JP2022015206A - Apparatus for producing silica particle, method for producing silica particle, method for producing silica sol, method for suppressing intermediate product in silica sol, and polishing method - Google Patents

Apparatus for producing silica particle, method for producing silica particle, method for producing silica sol, method for suppressing intermediate product in silica sol, and polishing method Download PDF

Info

Publication number
JP2022015206A
JP2022015206A JP2020117901A JP2020117901A JP2022015206A JP 2022015206 A JP2022015206 A JP 2022015206A JP 2020117901 A JP2020117901 A JP 2020117901A JP 2020117901 A JP2020117901 A JP 2020117901A JP 2022015206 A JP2022015206 A JP 2022015206A
Authority
JP
Japan
Prior art keywords
silica particles
silica
silica sol
producing
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020117901A
Other languages
Japanese (ja)
Other versions
JP7505304B2 (en
Inventor
智裕 京谷
Tomohiro Kyotani
栄治 出島
Eiji Dejima
友寛 加藤
Tomohiro Kato
康弘 河瀬
Yasuhiro Kawase
毅 沢井
Takeshi Sawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020117901A priority Critical patent/JP7505304B2/en
Publication of JP2022015206A publication Critical patent/JP2022015206A/en
Application granted granted Critical
Publication of JP7505304B2 publication Critical patent/JP7505304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide an apparatus and a method for producing silica particles for obtaining silica sol having few intermediate products, and to provide a method for producing silica sol in order to obtain silica sol having few intermediate products.SOLUTION: An apparatus for producing silica particles according to this invention includes a reaction tank, a solvent/dispersion medium supply tank, and a circulation type filtration device. A method for producing silica particles of the invention uses the apparatus for producing silica particles. A method for producing a silica sol of the invention includes the method for producing silica particles. A method of suppressing intermediate products in silica sol according to this invention includes the removal of intermediate products in silica sol by means of the above-mentioned method for producing silica sol. And a polishing method of the present invention includes polishing using a polishing composition containing silica particles obtained by the method for producing the silica particles.SELECTED DRAWING: Figure 1

Description

本発明は、シリカ粒子の製造装置と、このシリカ粒子の製造装置を用いるシリカ粒子の製造方法、このシリカ粒子の製造方法を含むシリカゾルの製造方法及び中間生成物の抑制方法、並びに得られたシリカ粒子を用いる研磨方法に関する。 The present invention comprises an apparatus for producing silica particles, a method for producing silica particles using the apparatus for producing silica particles, a method for producing a silica sol including a method for producing the silica particles, a method for suppressing intermediate products, and the obtained silica. The present invention relates to a polishing method using particles.

金属や無機化合物等の材料の表面を研磨する方法として、研磨液を用いた研磨方法が知られている。中でも、半導体用のプライムシリコンウェハやこれらの再生シリコンウェハの最終仕上げ研磨、及び、半導体デバイス製造時の層間絶縁膜の平坦化、金属プラグの形成、埋め込み配線形成等の化学的機械的研磨(CMP)では、その表面状態が半導体特性に大きく影響するため、これらの部品の表面や端面は、極めて高精度に研磨されることが要求されている。 As a method for polishing the surface of a material such as a metal or an inorganic compound, a polishing method using a polishing liquid is known. Among them, chemical mechanical polishing (CMP) such as final finish polishing of prime silicon wafers for semiconductors and these recycled silicon wafers, flattening of interlayer insulating films during semiconductor device manufacturing, metal plug formation, embedded wiring formation, etc. In), the surface condition thereof greatly affects the semiconductor characteristics, so that the surfaces and end faces of these parts are required to be polished with extremely high precision.

このような精密研磨においては、シリカ粒子を含む研磨組成物が採用されており、その主成分である砥粒として、コロイダルシリカが広く用いられている。コロイダルシリカは、その製造方法の違いにより、四塩化珪素の熱分解によるもの(ヒュームドシリカ等)、水ガラス等の珪酸アルカリの脱イオンによるもの、アルコキシシランの加水分解反応及び縮合反応(一般に「ゾル-ゲル法」と称される。以下、「加水分解反応・縮合反応」と記載する。)によるもの等が知られている。 In such precision polishing, a polishing composition containing silica particles is adopted, and colloidal silica is widely used as the abrasive grains which are the main components thereof. Colloidal silica is produced by thermal decomposition of silicon tetrachloride (hummed silica, etc.), by deionization of alkali silicate such as water glass, hydrolysis reaction and condensation reaction of alkoxysilane (generally, "" It is called "sol-gel method". Hereinafter, it is described as "hydrolysis reaction / condensation reaction") and the like.

コロイダルシリカを含むシリカゾルの製造方法に関し、これまで多くの検討がなされてきた。例えば、特許文献1~2には、アルコキシシランの加水分解反応・縮合反応によりシリカゾルを製造する方法が開示されている。 Many studies have been made on the method for producing a silica sol containing colloidal silica. For example, Patent Documents 1 and 2 disclose a method for producing a silica sol by a hydrolysis reaction / condensation reaction of alkoxysilane.

特開平11-60232号公報Japanese Unexamined Patent Publication No. 11-60232 国際公開第2008/123373号International Publication No. 2008/123373

アルコキシシランの加水分解反応・縮合反応によるシリカゾルの製造時又は製造後においては、中間生成物が発生することがある。この中間生成物は、成長不十分なまま固体として残存したシリカや製造後に溶存ケイ酸から析出したシリカと考えられる。また、アルコキシシランの加水分解反応・縮合反応によりシリカ粒子を合成する場合、一般にアルコールやアンモニアを蒸留等で除去する必要があるが、得られたシリカが再溶解して、析出することがあり、この析出したシリカも中間生成物に含まれていると考えられる。 Intermediate products may be generated during or after the production of silica sol by hydrolysis / condensation reaction of alkoxysilane. This intermediate product is considered to be silica remaining as a solid with insufficient growth or silica precipitated from dissolved silicic acid after production. In addition, when synthesizing silica particles by hydrolysis / condensation reaction of alkoxysilane, it is generally necessary to remove alcohol and ammonia by distillation or the like, but the obtained silica may be redissolved and precipitated. It is considered that this precipitated silica is also contained in the intermediate product.

このような中間生成物は、所望のコロイダルシリカよりも低い縮合度のシリカと考えられるため、得られるシリカゾル中のコロイダルシリカの機械的特性を悪化させ、研磨速度を低下させる等、得られる研磨液の研磨特性に悪影響を及ぼす。また、得られる研磨液中に縮合度の低いシリカが含まれるため、この研磨液を用いて研磨した後の被研磨体からの除去性に劣る。更に、シリカゾルや研磨液のシリカの凝集、沈降、増粘、ゲル化等の問題が生じやすく、得られるシリカゾルや得られる研磨液が不安定な挙動を示し、保存安定性に劣るものとなる。
また、研磨液の調製の際に濾過による精製が行われる場合があるが、中間生成物を含むシリカゾルは粘度が高いため、濾過に時間がかかったり、濾過ができなかったりするという課題を有する。
Since such an intermediate product is considered to be silica having a lower degree of condensation than the desired colloidal silica, the obtained polishing liquid deteriorates the mechanical properties of the colloidal silica in the obtained silica sol and lowers the polishing rate. It adversely affects the polishing properties of silica. Further, since silica having a low degree of condensation is contained in the obtained polishing liquid, the removability from the object to be polished after polishing with this polishing liquid is inferior. Further, problems such as aggregation, sedimentation, thickening, and gelation of silica in the silica sol and the polishing liquid are likely to occur, and the obtained silica sol and the obtained polishing liquid show unstable behavior and are inferior in storage stability.
Further, purification by filtration may be performed at the time of preparation of the polishing liquid, but since the silica sol containing an intermediate product has a high viscosity, there is a problem that filtration takes time or filtration cannot be performed.

特許文献1~2に開示されているアルコキシシランの加水分解反応・縮合反応によるシリカゾルの製造方法は、このような中間生成物の対処について何ら検討されておらず、製造装置や製造条件次第では中間生成物を多く含むシリカゾルが得られることとなる。中間生成物を多く含むシリカゾルを用いた研磨液は研磨特性に劣るものとなり、研磨後の被研磨体からの研磨液の除去性に劣る;得られるシリカゾルや研磨液の保存安定性に劣る;得られるシリカゾルの粘度が高く、濾過による中間生成物の除去性にも劣る;といった問題が起こる。 The method for producing a silica sol by the hydrolysis reaction / condensation reaction of alkoxysilane disclosed in Patent Documents 1 and 2 has not been studied at all for dealing with such an intermediate product, and is intermediate depending on the production apparatus and production conditions. A silica sol containing a large amount of product will be obtained. A polishing liquid using a silica sol containing a large amount of intermediate products is inferior in polishing characteristics and inferior in the removability of the polishing liquid from the object to be polished after polishing; inferior in the storage stability of the obtained silica sol and the polishing liquid; The viscosity of the silica sol to be obtained is high, and the removal of intermediate products by filtration is also inferior;

このように、従来法では、中間生成物を多く含むシリカゾルが得られるが、シリカゾル中の中間生成物はそのまま除去せずに研磨液として用いられてきたため、得られる研磨液の研磨特性や保存安定性が十分とは言えなかった。また、中間生成物を含むシリカゾルは粘度が高いため、取り扱い性が十分とは言えなかった。 As described above, in the conventional method, a silica sol containing a large amount of intermediate products can be obtained, but since the intermediate products in the silica sol have been used as a polishing liquid without being removed as they are, the polishing characteristics and storage stability of the obtained polishing liquid have been obtained. I couldn't say that the sex was enough. Moreover, since the silica sol containing the intermediate product has a high viscosity, it cannot be said that the handleability is sufficient.

本発明は、このような課題を鑑みてなされたものであり、本発明の目的は、中間生成物が少なく、粘度が低いシリカゾルを得るためのシリカ粒子の製造装置及び製造方法を提供することにある。また、本発明の目的は、中間生成物が少なく、粘度が低いシリカゾルを得るためのシリカゾルの製造方法を提供することにある。 The present invention has been made in view of such problems, and an object of the present invention is to provide an apparatus and a method for producing silica particles for obtaining a silica sol having a small amount of intermediate products and a low viscosity. be. Another object of the present invention is to provide a method for producing a silica sol for obtaining a silica sol having a small amount of intermediate products and a low viscosity.

本発明者らは、鋭意検討を重ねた結果、反応槽、溶媒・分散媒供給タンク及び循環型濾過装置を含むシリカ粒子の製造装置を用いることで、中間生成物が少なく、粘度が低いシリカゾルが得られることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors have obtained a silica sol having a small amount of intermediate products and a low viscosity by using a silica particle manufacturing apparatus including a reaction tank, a solvent / dispersion medium supply tank, and a circulation type filtration device. It was found that it could be obtained, and the present invention was completed.

