JP2022015292A - Powder containing iron oxide particles and negative electrode material for metal air battery - Google Patents

Powder containing iron oxide particles and negative electrode material for metal air battery Download PDF

Info

Publication number
JP2022015292A
JP2022015292A JP2020118022A JP2020118022A JP2022015292A JP 2022015292 A JP2022015292 A JP 2022015292A JP 2020118022 A JP2020118022 A JP 2020118022A JP 2020118022 A JP2020118022 A JP 2020118022A JP 2022015292 A JP2022015292 A JP 2022015292A
Authority
JP
Japan
Prior art keywords
iron oxide
oxide
particles
iron
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020118022A
Other languages
Japanese (ja)
Other versions
JP7277419B2 (en
Inventor
方成 友澤
Masanari Tomozawa
克美 山田
Katsumi Yamada
達己 石原
Tatsuki Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kyushu University NUC
Original Assignee
JFE Steel Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kyushu University NUC filed Critical JFE Steel Corp
Priority to JP2020118022A priority Critical patent/JP7277419B2/en
Publication of JP2022015292A publication Critical patent/JP2022015292A/en
Application granted granted Critical
Publication of JP7277419B2 publication Critical patent/JP7277419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide powder containing iron oxide particles which are cheaper and which can maintain the reaction efficiency even after repeated redox reactions.SOLUTION: A powder containing iron oxide particles of the present invention contains: 80 mass% or more of iron oxide particles containing iron oxide consisting of at least one of Fe2O3 and Fe3O4; and 3 mass% or more of oxide particles containing an oxide having a standard free energy of formation in the temperature range of 200°C to 600°C lower than the standard free energy of formation of Fe3O4 if the iron oxide contains Fe3O4, or if the iron oxide does not contain Fe3O4, the standard free energy of formation of this oxide is lower than the standard free energy of formation of Fe2O3 at the same temperature range.SELECTED DRAWING: Figure 1

Description

本発明は繰返しの酸化還元反応に対する反応活性の低下が小さい酸化鉄粒子含有粉末、ならびに該酸化鉄粒子含有粉末を用いた金属空気電池用負極材に関する。 The present invention relates to an iron oxide particle-containing powder having a small decrease in reaction activity with respect to repeated redox reactions, and a negative electrode material for a metal-air battery using the iron oxide particle-containing powder.

鉄は安価で安定的に供給できる金属であるため、下記に示す鉄の酸化還元反応を利用した金属空気電池の開発が行われている。ここで、Mは金属鉄、MOは酸化鉄である。
M + H2O → MO + H2 (放電)
MO + H2 → M + H2O (充電)
Since iron is an inexpensive and stable metal, metal-air batteries using the redox reaction of iron shown below are being developed. Here, M is metallic iron and MO is iron oxide.
M + H 2 O → MO + H 2 (discharge)
MO + H 2 → M + H 2 O (charging)

上記の酸化還元反応を活性化するために、粒子径が数10~数100nmの微粒子状の鉄粒子が通常使用されている。鉄が酸化すると反応熱が発生するが、鉄粒子の比表面積が大きい場合、400~600℃程度の比較的低温であっても鉄粒子の焼結反応が起きて、鉄粒子が粗大化する。この結果、鉄粒子の比表面積が減少するため、繰返し使用により酸化還元反応の反応効率が大幅に低下するという問題がある。 In order to activate the redox reaction, fine iron particles having a particle size of several tens to several hundreds of nm are usually used. Heat of reaction is generated when iron is oxidized, but when the specific surface area of iron particles is large, the sintering reaction of iron particles occurs even at a relatively low temperature of about 400 to 600 ° C., and the iron particles become coarse. As a result, since the specific surface area of the iron particles is reduced, there is a problem that the reaction efficiency of the redox reaction is significantly reduced by repeated use.

上記問題を解決するため、特許文献1では、鉄または酸化鉄に、白金族の金属、あるいは前記白金族の金属とともに、第2の添加金属としてTi,Zr,V,Nb,Cr,Mo,Al,Ga,Mg,Mg,Mg,Sc,NiおよびCuのうちの少なくともいずれか一つを複合添加する反応媒体が開示されている。 In order to solve the above problem, in Patent Document 1, in iron or iron oxide, a platinum group metal or the platinum group metal is used, and Ti, Zr, V, Nb, Cr, Mo, Al are used as a second additive metal. , Ga, Mg, Mg, Mg, Sc, Ni and Cu are disclosed as reaction media to which at least one of them is compound-added.

国際公開第2004/002881号明細書International Publication No. 2004/002881

しかし、特許文献1では、第2の添加金属のみでは反応効率が不十分であるため、高価な白金族と併用する必要がある。また鉄粒子に添加金属を合金化させる方法として、共沈法等の薬液処理を用いるため、製造コストがかかることも課題である。 However, in Patent Document 1, since the reaction efficiency is insufficient only with the second additive metal, it is necessary to use it in combination with an expensive platinum group. Another problem is that the manufacturing cost is high because a chemical solution treatment such as a coprecipitation method is used as a method for alloying the added metal with the iron particles.

本発明は、かかる事情に鑑みてなされたもので、より安価で、且つ酸化還元反応を繰り返しても反応効率を維持することができる酸化鉄粒子含有粉末を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a powder containing iron oxide particles, which is cheaper and can maintain the reaction efficiency even if the redox reaction is repeated.

上記課題解決のために、発明者らはより安価で、且つ酸化還元処理を繰り返しても反応効率を維持することができる材料について鋭意検討した。その結果、大気圧下の200℃以上600℃以下の温度域において、酸化鉄よりも安定な酸化物を焼結抑制剤として所定量添加した酸化鉄粒子含有粉末が有効であることを知見し、本発明を完成するに至った。本発明の要旨とするところは以下である。 In order to solve the above problems, the inventors have diligently studied a material that is cheaper and can maintain the reaction efficiency even if the redox treatment is repeated. As a result, it was found that iron oxide particle-containing powder containing a predetermined amount of an oxide more stable than iron oxide as a sintering inhibitor is effective in a temperature range of 200 ° C. or higher and 600 ° C. or lower under atmospheric pressure. The present invention has been completed. The gist of the present invention is as follows.

