断面図。An enlarged sectional view showing a telescopic tube in the embodiment. 前記実施形態における各部圧力を示すグラフ。The graph which shows the pressure of each part in the said embodiment. 本発明の他の実施形態の熱風管および熱風炉を示す平面図。The plan view which shows the hot air tube and the hot air furnace of another embodiment of this invention. 本発明の他の実施形態の熱風管および熱風炉を示す平面図。The plan view which shows the hot air tube and the hot air furnace of another embodiment of this invention.

図1から図3には、本発明の熱風管および熱風炉の一実施形態が示されている。
図1において、高炉1は炉体2の周囲に環状管3を有し、環状管3と炉体2とは複数の羽口で接続されている。環状管3には熱風本管4が接続され、熱風本管4から供給された熱風が、環状管3から羽口を経て炉体2内に吹き込まれる。
1 to 3 show an embodiment of a hot air pipe and a hot air furnace of the present invention.
In FIG. 1, the blast furnace 1 has an annular pipe 3 around the furnace body 2, and the annular pipe 3 and the furnace body 2 are connected by a plurality of tuyere. The hot air main pipe 4 is connected to the annular pipe 3, and the hot air supplied from the hot air main pipe 4 is blown into the furnace body 2 from the annular pipe 3 through the tuyere.

熱風本管4に沿って、複数の熱風炉11,12,13が設置されている。
各々の熱風炉11,12,13では、炉内で燃料ガスを燃焼させることで炉内の蓄熱煉瓦に蓄熱する蓄熱運転と、炉内に導入した外気を蓄熱煉瓦で加熱して熱風本管4に熱風を送り出す送風運転と、が交替で実行される。
A plurality of hot air furnaces 11, 12, and 13 are installed along the hot air main pipe 4.
In each of the hot air furnaces 11, 12, and 13, a heat storage operation is performed in which fuel gas is burned in the furnace to store heat in the heat storage brick in the furnace, and the outside air introduced in the furnace is heated by the heat storage brick to heat the hot air main 4 The operation of blowing hot air to the fire and the operation of blowing hot air are performed alternately.

熱風炉11,12,13には、熱風本管4に熱風を送り出すために熱風管21,22,23が接続されている。
熱風管21,22,23は、鋼管を用いた熱風管本体210,220,230で形成され、熱風管本体210,220,230の途中には、それぞれミキシングチャンバ211,221,231、伸縮管212,222,232、および熱風弁213,223,233が設置されている。
Hot air pipes 21, 22, and 23 are connected to the hot air furnaces 11, 12, and 13 in order to send hot air to the hot air main pipe 4.
The hot air pipes 21, 22 and 23 are formed of hot air pipe main bodies 210, 220 and 230 using steel pipes, and in the middle of the hot air pipe main bodies 210, 220 and 230, mixing chambers 211, 22, 231 and expansion tube 212, respectively. , 222,232, and hot air valves 213,223,233 are installed.

ミキシングチャンバ211,221,231は、熱風炉11,12,13からの熱風に外気を混合し、所定の温度に調整された熱風を送り出す。
伸縮管212,222,232は、熱風管本体210,220,230およびミキシングチャンバ211,221,231の熱膨張による軸方向および軸直角方向の変位を吸収するとともに、熱風弁213,223,233の交換時に作業隙間を確保するために用いられる。
熱風弁213,223,233は、熱風炉11,12,13が送風運転する際に熱風管本体210,220,230を導通させ、蓄熱運転する際には熱風管本体210,220,230を閉止することが可能である。
The mixing chambers 211, 211, 231 mix the outside air with the hot air from the hot air furnaces 11, 12, and 13, and send out the hot air adjusted to a predetermined temperature.
The expansion tubes 212, 222, 232 absorb the displacements in the axial and perpendicular directions due to the thermal expansion of the hot air tube main body 210, 220, 230 and the mixing chambers 211, 221, 231 and the hot air valves 213, 223, 233. It is used to secure a work gap during replacement.
The hot air valves 213, 223, and 233 conduct the hot air pipe bodies 210, 220, 230 when the hot air furnaces 11, 12, and 13 are blown, and close the hot air pipe bodies 210, 220, 230 when the heat storage operation is performed. It is possible to do.

熱風炉11,12,13には、それぞれ蓄熱運転時の燃焼排気を行う煙道管31,32,33と、送風運転時の加圧空気供給を行う送風管41,42,43と、が接続されている。
煙道管31,32,33は、各々煙道本管38に接続され、熱風炉11,12,13からの燃焼排気を煙突39から排出可能である。
煙道管31,32,33の途中には、それぞれ煙道弁311,321,331が設置され、熱風炉11,12,13から煙道本管38への連通および閉止を切替え可能である。
The hot air furnaces 11, 12, and 13 are connected to flue pipes 31, 32, 33 that perform combustion exhaust during heat storage operation and blower pipes 41, 42, 43 that supply pressurized air during blower operation, respectively. Has been done.
The flue pipes 31, 32, and 33 are connected to the flue main 38, respectively, and the combustion exhaust from the hot air furnaces 11, 12, and 13 can be discharged from the chimney 39.
Flue valves 311, 321, 331 are installed in the middle of the flue pipes 31, 32, 33, respectively, and communication and closure from the hot air furnaces 11, 12, and 13 to the flue main 38 can be switched.

送風管41,42,43は、それぞれ煙道管31,32,33の途中に接続され、煙道管31,32,33を経由して熱風炉11,12,13に接続される。
送風管41,42,43は、各々送風本管48に接続され、ブロア49からの加圧空気を熱風炉11,12,13に供給可能である。
送風管41,42,43の途中には、それぞれ送風弁411,421,431が設置され、熱風炉11,12,13と送風本管48との連通および閉止を切替え可能である。
The blower pipes 41, 42, 43 are connected in the middle of the flue pipes 31, 32, 33, respectively, and are connected to the hot air furnaces 11, 12, 13 via the flue pipes 31, 32, 33, respectively.
The blower pipes 41, 42, and 43 are connected to the blower main pipe 48, respectively, and pressurized air from the blower 49 can be supplied to the hot air furnaces 11, 12, and 13.
Blower valves 411, 421, 431 are installed in the middle of the blower pipes 41, 42, 43, respectively, and communication and closure of the hot air furnaces 11, 12, 13 and the blower main pipe 48 can be switched.

