JP2022015566A - Reducing agent supply control device and reducing agent supply control method - Google Patents

Reducing agent supply control device and reducing agent supply control method Download PDF

Info

Publication number
JP2022015566A
JP2022015566A JP2020118494A JP2020118494A JP2022015566A JP 2022015566 A JP2022015566 A JP 2022015566A JP 2020118494 A JP2020118494 A JP 2020118494A JP 2020118494 A JP2020118494 A JP 2020118494A JP 2022015566 A JP2022015566 A JP 2022015566A
Authority
JP
Japan
Prior art keywords
reducing agent
temperature
agent supply
threshold value
supply control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020118494A
Other languages
Japanese (ja)
Inventor
直人 村澤
Naoto Murasawa
謙治 藤井
Kenji Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2020118494A priority Critical patent/JP2022015566A/en
Publication of JP2022015566A publication Critical patent/JP2022015566A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

To provide a reducing agent supply control device and a reducing agent supply control method capable of promptly lowering a temperature of exhaust gas.SOLUTION: A reducing agent supply control device controlling a reducing agent supply device that is provided on the upstream side of an NOx removal catalyst removing NOx in exhaust gas in an exhaust pipe in which exhaust gas discharged from an internal combustion engine flows and that supplies a reducing agent into the exhaust pipe includes: a determination section determining whether or not an inlet temperature of the NOx removal catalyst is equal to or higher than a threshold value that is greater than an upper limit value of an active temperature region of the NOx removal catalyst and is smaller than a lower limit value of a temperature region where the NOx removal catalyst can be damaged; and a control section controlling the reducing agent supply device so that supply amount of the reducing agent per unit time in the case where the inlet temperature is equal to or higher than the threshold value becomes larger compared to the case where the inlet temperature is lower than the threshold value.SELECTED DRAWING: Figure 1

Description

本開示は、還元剤供給制御装置および還元剤供給制御方法に関する。 The present disclosure relates to a reducing agent supply control device and a reducing agent supply control method.

内燃機関から排出された排ガスを浄化するシステムとして、例えば、尿素SCR(Selective Catalytic Reduction)システムが知られている(例えば、特許文献1参照)。 As a system for purifying exhaust gas discharged from an internal combustion engine, for example, a urea SCR (Selective Catalytic Reduction) system is known (see, for example, Patent Document 1).

尿素SCRシステムは、排ガスが流れる排気管内において、その上流側から順に、尿素水噴射装置(インジェクタ、または、ドージングモジュールともいう)と、SCR触媒とを備える。尿素水噴射装置から排気管内に噴射された尿素水は、排ガスの熱によって加水分解される。これによって発生したアンモニアは、SCR触媒に供給される。そして、SCR触媒では、排ガス中のNOxが窒素に還元される。 The urea SCR system includes a urea water injection device (also referred to as an injector or a dosing module) and an SCR catalyst in order from the upstream side in the exhaust pipe through which the exhaust gas flows. The urea water injected into the exhaust pipe from the urea water injection device is hydrolyzed by the heat of the exhaust gas. The ammonia generated thereby is supplied to the SCR catalyst. Then, in the SCR catalyst, NOx in the exhaust gas is reduced to nitrogen.

特開2009-138737号公報Japanese Unexamined Patent Publication No. 2009-138737

排ガスを効率的に浄化するためには、SCR触媒が活性温度領域であることが必要であるため、排ガスはある程度高温であることが望ましい。その一方で、SCR触媒が活性温度領域よりも高温になった場合、SCR触媒に熔解等の不具合が生じるおそれがある。よって、排ガスが活性温度領域よりも高温になる前に、排ガスの温度を速やかに低下させる必要がある。 Since the SCR catalyst needs to be in the active temperature region in order to efficiently purify the exhaust gas, it is desirable that the exhaust gas has a high temperature to some extent. On the other hand, when the temperature of the SCR catalyst becomes higher than the active temperature region, there is a possibility that the SCR catalyst may have a problem such as melting. Therefore, it is necessary to quickly lower the temperature of the exhaust gas before the exhaust gas becomes higher than the active temperature region.

本開示の一態様の目的は、排ガスの温度を速やかに低下させることができる還元剤供給制御装置および還元剤供給制御方法を提供することである。 An object of one aspect of the present disclosure is to provide a reducing agent supply control device and a reducing agent supply control method capable of rapidly lowering the temperature of exhaust gas.