[1] Fe23およびFe34の少なくとも一方からなる酸化鉄を含む酸化鉄粒子を80mass%以上、ならびに、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物を含む酸化物粒子を3mass%以上含む、酸化鉄粒子含有粉末。 [1] 80 mass% or more of iron oxide particles containing iron oxide composed of at least one of Fe 2 O 3 and Fe 3 O 4 , and Fe 3 O 4 when the iron oxide contains Fe 3 O 4 . When iron oxide does not contain Fe 3 O 4 , an oxide containing an oxide having a smaller standard free energy in the temperature range than the standard free energy of Fe 2 O 3 in the temperature range of 200 ° C. or higher and 600 ° C. or lower. Iron oxide particle-containing powder containing 3 mass% or more of particles.

[2] 前記酸化物粒子は、酸化クロム、酸化シリコン、酸化ジルコニウム、酸化マンガン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化ニオブ、酸化チタン、および酸化バナジウムからなる群から選ばれる1つまたは2つ以上を含有する、前記[1]に記載の酸化鉄粒子含有粉末。 [2] The oxide particles are selected from the group consisting of chromium oxide, silicon oxide, zirconium oxide, manganese oxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, niobium oxide, titanium oxide, and vanadium oxide. Or the iron oxide particle-containing powder according to the above [1], which contains two or more.

[3] 厚さが0.01μm以上1μm以下であり、かつアスペクト比が2.0以上である板状粒子を、10vol%以上含有する、前記[1]または[2]に記載の酸化鉄粒子含有粉末。 [3] The iron oxide particles according to the above [1] or [2], which contain 10 vol% or more of plate-like particles having a thickness of 0.01 μm or more and 1 μm or less and an aspect ratio of 2.0 or more. Containing powder.

[4] 前記板状粒子は、前記酸化鉄粒子および前記酸化物粒子を含む複合粒子である、前記[3]に記載の酸化鉄粒子含有粉末。 [4] The iron oxide particle-containing powder according to the above [3], wherein the plate-shaped particles are composite particles containing the iron oxide particles and the oxide particles.

[5] 前記酸化物は、前記酸化鉄との密度の差が±1.0g/m3以内である、前記[1]~[4]のいずれか1項に記載の酸化鉄粒子含有粉末。 [5] The iron oxide particle-containing powder according to any one of [1] to [4] above, wherein the oxide has a density difference from iron oxide within ± 1.0 g / m 3 .

[6] 前記[1]~[5]のいずれか1項に記載の酸化鉄粒子含有粉末を含む、金属空気電池用負極材。 [6] A negative electrode material for a metal-air battery, which comprises the iron oxide particle-containing powder according to any one of the above [1] to [5].

[7] Fe23およびFe34の少なくとも一方からなる酸化鉄と、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物とを、前記酸化鉄を80mass%以上、前記酸化物を3mass%以上の配合比で配合して配合物を得る配合工程と、
前記配合物を粉砕し、酸化鉄粒子と酸化物粒子とを含む酸化鉄粒子含有粉末を得る粉砕工程と
を含む、酸化鉄粒子含有粉末の製造方法。
[7] Iron oxide composed of at least one of Fe 2 O 3 and Fe 3 O 4 , Fe 3 O 4 when the iron oxide contains Fe 3 O 4 , and Fe 3 O 4 when the iron oxide contains Fe 3 O 4 . In some cases, an oxide having a smaller standard free energy in the temperature range than the standard free energy in the temperature range of 200 ° C. or higher and 600 ° C. or lower of Fe 2 O 3 is used, and iron oxide is added to 80 mass% or more and the oxide is used. In the compounding process of obtaining a compound by blending with a blending ratio of 3 mass% or more,
A method for producing iron oxide particle-containing powder, which comprises a pulverization step of crushing the compound to obtain an iron oxide particle-containing powder containing iron oxide particles and oxide particles.

本発明によれば、より安価で、且つ酸化還元反応を繰り返しても反応効率を維持することができる酸化鉄粒子含有粉末を提供することができる。 According to the present invention, it is possible to provide an iron oxide particle-containing powder that is cheaper and can maintain the reaction efficiency even if the redox reaction is repeated.

板状粒子の形態について説明するための図である。It is a figure for demonstrating the morphology of a plate-like particle. 金属空気電池について説明するための図である。It is a figure for demonstrating a metal-air battery. 実施例において負極材の性能を評価するために用いたセルについて説明するための図である。It is a figure for demonstrating the cell used for evaluating the performance of the negative electrode material in an Example.

以下、本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されない。また、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited to the following embodiments. Further, in the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.

本実施形態に係る酸化鉄粒子含有粉末は、Fe23およびFe34の少なくとも一方からなる酸化鉄を含む酸化鉄粒子を80mass%以上、ならびに、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物を含む酸化物粒子を3mass%以上含む。 The iron oxide particle-containing powder according to the present embodiment contains 80 mass% or more of iron oxide particles containing iron oxide composed of at least one of Fe 2 O 3 and Fe 3 O 4 , and the iron oxide contains Fe 3 O 4 . In the case of Fe 3 O 4 , if the iron oxide does not contain Fe 3 O 4 , the standard generation free energy in the temperature range of 200 ° C or higher and 600 ° C or lower of Fe 2 O 3 is higher than the standard generation free energy in the temperature range. It contains 3 mass% or more of oxide particles containing oxides having low energy.

[酸化鉄粒子]
酸化鉄粒子含有粉末の基材となる酸化鉄粒子は、鉄の酸化反応で安定に生成するFe23(ヘマタイト)およびFe34(マグネタイト)の少なくとも一方を含む。酸化鉄粒子の含有量は、酸化鉄粒子含有粉末全体に対して80mass%以上とする。酸化鉄粒子含有粉末全体に対する酸化鉄粒子の含有量が80mass%未満の場合、酸化還元反応に寄与する酸化鉄の量が少なくなるため、該酸化鉄粒子含有粉末を用いた酸化還元反応により回収できる電荷量が少なくなる。したがって酸化鉄粒子含有粉末全体に対する酸化鉄粒子の含有量を80mass%以上とする。酸化鉄粒子含有粉末全体に対する酸化鉄粒子の含有量は、85mass%以上が好ましく、90mass%以上がより好ましい。酸化鉄粒子含有粉末全体に対する酸化鉄粒子の含有量の上限は、焼結抑制剤の含有量との関係から、97mass%以下とする。
[Iron oxide particles]
The iron oxide particles that are the base material of the iron oxide particle-containing powder contain at least one of Fe 2 O 3 (hematite) and Fe 3 O 4 (magnetite) that are stably produced by the iron oxidation reaction. The content of the iron oxide particles shall be 80 mass% or more with respect to the entire iron oxide particle-containing powder. When the content of iron oxide particles with respect to the entire iron oxide particle-containing powder is less than 80 mass%, the amount of iron oxide that contributes to the redox reaction is small, so that it can be recovered by the redox reaction using the iron oxide particle-containing powder. The amount of charge is reduced. Therefore, the content of iron oxide particles with respect to the entire iron oxide particle-containing powder is set to 80 mass% or more. The content of iron oxide particles with respect to the entire iron oxide particle-containing powder is preferably 85 mass% or more, more preferably 90 mass% or more. The upper limit of the content of iron oxide particles with respect to the entire iron oxide particle-containing powder is 97 mass% or less in relation to the content of the sintering inhibitor.