送風管41,42,43の送風弁411,421,431より下流側、つまり煙道管31,32,33側から、伸縮管212,222,232に至る加圧ライン51,52,53が分岐されている。
加圧ライン51,52,53は、送風管41,42,43を通される送風用の加圧空気、つまり熱風管本体210,220,230に通される熱風よりも高圧の加圧空気を、伸縮管212,222,232に供給可能である。
加圧ライン51,52,53には、途中に逆止弁511,521,531が設置され、伸縮管212,222,232から送風管41,42,43への流通は防止されている。
Pressurization lines 51, 52, 53 from the downstream side of the blower valves 41, 42, 43 of the blower pipes 41, 42, 43, that is, the flue pipes 31, 32, 33 side to the expansion pipes 212, 222, 232 branch. Has been done.
The pressurizing lines 51, 52, 53 supply the pressurized air for blowing through the blower pipes 41, 42, 43, that is, the pressurized air having a higher pressure than the hot air passed through the hot air pipe main bodies 210, 220, 230. , Can be supplied to the telescopic tubes 212, 222, 232.
Check valves 511, 521, 531 are installed in the pressurizing lines 51, 52, 53 in the middle to prevent distribution from the expansion pipes 212, 222, 232 to the blow pipes 41, 42, 43.

図2には、本実施形態の伸縮管212,222,232が示されている。
伸縮管212,222,232は、それぞれ同じ伸縮管60で形成され、熱風管本体61(熱風炉11,12,13に接続される上流側の熱風管本体210,220,230)と、熱風管本体62(熱風本管4に接続される下流側の熱風管本体210,220,230)とを連結している。
FIG. 2 shows the telescopic tubes 212, 222, 232 of the present embodiment.
The expansion tubes 212, 222, 232 are each formed of the same expansion tube 60, and the hot air tube main body 61 (upstream hot air tube main bodies 210, 220, 230 connected to the hot air furnaces 11, 12, and 13) and the hot air tube. It is connected to the main body 62 (the hot air pipe main bodies 210, 220, 230 on the downstream side connected to the hot air main pipe 4).

熱風管本体61,62および伸縮管60は、それぞれ断面円形の鋼管63で形成され、鋼管63の内側には耐火材64が張られている。熱風管本体61,62および伸縮管60の端部にはフランジ65が形成され、各々のフランジ65どうしをボルト締結することで互いに接続されている。
なお、フランジ65をボルトで締結するほか、熱風管本体61,62と伸縮管60とを直接溶接してもよい。フランジ65を締結する方式は作業性が良好であり、溶接方式は熱風の漏れの防止性能が良好である。
一連に接続された熱風管本体61,62および伸縮管60の内側には、各々の耐火材64の内面に沿って、耐火煉瓦66(断熱煉瓦であってもよい)が積層される。これらの耐火煉瓦66の内側に形成される通路67に、熱風炉11,12,13からの熱風が通される。
The hot air pipe main body 61 and 62 and the telescopic pipe 60 are each formed of a steel pipe 63 having a circular cross section, and a refractory material 64 is stretched inside the steel pipe 63. Flange 65s are formed at the ends of the hot air tube main bodies 61 and 62 and the expansion tube 60, and the flanges 65 are connected to each other by bolting them together.
In addition to fastening the flange 65 with bolts, the hot air pipe bodies 61 and 62 and the expansion pipe 60 may be directly welded. The method of fastening the flange 65 has good workability, and the welding method has good performance of preventing hot air leakage.
Refractory bricks 66 (which may be heat insulating bricks) are laminated along the inner surface of each refractory material 64 inside the hot air tube main bodies 61 and 62 and the expansion tube 60 connected in series. Hot air from the hot air furnaces 11, 12, and 13 is passed through the passage 67 formed inside the refractory bricks 66.

伸縮管60において、鋼管63および耐火材64は、軸方向(図2の流れ方向Df)に3つに分割されている。3つの筒体60A,60B,60Cの間には、2つの隙間60D,60Dが形成され、各筒体60A,60B,60Cは互いに軸方向および軸直角方法に変位可能である。
筒体60A,60B,60Cの外周は、ベローズ68で覆われている。ベローズ68は蛇腹状の筒体で形成され、各筒体60A,60B,60Cの軸方向および軸直角方法に変位を許容しつつ、隙間60D,60Dを通じた伸縮管60の内外面の流通を遮断可能である。
ベローズ68の中間部は、固定具681により、中間の筒体60Bに固定されている。
In the expansion pipe 60, the steel pipe 63 and the refractory material 64 are divided into three in the axial direction (flow direction Df in FIG. 2). Two gaps 60D and 60D are formed between the three cylinders 60A, 60B and 60C, and the cylinders 60A, 60B and 60C can be displaced from each other in the axial direction and the axis perpendicular method.
The outer periphery of the cylinders 60A, 60B, 60C is covered with bellows 68. The bellows 68 is formed of a bellows-shaped cylinder, and while allowing displacement in the axial direction and the axis perpendicular method of each cylinder 60A, 60B, 60C, it blocks the flow of the inner and outer surfaces of the expansion tube 60 through the gaps 60D and 60D. It is possible.
The middle portion of the bellows 68 is fixed to the middle cylinder 60B by the fixing tool 681.