本開示の一態様に係る還元剤供給制御装置は、内燃機関から排出された排ガスが流れる排気管において前記排ガス中のNOxを浄化するNOx浄化触媒よりも上流側に設けられた、前記排気管内に還元剤の供給を行う還元剤供給装置を制御する還元剤供給制御装置であって、前記NOx浄化触媒の入口温度が、前記NOx浄化触媒の活性温度領域の上限値より大きく、かつ、前記NOx浄化触媒が破損しうる温度領域の下限値より小さい閾値以上であるか否かを判定する判定部と、前記入口温度が前記閾値以上である場合、前記入口温度が前記閾値未満である場合に比べて、単位時間当たりの前記還元剤の供給量が多くなるように、前記還元剤供給装置を制御する制御部と、を有する。 The reducing agent supply control device according to one aspect of the present disclosure is provided in the exhaust pipe provided on the upstream side of the NOx purification catalyst for purifying NOx in the exhaust gas in the exhaust pipe through which the exhaust gas discharged from the internal combustion engine flows. A reducing agent supply control device that controls a reducing agent supply device that supplies a reducing agent, wherein the inlet temperature of the NOx purification catalyst is larger than the upper limit of the active temperature region of the NOx purification catalyst, and the NOx purification is performed. A determination unit for determining whether or not the catalyst is equal to or higher than the lower limit of the temperature region in which the catalyst can be damaged, and when the inlet temperature is equal to or higher than the threshold value, as compared with the case where the inlet temperature is lower than the threshold value. A control unit that controls the reducing agent supply device so that the supply amount of the reducing agent per unit time is increased.

本開示の一態様に係る還元剤供給制御方法は、内燃機関から排出された排ガスが流れる排気管において前記排ガス中のNOxを浄化するNOx浄化触媒よりも上流側に設けられた、前記排気管内に還元剤の供給を行う還元剤供給装置を制御する還元剤供給制御方法であって、前記NOx浄化触媒の入口温度が、前記NOx浄化触媒の活性温度領域の上限値より大きく、かつ、前記NOx浄化触媒が破損しうる温度領域の下限値より小さい閾値以上であるか否かを判定するステップと、前記入口温度が前記閾値以上である場合、前記入口温度が前記閾値未満である場合に比べて、単位時間当たりの前記還元剤の供給量が多くなるように、前記還元剤供給装置を制御するステップと、を有する。 The reducing agent supply control method according to one aspect of the present disclosure is provided in the exhaust pipe provided upstream of the NOx purification catalyst for purifying NOx in the exhaust gas in the exhaust pipe through which the exhaust gas discharged from the internal combustion engine flows. A reducing agent supply control method for controlling a reducing agent supply device that supplies a reducing agent, wherein the inlet temperature of the NOx purification catalyst is larger than the upper limit of the active temperature region of the NOx purification catalyst, and the NOx purification is performed. Compared to the step of determining whether or not the catalyst is equal to or higher than the lower limit of the temperature region in which the catalyst can be damaged, and the case where the inlet temperature is equal to or higher than the threshold value, the inlet temperature is lower than the threshold value. It has a step of controlling the reducing agent supply device so that the supply amount of the reducing agent per unit time is increased.

本開示によれば、排ガスの温度を速やかに低下させることができる。 According to the present disclosure, the temperature of the exhaust gas can be rapidly lowered.

本開示の実施の形態に係る尿素SCRシステムの構成例を示す模式図Schematic diagram showing a configuration example of the urea SCR system according to the embodiment of the present disclosure. 本開示の実施の形態に係る制御装置の構成例を示すブロック図A block diagram showing a configuration example of a control device according to an embodiment of the present disclosure. 本開示の実施の形態に係る制御装置の動作例を示すフローチャートA flowchart showing an operation example of the control device according to the embodiment of the present disclosure.

以下、本開示の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.

本開示の実施の形態に係る尿素SCRシステム100の構成について、図1を用いて説明する。図1は、本実施の形態の尿素SCRシステム100の構成例を示す模式図である。 The configuration of the urea SCR system 100 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a schematic diagram showing a configuration example of the urea SCR system 100 of the present embodiment.

尿素SCRシステム100は、図示しない車両(例えば、トラックやバス等)に搭載され、内燃機関(図示略)から排出される排ガスを浄化する装置である。内燃機関は、ディーゼルエンジンであってもよいし、ガソリンエンジンであってもよい。また、内燃機関は、車両の内燃機関に限らず、例えば、船舶の内燃機関または定置式の内燃機関であってもよい。 The urea SCR system 100 is a device mounted on a vehicle (for example, a truck, a bus, etc.) (not shown) and purifying the exhaust gas discharged from an internal combustion engine (not shown). The internal combustion engine may be a diesel engine or a gasoline engine. Further, the internal combustion engine is not limited to the internal combustion engine of a vehicle, and may be, for example, an internal combustion engine of a ship or a stationary internal combustion engine.