酸化鉄粒子に含まれるFe23およびFe34の含有量の比は特に限定されない。すなわち、酸化鉄粒子はFe23のみを酸化鉄として含んでいてもよく、Fe34のみを酸化鉄として含んでいてもよい。 The ratio of the contents of Fe 2 O 3 and Fe 3 O 4 contained in the iron oxide particles is not particularly limited. That is, the iron oxide particles may contain only Fe 2 O 3 as iron oxide, or may contain only Fe 3 O 4 as iron oxide.

酸化鉄粒子の形状は、特に限定されず、球状、多面体形状、および板状のいずれであってもよい。粒子形状が球状または多面体形状の場合、反応効率の観点から、粒子径(一次粒子径)は0.01μm以上であることが好ましく、また1μm以下であることが好ましい。 The shape of the iron oxide particles is not particularly limited, and may be spherical, polyhedral, or plate-shaped. When the particle shape is spherical or polyhedral, the particle diameter (primary particle diameter) is preferably 0.01 μm or more, and preferably 1 μm or less, from the viewpoint of reaction efficiency.

また、酸化鉄粒子は、単独粒子であってもよく、後述するように酸化物粒子とともに複合粒子を構成していてもよい。なお、本実施形態においては、酸化鉄粒子は酸化鉄および不可避的不純物からなる。しかしながら、酸化鉄粒子は酸化鉄および不可避的不純物に加えて、微量の添加元素を含んでいてもよい。 Further, the iron oxide particles may be single particles or may form composite particles together with oxide particles as described later. In this embodiment, the iron oxide particles are composed of iron oxide and unavoidable impurities. However, iron oxide particles may contain trace amounts of additive elements in addition to iron oxide and unavoidable impurities.

[焼結抑制剤]
焼結抑制剤は、上述の酸化鉄粒子同士の焼結を抑制する作用を有する。この作用を有効に発揮させるために、焼結抑制剤としては、鉄の酸化還元を生じさせる雰囲気温度を200℃以上600℃以下の温度域として、大気圧下における酸化物生成の標準生成自由エネルギーΔG0が、同温度域における前記酸化鉄の標準生成自由エネルギーΔG0(Fe23:-450~―400kJ/mol,Fe34:-470~-425kJ/mol)よりも小さい、すなわち鉄の酸化還元が生ずる雰囲気温度において安定な酸化物を選択する。上述した通り、酸化鉄はFe23およびFe34の少なくとも一方からなるが、酸化鉄に含まれるFe23およびFe34のうち、上記温度域における標準生成自由エネルギーΔG0が小さい方よりも、酸化物の上記温度域における標準生成自由エネルギーΔG0が小さければよい。すなわち、酸化鉄がFe34を含む場合には酸化物の上記温度域における標準生成自由エネルギーΔG0がFe34よりも小さければよい。また、酸化鉄がFe34を含まない場合には、200℃以上600℃以下の温度域における標準生成自由エネルギーがFe23よりも小さければよい。なお、標準生成自由エネルギーに関しては、例えば、参考文献1のエリンガム図より、各酸化物の200℃および600℃のΔG0の値を用いる。
[Sintering inhibitor]
The sintering inhibitor has an effect of suppressing the sintering of the iron oxide particles described above. In order to effectively exert this effect, as a sintering inhibitor, the atmospheric temperature at which iron oxidation-reduction is generated is set to a temperature range of 200 ° C. or higher and 600 ° C. or lower, and the standard free energy for oxide formation under atmospheric pressure is set. ΔG 0 is smaller than the standard generation free energy ΔG 0 (Fe 2 O 3 : −450 to −400 kJ / mol, Fe 3 O 4 : -470 to 425 kJ / mol) of the iron oxide in the same temperature range, that is, Select an oxide that is stable at the ambient temperature at which iron oxidation reduction occurs. As described above, iron oxide consists of at least one of Fe 2 O 3 and Fe 3 O 4 , but among Fe 2 O 3 and Fe 3 O 4 contained in iron oxide, the standard generation free energy ΔG 0 in the above temperature range. It suffices if the standard free energy ΔG 0 of the oxide in the above temperature range is smaller than that of the smaller one. That is, when iron oxide contains Fe 3 O 4 , the standard free energy ΔG 0 of the oxide in the above temperature range may be smaller than Fe 3 O 4 . When iron oxide does not contain Fe 3 O 4 , the standard free energy generated in the temperature range of 200 ° C. or higher and 600 ° C. or lower may be smaller than that of Fe 2 O 3 . As for the standard free energy of formation, for example, the values of ΔG 0 at 200 ° C. and 600 ° C. of each oxide are used from the Ellingham diagram of Reference 1.