ベローズ68には、加圧ライン70(図1の加圧ライン51,52,53)が接続されている。
前述の通り、加圧ライン70(加圧ライン51,52,53)には、熱風管本体210,220,230に通される熱風(通路67を通る熱風)よりも高圧の加圧空気が供給され、ベローズ68の内部空間682の圧力を、通路67を通る熱風よりも高圧とすることができる。
A pressure line 70 (pressurization lines 51, 52, 53 in FIG. 1) is connected to the bellows 68.
As described above, the pressurized line 70 (pressurized lines 51, 52, 53) is supplied with pressurized air having a higher pressure than the hot air (hot air passing through the passage 67) passed through the hot air tube main bodies 210, 220, 230. Therefore, the pressure in the internal space 682 of the bellows 68 can be made higher than that of the hot air passing through the passage 67.

さらに、加圧ライン70(加圧ライン51,52,53)に通される加圧空気は、熱風管本体210,220,230に通される熱風(通路67を通る熱風)よりも低温の摂氏350度以下であり、かつ摂氏120度以上に調整されている。
この際、摂氏350度以下で摂氏120度以上の加圧空気として、例えば送風本管48に供給されるブロア49からの加圧空気が利用できる。この加圧空気は、ブロア49での断熱圧縮により昇温されており、摂氏350度以下で摂氏120度以上の加圧空気とするために特別なヒータによる加熱あるいは放熱器による冷却などを省略できる。
Further, the pressurized air passed through the pressurizing line 70 (pressurizing lines 51, 52, 53) is lower in degrees Celsius than the hot air passing through the hot air tube main bodies 210, 220, 230 (hot air passing through the passage 67). It is adjusted to 350 degrees or less and 120 degrees Celsius or more.
At this time, as the pressurized air at 350 degrees Celsius or less and 120 degrees Celsius or more, for example, the pressurized air from the blower 49 supplied to the blower main 48 can be used. This pressurized air is heated by adiabatic compression in the blower 49, and heating by a special heater or cooling by a radiator can be omitted in order to make the pressurized air at 350 degrees Celsius or less and 120 degrees Celsius or more. ..

図3の下段に示すように、本実施形態の熱風炉S1,S2,S3(図1の熱風炉11,12,13)では、順次交代でいずれか1つで送風運転H11,H12,H13を行うとともに、他で蓄熱運転C11,C12,C13を行う。 As shown in the lower part of FIG. 3, in the hot air furnaces S1, S2, S3 of the present embodiment (hot air furnaces 11, 12, 13 in FIG. 1), the blower operation H11, H12, H13 is sequentially alternated by any one of them. At the same time, the heat storage operations C11, C12, and C13 are performed elsewhere.

例えば、熱風炉S1(図1の熱風炉11)では、蓄熱運転C11によって炉内を十分な高温にしたのち、送風運転H11を開始する。
送風運転H11を開始する際には、図1の煙道管31を閉じるとともに、送風管41および熱風管21を開く。これにより、送風本管48に供給されている加圧空気が熱風炉11に送られ、熱風炉S1,S2,S3内を通って加熱された熱風が熱風管21へ送り出され、高炉1へと送風される。同時に、送風管41を通る加圧空気の一部が、加圧ライン51を通して伸縮管212に供給される。
For example, in the hot air furnace S1 (hot air furnace 11 in FIG. 1), the heat storage operation C11 raises the temperature inside the furnace to a sufficiently high temperature, and then the air blowing operation H11 is started.
When starting the blower operation H11, the flue pipe 31 of FIG. 1 is closed and the blower pipe 41 and the hot air pipe 21 are opened. As a result, the pressurized air supplied to the blower main 48 is sent to the hot air furnace 11, and the hot air heated through the hot air furnaces S1, S2, and S3 is sent out to the hot air pipe 21 and into the blast furnace 1. It is blown. At the same time, a part of the pressurized air passing through the blower pipe 41 is supplied to the telescopic pipe 212 through the pressure line 51.

所定時間が経過したら、熱風炉S1による送風運転H11を終了し、熱風炉S1では2期間分の蓄熱運転を開始する。
蓄熱運転C11を開始する際には、図1の煙道管31を開くとともに、送風管41および熱風管21を閉じ、炉内で燃料を燃焼させて蓄熱するとともに、排気を煙道管31から排出する。
熱風炉S1による蓄熱運転C11の期間に、蓄熱運転C12で蓄熱済の熱風炉S2による送風運転H12、および蓄熱運転C13で蓄熱済の熱風炉S3による送風運転H13が同様に行われる。
After the predetermined time has elapsed, the blowing operation H11 by the hot air furnace S1 is terminated, and the heat storage operation for two periods is started in the hot air furnace S1.
When starting the heat storage operation C11, the flue pipe 31 of FIG. 1 is opened, the blow pipe 41 and the hot air pipe 21 are closed, the fuel is burned in the furnace to store heat, and the exhaust is discharged from the flue pipe 31. Discharge.
During the heat storage operation C11 by the hot air furnace S1, the air blowing operation H12 by the hot air furnace S2 that has already stored heat in the heat storage operation C12 and the air blowing operation H13 by the hot air furnace S3 that has already stored heat in the heat storage operation C13 are similarly performed.

例えば、熱風炉S1による送風運転H11の際には、熱風管21に熱風が通されるとともに、加圧ライン51からの加圧空気が伸縮管212に供給される。
図3の上段において、送風本管48においては、加圧空気の圧力P48で略一定に維持されている。これに対し、熱風管21を通る熱風の圧力P21、および加圧ライン51を通る加圧空気の圧力P212は、それぞれ送風運転の開始とともに上昇し、送風運転中は一定に維持されたのち、送風運転の終了とともに圧力0に戻る。
For example, during the blowing operation H11 by the hot air furnace S1, the hot air is passed through the hot air pipe 21, and the pressurized air from the pressure line 51 is supplied to the expansion / contraction pipe 212.
In the upper part of FIG. 3, in the blower main 48, the pressure P48 of the pressurized air is maintained substantially constant. On the other hand, the pressure P21 of the hot air passing through the hot air pipe 21 and the pressure P212 of the pressurized air passing through the pressurizing line 51 increase with the start of the blowing operation, and are maintained constant during the blowing operation, and then blown. The pressure returns to 0 at the end of the operation.