図1に示すように、尿素SCRシステム100は、排気管1内に設けられた尿素水噴射装置2、温度センサ3、SCR触媒4、ASC(Ammonia Slip Catalyst)5、および、排気管1外に設けられた制御装置10を有する。 As shown in FIG. 1, the urea SCR system 100 is provided outside the urea water injection device 2, the temperature sensor 3, the SCR catalyst 4, the ASC (Ammonia Slip Catalyst) 5, and the exhaust pipe 1 provided in the exhaust pipe 1. It has a control device 10 provided.

排気管1内に示す実線の矢印は、排ガスの流れ方向を示している。よって、排気管1内には、排ガスの流れ方向の上流側から順に、尿素水噴射装置2、温度センサ3、SCR触媒4、ASC5が設けられている。 The solid arrow shown in the exhaust pipe 1 indicates the flow direction of the exhaust gas. Therefore, the urea water injection device 2, the temperature sensor 3, the SCR catalyst 4, and the ASC 5 are provided in the exhaust pipe 1 in order from the upstream side in the flow direction of the exhaust gas.

図示は省略するが、排気管1の上流端は、内燃機関に設けられた排気マニホールドに接続されている。また、図示は省略するが、排気管1の下流端は、大気に面してもよいし、排気ディフューザ等に接続されてもよい。 Although not shown, the upstream end of the exhaust pipe 1 is connected to an exhaust manifold provided in the internal combustion engine. Further, although not shown, the downstream end of the exhaust pipe 1 may face the atmosphere or may be connected to an exhaust diffuser or the like.

なお、SCR触媒4およびASC5は、排気管1に接続される触媒コンバータ(触媒ケーシングともいう)に収容されてもよい。また、その触媒コンバータには、尿素水噴射装置2、温度センサ3が収容されてもよい。 The SCR catalyst 4 and the ASC 5 may be housed in a catalyst converter (also referred to as a catalyst casing) connected to the exhaust pipe 1. Further, the catalytic converter may include a urea water injection device 2 and a temperature sensor 3.

尿素水噴射装置2(還元剤供給装置の一例)は、制御装置10の制御により、SCR触媒4の上流側の排気管1内に、尿素水(還元剤の一例)を噴射する装置である。尿素水噴射装置2により噴射された尿素水は、加水分解される。これにより発生したアンモニア(還元剤から発生する物質の一例)は、SCR触媒4へ供給される。 The urea water injection device 2 (an example of a reducing agent supply device) is a device that injects urea water (an example of a reducing agent) into the exhaust pipe 1 on the upstream side of the SCR catalyst 4 under the control of the control device 10. The urea water injected by the urea water injection device 2 is hydrolyzed. Ammonia generated thereby (an example of a substance generated from the reducing agent) is supplied to the SCR catalyst 4.

温度センサ3は、SCR触媒4の上流側(入口付近)に設けられている。温度センサ3は、定期的に、SCR触媒4の入口付近の排ガスの温度を検出し、その温度を制御装置10へ通知する。 The temperature sensor 3 is provided on the upstream side (near the inlet) of the SCR catalyst 4. The temperature sensor 3 periodically detects the temperature of the exhaust gas near the inlet of the SCR catalyst 4, and notifies the control device 10 of the temperature.

なお、本実施の形態では、温度センサ3がSCR触媒4の入口付近に設けられ、SCR触媒4の入口の排ガスの温度を検出する場合を例に挙げて説明するが、これに限定されない。例えば、温度センサ3は、SCR触媒4自体の温度を検出可能な位置に設けられ、SCR触媒4自体の温度を検出してもよい。本明細書では、SCR触媒4の入口の排ガスの温度と、SCR触媒4自体の温度とは同義であるとする。 In the present embodiment, the case where the temperature sensor 3 is provided near the inlet of the SCR catalyst 4 and detects the temperature of the exhaust gas at the inlet of the SCR catalyst 4 will be described as an example, but the present invention is not limited to this. For example, the temperature sensor 3 may be provided at a position where the temperature of the SCR catalyst 4 itself can be detected, and the temperature of the SCR catalyst 4 itself may be detected. In the present specification, it is assumed that the temperature of the exhaust gas at the inlet of the SCR catalyst 4 is synonymous with the temperature of the SCR catalyst 4 itself.