雰囲気温度が200℃よりも低い場合には鉄の酸化還元反応が進行せず、一方で600℃よりも高い場合には焼結が顕著になる。このため、本実施形態に係る酸化物粒子含有粉末を用いて酸化還元反応を生じさせる雰囲気温度は200℃以上600℃以下とすることが好ましい。焼結抑制剤としては、200℃以上600℃以下において安定な酸化物として、表1に示すように酸化クロム(Cr23)、酸化シリコン(SiO2)、酸化ジルコニウム(ZrO2)、酸化マンガン(MnO)、酸化亜鉛(ZnO)、酸化アルミニウム(Al23)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ニオブ(Nb23)、酸化チタン(TiO2、TiO)、および酸化バナジウム(V23)からなる群から選ばれるいずれか1つまたは2つ以上の酸化物を焼結抑制剤として選択することが好ましい。 When the atmospheric temperature is lower than 200 ° C., the redox reaction of iron does not proceed, while when it is higher than 600 ° C., sintering becomes remarkable. Therefore, it is preferable that the atmospheric temperature at which the redox reaction is caused by using the oxide particle-containing powder according to the present embodiment is 200 ° C. or higher and 600 ° C. or lower. As the sintering inhibitor, as a stable oxide at 200 ° C. or higher and 600 ° C. or lower, as shown in Table 1, chromium oxide (Cr 2 O 3 ), silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ), and oxidation Manganese (MnO), Zinc Oxide (ZnO), Aluminum Oxide (Al 2 O 3 ), Magnesium Oxide (MgO), Calcium Oxide (CaO), Niobide Oxide (Nb 2 O 3 ), Titanium Oxide (TIO 2 , TIO), It is preferable to select any one or more oxides selected from the group consisting of vanadium oxide and vanadium oxide (V 2 O 3 ) as the sintering inhibitor.

焼結抑制剤としては、酸化鉄との密度(真密度)の差が±1.0g/m3以内である酸化物が好ましい。酸化鉄粒子との密度の差が±1.0g/m3以内の酸化物は、酸化鉄粒子含有粉末中に均一に分散させることが容易だからである。このような酸化物として、酸化クロム、酸化ジルコニウム、酸化マンガン、酸化亜鉛、酸化ニオブ、酸化チタン、および酸化バナジウムからなる群から選ばれるいずれか1つまたは2つ以上を選択することが好ましい。酸化物の安定性と均一分散性という観点から、酸化物は、酸化クロム、酸化ジルコニウム、および酸化マンガンからなる群から選ばれるいずれか1つまたは2つ以上とすることがより好ましい。 As the sintering inhibitor, an oxide having a difference in density (true density) from iron oxide within ± 1.0 g / m 3 is preferable. This is because an oxide having a density difference of ± 1.0 g / m 3 or less from the iron oxide particles can be easily dispersed uniformly in the iron oxide particle-containing powder. As such an oxide, it is preferable to select any one or two or more selected from the group consisting of chromium oxide, zirconium oxide, manganese oxide, zinc oxide, niobium oxide, titanium oxide, and vanadium oxide. From the viewpoint of the stability and uniform dispersibility of the oxide, it is more preferable that the oxide is one or more selected from the group consisting of chromium oxide, zirconium oxide, and manganese oxide.

酸化鉄粒子含有粉末全体に対する酸化物(焼結抑制剤)の含有量は、3mass%以上とする。酸化鉄粒子含有粉末全体に対する酸化物が3mass%未満の場合、焼結抑制効果が不十分である。酸化鉄粒子含有粉末全体に対する焼結抑制剤の含有量は、5%超であってもよく、6%以上であってもよい。酸化鉄粒子含有粉末全体に対する酸化物の含有量の上限は、酸化鉄粒子の含有量との関係から、20mass%以下とする。 The content of the oxide (sintering inhibitor) with respect to the entire iron oxide particle-containing powder shall be 3 mass% or more. When the oxide content with respect to the entire iron oxide particle-containing powder is less than 3 mass%, the sintering suppressing effect is insufficient. The content of the sintering inhibitor with respect to the entire iron oxide particle-containing powder may be more than 5% or 6% or more. The upper limit of the oxide content with respect to the entire iron oxide particle-containing powder is 20 mass% or less in relation to the iron oxide particle content.

焼結抑制剤の粒子形状は特に制限されず、球状、多面体形状、板状のいずれであってもよい。焼結抑制剤は、酸化鉄粒子の表面に吸着する、あるいは酸化鉄粒子の隙間に分散して、酸化鉄粒子の焼結抑制効果を発揮することができる。このような効果を得るためには、酸化物粒子が球状または多面体形状の粒子の場合、一次粒子径を5nm以上とすることが好ましく、また30nm以下とすることが好ましい。 The particle shape of the sintering inhibitor is not particularly limited, and may be spherical, polyhedral, or plate-shaped. The sintering inhibitor can be adsorbed on the surface of the iron oxide particles or dispersed in the gaps between the iron oxide particles to exert the effect of suppressing the sintering of the iron oxide particles. In order to obtain such an effect, when the oxide particles are spherical or polyhedral particles, the primary particle diameter is preferably 5 nm or more, and more preferably 30 nm or less.

なお、本実施形態においては、酸化物粒子は酸化物および不可避的不純物からなる。しかしながら、酸化物粒子は酸化物および不可避的不純物に加えて、微量の添加元素を含んでいてもよい。 In this embodiment, the oxide particles are composed of oxides and unavoidable impurities. However, the oxide particles may contain trace amounts of additive elements in addition to oxides and unavoidable impurities.

酸化鉄粒子含有粉末は、厚さ0.01μm以上1μm以下、かつ短片に対する長片のアスペクト比が2.0以上である板状粒子を含有することが好ましい。この板状粒子は、図1に示すように、酸化鉄粒子と酸化物粒子とを含む複合粒子であり、数nm~数100nm径の酸化物および酸化鉄の一次粒子が凝集した凝集体である。このような板状凝集体構造とすることにより、同じ体積の球状または多面体形状の凝集粒子(二次粒子)と比べて表面積を大きくすることができ、さらに焼結抑制材が微細且つ均一に分散することで焼結抑制効果を高めることができる。その結果、繰返しの酸化還元によっても酸化鉄粒子同士の焼結が起こりにくくなるため、酸化鉄粒子含有粉末を鉄空気電池の負極材として用いた際に特に優れた特性を発揮すると考えられる。上記効果を得るために、酸化鉄粒子粉末全体に占める板状粒子の含有量は10vol%以上とすることが好ましい。酸化鉄粒子含有粉末全体に占める板状粒子の含有量は21vol%以上とすることがより好ましい。酸化鉄粒子含有粉末全体に占める板状粒子の含有量の上限は特に限定されず、100vol%であってもよい。また、板状粒子の一次粒子径(球相当径)は5nm以上とすることが好ましく、また30nm以下とすることが好ましい。酸化鉄粒子、酸化物粒子、およびこれらが複合して形成される板状粒子の粒子径は、実施例に示す方法によって測定する。 The iron oxide particle-containing powder preferably contains plate-like particles having a thickness of 0.01 μm or more and 1 μm or less and an aspect ratio of a long piece to a short piece of 2.0 or more. As shown in FIG. 1, the plate-shaped particles are composite particles containing iron oxide particles and oxide particles, and are aggregates in which oxides having a diameter of several nm to several hundred nm and primary particles of iron oxide are aggregated. .. By adopting such a plate-like aggregate structure, the surface area can be increased as compared with the spherical or polyhedral-shaped aggregate particles (secondary particles) having the same volume, and the sintering inhibitor is finely and uniformly dispersed. By doing so, the effect of suppressing sintering can be enhanced. As a result, since the iron oxide particles are less likely to be sintered even by repeated redox, it is considered that the iron oxide particle-containing powder exhibits particularly excellent characteristics when used as the negative electrode material of the iron-air battery. In order to obtain the above effect, the content of the plate-like particles in the entire iron oxide particle powder is preferably 10 vol% or more. It is more preferable that the content of the plate-like particles in the entire iron oxide particle-containing powder is 21 vol% or more. The upper limit of the content of the plate-shaped particles in the entire iron oxide particle-containing powder is not particularly limited and may be 100 vol%. The primary particle diameter (sphere equivalent diameter) of the plate-shaped particles is preferably 5 nm or more, and more preferably 30 nm or less. The particle size of the iron oxide particles, the oxide particles, and the plate-like particles formed by combining them is measured by the method shown in the examples.