即ち、本発明の要旨は、以下の通りである。
[1] 反応槽、溶媒・分散媒供給タンク及び循環型濾過装置を含む、シリカ粒子の製造装置。
[2] 前記循環型濾過装置が、限外濾過膜及び循環ポンプを含む、[1]に記載のシリカ粒子の製造装置。
[3] 前記限外濾過膜の分画分子量が、1,000~100,000である、[2]に記載のシリカ粒子の製造装置。
[4] 前記反応槽が、槽内面が樹脂でコーティングされた反応槽である、[1]~[3]のいずれかに記載のシリカ粒子の製造装置。
[5] [1]~[4]のいずれかに記載のシリカ粒子の製造装置を用いてシリカ粒子を製造する、シリカ粒子の製造方法。
[6] 得られたシリカ粒子のDLS法により測定した平均2次粒子径が、20nm~100nmである、[5]に記載のシリカ粒子の製造方法。
[7] 100℃以上に加熱する工程を含まない、[5]又は[6]に記載のシリカ粒子の製造方法。
[8] [5]~[7]のいずれかに記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。
[9] 得られたシリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、3質量%~50質量%である、[8]に記載のシリカゾルの製造方法。
[10] [8]又は[9]に記載のシリカゾルの製造方法により、シリカゾル中の中間生成物を除去する、シリカゾル中の中間生成物の抑制方法。
[11] [5]~[7]のいずれかに記載のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する、研磨方法。
That is, the gist of the present invention is as follows.
[1] A silica particle manufacturing apparatus including a reaction tank, a solvent / dispersion medium supply tank, and a circulation type filtration device.
[2] The silica particle manufacturing apparatus according to [1], wherein the circulation type filtration device includes an ultrafiltration membrane and a circulation pump.
[3] The apparatus for producing silica particles according to [2], wherein the ultrafiltration membrane has a molecular weight cut-off of 1,000 to 100,000.
[4] The apparatus for producing silica particles according to any one of [1] to [3], wherein the reaction tank is a reaction tank whose inner surface is coated with a resin.
[5] A method for producing silica particles, which comprises producing silica particles using the silica particle producing apparatus according to any one of [1] to [4].
[6] The method for producing silica particles according to [5], wherein the obtained silica particles have an average secondary particle diameter of 20 nm to 100 nm measured by the DLS method.
[7] The method for producing silica particles according to [5] or [6], which does not include a step of heating to 100 ° C. or higher.
[8] A method for producing silica sol, which comprises the method for producing silica particles according to any one of [5] to [7].
[9] The method for producing silica sol according to [8], wherein the content of silica particles in the obtained silica sol is 3% by mass to 50% by mass in 100% by mass of the total amount of silica sol.
[10] A method for suppressing an intermediate product in a silica sol, which removes the intermediate product in the silica sol by the method for producing a silica sol according to [8] or [9].
[11] A polishing method for polishing using a polishing composition containing silica particles obtained by the method for producing silica particles according to any one of [5] to [7].

本発明のシリカ粒子の製造装置、シリカ粒子の製造方法及びシリカゾルの製造方法は、得られるシリカゾルの中間生成物が少なく、粘度が低いことから、これを用いて得られる研磨液の研磨特性に優れ、研磨後の被研磨体からの研磨液の除去性にも優れる。また、得られるシリカゾルや得られる研磨液の保存安定性や取り扱い性にも優れる。 The silica particle manufacturing apparatus, the silica particle manufacturing method, and the silica sol manufacturing method of the present invention have excellent polishing properties of the polishing liquid obtained by using the silica sol, because the amount of intermediate products of the obtained silica sol is small and the viscosity is low. It is also excellent in removing the polishing liquid from the object to be polished after polishing. In addition, the obtained silica sol and the obtained polishing liquid are excellent in storage stability and handleability.

本発明のシリカ粒子の製造装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing apparatus of the silica particle of this invention. 比較例1で得られたシリカゾルのFE-SEMで観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the FE-SEM of the silica sol obtained in the comparative example 1. FIG. 実施例1で得られたシリカゾルのFE-SEMで観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the FE-SEM of the silica sol obtained in Example 1. FIG. 実施例2で得られたシリカゾルのFE-SEMで観測された二次電子像を示す図である。It is a figure which shows the secondary electron image observed by the FE-SEM of the silica sol obtained in Example 2. FIG.

以下に本発明について詳述するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。尚、本明細書において「~」という表現を用いる場合、その前後の数値又は物性値を含む表現として用いる。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be variously modified and carried out within the scope of the gist thereof. In addition, when the expression "-" is used in this specification, it is used as an expression including numerical values or physical property values before and after the expression.

(シリカ粒子の製造装置)
本発明のシリカ粒子の製造装置は、反応槽(供給される溶媒及び/又は分散媒、原料並びに触媒を含む反応液を反応させ、シリカ粒子の分散液であるシリカゾルを得るための槽)、溶媒・分散媒供給タンク(反応槽に供給する溶媒及び/又は分散媒を溜めるためのタンク)、及び循環型濾過装置(反応槽内の反応液を抜き出し、濾過して濾液を除去し、反応槽内に濾過残液を戻すための装置)を含む。
(Silica particle manufacturing equipment)
The apparatus for producing silica particles of the present invention is a reaction tank (a tank for reacting a reaction liquid containing a supplied solvent and / or a dispersion medium, a raw material, and a catalyst to obtain a silica sol which is a dispersion liquid of the silica particles) and a solvent. -Dispersion medium supply tank (tank for storing the solvent and / or dispersion medium supplied to the reaction tank), and circulation type filtration device (reaction liquid in the reaction tank is extracted, filtered to remove the filtrate, and in the reaction tank. Includes a device for returning the filtered residual liquid to.

図1は、本発明のシリカ粒子の製造装置の一実施形態を示す模式図である。以下、本発明のシリカ粒子の製造装置について図1を用いながら説明するが、本発明のシリカ粒子の製造装置は、図1に示されるものに限定されるものではない。 FIG. 1 is a schematic view showing an embodiment of the silica particle manufacturing apparatus of the present invention. Hereinafter, the silica particle manufacturing apparatus of the present invention will be described with reference to FIG. 1, but the silica particle manufacturing apparatus of the present invention is not limited to that shown in FIG.

図1に示すシリカ粒子の製造装置は、反応槽10、溶媒・分散媒供給タンク21、原料供給タンク22、触媒供給タンク23及び循環型濾過装置30を含む。溶媒・分散媒供給タンク21、原料供給タンク22及び触媒供給タンク23は、反応槽10に溶媒・分散媒、原料及び触媒をそれぞれ供給できるように接続されている。反応槽10と循環型濾過装置30とは、反応槽10内の液を抜き出し、循環型濾過装置30で濾過して濾液を除去し、濾過残液を再び反応槽10に戻すことができるように接続されている。循環型濾過装置30は、限外濾過膜31及び循環ポンプ32を含む。 The silica particle manufacturing apparatus shown in FIG. 1 includes a reaction tank 10, a solvent / dispersion medium supply tank 21, a raw material supply tank 22, a catalyst supply tank 23, and a circulation type filtration device 30. The solvent / dispersion medium supply tank 21, the raw material supply tank 22, and the catalyst supply tank 23 are connected so that the solvent / dispersion medium, the raw material, and the catalyst can be supplied to the reaction tank 10, respectively. The reaction tank 10 and the circulation type filtration device 30 are capable of extracting the liquid in the reaction tank 10, filtering with the circulation type filtration device 30 to remove the filtrate, and returning the filtered residual liquid to the reaction tank 10 again. It is connected. The circulation type filtration device 30 includes an ultrafiltration membrane 31 and a circulation pump 32.

反応槽10は、供給される溶媒及び/又は分散媒、原料並びに触媒を含む反応液を反応させ、シリカ粒子の分散液であるシリカゾルを得るための槽である。 The reaction tank 10 is a tank for reacting a reaction liquid containing a supplied solvent and / or a dispersion medium, a raw material, and a catalyst to obtain a silica sol which is a dispersion liquid of silica particles.

反応槽10は、金属不純物の混入を抑制し、得られるシリカゾル中のシリカ粒子の純度を高めることができることから、槽内表面(接液面)が樹脂でコーティングされていることが好ましい。
このコーティング層の樹脂としては、例えば、フッ素樹脂、エポキシ樹脂、フェノール樹脂等が挙げられる。これらの樹脂の中でも、金属不純物の混入を抑制し、シリカ粒子の純度をより高めることができることから、フッ素樹脂が好ましく、テトラフルオロエチレン樹脂がより好ましい。
Since the reaction tank 10 can suppress the mixing of metal impurities and increase the purity of the silica particles in the obtained silica sol, it is preferable that the inner surface (contact surface) of the tank is coated with a resin.
Examples of the resin of this coating layer include fluororesin, epoxy resin, phenol resin and the like. Among these resins, fluororesins are preferable, and tetrafluoroethylene resins are more preferable because they can suppress the mixing of metal impurities and further increase the purity of silica particles.

溶媒・分散媒供給タンク21は、反応槽10に供給する溶媒及び/又は分散媒を溜めるためのタンクである。溶媒・分散媒については後述する。
溶媒・分散媒供給タンク21と反応槽10との間には、溶媒・分散媒の反応槽10への供給量を調整できるよう、調整弁(図示せず)を有することが好ましい。特に、反応槽10内の液を抜き出して循環型濾過装置30で濾過、循環する際、溶媒・分散媒を含む濾液が系外へ排出されるため、反応槽10内の溶媒・分散媒の液量の変動を20%以内に維持できるよう調整弁で調整することが好ましい。
The solvent / dispersion medium supply tank 21 is a tank for storing the solvent and / or the dispersion medium to be supplied to the reaction tank 10. The solvent / dispersion medium will be described later.
It is preferable to have a regulating valve (not shown) between the solvent / dispersion medium supply tank 21 and the reaction tank 10 so that the amount of the solvent / dispersion medium supplied to the reaction tank 10 can be adjusted. In particular, when the liquid in the reaction tank 10 is taken out and filtered and circulated by the circulation type filtration device 30, the filtrate containing the solvent / dispersion medium is discharged to the outside of the system, so that the liquid of the solvent / dispersion medium in the reaction tank 10 is discharged. It is preferable to adjust with a regulating valve so that the fluctuation of the amount can be maintained within 20%.

本発明のシリカ粒子の製造装置は、図1に示すように、原料供給タンク22を有することが好ましい。
原料供給タンク22は、反応槽10に供給する原料を溜めるためのタンクである。テトラアルコキシシランに代表される原料については後述する。
As shown in FIG. 1, the silica particle manufacturing apparatus of the present invention preferably has a raw material supply tank 22.
The raw material supply tank 22 is a tank for storing the raw materials to be supplied to the reaction tank 10. Raw materials typified by tetraalkoxysilane will be described later.

本発明のシリカ粒子の製造装置は、図1に示すように、触媒供給タンク23を有することが好ましい。
触媒供給タンク23は、反応槽10に供給する触媒を溜めるためのタンクである。触媒については後述する。
触媒供給タンク23と反応槽10との間には、触媒の反応槽10への供給量を調整できるよう、調整弁(図示せず)を有することが好ましい。特に、触媒供給量調整弁により、加水分解反応・縮合反応を促進できるよう、反応槽10内の反応液の触媒濃度を調整することが好ましい。
As shown in FIG. 1, the silica particle manufacturing apparatus of the present invention preferably has a catalyst supply tank 23.
The catalyst supply tank 23 is a tank for storing the catalyst to be supplied to the reaction tank 10. The catalyst will be described later.
It is preferable to have a regulating valve (not shown) between the catalyst supply tank 23 and the reaction tank 10 so that the amount of the catalyst supplied to the reaction tank 10 can be adjusted. In particular, it is preferable to adjust the catalyst concentration of the reaction solution in the reaction vessel 10 so that the hydrolysis reaction / condensation reaction can be promoted by the catalyst supply amount adjusting valve.

循環型濾過装置30は、反応槽10内の反応液を抜き出し、濾過して濾液を除去し、反応槽10内に濾過残液を戻すための装置である。
循環型濾過装置30は、必要なシリカ粒子の除去を抑制しつつ、中間生成物を効率的に除去できることから、限外濾過膜31を有することが好ましい。限外濾過膜31については後述する。
循環型濾過装置30は、必要な回数の濾過を繰り返し行うことができることから、循環ポンプ32を有することが好ましい。
The circulation type filtration device 30 is a device for extracting the reaction liquid in the reaction tank 10, filtering it to remove the filtrate, and returning the filtered residual liquid to the reaction tank 10.
The circulation type filtration device 30 preferably has an ultrafiltration membrane 31 because it can efficiently remove intermediate products while suppressing the removal of necessary silica particles. The ultrafiltration membrane 31 will be described later.
The circulation type filtration device 30 preferably has a circulation pump 32 because the filtration can be repeated a required number of times.