SCR触媒4(NOx浄化触媒の一例)は、尿素水から発生したアンモニアにより、排ガス中のNOxを窒素に還元する触媒である。 The SCR catalyst 4 (an example of a NOx purification catalyst) is a catalyst that reduces NOx in exhaust gas to nitrogen by ammonia generated from urea water.

ASC5(分解触媒の一例)は、SCR触媒4で消費しきれなかったアンモニアを酸化、分解する触媒である。これにより、アンモニアが大気中に排出されることを防止できる。 ASC5 (an example of a decomposition catalyst) is a catalyst that oxidizes and decomposes ammonia that cannot be completely consumed by the SCR catalyst 4. This can prevent ammonia from being discharged into the atmosphere.

制御装置10(還元剤供給制御装置の一例)は、尿素水噴射装置2から噴射(供給)される尿素水の量を制御する装置である。 The control device 10 (an example of the reducing agent supply control device) is a device that controls the amount of urea water jetted (supplied) from the urea water jet device 2.

制御装置10は、例えば、ECU(Electronic Control Unit)によって実現される。図示は省略するが、制御装置10は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、尿素水噴射装置2および温度センサ3と通信するための通信回路等を有する。以下に説明する制御装置10の機能(例えば、図2に示す各部の機能)は、CPUが制御プログラムをROMから読み出し、RAM上で実行することにより実現される。 The control device 10 is realized by, for example, an ECU (Electronic Control Unit). Although not shown, the control device 10 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) containing a control program, a working memory such as a RAM (Random Access Memory), and urea water. It has a communication circuit and the like for communicating with the injection device 2 and the temperature sensor 3. The function of the control device 10 described below (for example, the function of each part shown in FIG. 2) is realized by the CPU reading the control program from the ROM and executing it on the RAM.

以下、図2を用いて、制御装置10の構成について説明する。図2は、制御装置10の構成例を示すブロック図である。 Hereinafter, the configuration of the control device 10 will be described with reference to FIG. FIG. 2 is a block diagram showing a configuration example of the control device 10.

図2に示すように、制御装置10は、判定部11および制御部12を有する。 As shown in FIG. 2, the control device 10 has a determination unit 11 and a control unit 12.

判定部11は、温度センサ3により検出され、温度センサ3から通知された温度(以下、検出温度という)が、予め定められたSCR触媒4の活性温度領域(以下、単に活性温度領域ともいう)の下限値以上であるか否か、および、予め定められた閾値以上であるか否かを判定する。 In the determination unit 11, the temperature detected by the temperature sensor 3 and notified from the temperature sensor 3 (hereinafter referred to as the detected temperature) is the predetermined active temperature region of the SCR catalyst 4 (hereinafter, also simply referred to as the active temperature region). It is determined whether or not it is equal to or greater than the lower limit of the above and whether or not it is equal to or greater than a predetermined threshold value.

閾値は、例えば、活性温度領域の上限値より大きく、かつ、SCR触媒4が破損(例えば、熔解)しうる温度領域の下限値よりも小さい値である。この閾値は、予め実施された実験やシミュレーション等に基づいて定められる。 The threshold value is, for example, a value larger than the upper limit value of the active temperature region and smaller than the lower limit value of the temperature region in which the SCR catalyst 4 can be damaged (for example, melted). This threshold value is determined based on experiments, simulations, etc. conducted in advance.

制御部12は、検出温度が活性温度領域の下限値以上かつ閾値未満である場合、予め定められた第1の供給量の尿素水を排気管1内に供給するように尿素水噴射装置2を制御する。第1の供給量は、NOxを浄化するために最低限必要な、単位時間当たりの供給量である。 When the detection temperature is equal to or higher than the lower limit of the active temperature region and less than the threshold value, the control unit 12 sets the urea water injection device 2 so as to supply the urea water in the predetermined first supply amount into the exhaust pipe 1. Control. The first supply amount is the minimum supply amount per unit time required for purifying NOx.

制御部12は、検出温度が閾値以上である場合、予め定められた第2の供給量の尿素水を排気管1内に供給するように尿素水噴射装置2を制御する。第2の供給量は、第1の供給量よりも多い、単位時間当たりの供給量である。例えば、第2の供給量は、単位時間当たりおいて尿素水噴射装置2が供給可能な最大量であってもよい。 When the detection temperature is equal to or higher than the threshold value, the control unit 12 controls the urea water injection device 2 so as to supply a predetermined second supply amount of urea water into the exhaust pipe 1. The second supply amount is a supply amount per unit time, which is larger than the first supply amount. For example, the second supply amount may be the maximum amount that the urea water injection device 2 can supply per unit time.