ここで、熱風管21を通る熱風の圧力P21は、熱風炉11を通過する際の圧力損失により、送風本管48の圧力P48よりも小さな値となる。一方、加圧ライン51で送られる加圧空気の圧力P212は、送風本管48の圧力P48より僅かに小さい程度に維持され、熱風管21を通る熱風の圧力P21よりも十分高圧とされる。
その結果、伸縮管212において、熱風管21を通る高温高圧の熱風が、表面近くまで達することを防止できる。
Here, the pressure P21 of the hot air passing through the hot air pipe 21 becomes a value smaller than the pressure P48 of the blower main pipe 48 due to the pressure loss when passing through the hot air furnace 11. On the other hand, the pressure P212 of the pressurized air sent by the pressurizing line 51 is maintained to a degree slightly smaller than the pressure P48 of the blower main 48, and is sufficiently higher than the pressure P21 of the hot air passing through the hot air pipe 21.
As a result, in the telescopic tube 212, it is possible to prevent the high temperature and high pressure hot air passing through the hot air tube 21 from reaching near the surface.

図2において、伸縮管60の通路67を通る熱風は圧力P21であるのに対、加圧ライン70からベローズ68の内部空間682へ供給される加圧空気は圧力P212であり、従って伸縮管60の通路67を通る熱風が耐火煉瓦66の隙間を通って内部空間682へ侵入しようとしても、内部空間682に供給されている高圧の空気で阻まれ、内部空間682へ侵入することが防止される。 In FIG. 2, the hot air passing through the passage 67 of the telescopic tube 60 has a pressure P21, whereas the pressurized air supplied from the pressurizing line 70 to the internal space 682 of the bellows 68 has a pressure P212, and therefore the telescopic tube 60. Even if the hot air passing through the passage 67 tries to enter the internal space 682 through the gap of the fireproof brick 66, it is blocked by the high pressure air supplied to the internal space 682 and prevented from entering the internal space 682. ..

このような本実施形態によれば、以下の効果を得ることができる。
本実施形態では、加圧ライン70(51,52,53)から伸縮管60(212,222,232)に供給される加圧空気により、ベローズ68の内部空間682の圧力を、通路67を通る熱風よりも高圧に保ち、熱風管21,22,23(通路67)を通る熱風が耐火煉瓦66の隙間を通して伸縮管60の鋼管63やベローズ68まで達することを防止ないし抑制できる。その結果、伸縮管212,222,232の熱風による影響を防止できる。
According to such an embodiment, the following effects can be obtained.
In the present embodiment, the pressure in the internal space 682 of the bellows 68 is passed through the passage 67 by the pressurized air supplied from the pressurizing line 70 (51, 52, 53) to the expansion pipe 60 (212, 222, 232). It is possible to prevent or suppress the hot air passing through the hot air pipes 21, 22, 23 (passage 67) from reaching the steel pipe 63 and the bellows 68 of the expansion pipe 60 through the gaps of the refractory bricks 66 by keeping the pressure higher than that of the hot air. As a result, the influence of hot air on the expansion tubes 212, 222, 232 can be prevented.

本実施形態では、加圧ライン51,52,53の途中に逆止弁511,521,531が設けた。このため、加圧ライン51,52,53に供給される加圧空気の意図しない圧力低下があった場合でも、熱風管21,22,23からの熱風の侵入ないし加圧空気源である送風管41,42,43への逆流を防止できる。 In this embodiment, check valves 511, 521, 531 are provided in the middle of the pressurizing lines 51, 52, 53. Therefore, even if there is an unintended pressure drop of the pressurized air supplied to the pressurized lines 51, 52, 53, the hot air from the hot air pipes 21, 22, 23 invades or the blower pipe which is the pressurized air source. Backflow to 41, 42, 43 can be prevented.

本実施形態では、加圧ライン51,52,53に供給される加圧空気として、熱風炉11,12,13の送風運転時に熱風炉11,12,13に供給される送風管41,42,43に通される送風用の空気を用いた。このため、専用の加圧空気供給装置が不要であり、装置構成の簡素化を図ることができる。
また、熱風炉11,12,13に供給される送風用の空気と同じ空気を用いることで、熱風炉11,12,13から熱風管本体210,220,230に通される熱風よりも高圧の加圧空気を自動的に供給できる。
すなわち、送風管41,42,43に通される送風用の空気のうち、熱風炉11,12,13に導入された分は、熱風管本体210,220,230を通って伸縮管212,222,232に達した際に、熱風炉11,12,13の圧損だけ低圧になる。これに対し、加圧ライン51,52,53を通って加圧空気として利用する分は、送風管41,42,43における元の送風用の空気の圧力が維持され、これにより熱風管本体210,220,230を通る熱風よりも自動的に高圧となる。
In the present embodiment, as the pressurized air supplied to the pressurizing lines 51, 52, 53, the blower pipes 41, 42, which are supplied to the hot air furnaces 11, 12, 13 during the blower operation of the hot air furnaces 11, 12, 13. The air for blowing air passed through 43 was used. Therefore, a dedicated pressurized air supply device is not required, and the device configuration can be simplified.
Further, by using the same air as the air for blowing air supplied to the hot air furnaces 11, 12, 13, the pressure is higher than that of the hot air passed from the hot air furnaces 11, 12, 13 to the hot air pipe main bodies 210, 220, 230. Pressurized air can be supplied automatically.
That is, of the air for blowing air passed through the blowing pipes 41, 42, 43, the portion introduced into the hot air furnaces 11, 12, 13 passes through the hot air pipe main bodies 210, 220, 230 and the expansion pipes 212, 222. , 232, the pressure is reduced by the pressure loss of the hot air furnaces 11, 12, and 13. On the other hand, the amount used as pressurized air through the pressurized lines 51, 52, 53 maintains the original pressure of the air for blowing in the blowing pipes 41, 42, 43, whereby the hot air pipe main body 210 , 220, 230 automatically becomes higher pressure than hot air passing through.