(シリカ粒子の製造方法)
本発明のシリカ粒子の製造方法では、本発明のシリカ粒子の製造装置を用いてシリカ粒子を製造する。本発明のシリカ粒子の製造方法は、以下の工程(1)及び工程(2)を含むことが好ましい。
工程(1):反応槽でテトラアルコキシシランを加水分解反応・縮合反応させて、シリカゾルを得る工程
工程(2):循環型濾過装置によりシリカゾルを濾過する工程
(Manufacturing method of silica particles)
In the method for producing silica particles of the present invention, silica particles are produced using the silica particle producing apparatus of the present invention. The method for producing silica particles of the present invention preferably includes the following steps (1) and (2).
Step (1): Hydrolysis reaction / condensation reaction of tetraalkoxysilane in a reaction tank to obtain silica sol Step (2): Step of filtering silica sol with a circulation type filtration device.

(工程(1))
工程(1)は、反応槽でテトラアルコキシシランを加水分解反応・縮合反応させて、シリカゾルを得る工程である。
本発明のシリカ粒子の製造方法は、工程(1)を含むことで、金属成分を含む原料を用いずにシリカ粒子を製造することができることから、得られるシリカゾルの金属不純物含有率を低減することができる。
反応槽は、前述した反応槽を用いることが好ましい。
(Step (1))
Step (1) is a step of hydrolyzing and condensing tetraalkoxysilane in a reaction vessel to obtain a silica sol.
Since the method for producing silica particles of the present invention can produce silica particles without using a raw material containing a metal component by including step (1), it is possible to reduce the metal impurity content of the obtained silica sol. Can be done.
As the reaction tank, it is preferable to use the above-mentioned reaction tank.

テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等のアルコキシ基の炭素数が1~12のテトラアルコキシシランが挙げられる。これらのテトラアルコキシシランは、1種を単独で用いてもよく、2種以上を併用してもよい。これらのテトラアルコキシシランの中でも、加水分解反応が速く、未反応物が残留し難く、生産性に優れ、安定なシリカゾルを容易に得ることができることから、テトラメトキシシラン、テトラエトキシシランが好ましく、テトラメトキシシランがより好ましい。 Examples of the tetraalkoxysilane include tetraalkoxysilanes having an alkoxy group having 1 to 12 carbon atoms such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane. These tetraalkoxysilanes may be used alone or in combination of two or more. Among these tetraalkoxysilanes, tetramethoxysilane and tetraethoxysilane are preferable because the hydrolysis reaction is fast, unreacted substances are unlikely to remain, the productivity is excellent, and a stable silica sol can be easily obtained. More preferred is methoxysilane.

シリカ粒子の製造原料としては、テトラアルコキシシランの低縮合物等のテトラアルコキシシラン以外の原料を用いてもよいが、反応性に優れることから、テトラアルコキシシランを用いることが好ましく、シリカ粒子の製造に用いる全原料100質量%中、テトラアルコキシシランが50質量%以上で、テトラアルコキシシラン以外の原料が50質量%以下であることが好ましく、テトラアルコキシシランが90質量%以上で、テトラアルコキシシラン以外の原料が10質量%以下であることがより好ましい。 As the raw material for producing silica particles, a raw material other than tetraalkoxysilane such as a low condensate of tetraalkoxysilane may be used, but since it is excellent in reactivity, it is preferable to use tetraalkoxysilane, and the production of silica particles is preferable. It is preferable that the amount of tetraalkoxysilane is 50% by mass or more and the amount of raw materials other than tetraalkoxysilane is 50% by mass or less, and the amount of tetraalkoxysilane is 90% by mass or more and other than tetraalkoxysilane. It is more preferable that the raw material of silane is 10% by mass or less.

加水分解反応・縮合反応を行う際の反応に用いる溶媒・分散媒としては、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールや、アセトン、メチルエチルケトン等のケトン、酢酸エチル等のエステルなどが挙げられる。これらの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの溶媒・分散媒の中でも、加水分解反応・縮合反応で用いるものと副生するものとが同一で、製造上の利便性に優れることから、水、アルコールが好ましく、水、メタノールがより好ましい。 Examples of the solvent / dispersion medium used in the reaction for performing the hydrolysis reaction / condensation reaction include alcohols such as water, methanol, ethanol, propanol, isopropanol and ethylene glycol, ketones such as acetone and methyl ethyl ketone, and ethyl acetate. Examples include ester. As these solvents / dispersion media, one kind may be used alone, or two or more kinds may be used in combination. Among these solvents and dispersion media, those used in the hydrolysis reaction / condensation reaction and those used as by-products are the same, and are excellent in manufacturing convenience. Therefore, water and alcohol are preferable, and water and methanol are more preferable. ..

加水分解反応・縮合反応は、触媒存在下で行ってもよく、無触媒下で行ってもよいが、加水分解反応・縮合反応を促進できることから、触媒存在下で行うことが好ましい。
触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、ギ酸、クエン酸等の酸触媒、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、アンモニア、尿素、エタノールアミン、テトラメチル水酸化アンモニウム等のアルカリ触媒等が挙げられる。これらの触媒の中でも、触媒作用に優れ、粒子形状を制御しやすいことから、アルカリ触媒が好ましく、金属不純物の混入を抑制することができ、揮発性が高く縮合反応後の除去性に優れることから、アンモニアがより好ましい。
The hydrolysis reaction / condensation reaction may be carried out in the presence of a catalyst or in the absence of a catalyst, but it is preferably carried out in the presence of a catalyst because the hydrolysis reaction / condensation reaction can be promoted.
Examples of the catalyst include acid catalysts such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, formic acid and citric acid, and alkalis such as ethylenediamine, diethylenetriamine, triethylenetetraamine, ammonia, urea, ethanolamine and tetramethylammonium hydroxide. Examples include catalysts. Among these catalysts, an alkaline catalyst is preferable because it has excellent catalytic action and it is easy to control the particle shape, it is possible to suppress the mixing of metal impurities, it is highly volatile, and it is excellent in removability after a condensation reaction. , Ammonia is more preferred.

(工程(1)と工程(2)との関係)
工程(2)は、工程(1)の間に行ってもよく、工程(1)の後に行ってもよいが、成長不十分なまま固体として残存したシリカ、製造後に溶存ケイ酸から析出したシリカ、再溶解して析出したシリカ等の中間生成物を効率的に除去できることから、工程(1)の後に行うことが好ましい。
(Relationship between process (1) and process (2))
The step (2) may be carried out during the step (1) or after the step (1), but the silica remains as a solid with insufficient growth, and the silica precipitated from the dissolved silicic acid after the production. Since it is possible to efficiently remove intermediate products such as silica which have been redissolved and precipitated, it is preferable to carry out after the step (1).

また、工程(1)の後に工程(2)を行うことで、後述するシリカゾルの不必要な成分の除去と必要な成分の添加を工程(2)で兼ねることができ、シリカゾルの生産性に優れ、省エネルギー化に貢献することができる。 Further, by performing the step (2) after the step (1), it is possible to combine the removal of unnecessary components of the silica sol and the addition of the necessary components described later in the step (2), and the productivity of the silica sol is excellent. , Can contribute to energy saving.

(工程(2))
工程(2)は、循環型濾過装置によりシリカゾルを濾過する工程である。
本発明のシリカ粒子の製造方法は、工程(2)を含むことで、中間生成物を効率的に除去でき、シリカゾルの粘度を低下させ、シリカゾルの保存安定性を高めることができる。
(Step (2))
The step (2) is a step of filtering the silica sol by a circulation type filtration device.
By including the step (2), the method for producing silica particles of the present invention can efficiently remove intermediate products, reduce the viscosity of the silica sol, and enhance the storage stability of the silica sol.

本明細書において、中間生成物とは、電界放出型走査電子顕微鏡(FE-SEM)を用いて倍率10万倍~20万倍で撮影したFE-SEMの画像において、図2でいう矢印の先のように見える箇所をいう。
この中間生成物は、アルコキシシランの加水分解反応・縮合反応によるシリカゾルの製造時又は製造後における、成長不十分なまま固体として残存したシリカ、製造後に溶存ケイ酸から析出したシリカ、再溶解して析出したシリカ等と考えられる。
In the present specification, the intermediate product is the tip of an arrow in FIG. 2 in an image of FE-SEM taken with a field emission scanning electron microscope (FE-SEM) at a magnification of 100,000 to 200,000 times. The part that looks like.
This intermediate product is obtained by redissolving silica that remains as a solid with insufficient growth during or after the production of silica sol by hydrolysis / condensation reaction of alkoxysilane, silica precipitated from dissolved silicic acid after production, and so on. It is considered to be precipitated silica or the like.

濾過は、必要なシリカ粒子の除去を抑制しつつ、中間生成物を効率的に除去できることから、限外濾過であることが好ましい。
限外濾過は、通常用いられるミクロンオーダーの細孔径を持つ濾紙やフィルターによる濾過では細孔を通り抜けてしまう成分を、分子量ごとに分画できることが特徴である。
Filtration is preferably limited filtration because it can efficiently remove intermediate products while suppressing the removal of necessary silica particles.
The feature of ultrafiltration is that the components that pass through the pores by filtration with a filter paper or filter having a pore size on the order of microns, which is usually used, can be fractionated by molecular weight.

限外濾過に用いる限外濾過膜の分画分子量は、1,000~100,000が好ましく、5,000~80,000がより好ましく、7,000~60,000が更に好ましい。限外濾過膜の分画分子量が1,000以上であると、透過性に優れる。また、限外濾過膜の分画分子量が100,000以下であると、選択性に優れる。 The fractional molecular weight of the ultrafiltration membrane used for ultrafiltration is preferably 1,000 to 100,000, more preferably 5,000 to 80,000, and even more preferably 7,000 to 60,000. When the molecular weight cut-off of the ultrafiltration membrane is 1,000 or more, the permeability is excellent. Further, when the molecular weight cut-off of the ultrafiltration membrane is 100,000 or less, the selectivity is excellent.

限外濾過の方式は、デッドエンド方式であっても、クロスフロー方式であってもよいが、シリカゾルの生産性に優れ、必要な回数の濾過を簡便に繰り返し行うことができ、限外濾過膜を再生利用することもできることから、クロスフロー方式が好ましい。
デッドエンド方式は、濾過膜の面に対して垂直な液体の流れで濾過する方式である。
クロスフロー方式は、濾過膜の面に対して平行な液体の流れで濾過する方式である。
The ultrafiltration method may be a dead-end method or a cross-flow method, but the productivity of the silica sol is excellent, the filtration can be easily repeated as many times as necessary, and the ultrafiltration membrane can be used. The cross-flow method is preferable because it can be recycled.
The dead-end method is a method of filtering with a flow of liquid perpendicular to the surface of the filtration membrane.
The cross-flow method is a method of filtering with a flow of liquid parallel to the surface of the filtration membrane.

クロスフロー方式の限外濾過膜は、機械的強度に優れることから、中空糸膜がハウジングに内蔵されたモジュールが好ましい。
中空糸膜の材質は、機械的強度に優れることから、ポリアクリロニトリルが好ましい。
ハウジングの材質は、機械的強度に優れることから、ポリスルホンが好ましい。
Since the cross-flow type ultrafiltration membrane is excellent in mechanical strength, a module having a hollow fiber membrane built in the housing is preferable.
The material of the hollow fiber membrane is preferably polyacrylonitrile because it has excellent mechanical strength.
Polysulfone is preferable as the material of the housing because it has excellent mechanical strength.

クロスフロー方式の限外濾過膜の平均透過量は、生産性、濾過性に優れることから、5kg/m/時間以上が好ましく、6kg/m/時間~30kg/m/時間がより好ましい。 The average permeation amount of the cross-flow type ultrafiltration membrane is preferably 5 kg / m 2 / hour or more, and more preferably 6 kg / m 2 / hour to 30 kg / m 2 / hour because of its excellent productivity and filterability. ..