尿素水の供給量を第1の供給量から第2の供給量へ増やす場合、例えば、噴射1回当たりの量を増やせばよい。 When increasing the supply amount of urea water from the first supply amount to the second supply amount, for example, the amount per injection may be increased.

制御部12は、第2の供給量の尿素水の供給中に検出温度が閾値未満となった場合、尿素水の供給量を第2の供給量から第1の供給量へ戻す。 When the detection temperature becomes less than the threshold value during the supply of the urea water of the second supply amount, the control unit 12 returns the supply amount of the urea water from the second supply amount to the first supply amount.

以上、尿素SCRシステム100および制御装置10の構成について説明した。 The configuration of the urea SCR system 100 and the control device 10 has been described above.

次に、制御装置10の動作について、図3を用いて説明する。図3は、制御装置10の動作例を示すフローチャートである。 Next, the operation of the control device 10 will be described with reference to FIG. FIG. 3 is a flowchart showing an operation example of the control device 10.

図3に示すフローは、例えば、内燃機関の始動後、検出温度が活性温度領域の下限値に到達し、第1の供給量の尿素水の供給が開始されたときに開始され、内燃機関の駆動中、繰り返し行われる。 The flow shown in FIG. 3 is started, for example, after the internal combustion engine is started, when the detected temperature reaches the lower limit of the active temperature region and the supply of the urea water of the first supply amount is started, and the flow of the internal combustion engine is started. It is repeated during driving.

まず、判定部11は、検出温度が閾値以上であるか否かを判定する(ステップS1)。 First, the determination unit 11 determines whether or not the detection temperature is equal to or higher than the threshold value (step S1).

検出温度が閾値以上ではない場合(ステップS1:NO)、制御部12は、第1の供給量の尿素水を供給するように尿素水噴射装置2を制御する(ステップS2)。これにより、尿素水噴射装置2は、排気管1内への第1の供給量の尿素水の供給を実行(継続または再開を含む)する。 When the detection temperature is not equal to or higher than the threshold value (step S1: NO), the control unit 12 controls the urea water injection device 2 so as to supply the urea water in the first supply amount (step S2). As a result, the urea water injection device 2 executes (including continuation or restart) the supply of the first supply amount of urea water into the exhaust pipe 1.

検出温度が閾値以上である場合(ステップS1:YES)、制御部12は、第2の供給量の尿素水を供給するように尿素水噴射装置2を制御する(ステップS3)。これにより、尿素水噴射装置2は、排気管1内への第2の供給量の尿素水の供給を実行(開始、継続、または再開を含む)する。 When the detection temperature is equal to or higher than the threshold value (step S1: YES), the control unit 12 controls the urea water injection device 2 so as to supply the urea water in the second supply amount (step S3). As a result, the urea water injection device 2 executes (including starting, continuing, or restarting) the supply of the second supply amount of urea water into the exhaust pipe 1.

以上、制御装置10の動作について説明した。 The operation of the control device 10 has been described above.

以上説明したように、本実施の形態によれば、SCR触媒4の温度が閾値以上となった場合に、尿素水の供給量を増やすことを特徴とする。よって、尿素水の気化熱により、排ガスの温度を速やかに低下させることができる。したがって、SCR触媒4の破損を防止することができる。 As described above, according to the present embodiment, when the temperature of the SCR catalyst 4 becomes equal to or higher than the threshold value, the supply amount of urea water is increased. Therefore, the temperature of the exhaust gas can be rapidly lowered by the heat of vaporization of the urea water. Therefore, it is possible to prevent the SCR catalyst 4 from being damaged.

なお、本開示は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。以下、変形例について説明する。 It should be noted that the present disclosure is not limited to the description of the above embodiment, and various modifications can be made without departing from the spirit of the present embodiment. Hereinafter, a modified example will be described.

[変形例1]
上述した閾値以上、かつ、SCR触媒4が破損しうる温度領域の下限値より小さい範囲内を複数の温度領域を分割し、複数の温度領域のそれぞれに対して、温度領域が高くなればなるほど多くの尿素水が供給されるように、単位時間当たりの尿素水の供給量を段階的に設定してもよい。また、最も高い温度領域に対しては、単位時間当たりおいて尿素水噴射装置2が供給可能な最大量を設定してもよい。
[Modification 1]
A plurality of temperature regions are divided within a range equal to or higher than the above-mentioned threshold value and smaller than the lower limit of the temperature region in which the SCR catalyst 4 can be damaged, and the higher the temperature region is for each of the plurality of temperature regions, the greater the number. The amount of urea water supplied per unit time may be set stepwise so that the urea water is supplied. Further, for the highest temperature region, the maximum amount that can be supplied by the urea water injection device 2 may be set per unit time.