本実施形態では、熱風炉11,12,13には送風用の空気を熱風炉11,12,13に供給する送風管41,42,43が接続され、送風管41,42,43の途中には送風弁411,421,431が設置され、加圧ライン51,52,53に送られる加圧空気は、送風管41,42,43の送風弁411,421,431から熱風炉11,12,13までの部分から取り出されるようにした。このため、熱風炉11,12,13から熱風を送り出す送風運転時には、送風管41,42,43から加圧ライン51,52,53を経て伸縮管212,222,232へ加圧空気が自動的に供給される。一方、送風運転のための送風が停止された際には、加圧ライン51,52,53への加圧空気が自動的に停止される。従って、加圧空気の断続切り替え操作を自動化することができる。 In the present embodiment, the hot air furnaces 11, 12, and 13 are connected to the blower pipes 41, 42, 43 that supply the air for blowing to the hot air furnaces 11, 12, and 13, and are connected in the middle of the blower pipes 41, 42, 43. The blower valves 411,421,431 are installed, and the pressurized air sent to the pressurizing lines 51, 52, 53 is sent from the blower valves 411, 421, 431 of the blower pipes 41, 42, 43 to the hot air furnaces 11,12, It was made to be taken out from the part up to 13. Therefore, during the blowing operation for sending hot air from the hot air furnaces 11, 12, and 13, the pressurized air is automatically sent from the blower pipes 41, 42, 43 to the expansion pipes 212, 222, 232 via the pressure lines 51, 52, 53. Is supplied to. On the other hand, when the blowing for the blowing operation is stopped, the pressurized air to the pressurizing lines 51, 52, 53 is automatically stopped. Therefore, it is possible to automate the intermittent switching operation of the pressurized air.

本実施形態では、加圧ライン51,52,53から伸縮管212,222,232に供給される加圧空気は、熱風管本体210,220,230に通される熱風よりも低温、つまり伸縮管212,222,232や鋼管63が高温酸化や強度低下を発生しない摂氏350度以下の低温であるとしたため、伸縮管212,222,232に供給された際に加圧空気にて伸縮管212,222,232および鋼管63の高温化を防止でき、伸縮管212,222,232や鋼管63の劣化などを回避できる。
さらに、加圧ライン51,52,53からの加圧空気は、摂氏120度以上であるとしたため、伸縮管212,222,232に供給された加圧空気の結露に関して、とくに酸の結露防止を図ることができ、鋼管63の腐食などを回避することができる。
In the present embodiment, the pressurized air supplied from the pressurizing lines 51, 52, 53 to the expansion pipes 212, 222, 232 is lower than the hot air passed through the hot air pipe main body 210, 220, 230, that is, the expansion pipe. Since the temperature of 212, 222, 232 and the steel pipe 63 is low at 350 degrees Celsius or less, which does not cause high temperature oxidation or decrease in strength, the expansion tube 212, which is supplied with pressurized air when supplied to the expansion tube 212, 222, 232, It is possible to prevent the temperature of 222,232 and the steel pipe 63 from becoming high, and it is possible to avoid deterioration of the telescopic pipe 212, 222,232 and the steel pipe 63.
Furthermore, since the pressurized air from the pressurized lines 51, 52, 53 is said to be 120 degrees Celsius or higher, the dew condensation of the pressurized air supplied to the expansion pipes 212, 222, 232 is particularly prevented from dew condensation of acid. This can be achieved, and corrosion of the steel pipe 63 can be avoided.

前述した図1から図3の実施形態では、加圧ライン51,52,53に送られる加圧空気を、送風管41,42,43の送風弁411,421,431から熱風炉11,12,13までの部分から取り出し、これにより加圧空気の断続切り替え操作を自動化できるようにしていた。
これに対し、図4に示す本発明の他の実施形態では、加圧空気の取り出しが異なる構造とされている。
In the above-described embodiment of FIGS. 1 to 3, the pressurized air sent to the pressurizing lines 51, 52, 53 is sent from the blow valve 411, 421, 431 of the blower pipes 41, 42, 43 to the hot air furnace 11, 12, It was taken out from the parts up to 13 so that the operation of switching the intermittent switching of the pressurized air could be automated.
On the other hand, in another embodiment of the present invention shown in FIG. 4, the structure in which the pressurized air is taken out is different.

図4において、本実施形態は、基本構成が前述した図1の実施形態と同様であり、共通部分についての重複する説明は省略し、相違する部分について説明する。
本実施形態において、熱風炉11A,12A,13Aは熱風管21A,22A,23Aを有し、熱風管21A,22A,23Aは加圧ライン51A,52A,53Aを有する。
加圧ライン51A,52A,53Aは、それぞれ送風本管48に接続され、送風本管48から取り出した加圧空気を伸縮管212,222,232に供給可能である。
In FIG. 4, the basic configuration of the present embodiment is the same as that of the above-described embodiment of FIG. 1, and duplicate explanations of common parts will be omitted, and different parts will be described.
In the present embodiment, the hot air furnaces 11A, 12A, 13A have hot air pipes 21A, 22A, 23A, and the hot air pipes 21A, 22A, 23A have pressure lines 51A, 52A, 53A.
The pressurizing lines 51A, 52A, and 53A are connected to the blower main pipe 48, respectively, and the pressurized air taken out from the blower main pipe 48 can be supplied to the expansion pipes 212, 222, 232, respectively.