クロスフロー方式の限外濾過膜は、逆洗を行うことで再生して再利用することができる。クロスフロー方式の限外濾過膜の平均透過量が5kg/m/時間未満になったら、限外濾過膜の逆洗を行うことが好ましい。 The cross-flow type ultrafiltration membrane can be regenerated and reused by backwashing. When the average permeation amount of the cross-flow type ultrafiltration membrane is less than 5 kg / m 2 / hour, it is preferable to backwash the ultrafiltration membrane.

(工程(1)と工程(2)以外の工程)
本発明のシリカ粒子の製造方法は、得られるシリカ粒子の性能を損なわない範囲で、工程(1)及び工程(2)以外の工程を含んでもよい。
工程(1)及び工程(2)以外の工程としては、加圧加熱処理工程が挙げられるが、本発明によれば、工程(2)を採用することで中間生成物が抑制されることにより加圧加熱処理で期待される中間生成物の抑制効果が低減されることから、150℃以上に加熱する工程を含まないことが好ましく、100℃以上に加熱する工程を含まないことがより好ましい。
(Steps other than step (1) and step (2))
The method for producing silica particles of the present invention may include steps other than steps (1) and (2) as long as the performance of the obtained silica particles is not impaired.
Examples of the steps other than the step (1) and the step (2) include a pressure heat treatment step, but according to the present invention, the intermediate product is suppressed by adopting the step (2). Since the effect of suppressing intermediate products expected in the pressure heat treatment is reduced, it is preferable not to include a step of heating to 150 ° C. or higher, and more preferably not to include a step of heating to 100 ° C. or higher.

(シリカ粒子の物性)
本発明により製造されるシリカ粒子(以下、「本発明のシリカ粒子」と称す場合がある。)の平均1次粒子径は、5nm~100nmが好ましく、10nm~60nmがより好ましい。シリカ粒子の平均1次粒子径が5nm以上であると、シリカゾルの保存安定性に優れる。また、シリカ粒子の平均1次粒子径が100nm以下であると、シリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の沈降を抑制することができる。
(Physical characteristics of silica particles)
The average primary particle diameter of the silica particles produced by the present invention (hereinafter, may be referred to as "silica particles of the present invention") is preferably 5 nm to 100 nm, more preferably 10 nm to 60 nm. When the average primary particle diameter of the silica particles is 5 nm or more, the storage stability of the silica sol is excellent. Further, when the average primary particle diameter of the silica particles is 100 nm or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer can be reduced, and the sedimentation of the silica particles can be suppressed.

シリカ粒子の平均1次粒子径は、BET法により測定する。具体的には、比表面積自動測定装置を用いてシリカ粒子の比表面積を測定し、下記式(1)を用いて平均1次粒子径を算出する。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm))
・・・ (1)
The average primary particle size of the silica particles is measured by the BET method. Specifically, the specific surface area of the silica particles is measured using an automatic specific surface area measuring device, and the average primary particle diameter is calculated using the following formula (1).
Average primary particle diameter (nm) = 6000 / (specific surface area (m 2 / g) x density (g / cm 3 ))
... (1)

シリカ粒子の平均1次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average primary particle diameter of the silica particles can be set in a desired range according to known conditions and methods.

本発明のシリカ粒子の平均2次粒子径は、10nm~200nmが好ましく、20nm~100nmがより好ましい。シリカ粒子の平均2次粒子径が10nm以上であると、研磨後の洗浄における粒子等の除去性に優れ、シリカゾルの保存安定性に優れる。シリカ粒子の平均2次粒子径が200nm以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れ、シリカ粒子の沈降を抑制することができる。 The average secondary particle diameter of the silica particles of the present invention is preferably 10 nm to 200 nm, more preferably 20 nm to 100 nm. When the average secondary particle diameter of the silica particles is 10 nm or more, the removability of particles and the like in washing after polishing is excellent, and the storage stability of the silica sol is excellent. When the average secondary particle diameter of the silica particles is 200 nm or less, the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing can be reduced, and the removal of particles and the like during cleaning after polishing is excellent, and silica is used. It is possible to suppress the sedimentation of particles.

シリカ粒子の平均2次粒子径は、DLS法(動的光散乱法)により測定する。具体的には、動的光散乱粒子径測定装置を用いて測定する。 The average secondary particle diameter of silica particles is measured by the DLS method (dynamic light scattering method). Specifically, the measurement is performed using a dynamic light scattering particle size measuring device.

シリカ粒子の平均2次粒子径は、公知の条件・方法により、所望の範囲に設定することができる。 The average secondary particle diameter of the silica particles can be set in a desired range according to known conditions and methods.

本発明のシリカ粒子のcv値は、15~50が好ましく、20~40がより好ましく、25~35が更に好ましい。シリカ粒子のcv値が15以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子のcv値が50以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、研磨後の洗浄における粒子等の除去性に優れる。 The cv value of the silica particles of the present invention is preferably 15 to 50, more preferably 20 to 40, and even more preferably 25 to 35. When the cv value of the silica particles is 15 or more, the polishing rate for the object to be polished represented by the silicon wafer is excellent, and the productivity of the silicon wafer is excellent. Further, when the cv value of the silica particles is 50 or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer during polishing can be reduced, and the removal property of particles and the like in cleaning after polishing is excellent.

シリカ粒子のcv値は、動的光散乱粒子径測定装置を用いてシリカ粒子の平均2次粒子径を測定し、下記式(2)を用いて算出する。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
The cv value of the silica particles is calculated by measuring the average secondary particle size of the silica particles using a dynamic light scattering particle size measuring device and using the following formula (2).
cv value = (standard deviation (nm) / average secondary particle size (nm)) x 100 ... (2)

本発明のシリカ粒子の会合比は、1.0~4.0が好ましく、1.1~3.0がより好ましい。シリカ粒子の会合比が1.0以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れ、シリコンウェハの生産性に優れる。また、シリカ粒子の会合比が4.0以下であると、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減でき、シリカ粒子の凝集を抑制することができる。 The association ratio of the silica particles of the present invention is preferably 1.0 to 4.0, more preferably 1.1 to 3.0. When the association ratio of the silica particles is 1.0 or more, the polishing rate for the object to be polished represented by the silicon wafer is excellent, and the productivity of the silicon wafer is excellent. Further, when the association ratio of the silica particles is 4.0 or less, the surface roughness and scratches of the object to be polished represented by the silicon wafer at the time of polishing can be reduced, and the aggregation of the silica particles can be suppressed.

シリカ粒子の会合比は、前述の測定方法にて測定した平均1次粒子径と前述の測定方法にて測定した平均2次粒子径とから、下記式(3)を用いて算出される。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
The association ratio of the silica particles is calculated from the average primary particle diameter measured by the above-mentioned measuring method and the average secondary particle diameter measured by the above-mentioned measuring method by using the following formula (3).
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)

本発明のシリカ粒子の表面シラノール基密度は、0.1個/nm~10個/nmが好ましく、0.5個/nm~7.5個/nmがより好ましく、2.0個/nm~7.0個/nmが更に好ましい。シリカ粒子の表面シラノール基密度が0.1個/nm以上であると、シリカ粒子が適度な表面反発を有し、シリカゾルの分散安定性に優れる。また、シリカ粒子の表面シラノール基密度が10個/nm以下であると、シリカ粒子が適度な表面反発を有し、シリカ粒子の凝集を抑制することができる。 The surface silanol group density of the silica particles of the present invention is preferably 0.1 pieces / nm 2 to 10 pieces / nm 2 , more preferably 0.5 pieces / nm 2 to 7.5 pieces / nm 2 , and 2.0. Pieces / nm 2 to 7.0 pieces / nm 2 are more preferable. When the surface silanol group density of the silica particles is 0.1 element / nm 2 or more, the silica particles have an appropriate surface repulsion and the dispersion stability of the silica sol is excellent. Further, when the surface silanol group density of the silica particles is 10 pieces / nm 2 or less, the silica particles have an appropriate surface repulsion, and the aggregation of the silica particles can be suppressed.

シリカ粒子の表面シラノール基密度は、シアーズ法により測定する。具体的には、下記に示す条件で測定・算出する。
シリカ粒子1.5gに相当するシリカゾルを採取し、純水を加えて液量を90mLにする。25℃の環境下、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加え、塩化ナトリウム30gを加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、試験液を得る。
得られた試験液を自動滴定装置に入れ、0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定する。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出する。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
The surface silanol group density of the silica particles is measured by the Sears method. Specifically, it is measured and calculated under the conditions shown below.
A silica sol corresponding to 1.5 g of silica particles is collected, and pure water is added to make the liquid volume 90 mL. In an environment of 25 ° C, add a 0.1 mol / L hydrochloric acid aqueous solution until the pH reaches 3.6, add 30 g of sodium chloride, and gradually add pure water to completely dissolve the sodium chloride, and finally the test. Add pure water until the total volume of the solution reaches 150 mL to obtain a test solution.
The obtained test solution is placed in an automatic titrator, and a 0.1 mol / L sodium hydroxide aqueous solution is added dropwise to obtain 0.1 mol / L sodium hydroxide required for the pH to change from 4.0 to 9.0. Titration A (mL) of the aqueous solution is measured.
Using the following formula (4), calculate the consumption V (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0. Then, the surface silanol group density ρ (pieces / nm 2 ) of the silica particles is calculated using the following formula (5).
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (4)
A: Titration (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0.
f: Potency of 0.1 mol / L sodium hydroxide aqueous solution used C: Concentration (mass%) of silica particles in silica sol
W: Amount of silica sol collected (g)
ρ = (B × NA) / (10 18 × M × S BET ) ・ ・ ・ (5)
B: Amount of sodium hydroxide (mol) required for the pH per 1.5 g of silica particles calculated from V to change from 4.0 to 9.0.
NA : Avogadro's number (pieces / mol)
M: Amount of silica particles (1.5 g)
SBET : Specific surface area of silica particles measured when calculating the average primary particle size (m 2 / g)

尚、前記シリカ粒子の表面シラノール基密度の測定・算出方法は、「G.W.Sears,Jr., Analytical Chemistry, Vol.28, No.12, pp.1981-1983(1956).」、「羽場真一, 半導体集積回路プロセス用研磨剤の開発, 高知工科大学博士論文, pp.39-45, 2004年3月」、「特許第5967118号公報」、「特許第6047395号公報」を参考にした。 The method for measuring and calculating the surface silanol group density of the silica particles is described in "GW Sears, Jr., Analytical Chemistry, Vol. 28, No. 12, pp. 1981-1983 (1956).", ". Shinichi Haba, Development of Polishing Agents for Semiconductor Integrated Circuit Processes, Doctoral Dissertation, Kochi University of Technology, pp.39-45, March 2004 ”,“ Patent No. 5967118 ”,“ Patent No. 6047395 ” ..

シリカ粒子の表面シラノール基密度は、アルコキシシランの加水分解反応・縮合反応の条件を調整することで、所望の範囲に設定することができる。 The surface silanol group density of the silica particles can be set in a desired range by adjusting the conditions of the hydrolysis reaction / condensation reaction of the alkoxysilane.

本発明のシリカ粒子の金属不純物含有率は、5ppm以下が好ましく、2ppm以下がより好ましい。 The metal impurity content of the silica particles of the present invention is preferably 5 ppm or less, more preferably 2 ppm or less.