この場合、判定部11は、検出温度が複数の温度領域のうちのどの温度領域に含まれるかを判定する。そして、制御部12は、検出温度が含まれる温度領域に対して設定された供給量の尿素水が排気管1内に供給されるように尿素水噴射装置2を制御する。 In this case, the determination unit 11 determines which temperature region of the plurality of temperature regions the detected temperature is included in. Then, the control unit 12 controls the urea water injection device 2 so that the urea water in the supply amount set for the temperature region including the detection temperature is supplied into the exhaust pipe 1.

以上のことから、本変形例では、SCR触媒4の温度変化に応じて、尿素水の供給量を段階的に増やしたり、減らしたりすることができる。よって、より効率良くSCR触媒4の温度を低下させることができる。また、供給される尿素水の無駄を省くこともできる。 From the above, in this modification, the supply amount of urea water can be increased or decreased stepwise according to the temperature change of the SCR catalyst 4. Therefore, the temperature of the SCR catalyst 4 can be lowered more efficiently. In addition, waste of the supplied urea water can be eliminated.

[変形例2]
上述したSCR触媒4は、排ガス中の粒子状物質を捕集するフィルタ機能を備えたSCR-Filterであってもよい。SCR-Filterは、例えば、SCR触媒とDPF(Diesel Particulate Filter)とを一体化させたものである。
[Modification 2]
The SCR catalyst 4 described above may be an SCR-Filter having a filter function for collecting particulate matter in the exhaust gas. The SCR-Filterer is, for example, an integrated SCR catalyst and a DPF (Diesel Particulate Filter).

また、図1に示した尿素SCRシステム100は、2つの尿素水噴射装置2を備えた構成であってもよい。その場合、例えば、図1に示した尿素水噴射装置2よりも上流側において、排ガスの流れ方向の上流側から順に、尿素水噴射装置(以下、上流側尿素水噴射装置という)、SCR触媒、DOC(Diesel Oxidation Catalyst)、温度センサ(以下、上流側温度センサという)、DPFが設けられる構成でもよい。この構成では、SCR触媒とDOCとの間には、炭化水素添加用インジェクタが設けられてもよい。または、例えば、図1に示した尿素水噴射装置2よりも上流側において、排ガスの流れ方向の上流側から順に、DOC、上流側尿素水噴射装置、上流側温度センサ、DPF、SCR-Filterが設けられる構成でもよい。上記上流側尿素水噴射装置は、尿素水噴射装置2と同じ機能を有する。また、上記上流側温度センサは、DPFの入口付近に設けられ、DPFの入口の温度を検出する。 Further, the urea SCR system 100 shown in FIG. 1 may be configured to include two urea water injection devices 2. In that case, for example, on the upstream side of the urea water injection device 2 shown in FIG. 1, the urea water injection device (hereinafter referred to as the upstream urea water injection device), the SCR catalyst, in order from the upstream side in the flow direction of the exhaust gas. A DOC (Diesel Oxidation Catalyst), a temperature sensor (hereinafter referred to as an upstream temperature sensor), and a DPF may be provided. In this configuration, a hydrocarbon addition injector may be provided between the SCR catalyst and the DOC. Alternatively, for example, on the upstream side of the urea water injection device 2 shown in FIG. 1, the DOC, the upstream urea water injection device, the upstream temperature sensor, the DPF, and the SCR-Filterer are arranged in this order from the upstream side in the flow direction of the exhaust gas. It may be provided. The upstream urea water injection device has the same function as the urea water injection device 2. Further, the upstream temperature sensor is provided near the inlet of the DPF and detects the temperature at the inlet of the DPF.

上記構成において、制御装置10は、実施の形態で説明した温度センサ3の検出温度に基づく尿素水噴射装置2に対する制御(図3参照)と同様に、上流側温度センサの検出温度に基づいて上流側尿素水噴射装置を制御する。 In the above configuration, the control device 10 is upstream based on the detection temperature of the upstream temperature sensor, as in the control for the urea water injection device 2 based on the detection temperature of the temperature sensor 3 described in the embodiment (see FIG. 3). Controls the side urea water injection device.

これにより、DPFの上流側(入口)の排ガスの温度を速やかに低下させることができる。したがって、排ガスの熱によるDPFの破損を防止することができる。 As a result, the temperature of the exhaust gas on the upstream side (inlet) of the DPF can be quickly lowered. Therefore, it is possible to prevent the DPF from being damaged by the heat of the exhaust gas.