前述した図1の実施形態では、送風弁411,421,431の断続に伴って加圧ライン51,52,53の加圧空気も自動的に断続されていた。
これに対し、本実施形態では、加圧ライン51A,52A,53Aが加圧空気を取り出す送風本管48は常時略一定の圧力(図3の圧力P48)とされるため、送風運転時および蓄熱運転時の別にかかわりなく伸縮管212,222,232には、流量制御弁または圧力調節弁(図示省略)を設け制御することで、常時略一定の加圧空気が供給される。
In the embodiment of FIG. 1 described above, the pressurized air in the pressurizing lines 51, 52, and 53 was automatically interrupted as the blower valves 411, 421, and 431 were interrupted.
On the other hand, in the present embodiment, the blower main pipe 48 from which the pressurizing lines 51A, 52A, and 53A take out the pressurized air always has a substantially constant pressure (pressure P48 in FIG. 3), so that during the blower operation and heat storage. By providing a flow control valve or a pressure control valve (not shown) in the expansion and contraction tubes 212, 222, 232 and controlling them regardless of the time of operation, substantially constant pressurized air is always supplied.

このような本実施形態では、加圧ライン51A,52A,53Aから伸縮管212,222,232に常時略一定の加圧空気が供給されているため、耐火煉瓦66(図2参照)の隙間から通路67を通る熱風が突然侵入した場合でも、伸縮管60の鋼管63やベローズ68まで到達することを確実に防止できる。 In such an embodiment, since substantially constant pressurized air is constantly supplied from the pressurizing lines 51A, 52A, 53A to the expansion pipes 212, 222, 232, through the gaps in the refractory bricks 66 (see FIG. 2). Even if hot air passing through the passage 67 suddenly enters, it can be surely prevented from reaching the steel pipe 63 and the bellows 68 of the telescopic pipe 60.

なお、本発明は前述した実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形などは本発明に含まれる。
前記実施形態では、加圧ライン51,52,53,51A,52A,53Aに逆止弁511,521,531を設置したが、その弁構造や設置位置は適宜選択してよい。また、逆止弁511,521,531を設けることは必須ではなく、適宜省略してもよい。
The present invention is not limited to the above-described embodiment, and modifications to the extent that the object of the present invention can be achieved are included in the present invention.
In the above embodiment, the check valves 511, 521, 531 are installed on the pressurizing lines 51, 52, 53, 51A, 52A, 53A, but the valve structure and the installation position may be appropriately selected. Further, it is not essential to provide the check valves 511, 521, 531 and may be omitted as appropriate.

前記実施形態では、加圧ライン51,52,53,51A,52A,53Aで送られる加圧空気として、熱風炉11,12,13,11A,12A,13Aの送風運転時に各々に供給される送風用の空気を、送風管41,42,43または送風本管48から取り出して用いていた。これに対し、別途加圧空気供給装置を設置し、必要な温度および圧力、風量の加圧空気を加圧ライン51,52,53,51A,52A,53Aに供給してもよい。 In the above embodiment, as the pressurized air sent by the pressurized lines 51, 52, 53, 51A, 52A, 53A, the blown air supplied to each of the hot air furnaces 11, 12, 13, 11A, 12A, 13A during the blowing operation. Air was taken out from the blower pipes 41, 42, 43 or the blower main pipe 48 and used. On the other hand, a pressurized air supply device may be separately installed to supply pressurized air having a required temperature, pressure and air volume to the pressurized lines 51, 52, 53, 51A, 52A and 53A.

前記実施形態では、加圧ライン51,52,53,51A,52A,53Aから伸縮管212,222,232に供給される加圧空気を、熱風管本体210,220,230に通される熱風よりも低温であり、かつ摂氏120度以上であるとしたが、例えば加圧空気中の結露成分を予め除去できていれば、これらの温度条件は緩和してもよい。 In the above embodiment, the pressurized air supplied from the pressurizing lines 51, 52, 53, 51A, 52A, 53A to the expansion and contraction tubes 212, 222, 232 is blown from the hot air passed through the hot air tube main body 210, 220, 230. Although it is said that the temperature is low and the temperature is 120 degrees Celsius or higher, for example, these temperature conditions may be relaxed as long as the dew condensation component in the pressurized air can be removed in advance.

前記実施形態では、それぞれ高炉1あたり3基の熱風炉11,12,13,11A,12A,13Aを設置したが、その数は2基あるいは4基以上であってもよい。熱風炉11,12,13,11A,12A,13Aの形式は任意であり、外燃式あるいは内燃式が適宜利用できる。
前記実施形態では、熱風管21,22,23,21A,22A,23Aを、それぞれ熱風管本体210,220,230の途中に、ミキシングチャンバ211,221,231、伸縮管212,222,232、熱風弁213,223,233の順に配置されたものとした。このような構成では、伸縮管212,222,232が熱風弁213,223,233よりも上流側にあることで、熱風弁213,223,233を閉じた状態では熱風に曝されることなく伸縮管212,222,232の内部作業が可能である。
In the above embodiment, three hot air furnaces 11, 12, 13, 11A, 12A, and 13A are installed per blast furnace, respectively, but the number may be two or four or more. The type of the hot air furnace 11, 12, 13, 11A, 12A, 13A is arbitrary, and an external combustion type or an internal combustion type can be appropriately used.
In the above embodiment, the hot air tubes 21,22,23,21A, 22A, 23A are placed in the middle of the hot air tube main bodies 210, 220, 230, respectively, with the mixing chamber 211,221,231, the expansion tube 212,222,232, and the hot air. The valves were arranged in the order of 213, 223, 233. In such a configuration, since the expansion and contraction pipes 212, 222, 232 are located on the upstream side of the hot air valve 213,223,233, the expansion and contraction without being exposed to hot air when the hot air valve 213,223,233 is closed. Internal work of pipes 212, 222, 232 is possible.