本実施形態に係る酸化鉄粒子含有粉末は、酸化還元処理を繰り返した際の酸化鉄粒子同士の焼結を抑制し、反応効率を維持することができる。よって、本実施形態に係る酸化鉄粒子含有粉末は、金属空気電池の負極材の活物質として好適である。酸化鉄粒子含有粉末を金属空気電池の負極材の活物質とする場合、上述したように、酸化還元反応を生じさせる雰囲気温度は200~600℃とすることが好ましい。 The iron oxide particle-containing powder according to the present embodiment can suppress the sintering of iron oxide particles when the redox treatment is repeated, and can maintain the reaction efficiency. Therefore, the iron oxide particle-containing powder according to this embodiment is suitable as an active material for a negative electrode material of a metal-air battery. When the iron oxide particle-containing powder is used as the active material of the negative electrode material of the metal-air battery, the atmospheric temperature at which the redox reaction occurs is preferably 200 to 600 ° C. as described above.

図2を用いて、本実施形態に係る酸化鉄粒子含有粉末を負極の活物質として含む金属空気電池(鉄空気電池)について説明する。図2に示すように、金属空気電池7においては、放電時には、図中の矢印の方向に電流が流れる。まず、空気電極5において、O2が電子と結びついてO2-が生ずる。次いで、負極の酸化鉄粒子含有粉末1において、鉄の酸化反応が起こり、水素が発生する。該水素がO2-と結びついて水が発生し、負極側から電子が流出する。逆に、充電時には図中矢印の方向に電流が流れる。負極の酸化鉄粒子含有粉末1において、流入した電子によって鉄の還元反応が起こる。該還元反応によって、水素とO2-とが発生する。発生したO2-は空気電極5において電子を放出してO2となり、外部へと放出される。 The metal-air battery (iron-air battery) containing the iron oxide particle-containing powder according to the present embodiment as the active material of the negative electrode will be described with reference to FIG. As shown in FIG. 2, in the metal-air battery 7, when discharging, a current flows in the direction of the arrow in the figure. First, in the air electrode 5, O 2 is combined with an electron to generate O 2- . Next, in the iron oxide particle-containing powder 1 of the negative electrode, an iron oxidation reaction occurs and hydrogen is generated. The hydrogen combines with O 2- to generate water, and electrons flow out from the negative electrode side. Conversely, during charging, current flows in the direction of the arrow in the figure. In the iron oxide particle-containing powder 1 of the negative electrode, an iron reduction reaction occurs due to the inflowing electrons. Hydrogen and O 2- are generated by the reduction reaction. The generated O 2- emits electrons at the air electrode 5 to become O 2 , and is emitted to the outside.

次に酸化鉄粒子含有粉末の製造方法について述べる。
本実施形態に係る酸化鉄粒子含有粉末の製造方法は、Fe23およびFe34の少なくとも一方からなる酸化鉄と、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物とを、前記酸化鉄を80mass%以上、前記酸化物を3mass%以上の配合比で配合して配合物を得る配合工程と、前記配合物を粉砕し、酸化鉄粒子と酸化物粒子とを含む酸化鉄粒子含有粉末を得る粉砕工程とを含む。
Next, a method for producing the iron oxide particle-containing powder will be described.
The method for producing the iron oxide particle-containing powder according to the present embodiment includes iron oxide composed of at least one of Fe 2 O 3 and Fe 3 O 4 , and Fe 3 O 4 when the iron oxide contains Fe 3 O 4 . When the iron oxide does not contain Fe 3 O 4 , the oxide having a smaller standard free energy in the temperature range than the standard free energy in the temperature range of 200 ° C. or higher and 600 ° C. or lower of Fe 2 O 3 is used. A compounding step of blending the iron oxide in a blending ratio of 80 mass% or more and the oxide in a blending ratio of 3 mass% or more to obtain a blend, and iron oxide containing iron oxide particles and oxide particles by crushing the blend. It includes a pulverization step for obtaining a particle-containing powder.

主要原料である酸化鉄としては、顔料、フェライト原料等の工業用材料として入手可能な酸化鉄(Fe23およびFe34の少なくとも一方)を用いることができる。あるいは、硫酸第一鉄または塩化第一鉄から、湿式法または乾式法など一般的な製法で上記の粒子径の酸化鉄粒子を作製することもできる。原料となる酸化鉄の粒子径は特に限定されず、入手容易な数10nm~数μm程度でよい。焼結抑制剤についても、試薬のほか工業用材料として入手可能な酸化物粒子粉末を用いることができる。原料となる焼結抑制剤の粒子径は特に限定されず、数10nm~数μm程度でよい。 As the iron oxide as the main raw material, iron oxide (at least one of Fe 2 O 3 and Fe 3 O 4 ) available as an industrial material such as a pigment and a ferrite raw material can be used. Alternatively, iron oxide particles having the above particle size can be produced from ferrous sulfate or ferrous chloride by a general production method such as a wet method or a dry method. The particle size of iron oxide as a raw material is not particularly limited, and may be about several tens of nm to several μm, which is easily available. As the sintering inhibitor, oxide particle powder available as an industrial material can be used in addition to the reagent. The particle size of the sintering inhibitor as a raw material is not particularly limited, and may be about several tens of nm to several μm.