半導体デバイスのシリコンウェハの研磨において、金属不純物が被研磨体の表面に付着・汚染することで、ウェハ特性に悪影響を及ぼすと共に、ウェハ内部に拡散して品質が劣化するため、このようなウェハによって製造された半導体デバイスの性能が著しく低下する。
また、シリカ粒子に金属不純物が存在すると、酸性を示す表面シラノール基と金属不純物とが配位的な相互作用が発生し、表面シラノール基の化学的性質(酸性度等)を変化させたり、シリカ粒子表面の立体的な環境(シリカ粒子の凝集のしやすさ等)を変化させたり、研磨レートに影響を及ぼす。
In polishing a silicon wafer of a semiconductor device, metal impurities adhere to and contaminate the surface of the object to be polished, which adversely affects the wafer characteristics and diffuses inside the wafer to deteriorate the quality. The performance of manufactured semiconductor devices is significantly reduced.
In addition, when metal impurities are present in the silica particles, a coordinated interaction occurs between the surface silanol groups showing acidity and the metal impurities, which changes the chemical properties (acidity, etc.) of the surface silanol groups, or silica. It changes the three-dimensional environment of the particle surface (easiness of aggregation of silica particles, etc.) and affects the polishing rate.

シリカ粒子の金属不純物含有率は、高周波誘導結合プラズマ質量分析法(ICP-MS)により測定する。具体的には、シリカ粒子0.4g含むシリカゾルを正確に量り取り、硫酸とフッ酸を加え、加温・溶解・蒸発させ、残存した硫酸滴に総量が正確に10gとなるよう純水を加えて試験液を作成し、高周波誘導結合プラズマ質量分析装置を用いて測定する。対象の金属は、ナトリウム、カリウム、鉄、アルミニウム、カルシウム、マグネシウム、亜鉛、コバルト、クロム、銅、マンガン、鉛、チタン、銀、ニッケルとし、これらの金属の含有率の合計を金属不純物含有率とする。 The metal impurity content of the silica particles is measured by high frequency inductively coupled plasma mass spectrometry (ICP-MS). Specifically, weigh accurately the silica sol containing 0.4 g of silica particles, add sulfuric acid and hydrofluoric acid, heat, dissolve, and evaporate, and add pure water to the remaining sulfuric acid droplets so that the total amount is exactly 10 g. Prepare a test solution and measure using a high-frequency inductively coupled plasma mass spectrometer. The target metals are sodium, potassium, iron, aluminum, calcium, magnesium, zinc, cobalt, chromium, copper, manganese, lead, titanium, silver, and nickel, and the total content of these metals is the metal impurity content. do.

シリカ粒子の金属不純物含有率は、アルコキシシランを主原料として加水分解反応・縮合反応を行ってシリカ粒子を得ることで、5ppm以下とすることができる。
特に、本発明では、シリカ粒子の製造装置として槽内面に樹脂コーティング層が設けられた反応槽を用いることで、シリカ粒子の金属不純物含有率を著しく低減することができる。
水ガラス等の珪酸アルカリの脱イオンによる方法では、原料由来のナトリウム等が残存するため、シリカ粒子の金属不純物含有率を5ppm以下とすることが極めて困難である。
The metal impurity content of the silica particles can be 5 ppm or less by performing a hydrolysis reaction / condensation reaction using alkoxysilane as a main raw material to obtain silica particles.
In particular, in the present invention, by using a reaction tank provided with a resin coating layer on the inner surface of the tank as an apparatus for producing silica particles, the metal impurity content of the silica particles can be significantly reduced.
In the method by deionization of alkali silicate such as water glass, it is extremely difficult to reduce the metal impurity content of silica particles to 5 ppm or less because sodium or the like derived from the raw material remains.

シリカ粒子の形状としては、例えば、球状、鎖状、繭状(こぶ状や落花生状とも称される)、異形状(例えば、疣状、屈曲状、分岐状等)等が挙げられる。これらのシリカ粒子の形状の中でも、研磨時のシリコンウェハに代表される被研磨体の表面粗さや傷を低減させたい場合は、球状が好ましく、シリコンウェハに代表される被研磨体に対する研磨レートをより高めたい場合は、異形状が好ましい。 Examples of the shape of the silica particles include a spherical shape, a chain shape, a cocoon shape (also referred to as a hump shape or a peanut shape), and an irregular shape (for example, a wart shape, a bent shape, a branched shape, etc.). Among the shapes of these silica particles, if it is desired to reduce the surface roughness and scratches of the object to be polished represented by a silicon wafer during polishing, a spherical shape is preferable, and the polishing rate for the object to be polished represented by a silicon wafer is set. If you want to increase it, a different shape is preferable.

本発明のシリカ粒子は、機械的強度、保存安定性に優れることから、細孔を有しないことが好ましい。
シリカ粒子の細孔の有無は、窒素を吸着ガスとした吸着等温線を用いたBET多点法解析により確認する。
Since the silica particles of the present invention are excellent in mechanical strength and storage stability, it is preferable that they do not have pores.
The presence or absence of pores in the silica particles is confirmed by BET multipoint analysis using an adsorption isotherm using nitrogen as an adsorption gas.

本発明のシリカ粒子は、機械的強度、保存安定性に優れることから、アルコキシシラン縮合物を主成分とすることが好ましく、テトラアルコキシシラン縮合物を主成分とすることがより好ましい。主成分とは、シリカ粒子を構成する全成分100質量%中、50質量%以上であることをいう。
アルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、アルコキシシランを主原料とすることが好ましい。テトラアルコキシシラン縮合物を主成分とするシリカ粒子を得るためには、テトラアルコキシシランを主原料とすることが好ましい。主原料とは、シリカ粒子を構成する全原料100質量%中、50質量%以上であることをいう。
Since the silica particles of the present invention are excellent in mechanical strength and storage stability, it is preferable to have an alkoxysilane condensate as a main component, and more preferably to have a tetraalkoxysilane condensate as a main component. The main component means that it is 50% by mass or more in 100% by mass of all the components constituting the silica particles.
In order to obtain silica particles containing an alkoxysilane condensate as a main component, it is preferable to use alkoxysilane as a main raw material. In order to obtain silica particles containing a tetraalkoxysilane condensate as a main component, it is preferable to use tetraalkoxysilane as a main raw material. The main raw material means that it is 50% by mass or more in 100% by mass of all the raw materials constituting the silica particles.

(シリカゾルの製造方法)
本発明のシリカゾルの製造方法は、本発明のシリカ粒子の製造方法を含む。
(Manufacturing method of silica sol)
The method for producing a silica sol of the present invention includes a method for producing silica particles of the present invention.

本発明のシリカゾルの製造方法により製造されたシリカゾル(以下、「本発明のシリカゾル」と称す場合がある。)は、本発明のシリカ粒子の製造方法で得られたシリカ粒子の分散液をそのまま用いてもよく、得られた分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加して製造してもよい。 As the silica sol produced by the method for producing the silica sol of the present invention (hereinafter, may be referred to as “the silica sol of the present invention”), the dispersion liquid of the silica particles obtained by the method for producing the silica particles of the present invention is used as it is. Alternatively, it may be produced by removing unnecessary components from the components in the obtained dispersion and adding necessary components.

本発明のシリカゾルは、シリカ粒子及び溶媒・分散媒を含むことが好ましい。
シリカゾル中の溶媒・分散媒は、例えば、水、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール等のアルコールなどが挙げられる。これらのシリカゾルの溶媒・分散媒は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのシリカゾルの溶媒・分散媒の中でも、シリカ粒子との親和性に優れることから、水、アルコールが好ましく、水がより好ましい。
The silica sol of the present invention preferably contains silica particles and a solvent / dispersion medium.
Examples of the solvent / dispersion medium in the silica sol include water, methanol, ethanol, propanol, isopropanol, and alcohols such as ethylene glycol. As the solvent / dispersion medium of these silica sol, one kind may be used alone, or two or more kinds may be used in combination. Among the solvents and dispersion media of these silica sol, water and alcohol are preferable, and water is more preferable because they have excellent affinity with silica particles.

本発明のシリカゾル中のシリカ粒子の含有率は、シリカゾル全量100質量%中、3質量%~50質量%が好ましく、4質量%~40質量%がより好ましく、5質量%~30質量%が更に好ましい。シリカゾル中のシリカ粒子の含有率が3質量%以上であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。また、シリカゾル中のシリカ粒子の含有率が50質量%以下であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。 The content of silica particles in the silica sol of the present invention is preferably 3% by mass to 50% by mass, more preferably 4% by mass to 40% by mass, and further preferably 5% by mass to 30% by mass in 100% by mass of the total amount of silica sol. preferable. When the content of silica particles in the silica sol is 3% by mass or more, the polishing rate for the object to be polished represented by a silicon wafer is excellent. Further, when the content of the silica particles in the silica sol is 50% by mass or less, the aggregation of the silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent.

本発明のシリカゾル中の溶媒・分散媒の含有率は、シリカゾル全量100質量%中、50質量%~97質量%が好ましく、60質量%~96質量%がより好ましく、70質量%~95質量%が更に好ましい。シリカゾル中の溶媒・分散媒の含有率が50質量%以上であると、シリカゾルや研磨組成物中のシリカ粒子の凝集を抑制することができ、シリカゾルや研磨組成物の保存安定性に優れる。また、シリカゾル中の溶媒・分散媒の含有率が90質量%以下であると、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The content of the solvent / dispersion medium in the silica sol of the present invention is preferably 50% by mass to 97% by mass, more preferably 60% by mass to 96% by mass, and 70% by mass to 95% by mass in the total amount of the silica sol of 100% by mass. Is more preferable. When the content of the solvent / dispersion medium in the silica sol is 50% by mass or more, aggregation of silica particles in the silica sol or the polishing composition can be suppressed, and the storage stability of the silica sol or the polishing composition is excellent. Further, when the content of the solvent / dispersion medium in the silica sol is 90% by mass or less, the polishing rate for the object to be polished represented by the silicon wafer is excellent.

シリカゾル中のシリカ粒子や溶媒・分散媒の含有率は、シリカ粒子の分散液中の成分のうち、不必要な成分を除去し、必要な成分を添加することで、所望の範囲に設定することができる。 The content of the silica particles and the solvent / dispersion medium in the silica sol shall be set to a desired range by removing unnecessary components from the components in the dispersion liquid of the silica particles and adding the necessary components. Can be done.

本発明のシリカゾルは、シリカ粒子及び溶媒・分散媒以外に、その性能を損なわない範囲において、必要に応じて、酸化剤、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリカゾルの保存安定性に優れることから、シリカゾル中に抗菌・殺生物剤を含ませることが好ましい。
In addition to silica particles and solvents / dispersion media, the silica sol of the present invention is an oxidizing agent, a preservative, an antifungal agent, a pH adjuster, a pH buffering agent, and a surfactant, as necessary, as long as the performance is not impaired. , Chelating agents, antibacterial / biocide and the like.
In particular, since the silica sol is excellent in storage stability, it is preferable to include an antibacterial / biocide in the silica sol.

抗菌・殺生物剤としては、例えば、過酸化水素、アンモニア、第四級アンモニウム水酸化物、第四級アンモニウム塩、エチレンジアミン、グルタルアルデヒド、過酸化水素、p-ヒドロキシ安息香酸メチル、亜塩素酸ナトリウム等が挙げられる。これらの抗菌・殺生物剤は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの抗菌・殺生物剤の中でも、シリカゾルとの親和性に優れることから、過酸化水素が好ましい。
抗菌・殺生物剤は、一般に殺菌剤と言われるものも含む。
Examples of antibacterial / biological agents include hydrogen peroxide, ammonia, quaternary ammonium hydroxide, quaternary ammonium salt, ethylenediamine, glutaraldehyde, hydrogen peroxide, methyl p-hydroxybenzoate, and sodium chlorite. And so on. These antibacterial and biocide agents may be used alone or in combination of two or more. Among these antibacterial and biocide agents, hydrogen peroxide is preferable because it has an excellent affinity with silica sol.
Antibacterial and biocidal agents also include those generally referred to as fungicides.