前述した図1の実施形態あるいは図4の実施形態では、伸縮管212,222,232が、ミキシングチャンバ211,221,231と熱風弁213,223,233との間だけに設置されていた。
これに対し、図5に示す本発明の他の実施形態では、ミキシングチャンバ211,221,231と熱風炉11,12,13との間に、別の伸縮管212B,222B,232Bが設置されている。これらの伸縮管212B,222B,232Bには、加圧ライン51,52,53(図1参照)から分岐された加圧ライン51B,52B,53Bが接続され、それぞれから加圧空気が供給されている。
加圧ライン51B,52B,53Bには、それぞれ逆止弁(図1の逆止弁511,521,531と同様)が設置されている。加圧ライン51B,52B,53Bは、加圧ライン51A,52A,53A(図4参照)から分岐されてもよい。
このような別の伸縮管212B,222B,232Bでは、当該区間に熱風弁213,223,233がないので、弁取替用としての収縮代を考慮する必要がなく、破損トラブルの件数は熱風弁213,223,233に隣接する伸縮管212,222,232に比べ少ないが、熱風管本体210,220,230の変位許容性能を向上できる。
In the embodiment of FIG. 1 or FIG. 4 described above, the expansion pipes 212, 222, 232 were installed only between the mixing chambers 211,221,231 and the hot air valves 213,223,233.
On the other hand, in another embodiment of the present invention shown in FIG. 5, another expansion tube 212B, 222B, 232B is installed between the mixing chamber 211,221,231 and the hot air furnace 11, 12, 13. There is. Pressurized lines 51B, 52B, 53B branched from the pressurizing lines 51, 52, 53 (see FIG. 1) are connected to these telescopic tubes 212B, 222B, 232B, and pressurized air is supplied from each. There is.
Check valves (similar to the check valves 511, 521, 531 in FIG. 1) are installed in the pressure lines 51B, 52B, and 53B, respectively. The pressurizing lines 51B, 52B, 53B may be branched from the pressurizing lines 51A, 52A, 53A (see FIG. 4).
In such another expansion tube 212B, 222B, 232B, since there is no hot air valve 213,223,233 in the section, it is not necessary to consider the shrinkage allowance for valve replacement, and the number of breakage troubles is the hot air valve. Although it is less than the telescopic pipes 212, 222, 232 adjacent to 213, 223, and 233, the displacement tolerance performance of the hot air pipe main body 210, 220, 230 can be improved.

前述した各実施形態では、熱風炉11,12,13,11A,12A,13Aを、燃焼室と蓄熱室が同一の容器内である内燃式熱風炉としているが、燃焼室と蓄熱室とが独立した容器である外燃式熱風炉としてもよい。この際、燃焼室と蓄熱室を接続する配管に伸縮管を設けている場合があるが、この伸縮管に本発明の熱風管を適用してよい。 In each of the above-described embodiments, the hot air furnaces 11, 12, 13, 11A, 12A, and 13A are internal combustion type hot air furnaces in which the combustion chamber and the heat storage chamber are in the same container, but the combustion chamber and the heat storage chamber are independent. It may be an external combustion type hot air furnace which is a container. At this time, a telescopic pipe may be provided in the pipe connecting the combustion chamber and the heat storage chamber, and the hot air pipe of the present invention may be applied to this telescopic pipe.

本発明は熱風管および熱風炉に利用できる。 The present invention can be used for hot air pipes and hot air furnaces.

1…高炉、2…炉体、3…環状管、4…熱風本管、11,11A,12,12A,13,13A…熱風炉、21,21A,22,22A,23,23A…熱風管、210,220,230…熱風管本体、211,221,231…ミキシングチャンバ、212,212B,222,222B,232,232B…伸縮管、213,223,233…熱風弁、31,32,33…煙道管、311,321,331…煙道弁、38…煙道本管、39…煙突、41,42,43…送風管、411,421,431…送風弁、48…送風本管、49…ブロア、51,51A,51B,52,52A,52B,53,53A,53B…加圧ライン、511,521,531…逆止弁、60…伸縮管、60A,60B,60C…筒体、60D,60E…隙間、61,62…熱風管本体、63…鋼管、64…耐火材、65…フランジ、66…耐火煉瓦、67…通路、68…ベローズ、681…固定具、682…内部空間、70…加圧ライン、C11,C12,C13…蓄熱運転、Df…流れ方向、H11,H12,H13…送風運転、
P21…熱風管の圧力、P212…加圧ラインの圧力、P48…送風本管の圧力、S1,S2,S3…熱風炉。
1 ... blast furnace, 2 ... furnace body, 3 ... annular pipe, 4 ... hot air main pipe, 11, 11A, 12, 12A, 13, 13A ... hot air furnace, 21,21A, 22, 22A, 23, 23A ... hot air pipe, 210, 220, 230 ... Hot air tube body, 211,221,231 ... Mixing chamber, 212,212B, 222,222B, 232,232B ... Telescopic tube, 213,223,233 ... Hot air valve, 31,32,33 ... Smoke Pipe, 311, 321,331 ... Smoke valve, 38 ... Smoke main, 39 ... Chimney, 41, 42, 43 ... Blower, 411, 421, 431 ... Blower valve, 48 ... Blower main, 49 ... Blower, 51, 51A, 51B, 52, 52A, 52B, 53, 53A, 53B ... Pressurizing line, 511, 521, 531 ... Check valve, 60 ... Telescopic tube, 60A, 60B, 60C ... Cylinder, 60D, 60E ... Gap, 61, 62 ... Hot air pipe body, 63 ... Steel pipe, 64 ... Fireproof material, 65 ... Flange, 66 ... Fireproof brick, 67 ... Passage, 68 ... Bellows, 681 ... Fixture, 682 ... Internal space, 70 ... Pressurizing line, C11, C12, C13 ... Heat storage operation, Df ... Flow direction, H11, H12, H13 ... Blower operation,
P21 ... Hot air pipe pressure, P212 ... Pressurized line pressure, P48 ... Blower main pipe pressure, S1, S2, S3 ... Hot air furnace.