上記の酸化鉄と焼結抑制剤とを、酸化鉄を80mass%以上、酸化物を3mass%以上の配合比にて配合して配合物を得た後、粉砕機に移し、混合を兼ねて酸化鉄粒子および酸化物粒子の一次粒子径が所定サイズになるまで配合物を粉砕する。酸化鉄粒子および酸化物粒子の一次粒子径については上述した通りである。粉砕機は、粒子をnmレベルまで微粉砕できる能力を有する設備であればよく、例えばジェットミル粉砕機、ボールミル粉砕機などが好ましい。 The above iron oxide and the sintering inhibitor are blended in a blending ratio of 80 mass% or more of iron oxide and 3 mass% or more of oxide to obtain a blend, which is then transferred to a crusher and oxidized for mixing. The formulation is ground until the primary particle size of the iron and oxide particles is the specified size. The primary particle diameters of the iron oxide particles and the oxide particles are as described above. The crusher may be any equipment having the ability to pulverize particles to the nm level, and for example, a jet mill crusher, a ball mill crusher, or the like is preferable.

上述した板状粒子は、例えば高エネルギーボールミルにて前記配合物を粉砕混合することで得られる。また、酸化鉄粒子含有粉末全体に対する板状粒子の含有量は、酸化鉄粉と焼結抑制剤とを粉砕混合する際の高エネルギーボールミルの回転数によって調整することができる。酸化鉄粒子含有粉末全体に対する板状粒子の含有量は、粉砕混合後に得られた酸化鉄粒子含有粉末全体から板状粒子を抽出することによって調整することもできる。 The above-mentioned plate-shaped particles can be obtained, for example, by pulverizing and mixing the compound with a high-energy ball mill. Further, the content of the plate-shaped particles with respect to the entire iron oxide particle-containing powder can be adjusted by the rotation speed of the high-energy ball mill when the iron oxide powder and the sintering inhibitor are pulverized and mixed. The content of the plate-shaped particles with respect to the entire iron oxide particle-containing powder can also be adjusted by extracting the plate-shaped particles from the entire iron oxide particle-containing powder obtained after pulverization and mixing.

酸化鉄および酸化物を、表2に示す配合比で配合して原料粉とした。ポットに原料粉を入れ、原料粉10gに対してエタノール50mlを投入し、高エネルギーボールミル(フリッチュ社製:pulverisette 7)を用いて、表3に示す回転速度および時間にて粉砕し、酸化鉄粒子含有粉末を作製した。なお、No.21については、粉砕後の酸化鉄粒子含有粉末試料を溶媒中に分散させ、穴径3μmのフィルターによりろ過して、板状粒子を抽出した。次いで、ポットから酸化鉄粒子含有粉末を取出し、酸化鉄粒子、および酸化物粒子の粒子径を求めた。また、板状粒子の粒子径、体積分率、および酸化還元特性を求めた。 Iron oxide and oxide were blended in the blending ratio shown in Table 2 to prepare a raw material powder. Put the raw material powder in a pot, add 50 ml of ethanol to 10 g of the raw material powder, and use a high-energy ball mill (Fritsch, Inc .: pulverisette 7) to grind the iron oxide particles at the rotation speed and time shown in Table 3. The contained powder was prepared. For No. 21, the iron oxide particle-containing powder sample after pulverization was dispersed in a solvent and filtered through a filter having a hole diameter of 3 μm to extract plate-shaped particles. Next, the iron oxide particle-containing powder was taken out from the pot, and the particle diameters of the iron oxide particles and the oxide particles were determined. In addition, the particle size, volume fraction, and redox characteristics of the plate-shaped particles were determined.

(粒子径の測定)
酸化鉄および酸化物粒子の粒子径に関しては、走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)と特性X線分析(Energy dispersive X-ray spectroscopy:EDX)により2万倍のマッピング像を3視野取得し、各粒子を各々任意に20粒子選び、その粒子径を測長した。
得られた酸化鉄粒子含有粉末中に含まれる板状粒子の形態および体積分率は、走査電子顕微鏡(Scanning Electron Microscope:SEM)および走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)を用いて、次のようにして求めた。2000倍のSEM像の中で、線状に見える長さ10μm程度の粒子を数個選び、200万倍のSTEM観察によりこの粒子の厚さを測定し、いずれも厚さが0.01~1μmの板状粒子であることを確認した。次いで、2000倍のSEM像中に存在する板状粒子を任意に20粒子選び、その短辺および長辺を測長し、その平均値からアスペクト比を求めた。板状粒子を構成する一次粒子の径および組成は、200万倍のSTEMと特性X線分析(Energy dispersive X-ray spectroscopy:EDX)とによって確認した。酸化鉄粉末中に存在する板状粒子の割合は、STEM-EDXにより2万倍のマッピング像を3視野取得し、画像処理により板状粒子とそれ以外の粒子とを分離し、板状粒子の割合を体積率として求めた。
(Measurement of particle size)
Regarding the particle size of iron oxide and oxide particles, a 20,000-fold mapping image was obtained in three fields by scanning transmission electron microscope (STEM) and characteristic X-ray spectroscopy (EDX). Then, 20 particles were arbitrarily selected for each particle, and the particle diameter was measured.
The morphology and body integration ratio of the plate-like particles contained in the obtained iron oxide particle-containing powder were determined by using a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). I asked for it as follows. From the 2000 times SEM image, select several particles with a length of about 10 μm that look linear, and measure the thickness of these particles by STEM observation at 2 million times, and all of them have a thickness of 0.01 to 1 μm. It was confirmed that the particles were plate-like particles. Next, 20 plate-like particles present in the 2000-fold SEM image were arbitrarily selected, the short and long sides thereof were measured, and the aspect ratio was obtained from the average value. The diameter and composition of the primary particles constituting the plate-like particles were confirmed by STEM of 2 million times and characteristic X-ray spectroscopy (EDX). As for the ratio of the plate-shaped particles present in the iron oxide powder, STEM-EDX is used to obtain a mapping image of 20,000 times in 3 fields, and the plate-shaped particles and other particles are separated by image processing to obtain the plate-like particles. The ratio was calculated as the volume ratio.