本開示の還元剤供給制御装置および還元剤供給制御方法は、排ガスの熱によって破損しうる排ガス浄化装置(触媒、フィルタ等)の破損防止に有用である。 The reducing agent supply control device and the reducing agent supply control method of the present disclosure are useful for preventing damage to an exhaust gas purification device (catalyst, filter, etc.) that may be damaged by the heat of the exhaust gas.

1 排気管
2 尿素水噴射装置
3 温度センサ
4 SCR触媒
5 ASC
10 制御装置
11 判定部
12 制御部
100 尿素SCRシステム
1 Exhaust pipe 2 Urea water injection device 3 Temperature sensor 4 SCR catalyst 5 ASC
10 Control device 11 Judgment unit 12 Control unit 100 Urea SCR system

Claims (7)

内燃機関から排出された排ガスが流れる排気管において前記排ガス中のNOxを浄化するNOx浄化触媒よりも上流側に設けられた、前記排気管内に還元剤の供給を行う還元剤供給装置を制御する還元剤供給制御装置であって、
前記NOx浄化触媒の入口温度が、前記NOx浄化触媒の活性温度領域の上限値より大きく、かつ、前記NOx浄化触媒が破損しうる温度領域の下限値より小さい閾値以上であるか否かを判定する判定部と、
前記入口温度が前記閾値以上である場合、前記入口温度が前記閾値未満である場合に比べて、単位時間当たりの前記還元剤の供給量が多くなるように、前記還元剤供給装置を制御する制御部と、を有する、
還元剤供給制御装置。
A reducing agent that controls a reducing agent supply device that supplies a reducing agent into the exhaust pipe, which is provided upstream of the NOx purification catalyst that purifies NOx in the exhaust gas in the exhaust pipe through which the exhaust gas discharged from the internal combustion engine flows. It is a drug supply control device,
It is determined whether or not the inlet temperature of the NOx purification catalyst is greater than the upper limit of the active temperature region of the NOx purification catalyst and equal to or greater than the threshold value smaller than the lower limit of the temperature region in which the NOx purification catalyst can be damaged. Judgment unit and
Control to control the reducing agent supply device so that when the inlet temperature is equal to or higher than the threshold value, the supply amount of the reducing agent per unit time is larger than when the inlet temperature is less than the threshold value. With a part,
Reducing agent supply control device.
前記入口温度が前記閾値以上である場合における前記還元剤の供給量は、単位時間当たりおいて前記還元剤供給装置が供給可能な最大量である、
請求項1に記載の還元剤供給制御装置。
When the inlet temperature is equal to or higher than the threshold value, the amount of the reducing agent supplied is the maximum amount that the reducing agent supply device can supply per unit time.
The reducing agent supply control device according to claim 1.
前記閾値以上、かつ、前記NOx浄化触媒が破損しうる温度領域の下限値より小さい範囲内が複数の温度領域に分割され、前記複数の温度領域のそれぞれに対して、温度領域が高くなればなるほど多くの前記還元剤が供給されるように、単位時間当たりの前記還元剤の供給量が段階的に設定され、
前記判定部は、
前記入口温度が前記複数の温度領域のうちのどの温度領域に含まれるかを判定し、
前記制御部は、
前記入口温度が含まれる温度領域に対して設定された供給量の前記還元剤が供給されるように前記還元剤供給装置を制御する、
請求項1に記載の還元剤供給制御装置。
The range above the threshold value and smaller than the lower limit of the temperature region in which the NOx purification catalyst can be damaged is divided into a plurality of temperature regions, and the higher the temperature region is for each of the plurality of temperature regions, the higher the temperature region is. The supply amount of the reducing agent per unit time is set stepwise so that a large amount of the reducing agent is supplied.
The determination unit
It is determined in which of the plurality of temperature regions the inlet temperature is included, and the temperature is determined.
The control unit
The reducing agent supply device is controlled so that the reducing agent is supplied in a set supply amount with respect to the temperature region including the inlet temperature.
The reducing agent supply control device according to claim 1.
前記複数の温度領域のうち最も高い温度領域に対しては、単位時間当たりおいて前記還元剤供給装置が供給可能な最大量が設定される、
請求項3に記載の還元剤供給制御装置。
For the highest temperature region among the plurality of temperature regions, the maximum amount that can be supplied by the reducing agent supply device is set per unit time.
The reducing agent supply control device according to claim 3.
前記NOx浄化触媒は、前記還元剤から発生した物質によって前記NOxの還元を促進する選択還元型触媒である、
請求項1から4のいずれか1項に記載の還元剤供給制御装置。
The NOx purification catalyst is a selective reduction catalyst that promotes the reduction of NOx by a substance generated from the reducing agent.
The reducing agent supply control device according to any one of claims 1 to 4.
前記還元剤は、尿素水であり、
前記物質は、アンモニアである、
請求項5に記載の還元剤供給制御装置。
The reducing agent is urea water, and the reducing agent is urea water.
The substance is ammonia,
The reducing agent supply control device according to claim 5.
内燃機関から排出された排ガスが流れる排気管において前記排ガス中のNOxを浄化するNOx浄化触媒よりも上流側に設けられた、前記排気管内に還元剤の供給を行う還元剤供給装置を制御する還元剤供給制御方法であって、
前記NOx浄化触媒の入口温度が、前記NOx浄化触媒の活性温度領域の上限値より大きく、かつ、前記NOx浄化触媒が破損しうる温度領域の下限値より小さい閾値以上であるか否かを判定するステップと、
前記入口温度が前記閾値以上である場合、前記入口温度が前記閾値未満である場合に比べて、単位時間当たりの前記還元剤の供給量が多くなるように、前記還元剤供給装置を制御するステップと、を有する、
還元剤供給制御方法。
A reducing agent that controls a reducing agent supply device that supplies a reducing agent into the exhaust pipe, which is provided upstream of the NOx purification catalyst that purifies NOx in the exhaust gas in the exhaust pipe through which the exhaust gas discharged from the internal combustion engine flows. It is a agent supply control method,
It is determined whether or not the inlet temperature of the NOx purification catalyst is greater than the upper limit of the active temperature region of the NOx purification catalyst and equal to or greater than the threshold value smaller than the lower limit of the temperature region in which the NOx purification catalyst can be damaged. Steps and
When the inlet temperature is equal to or higher than the threshold value, the step of controlling the reducing agent supply device so that the supply amount of the reducing agent per unit time is larger than that when the inlet temperature is lower than the threshold value. And have,
Reducing agent supply control method.
JP2020118494A 2020-07-09 2020-07-09 Reducing agent supply control device and reducing agent supply control method Pending JP2022015566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020118494A JP2022015566A (en) 2020-07-09 2020-07-09 Reducing agent supply control device and reducing agent supply control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020118494A JP2022015566A (en) 2020-07-09 2020-07-09 Reducing agent supply control device and reducing agent supply control method