Claims (8)

熱風炉から高炉に熱風を供給する熱風管であって、
熱風管本体と、
前記熱風管本体の途中に設置された熱風弁と、
前記熱風管本体の前記熱風弁よりも上流側に設置された伸縮管と、
前記熱風管本体に通される熱風よりも高圧の加圧空気を前記伸縮管に供給する加圧ラインと、を有することを特徴とする熱風管。
A hot air pipe that supplies hot air from a hot air furnace to a blast furnace.
Hot air tube body and
With the hot air valve installed in the middle of the hot air pipe body,
A telescopic pipe installed on the upstream side of the hot air valve of the hot air pipe body, and
A hot air tube comprising a pressurizing line for supplying pressurized air having a pressure higher than that of hot air passed through the hot air tube main body to the telescopic tube.
請求項1に記載した熱風管において、
前記加圧ラインは、途中に逆止弁を有することを特徴とする熱風管。
In the hot air tube according to claim 1,
The pressurizing line is a hot air pipe characterized by having a check valve in the middle.
請求項1または請求項2に記載した熱風管において、
前記加圧空気は、前記熱風炉の送風運転時に前記熱風炉に供給される送風用の空気であることを特徴とする熱風管。
In the hot air tube according to claim 1 or 2.
The hot air pipe is characterized in that the pressurized air is air for blowing air supplied to the hot air furnace during the blowing operation of the hot air furnace.
請求項3に記載した熱風管において、
前記熱風炉には前記送風用の空気を前記熱風炉に供給する送風管が接続され、
前記送風管の途中には送風弁が設置され、
前記加圧空気は、前記送風管の前記送風弁から前記熱風炉までの部分から取り出されることを特徴とする熱風管。
In the hot air tube according to claim 3,
A blower pipe for supplying the air for blowing to the hot air furnace is connected to the hot air furnace.
A blow valve is installed in the middle of the blower pipe.
The hot air pipe is characterized in that the pressurized air is taken out from a portion of the blower pipe from the blower valve to the hot air furnace.
請求項1から請求項3のいずれか一項に記載した熱風管において、
前記加圧空気は、前記熱風炉の燃焼時および送風時に常時流されることを特徴とする熱風管。
In the hot air tube according to any one of claims 1 to 3.
The hot air tube is characterized in that the pressurized air is constantly flowed during combustion and blowing of the hot air furnace.
請求項1から請求項5のいずれか一項に記載した熱風管において、
前記加圧空気は、前記熱風管本体に通される熱風よりも低温であることを特徴とする熱風管。
In the hot air tube according to any one of claims 1 to 5.
The hot air tube is characterized in that the pressurized air has a lower temperature than the hot air passed through the hot air tube main body.
請求項6に記載した熱風管において、
前記加圧空気は、摂氏120度以上であることを特徴とする熱風管。
In the hot air tube according to claim 6,
The pressurized air is a hot air tube having a temperature of 120 degrees Celsius or higher.
熱風管を通して高炉に熱風を供給する熱風炉であって、
前記熱風管は、
熱風管本体と、
前記熱風管本体の途中に設置された熱風弁と、
前記熱風管本体の前記熱風弁よりも上流側に設置された伸縮管と、
前記伸縮管に前記伸縮管の内部よりも高圧の加圧空気を供給する加圧ラインと、を有することを特徴とする熱風炉。
A hot air furnace that supplies hot air to the blast furnace through a hot air pipe.
The hot air tube is
Hot air tube body and
With the hot air valve installed in the middle of the hot air pipe body,
A telescopic pipe installed on the upstream side of the hot air valve of the hot air pipe body, and
A hot air furnace characterized by having a pressurizing line for supplying pressurized air having a higher pressure than the inside of the telescopic tube to the telescopic tube.
JP2020118604A 2020-07-09 2020-07-09 Hot blast tube and hot blast stove Pending JP2022015632A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020118604A JP2022015632A (en) 2020-07-09 2020-07-09 Hot blast tube and hot blast stove
KR1020210088440A KR20220007016A (en) 2020-07-09 2021-07-06 Hot-blast pipe and hot-blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020118604A JP2022015632A (en) 2020-07-09 2020-07-09 Hot blast tube and hot blast stove

Publications (1)

Publication Number Publication Date
JP2022015632A true JP2022015632A (en) 2022-01-21

Family

ID=80052546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118604A Pending JP2022015632A (en) 2020-07-09 2020-07-09 Hot blast tube and hot blast stove

Country Status (2)

Country Link
JP (1) JP2022015632A (en)
KR (1) KR20220007016A (en)

Also Published As

Publication number Publication date
KR20220007016A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
KR20180101498A (en) Cooling panels for combustor panels, combustors, combustion devices, gas turbines, and combustor panels
US7666345B2 (en) Method and apparatus for melting metal
US4169700A (en) Burner for a regenerative hot blast stove
JPH07234018A (en) Combustion controlling method for tubular heating furnace and the same furnace
JP2022015632A (en) Hot blast tube and hot blast stove
JP2019536971A (en) Extended leg folded elbow and method for use in steelmaking furnaces
JP4757596B2 (en) Thermal storage burner device and its operation method
JP7398426B2 (en) Heat recovery equipment and heat recovery method
CN115126956A (en) Non-metal expansion joint and production method thereof
KR100447892B1 (en) The exchangeable connecting pipe of hot stove having cooling ability
KR100649323B1 (en) A method and an apparatus for preventing damage of fuel nozzle in a regenerative burner
JP6821274B2 (en) Recuperator and radiant tube type heating device
KR101316647B1 (en) Overheat protection apparatus of boiler complex burner
KR101712141B1 (en) Backfire prevention type burner apparatus
JP4349954B2 (en) Operation method of regenerative burner furnace
KR102490269B1 (en) Method of extending hot-blast pipe and method of adding hot- blast furnace
US3280769A (en) Preheater for furnaces
KR20120072460A (en) Nozzle structure of regenerative burner having long lifetime
CN101655177A (en) High-temperature resistant corrugated expansion joint
CN217815649U (en) Non-metal expansion joint
US6131955A (en) Expansion joint with thermal transition connector
CN218032091U (en) Corrugated compensator repairing device
JP2023157171A (en) Construction method of hot air furnace and hot air furnace
KR20070094469A (en) Exhaust pipe system for multicylinder gas and diesel engine
CN116334334A (en) Internal combustion type hot-blast stove pipeline system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210514

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20231201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507