(酸化還元特性)
酸化鉄粒子含有粉末の酸化還元特性を測定するため、ガス導入と加熱とが可能な熱天秤に図3に示すセル6を配置した装置を用いた。20ccのセル6内に50mgの酸化鉄粒子含有粉末1を導入した。セル6を400℃に保持し、100ml/minで60minの水素ガス導入による酸化鉄の還元処理と、2.8vol%の水蒸気導入を180min行うことによる鉄の酸化処理とを繰返し行なった。還元処理により酸化鉄粒子がFeとなり、酸化処理によりFeが酸化されてすべてFe34となる。そのため、酸化還元により酸化鉄粒子含有粉末1の重量が変化する。各還元処理後および酸化処理後の酸化鉄粒子含有粉末1の重量変化ΔMを測定した。
(Redox characteristics)
In order to measure the redox characteristics of the iron oxide particle-containing powder, a device in which the cell 6 shown in FIG. 3 was arranged on a heat balance capable of introducing gas and heating was used. 50 mg of iron oxide particle-containing powder 1 was introduced into a 20 cc cell 6. The cell 6 was kept at 400 ° C., and the reduction treatment of iron oxide by introducing hydrogen gas at 100 ml / min for 60 min and the oxidation treatment of iron by introducing 2.8 vol% steam for 180 min were repeated. The iron oxide particles become Fe by the reduction treatment, and Fe is oxidized by the oxidation treatment to become Fe 3 O 4 . Therefore, the weight of the iron oxide particle-containing powder 1 changes due to redox. The weight change ΔM of the iron oxide particle-containing powder 1 after each reduction treatment and after the oxidation treatment was measured.

初回の還元処理ですべてFeとなった時点からスタートし、1回の酸化、還元処理を1サイクルとし、繰返し重量変化として、10サイクル目の酸化、還元による重量変化ΔM10を測定した。10サイクル目の重量変化ΔM10が、1サイクル目の重量変化ΔM1の90%以上であれば◎、90%未満、70%以上であれば〇、70%未満、50%以上であれば△、50%未満であれば×とした。結果を表3に示した。 Starting from the time when all of them became Fe in the first reduction treatment, one oxidation and reduction treatment was regarded as one cycle, and the weight change ΔM 10 due to oxidation and reduction in the 10th cycle was measured as a repeated weight change. If the weight change ΔM 10 in the 10th cycle is 90% or more of the weight change ΔM 1 in the 1st cycle, it is ◎, if it is less than 90%, if it is 70% or more, it is 〇, it is less than 70%, and if it is 50% or more, it is △. , If it is less than 50%, it is marked as x. The results are shown in Table 3.

また変化量として、酸化還元処理による理論的な重量変化ΔMRを100%とした場合に、10サイクル目の酸化還元による重量変化ΔM10が90%以上であれば◎、90%未満、70%以上であれば〇、70%未満、50%以上であれば△、50%未満であれば×とした。結果を表3に示した。 As for the amount of change, when the theoretical weight change ΔM R due to the redox treatment is 100%, if the weight change ΔM 10 due to the redox in the 10th cycle is 90% or more, ⊚, less than 90%, 70%. If it is above, it is evaluated as 〇, less than 70%, if it is 50% or more, it is evaluated as Δ, and if it is less than 50%, it is evaluated as ×. The results are shown in Table 3.

Figure 2022015292000002
Figure 2022015292000002

Figure 2022015292000003
Figure 2022015292000003

Figure 2022015292000004
Figure 2022015292000004

<参考文献1>鉄鋼便覧第3版I,日本鉄鋼協会(丸善) 1981, p4. <Reference 1> Steel Handbook 3rd Edition I, The Iron and Steel Institute of Japan (Maruzen) 1981, p4.

本発明は、酸化還元時の焼結を抑制した酸化鉄粒子含有粉末である。本発明に係る酸化鉄粒子含有粉末を用いることで、低コスト且つ長寿命の鉄空気電池の負極材を製造することができるため、本発明は将来の水素エネルギー社会の構築に有用である。 The present invention is an iron oxide particle-containing powder that suppresses sintering during redox. By using the iron oxide particle-containing powder according to the present invention, it is possible to produce a negative electrode material for an iron-air battery at low cost and with a long life, so that the present invention is useful for constructing a hydrogen energy society in the future.

1 酸化鉄粒子含有粉末
2 酸化鉄粒子
3 酸化物粒子
4 板状粒子
5 空気電極
6 セル
7 金属空気電池
1 Iron oxide particle-containing powder 2 Iron oxide particles 3 Oxide particles 4 Plate-shaped particles 5 Air electrode 6 Cell 7 Metal-air battery

Claims (7)