本発明のシリカゾル中の抗菌・殺生物剤の含有率は、シリカゾル全量100質量%中、0.0001質量%~10質量%が好ましく、0.001質量%~1質量%がより好ましい。シリカゾル中の抗菌・殺生物剤の含有率が0.0001質量%以上であると、シリカゾルの保存安定性に優れる。シリカゾル中の抗菌・殺生物剤の含有率が10質量%以下であると、シリカゾルの本来の性能を損なわない。 The content of the antibacterial / biocide in the silica sol of the present invention is preferably 0.0001% by mass to 10% by mass, more preferably 0.001% by mass to 1% by mass, based on 100% by mass of the total amount of the silica sol. When the content of the antibacterial / biocide in the silica sol is 0.0001% by mass or more, the storage stability of the silica sol is excellent. When the content of the antibacterial / biocide in the silica sol is 10% by mass or less, the original performance of the silica sol is not impaired.

本発明のシリカゾルのpHは、6.0~8.0が好ましく、6.5~7.8がより好ましい。シリカゾルのpHが6.0以上であると、シリカゾルの長期間の保存安定性に優れる。また、シリカゾルのpHが8.0以下であると、シリカ粒子の凝集を抑制することができ、シリカゾルの分散安定性に優れる。
シリカゾルのpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the silica sol of the present invention is preferably 6.0 to 8.0, more preferably 6.5 to 7.8. When the pH of the silica sol is 6.0 or more, the long-term storage stability of the silica sol is excellent. Further, when the pH of the silica sol is 8.0 or less, the aggregation of silica particles can be suppressed, and the dispersion stability of the silica sol is excellent.
The pH of the silica sol can be set in a desired range by adding a pH adjuster.

本発明のシリカゾルの粘度は、30mPa・s以下が好ましく、0mPa・s~20mPa・sがより好ましく、1mPa・s~10mPa・sが更に好ましい。シリカゾルの粘度が30mPa・s以下であると、シリカゾルの取り扱い性、濾過性、保存安定性に優れ、研磨組成物の調製が容易となる。
シリカゾルの粘度は、25℃、ずり速度150/秒の条件で、E型粘度計を用いて測定した値とする。
The viscosity of the silica sol of the present invention is preferably 30 mPa · s or less, more preferably 0 mPa · s to 20 mPa · s, and even more preferably 1 mPa · s to 10 mPa · s. When the viscosity of the silica sol is 30 mPa · s or less, the silica sol is excellent in handleability, filterability, and storage stability, and the polishing composition can be easily prepared.
The viscosity of the silica sol shall be a value measured using an E-type viscometer under the conditions of 25 ° C. and a shear rate of 150 / sec.

(シリカゾル中の中間生成物の抑制方法)
本発明のシリカゾル中の中間生成物の抑制方法は、本発明のシリカゾルの製造方法によりシリカゾル中の中間生成物を除去する方法であり、具体的な方法は、前述した通りである。
(Method of suppressing intermediate products in silica sol)
The method for suppressing an intermediate product in the silica sol of the present invention is a method for removing the intermediate product in the silica sol by the method for producing the silica sol of the present invention, and the specific method is as described above.

(研磨組成物)
本発明のシリカ粒子の製造方法で得られるシリカ粒子は、研磨組成物として好適に用いることができる。
研磨組成物は、前述した本発明のシリカゾル及び水溶性高分子を含むことが好ましい。
(Polishing composition)
The silica particles obtained by the method for producing silica particles of the present invention can be suitably used as a polishing composition.
The polishing composition preferably contains the above-mentioned silica sol of the present invention and a water-soluble polymer.

水溶性高分子は、シリコンウェハに代表される被研磨体に対する研磨組成物の濡れ性を高める。水溶性高分子は、水親和性の高い官能基を保有する高分子であることが好ましく、この水親和性の高い官能基とシリカ粒子の表面シラノール基との親和性が高く、研磨組成物中でより近傍にシリカ粒子と水溶性高分子とが安定して分散する。そのため、シリコンウェハに代表される被研磨体への研磨の際、シリカ粒子と水溶性高分子との効果が相乗的に機能する。 The water-soluble polymer enhances the wettability of the polishing composition with respect to the object to be polished represented by a silicon wafer. The water-soluble polymer is preferably a polymer having a functional group having a high water affinity, and the functional group having a high water affinity has a high affinity with the surface silanol group of the silica particles, and is contained in the polishing composition. The silica particles and the water-soluble polymer are stably dispersed in the vicinity. Therefore, the effects of the silica particles and the water-soluble polymer function synergistically when polishing the object to be polished represented by a silicon wafer.

水溶性高分子としては、例えば、セルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルピロリドン骨格を有する共重合体、ポリオキシアルキレン構造を有する重合体等が挙げられる。 Examples of the water-soluble polymer include cellulose derivatives, polyvinyl alcohol, polyvinylpyrrolidone, copolymers having a polyvinylpyrrolidone skeleton, and polymers having a polyoxyalkylene structure.

セルロース誘導体としては、例えば、ヒドロキシエチルセルロース、加水分解処理を施したヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。
ポリビニルピロリドン骨格を有する共重合体としては、例えば、ポリビニルアルコールとポリビニルピロリドンとのグラフト共重合体等が挙げられる。
ポリオキシアルキレン構造を有する重合体としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、エチレンオキサイドとプロピレンオキサイドとの共重合体等が挙げられる。
Examples of the cellulose derivative include hydroxyethyl cellulose, hydrolyzed hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like.
Examples of the copolymer having a polyvinylpyrrolidone skeleton include a graft copolymer of polyvinyl alcohol and polyvinylpyrrolidone.
Examples of the polymer having a polyoxyalkylene structure include polyoxyethylene, polyoxypropylene, and a copolymer of ethylene oxide and propylene oxide.

これらの水溶性高分子は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの水溶性高分子の中でも、シリカ粒子の表面シラノール基との親和性が高く、相乗的に作用して被研磨体の表面に良好な親水性を与えることから、セルロース誘導体が好ましく、ヒドロキシエチルセルロースがより好ましい。 These water-soluble polymers may be used alone or in combination of two or more. Among these water-soluble polymers, a cellulose derivative is preferable because it has a high affinity with the surface silanol group of the silica particles and acts synergistically to give good hydrophilicity to the surface of the object to be polished. Is more preferable.

水溶性高分子の質量平均分子量は、1,000~3,000,000が好ましく、5,000~2,000,000がより好ましく、10,000~1,000,000が更に好ましい。水溶性高分子の質量平均分子量が1,000以上であると、研磨組成物の親水性が向上する。また、水溶性高分子の質量平均分子量が3,000,000以下であると、シリカゾルとの親和性に優れ、シリコンウェハに代表される被研磨体に対する研磨レートに優れる。 The mass average molecular weight of the water-soluble polymer is preferably 1,000 to 3,000,000, more preferably 5,000 to 2,000,000, and even more preferably 10,000 to 1,000,000. When the mass average molecular weight of the water-soluble polymer is 1,000 or more, the hydrophilicity of the polishing composition is improved. Further, when the mass average molecular weight of the water-soluble polymer is 3,000,000 or less, the affinity with the silica sol is excellent, and the polishing rate for the object to be polished represented by the silicon wafer is excellent.

水溶性高分子の質量平均分子量は、ポリエチレンオキサイド換算で、0.1mol/LのNaCl溶液を移動相とする条件で、サイズ排除クロマトグラフィーにより測定する。 The mass average molecular weight of the water-soluble polymer is measured by size exclusion chromatography under the condition that a 0.1 mol / L NaCl solution is used as a mobile phase in terms of polyethylene oxide.

研磨組成物中の水溶性高分子の含有率は、研磨組成物全量100質量%中、0.02質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましい。研磨組成物中の水溶性高分子の含有率が0.02質量%以上であると、研磨組成物の親水性が向上する。また、研磨組成物中の水溶性高分子の含有率が10質量%以下であると、研磨組成物調製時のシリカ粒子の凝集を抑制することができる。 The content of the water-soluble polymer in the polishing composition is preferably 0.02% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the water-soluble polymer in the polishing composition is 0.02% by mass or more, the hydrophilicity of the polishing composition is improved. Further, when the content of the water-soluble polymer in the polishing composition is 10% by mass or less, the aggregation of silica particles at the time of preparing the polishing composition can be suppressed.

研磨組成物は、本発明のシリカゾル及び水溶性高分子以外に、その性能を損なわない範囲において、必要に応じて、塩基性化合物、研磨促進剤、界面活性剤、親水性化合物、防腐剤、防黴剤、pH調整剤、pH緩衝剤、界面活性剤、キレート剤、抗菌・殺生物剤等の他の成分を含んでもよい。
特に、シリコンウェハに代表される被研磨体の表面に化学的な作用を与えて化学的研磨(ケミカルエッチング)ができ、シリカ粒子の表面シラノール基との相乗効果により、シリコンウェハに代表される被研磨体の研磨速度を向上させることができることから、研磨組成物中に塩基性化合物を含ませることが好ましい。
In addition to the silica sol and the water-soluble polymer of the present invention, the polishing composition may be a basic compound, a polishing accelerator, a surfactant, a hydrophilic compound, an antiseptic, or an antiseptic, as necessary, as long as the performance is not impaired. It may contain other components such as a mold, a pH adjuster, a pH buffer, a surfactant, a chelating agent, an antibacterial / killing agent, and the like.
In particular, it is possible to perform chemical polishing (chemical etching) by giving a chemical action to the surface of the object to be polished represented by a silicon wafer, and due to the synergistic effect with the surface silanol groups of silica particles, the surface of the object to be polished is represented by a silicon wafer. Since the polishing speed of the polished body can be improved, it is preferable to include a basic compound in the polishing composition.

塩基性化合物としては、例えば、有機塩基性化合物、アルカリ金属水酸化物、アルカリ金属炭酸水素塩、アルカリ金属炭酸塩、アンモニア等が挙げられる。これらの塩基性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの塩基性化合物の中でも、水溶性が高く、シリカ粒子や水溶性高分子との親和性に優れることから、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウムが好ましく、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウムがより好ましく、アンモニアが更に好ましい。 Examples of the basic compound include organic basic compounds, alkali metal hydroxides, alkali metal hydrogen carbonates, alkali metal carbonates, ammonia and the like. These basic compounds may be used alone or in combination of two or more. Among these basic compounds, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, ammonium hydrogencarbonate, and ammonium carbonate are preferable because they are highly water-soluble and have excellent affinity with silica particles and water-soluble polymers. , Ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide are more preferable, and ammonia is even more preferable.

研磨組成物中の塩基性化合物の含有率は、研磨組成物全量100質量%中、0.001質量%~5質量%が好ましく、0.01質量%~3質量%がより好ましい。研磨組成物中の塩基性化合物の含有率が0.001質量%以上であると、シリコンウェハに代表される被研磨体の研磨速度を向上させることができる。また、研磨組成物中の塩基性化合物の含有率が5質量%以下であると、研磨組成物の安定性に優れる。 The content of the basic compound in the polishing composition is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 3% by mass, based on 100% by mass of the total amount of the polishing composition. When the content of the basic compound in the polishing composition is 0.001% by mass or more, the polishing speed of the object to be polished represented by a silicon wafer can be improved. Further, when the content of the basic compound in the polishing composition is 5% by mass or less, the stability of the polishing composition is excellent.

研磨組成物のpHは、8.0~12.0が好ましく、9.0~11.0がより好ましい。研磨組成物のpHが8.0以上であると、研磨組成物中のシリカ粒子の凝集を抑制することができ、研磨組成物の分散安定性に優れる。また、研磨組成物のpHが12.0以下であると、シリカ粒子の溶解を抑制することができ、研磨組成物の安定性に優れる。
研磨組成物のpHは、pH調整剤を添加することで、所望の範囲に設定することができる。
The pH of the polishing composition is preferably 8.0 to 12.0, more preferably 9.0 to 11.0. When the pH of the polishing composition is 8.0 or more, the aggregation of silica particles in the polishing composition can be suppressed, and the dispersion stability of the polishing composition is excellent. Further, when the pH of the polishing composition is 12.0 or less, the dissolution of silica particles can be suppressed and the stability of the polishing composition is excellent.
The pH of the polishing composition can be set in a desired range by adding a pH adjuster.