Publications (1)

Publication Number Publication Date
JP2022015566A true JP2022015566A (en) 2022-01-21

Family

ID=80121102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118494A Pending JP2022015566A (en) 2020-07-09 2020-07-09 Reducing agent supply control device and reducing agent supply control method

Country Status (1)

Country Link
JP (1) JP2022015566A (en)

Similar Documents

Publication Publication Date Title
JP5846488B2 (en) Exhaust gas purification device for internal combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
RU2628256C1 (en) Device for exhaust gases control
JP2007002697A (en) Exhaust emission control device
CN110709589B (en) Injection device
JP6972967B2 (en) Post-processing control device and post-processing control method
EP2977578B1 (en) Exhaust purification device for internal combustion engine
JP2000008833A (en) Exhaust gas purifier of internal combustion engine
JP2022015566A (en) Reducing agent supply control device and reducing agent supply control method
JP4737143B2 (en) Exhaust gas purification device for internal combustion engine
JP7063016B2 (en) Post-processing equipment
JP2008075620A (en) Exhaust emission control device
JP2006029147A (en) Exhaust gas cleaning system and exhaust gas cleaning method
JP2019190425A (en) Exhaust emission control device and vehicle
US9567917B2 (en) Method for controlling an engine system
CN110582622A (en) Exhaust gas purification system and deposit amount estimation method
KR101474281B1 (en) Application and Control Method of Aftertreatment System for Vehicle/Engine to Reduce Ammonia Slip using AOC
JP7354976B2 (en) Internal combustion engine exhaust purification system
JP7443809B2 (en) Exhaust purification equipment and vehicles
JP2022044263A (en) Reducing agent supply system, reducing agent supply control device, and reducing agent supply control method
CN109386364B (en) Exhaust gas purification system
KR20190013125A (en) Exhaust gas treatment system of diesel engine
JP2022054629A (en) Exhaust emission control system for internal combustion engine
JP2022044264A (en) Reducing agent supply system, reducing agent supply control device, and reducing agent supply control method
JP2022054626A (en) Exhaust emission control system for internal combustion engine