Fe23およびFe34の少なくとも一方からなる酸化鉄を含む酸化鉄粒子を80mass%以上、ならびに、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物を含む酸化物粒子を3mass%以上含む、酸化鉄粒子含有粉末。 80 mass% or more of iron oxide particles containing iron oxide composed of at least one of Fe 2 O 3 and Fe 3 O 4 , and Fe 3 O 4 when the iron oxide contains Fe 3 O 4 , and the iron oxide is When Fe 3 O 4 is not contained, 3 mass of oxide particles containing an oxide having a smaller standard free energy in the temperature range than the standard free energy of Fe 2 O 3 in the temperature range of 200 ° C. or higher and 600 ° C. or lower. % Or more, iron oxide particle-containing powder. 前記酸化物粒子は、酸化クロム、酸化シリコン、酸化ジルコニウム、酸化マンガン、酸化亜鉛、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化ニオブ、酸化チタン、および酸化バナジウムからなる群から選ばれる1つまたは2つ以上を含有する、請求項1に記載の酸化鉄粒子含有粉末。 The oxide particles are one or two selected from the group consisting of chromium oxide, silicon oxide, zirconium oxide, manganese oxide, zinc oxide, aluminum oxide, magnesium oxide, calcium oxide, niobium oxide, titanium oxide, and vanadium oxide. The iron oxide particle-containing powder according to claim 1, which contains the above. 厚さが0.01μm以上1μm以下であり、かつアスペクト比が2.0以上である板状粒子を、10vol%以上含有する、請求項1または2に記載の酸化鉄粒子含有粉末。 The iron oxide particle-containing powder according to claim 1 or 2, which contains 10 vol% or more of plate-like particles having a thickness of 0.01 μm or more and 1 μm or less and an aspect ratio of 2.0 or more. 前記板状粒子は、前記酸化鉄粒子および前記酸化物粒子を含む複合粒子である、請求項3に記載の酸化鉄粒子含有粉末。 The iron oxide particle-containing powder according to claim 3, wherein the plate-shaped particles are composite particles containing the iron oxide particles and the oxide particles. 前記酸化物は、前記酸化鉄との密度の差が±1.0g/m3以内である、請求項1~4のいずれか1項に記載の酸化鉄粒子含有粉末。 The iron oxide particle-containing powder according to any one of claims 1 to 4, wherein the oxide has a density difference from iron oxide within ± 1.0 g / m 3 . 請求項1~5のいずれか1項に記載の酸化鉄粒子含有粉末を含む、金属空気電池用負極材。 A negative electrode material for a metal-air battery, which comprises the iron oxide particle-containing powder according to any one of claims 1 to 5. Fe23およびFe34の少なくとも一方からなる酸化鉄と、該酸化鉄がFe34を含む場合にはFe34、該酸化鉄がFe34を含まない場合にはFe23の200℃以上600℃以下の温度域における標準生成自由エネルギーよりも該温度域における標準生成自由エネルギーが小さい酸化物とを、前記酸化鉄を80mass%以上、前記酸化物を3mass%以上の配合比で配合して配合物を得る配合工程と、
前記配合物を粉砕し、酸化鉄粒子と酸化物粒子とを含む酸化鉄粒子含有粉末を得る粉砕工程と
を含む、酸化鉄粒子含有粉末の製造方法。
Iron oxide consisting of at least one of Fe 2 O 3 and Fe 3 O 4 , Fe 3 O 4 when the iron oxide contains Fe 3 O 4 , and Fe 3 O 4 when the iron oxide does not contain Fe 3 O 4 . The oxide having a smaller standard free energy in the temperature range than the standard free energy in the temperature range of 200 ° C. or higher and 600 ° C. or lower of Fe 2 O 3 is 80 mass% or more of the iron oxide and 3 mass% of the oxide. The compounding process of compounding with the above compounding ratio to obtain a compound and
A method for producing iron oxide particle-containing powder, which comprises a pulverization step of crushing the compound to obtain an iron oxide particle-containing powder containing iron oxide particles and oxide particles.
JP2020118022A 2020-07-08 2020-07-08 Powder containing iron oxide particles and negative electrode material for metal-air batteries Active JP7277419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020118022A JP7277419B2 (en) 2020-07-08 2020-07-08 Powder containing iron oxide particles and negative electrode material for metal-air batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020118022A JP7277419B2 (en) 2020-07-08 2020-07-08 Powder containing iron oxide particles and negative electrode material for metal-air batteries

Publications (2)

Publication Number Publication Date
JP2022015292A true JP2022015292A (en) 2022-01-21
JP7277419B2 JP7277419B2 (en) 2023-05-19

Family

ID=80120726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020118022A Active JP7277419B2 (en) 2020-07-08 2020-07-08 Powder containing iron oxide particles and negative electrode material for metal-air batteries

Country Status (1)

Country Link
JP (1) JP7277419B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792592A (en) * 1980-11-25 1982-06-09 Hisanori Bando Needle alpha-fe2o3 grains with novel crystal orientation and its preparation
JP2008503428A (en) * 2004-06-24 2008-02-07 ケルントナー・モンタンインドゥストリー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Lamellar iron oxide (III)
JP2012094509A (en) * 2010-10-01 2012-05-17 Kyushu Univ Composite electrode material and method for producing the same, negative electrode for metal air battery, and metal air battery
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
JP2015216109A (en) * 2014-04-21 2015-12-03 京セラ株式会社 Negative electrode for air battery, and solid electrolyte air battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792592A (en) * 1980-11-25 1982-06-09 Hisanori Bando Needle alpha-fe2o3 grains with novel crystal orientation and its preparation
JP2008503428A (en) * 2004-06-24 2008-02-07 ケルントナー・モンタンインドゥストリー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Lamellar iron oxide (III)
JP2012094509A (en) * 2010-10-01 2012-05-17 Kyushu Univ Composite electrode material and method for producing the same, negative electrode for metal air battery, and metal air battery
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
JP2015216109A (en) * 2014-04-21 2015-12-03 京セラ株式会社 Negative electrode for air battery, and solid electrolyte air battery using the same

Also Published As

Publication number Publication date
JP7277419B2 (en) 2023-05-19

Similar Documents

Publication Publication Date Title
JPWO2011077932A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery using the same, and positive electrode active material precursor for lithium ion battery
JP2011508378A (en) Small particle electrode material composition and method for forming small particle electrode material composition
JP7220204B2 (en) Positive electrode active material for fluoride ion secondary battery, positive electrode using said active material, fluoride ion secondary battery, and method for producing said active material
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP5732945B2 (en) Fe-Ni alloy powder
JP2015526860A5 (en)
CN115924978A (en) Manganese-based layered sodium-ion battery positive electrode material and preparation method and application thereof
Jung et al. Synthesis of nanostructured P2-Na 2/3 MnO 2 for high performance sodium-ion batteries
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
CN114590848A (en) Modified single-crystal high-nickel ternary material and preparation method and application thereof
JPWO2019182088A1 (en) Method for manufacturing low-order titanium oxide powder
JP7277419B2 (en) Powder containing iron oxide particles and negative electrode material for metal-air batteries
KR20130044627A (en) Negative active material and rechargeable lithium battery comprising same
JP5148781B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
CN101844756A (en) Method for preparing lithium iron phosphate by using steel slag
EP2602857B1 (en) Alkali battery and method for manufacturing positive electrode material for alkali battery
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP6231760B2 (en) Si alloy powder for negative electrode active material of lithium ion secondary battery and method for producing the same
WO2018155399A1 (en) Alkaline storage battery negative electrode, production method for same, and alkaline storage battery
TWI571439B (en) Preparation method of lithium nickel manganese oxygen material of positive electrode of battery and lithium nickel manganese oxygen material of positive electrode of battery
JP2010225577A (en) Hydrogen storage alloy and alkaline storage battery with the alloy
JP2018081937A5 (en)
JPWO2022209988A5 (en)
US4543197A (en) Process for producing magnetic metallic oxide
JP5573083B2 (en) Hydrogen storage alloy electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7277419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150