研磨組成物は、本発明のシリカゾル、水溶性高分子、及び、必要に応じて、他の成分を混合することで得られるが、保管・運搬を考慮し、一旦高濃度で調製し、研磨直前に水等で希釈してもよい。 The polishing composition can be obtained by mixing the silica sol of the present invention, the water-soluble polymer, and other components as necessary, but in consideration of storage and transportation, once prepared at a high concentration, immediately before polishing. May be diluted with water or the like.

(研磨方法)
本発明の研磨方法は、本発明のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する方法である。
研磨組成物は、前述した研磨組成物を用いることが好ましい。
具体的な研磨の方法としては、例えば、シリコンウェハの表面を研磨パッドに押し付け、研磨パッド上に研磨組成物を滴下し、シリコンウェハの表面を研磨する方法が挙げられる。
(Polishing method)
The polishing method of the present invention is a method of polishing using a polishing composition containing silica particles obtained by the method for producing silica particles of the present invention.
As the polishing composition, it is preferable to use the above-mentioned polishing composition.
Specific examples of the polishing method include a method in which the surface of a silicon wafer is pressed against a polishing pad, a polishing composition is dropped onto the polishing pad, and the surface of the silicon wafer is polished.

(用途)
本発明のシリカ粒子の製造装置で得られたシリカ粒子、本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができる。中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。
(Use)
The silica particles obtained by the apparatus for producing silica particles of the present invention, the silica particles obtained by the method for producing silica particles of the present invention, and the silica sol obtained by the method for producing a silica sol of the present invention are suitably used for polishing applications. It can be used, for example, for polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the flattening process when manufacturing integrated circuits (chemical mechanical polishing), photomasks and liquid crystals. It can be used for polishing synthetic quartz glass substrates, polishing magnetic disk substrates, and the like. Above all, it can be particularly preferably used for polishing silicon wafers and chemical mechanical polishing.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明は、その要旨を逸脱しない限り、以下の実施例の記載に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the description of the following examples as long as it does not deviate from the gist thereof.

(平均1次粒子径の測定)
実施例及び比較例で得られたシリカゾルを150℃で乾燥し、比表面積自動測定装置「BELSORP-MR1」(機種名、マイクロトラック・ベル株式会社)を用いて、シリカ粒子の比表面積を測定し、下記式(1)を用い、密度を2.2g/cmとし、平均1次粒子径を算出した。
平均1次粒子径(nm)=6000/(比表面積(m/g)×密度(g/cm))
・・・ (1)
(Measurement of average primary particle size)
The silica sol obtained in Examples and Comparative Examples was dried at 150 ° C., and the specific surface area of the silica particles was measured using an automatic specific surface area measuring device "BELSORP-MR1" (model name, Microtrac Bell Co., Ltd.). , The following formula (1) was used, the density was set to 2.2 g / cm 3 , and the average primary particle size was calculated.
Average primary particle diameter (nm) = 6000 / (specific surface area (m 2 / g) x density (g / cm 3 ))
... (1)

(平均2次粒子径・cv値の測定)
実施例及び比較例で得られたシリカゾルを、動的光散乱粒子径測定装置「ゼーターサイザーナノZS」(機種名、マルバーン社製)を用いて、シリカ粒子の平均2次粒子径を測定し、下記式(2)を用いてcv値を算出した。
cv値=(標準偏差(nm)/平均2次粒子径(nm))×100 ・・・ (2)
(Measurement of average secondary particle size and cv value)
The silica sol obtained in Examples and Comparative Examples was measured for the average secondary particle size of silica particles using a dynamic light scattering particle size measuring device "Zetersizer Nano ZS" (model name, manufactured by Malvern). The cv value was calculated using the following formula (2).
cv value = (standard deviation (nm) / average secondary particle size (nm)) x 100 ... (2)

(会合比の算出)
測定した平均1次粒子径と平均2次粒子径とから、下記式(3)を用いて会合比を算出した。
会合比=平均2次粒子径/平均1次粒子径 ・・・ (3)
(Calculation of meeting ratio)
From the measured average primary particle diameter and average secondary particle diameter, the association ratio was calculated using the following formula (3).
Association ratio = average secondary particle diameter / average primary particle diameter ... (3)

(表面シラノール基密度の測定)
実施例及び比較例で得られたシリカゾルの、シリカ粒子1.5gに相当する量を、200mLトールビーカーに採取し、純水を加えて液量を90mLにした。
25℃の環境下、トールビーカーにpH電極を挿入し、マグネティックスターラーにより試験液を5分間撹拌させた。マグネティックスターラーによる撹拌を続けた状態で、pHが3.6になるまで0.1mol/Lの塩酸水溶液を加えた。トールビーカーからpH電極を取り外し、マグネティックスターラーによる撹拌を続けた状態で、塩化ナトリウムを30g加え、純水を徐々に加えながら塩化ナトリウムを完全に溶解させ、最終的に試験液の総量が150mLになるまで純水を加え、マグネティックスターラーにより試験液を5分間撹拌させ、試験液を得た。
(Measurement of surface silanol group density)
The amount of the silica sol obtained in Examples and Comparative Examples corresponding to 1.5 g of silica particles was collected in a 200 mL tall beaker, and pure water was added to bring the liquid volume to 90 mL.
The pH electrode was inserted into a tall beaker in an environment of 25 ° C., and the test solution was stirred with a magnetic stirrer for 5 minutes. While stirring with a magnetic stirrer was continued, a 0.1 mol / L hydrochloric acid aqueous solution was added until the pH reached 3.6. With the pH electrode removed from the tall beaker and stirring with a magnetic stirrer continued, add 30 g of sodium chloride and gradually add pure water to completely dissolve the sodium chloride, and finally the total volume of the test solution becomes 150 mL. Pure water was added until the test solution was added, and the test solution was stirred with a magnetic stirrer for 5 minutes to obtain a test solution.

得られた試験液の入ったトールビーカーを、自動滴定装置「COM-1600」(平沼産業株式会社製)にセットし、装置付属のpH電極とビュレットをトールビーカーに挿入して、マグネティックスターラーにより試験液を撹拌させながら、ビュレットを通じて0.1mol/Lの水酸化ナトリウム水溶液を滴下して、pHが4.0から9.0になるのに要する0.1mol/Lの水酸化ナトリウム水溶液の滴定量A(mL)を測定した。
下記式(4)を用いて、シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の消費量V(mL)を算出し、下記式(5)を用いて、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出した。
V=(A×f×100×1.5)/(W×C) ・・・ (4)
A:シリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した0.1mol/Lの水酸化ナトリウム水溶液の滴定量(mL)
f:用いた0.1mol/Lの水酸化ナトリウム水溶液の力価
C:シリカゾル中のシリカ粒子の濃度(質量%)
W:シリカゾルの採取量(g)
ρ=(B×N)/(1018×M×SBET) ・・・ (5)
B:Vから算出したシリカ粒子1.5gあたりのpHが4.0から9.0になるのに要した水酸化ナトリウム量(mol)
:アボガドロ数(個/mol)
M:シリカ粒子量(1.5g)
BET:平均1次粒子径の算出の際に測定したシリカ粒子の比表面積(m/g)
Set the tall beaker containing the obtained test solution in the automatic titration device "COM-1600" (manufactured by Hiranuma Sangyo Co., Ltd.), insert the pH electrode and burette attached to the device into the tall beaker, and test with a magnetic stirrer. Titration of 0.1 mol / L sodium hydroxide aqueous solution required for pH to change from 4.0 to 9.0 by dropping 0.1 mol / L sodium hydroxide aqueous solution through a burette while stirring the liquid. A (mL) was measured.
Using the following formula (4), calculate the consumption V (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0. Then, the surface silanol group density ρ (pieces / nm 2 ) of the silica particles was calculated using the following formula (5).
V = (A × f × 100 × 1.5) / (W × C) ・ ・ ・ (4)
A: Titration (mL) of 0.1 mol / L sodium hydroxide aqueous solution required for the pH per 1.5 g of silica particles to change from 4.0 to 9.0.
f: Potency of 0.1 mol / L sodium hydroxide aqueous solution used C: Concentration (mass%) of silica particles in silica sol
W: Amount of silica sol collected (g)
ρ = (B × NA) / (10 18 × M × S BET ) ・ ・ ・ (5)
B: Amount of sodium hydroxide (mol) required for the pH per 1.5 g of silica particles calculated from V to change from 4.0 to 9.0.
NA : Avogadro's number (pieces / mol)
M: Amount of silica particles (1.5 g)
SBET : Specific surface area of silica particles measured when calculating the average primary particle size (m 2 / g)

(シリカゾルの粘度)
実施例及び比較例で得られたシリカゾルの粘度を、25℃、ずり速度150/秒の条件で、E型粘度計を用いて測定した。
(Viscosity of silica sol)
The viscosities of the silica sol obtained in Examples and Comparative Examples were measured using an E-type viscometer under the conditions of 25 ° C. and a shear rate of 150 / sec.

(シリカゾル中の中間生成物の評価)
実施例及び比較例で得られたシリカゾルについて、以下の操作により中間生成物の量を評価した。
まず、シリカゾルを分取して、超純水で5,000倍に希釈した。5,000倍に希釈した希釈液を5μL分取して、ミラーシリコンウエハ(株式会社エレクトロニクスエンドマテリアルズコーポレーション製)に滴下して、50℃で10分間乾燥させた。それを、電界放出型走査電子顕微鏡(FE-SEM、機種名「S-5200型」、株式会社日立ハイテクノロジーズ製)に装着して、加速電圧5kVで、倍率15万倍で、100個~200個のコロイダルシリカの粒子を観察し、画像を撮影した。
撮影した画像から、シリカゾル中の中間生成物の量を、以下の指標により評価した。尚、中間生成物は、図2でいう矢印の先のように見える箇所をいう。
A:中間生成物を確認できない又は中間生成物を僅かに確認できる
B:中間生成物を確認できる
C:中間生成物を多量に確認できる
(Evaluation of intermediate products in silica sol)
For the silica sol obtained in Examples and Comparative Examples, the amount of intermediate products was evaluated by the following operation.
First, the silica sol was separated and diluted 5,000 times with ultrapure water. 5 μL of the diluted solution diluted 5,000 times was taken, dropped onto a mirror silicon wafer (manufactured by Electronics End Materials Corporation), and dried at 50 ° C. for 10 minutes. It is mounted on a field emission scanning electron microscope (FE-SEM, model name "S-5200", manufactured by Hitachi High-Technologies Co., Ltd.), and has an acceleration voltage of 5 kV and a magnification of 150,000 times, from 100 to 200. Particles of colloidal silica were observed and images were taken.
From the captured images, the amount of intermediate products in the silica sol was evaluated by the following indicators. The intermediate product refers to a portion that looks like the tip of an arrow in FIG.
A: Intermediate products cannot be confirmed or intermediate products can be slightly confirmed B: Intermediate products can be confirmed C: Intermediate products can be confirmed in large quantities

[比較例1]
槽内表面がテトラフルオロエチレン樹脂でコーティングされた反応槽、溶媒・分散媒供給タンク、原料供給タンク及び触媒供給タンクを準備し、水の濃度が13質量%、アンモニアの濃度が1.2質量%になるようにメタノール、純水、アンモニアを混合した溶液を反応槽に仕込んだ。また、テトラメトキシシランとメタノールとを2.3:1(体積比)で混合した溶液を原料供給タンクに仕込んだ。更に、3.8質量%アンモニア水溶液を触媒供給タンクに仕込んだ。溶媒・分散媒供給タンクには純水を仕込んだ。
反応液の温度を40℃に保持したまま、反応槽に仕込んだ溶液と原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを0.77:1:0.31(体積比)とし、原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを287分間均等速度で反応槽へ滴下し、シリカ粒子の分散液を得た。
得られたシリカ粒子の分散液を、シリカ粒子の含有率が約20質量%になるように、溶媒・分散媒供給タンクに仕込んだ純水を追加して液量を調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
[Comparative Example 1]
A reaction tank whose inner surface is coated with tetrafluoroethylene resin, a solvent / dispersion medium supply tank, a raw material supply tank and a catalyst supply tank are prepared, and the concentration of water is 13% by mass and the concentration of ammonia is 1.2% by mass. A solution in which methanol, pure water, and ammonia were mixed was charged into the reaction vessel so as to be. Further, a solution prepared by mixing tetramethoxysilane and methanol at a ratio of 2.3: 1 (volume ratio) was charged into the raw material supply tank. Further, a 3.8 mass% aqueous ammonia solution was charged into the catalyst supply tank. Pure water was charged in the solvent / dispersion medium supply tank.
While maintaining the temperature of the reaction solution at 40 ° C., the solution charged in the reaction tank, the solution charged in the raw material supply tank, and the solution charged in the catalyst supply tank were set to 0.77: 1: 0.31 (volume ratio). , The solution charged in the raw material supply tank and the solution charged in the catalyst supply tank were dropped into the reaction tank at a uniform rate for 287 minutes to obtain a dispersion liquid of silica particles.
The temperature of the obtained dispersion liquid of silica particles is raised while adjusting the amount of the liquid by adding pure water charged in the solvent / dispersion medium supply tank so that the content of the silica particles becomes about 20% by mass. Then, methanol and ammonia were removed to obtain a silica sol having a silica particle content of about 20% by mass.

得られたシリカ粒子は、平均1次粒子径33.8nm、平均2次粒子径61.8nm、cv値27.4%、会合比1.83、表面シラノール基密度6.6個/nmであり、得られたシリカゾルは、粘度44.6mPa・sであった。
得られたシリカゾルの電界放出型走査電子顕微鏡(FE-SEM)で観測された二次電子像を、図2に示す。
また、得られたシリカゾルの評価結果を、表1に示す。
The obtained silica particles had an average primary particle diameter of 33.8 nm, an average secondary particle diameter of 61.8 nm, a cv value of 27.4%, an association ratio of 1.83, and a surface silanol group density of 6.6 / nm 2 . The obtained silica sol had a viscosity of 44.6 mPa · s.
The secondary electron image observed by the field emission scanning electron microscope (FE-SEM) of the obtained silica sol is shown in FIG.
The evaluation results of the obtained silica sol are shown in Table 1.

[実施例1]
槽内表面がテトラフルオロエチレン樹脂でコーティングされた反応槽、溶媒・分散媒供給タンク、原料供給タンク、触媒供給タンク、循環ポンプ及び限外濾過膜を準備し、水の濃度が13質量%、アンモニアの濃度が1.2質量%になるようにメタノール、純水、アンモニアを混合した溶液を反応槽に仕込んだ。また、テトラメトキシシランとメタノールとを2.3:1(体積比)で混合した溶液を原料供給タンクに仕込んだ。更に、3.8質量%アンモニア水溶液を触媒供給タンクに仕込んだ。溶媒・分散媒供給タンクには純水を仕込んだ。
反応液の温度を40℃に保持したまま、反応槽に仕込んだ溶液と原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを0.77:1:0.31(体積比)とし、原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを287分間均等速度で反応槽へ滴下し、シリカ粒子の分散液を得た。
得られたシリカ粒子の分散液を、溶媒・分散媒供給タンクに仕込んだ純水を追加して液量を一定になるようにしながら、循環ポンプで1回循環させ、限外濾過膜(商品名「マイクローザ ペンシルモジュールACP-0053D」、旭化成株式会社製、分画分子量13,000、中空糸膜の材質:ポリアクリロニトリル、ハウジングの材質:ポリスルホン)により、平均透過量5g/m/時間で濾過した。
得られたシリカ粒子の分散液を、シリカ粒子の含有率が約20質量%になるように、溶媒・分散媒供給タンクに仕込んだ純水を追加して液量を調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
[Example 1]
A reaction tank whose inner surface is coated with tetrafluoroethylene resin, a solvent / dispersion medium supply tank, a raw material supply tank, a catalyst supply tank, a circulation pump and an ultrafiltration membrane are prepared, and the water concentration is 13% by mass and ammonia. A solution in which methanol, pure water, and ammonia were mixed was charged into the reaction vessel so that the concentration of the water was 1.2% by mass. Further, a solution prepared by mixing tetramethoxysilane and methanol at a ratio of 2.3: 1 (volume ratio) was charged into the raw material supply tank. Further, a 3.8 mass% aqueous ammonia solution was charged into the catalyst supply tank. Pure water was charged in the solvent / dispersion medium supply tank.
While maintaining the temperature of the reaction solution at 40 ° C., the solution charged in the reaction tank, the solution charged in the raw material supply tank, and the solution charged in the catalyst supply tank were set to 0.77: 1: 0.31 (volume ratio). , The solution charged in the raw material supply tank and the solution charged in the catalyst supply tank were dropped into the reaction tank at a uniform rate for 287 minutes to obtain a dispersion liquid of silica particles.
The obtained dispersion liquid of silica particles is circulated once with a circulation pump while adding pure water charged in a solvent / dispersion medium supply tank to keep the liquid volume constant, and an ultrafiltration membrane (trade name). Filtration with an average permeation amount of 5 g / m 2 / hour by "Microza Pencil Module ACP-0053D", manufactured by Asahi Kasei Co., Ltd., fractional molecular weight 13,000, hollow fiber membrane material: polyacrylonitrile, housing material: polysulfone). did.
The temperature of the obtained dispersion liquid of silica particles is raised while adjusting the amount of the liquid by adding pure water charged in the solvent / dispersion medium supply tank so that the content of the silica particles becomes about 20% by mass. Then, methanol and ammonia were removed to obtain a silica sol having a silica particle content of about 20% by mass.

得られたシリカ粒子は、平均1次粒子径36.8nm、平均2次粒子径66.9nm、cv値33.6%、会合比1.82、表面シラノール基密度7.3個/nmであり、得られたシリカゾルは、粘度8.4mPa・sであった。
得られたシリカゾルのFE-SEMで観測された二次電子像を、図3に示す。
また、得られたシリカゾルの評価結果を、表1に示す。
The obtained silica particles had an average primary particle diameter of 36.8 nm, an average secondary particle diameter of 66.9 nm, a cv value of 33.6%, an association ratio of 1.82, and a surface silanol group density of 7.3 particles / nm 2 . The obtained silica sol had a viscosity of 8.4 mPa · s.
The secondary electron image observed by FE-SEM of the obtained silica sol is shown in FIG.
The evaluation results of the obtained silica sol are shown in Table 1.

[実施例2]
槽内表面がテトラフルオロエチレン樹脂でコーティングされた反応槽、溶媒・分散媒供給タンク、原料供給タンク、触媒供給タンク、循環ポンプ及び限外濾過膜を準備し、水の濃度が13質量%、アンモニアの濃度が1.2質量%になるようにメタノール、純水、アンモニアを混合した溶液を反応槽に仕込んだ。また、テトラメトキシシランとメタノールとを2.3:1(体積比)で混合した溶液を原料供給タンクに仕込んだ。更に、3.8質量%アンモニア水溶液を触媒供給タンクに仕込んだ。溶媒・分散媒供給タンクには純水を仕込んだ。
反応液の温度を40℃に保持したまま、反応槽に仕込んだ溶液と原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを0.77:1:0.31(体積比)とし、原料供給タンクに仕込んだ溶液と触媒供給タンクに仕込んだ溶液とを287分間均等速度で反応槽へ滴下し、シリカ粒子の分散液を得た。
得られたシリカ粒子の分散液を、溶媒・分散媒供給タンクに仕込んだ純水を追加して液量を一定になるようにしながら、循環ポンプで3回循環させ、限外濾過膜(商品名「マイクローザ ペンシルモジュールAHP-0013」、旭化成株式会社製、分画分子量50,000、中空糸膜の材質:ポリアクリロニトリル、ハウジングの材質:ポリスルホン)により、平均透過量7g/m/時間で濾過した。
得られたシリカ粒子の分散液を、シリカ粒子の含有率が約20質量%になるように、溶媒・分散媒供給タンクに仕込んだ純水を追加して液量を調整しながら、温度を上げてメタノールとアンモニアの除去を行い、シリカ粒子の含有率が約20質量%のシリカゾルを得た。
[Example 2]
A reaction tank whose inner surface is coated with tetrafluoroethylene resin, a solvent / dispersion medium supply tank, a raw material supply tank, a catalyst supply tank, a circulation pump and an ultrafiltration membrane are prepared, and the water concentration is 13% by mass and ammonia. A solution in which methanol, pure water, and ammonia were mixed was charged into the reaction vessel so that the concentration of the water was 1.2% by mass. Further, a solution prepared by mixing tetramethoxysilane and methanol at a ratio of 2.3: 1 (volume ratio) was charged into the raw material supply tank. Further, a 3.8 mass% aqueous ammonia solution was charged into the catalyst supply tank. Pure water was charged in the solvent / dispersion medium supply tank.
While maintaining the temperature of the reaction solution at 40 ° C., the solution charged in the reaction tank, the solution charged in the raw material supply tank, and the solution charged in the catalyst supply tank were set to 0.77: 1: 0.31 (volume ratio). , The solution charged in the raw material supply tank and the solution charged in the catalyst supply tank were dropped into the reaction tank at a uniform rate for 287 minutes to obtain a dispersion liquid of silica particles.
The obtained dispersion liquid of silica particles is circulated three times with a circulation pump while adding pure water charged in a solvent / dispersion medium supply tank to keep the liquid volume constant, and an ultrafiltration membrane (trade name). Filtration with an average permeability of 7 g / m 2 / hour by "Microza Pencil Module AHP-0013", manufactured by Asahi Kasei Co., Ltd., fractional molecular weight of 50,000, hollow fiber membrane material: polyacrylonitrile, housing material: polysulfone). did.
The temperature of the obtained dispersion liquid of silica particles is raised while adjusting the amount of the liquid by adding pure water charged in the solvent / dispersion medium supply tank so that the content of the silica particles becomes about 20% by mass. Then, methanol and ammonia were removed to obtain a silica sol having a silica particle content of about 20% by mass.

得られたシリカ粒子は、平均1次粒子径35.0nm、平均2次粒子径61.6nm、cv値28.0%、会合比1.76、表面シラノール基密度6.9個/nmであり、得られたシリカゾルは、粘度5.5mPa・sであった。
得られたシリカゾルのFE-SEMで観測された二次電子像を、図4に示す。
また、得られたシリカゾルの評価結果を、表1に示す。
The obtained silica particles had an average primary particle diameter of 35.0 nm, an average secondary particle diameter of 61.6 nm, a cv value of 28.0%, an association ratio of 1.76, and a surface silanol group density of 6.9 particles / nm 2 . The obtained silica sol had a viscosity of 5.5 mPa · s.
The secondary electron image observed by FE-SEM of the obtained silica sol is shown in FIG.
The evaluation results of the obtained silica sol are shown in Table 1.

Figure 2022015206000002
Figure 2022015206000002

表1からも分かるように、循環型濾過装置を用いずに製造した比較例1のシリカゾルに対し、循環型濾過装置を用い、得られたシリカ粒子の分散液の循環濾過を行って製造した実施例1及び実施例2のシリカゾルは、粘度が低かった。
また、図2~図4からも分かるように、循環型濾過装置を用いずに製造した比較例1のシリカゾルは、中間生成物が確認されたのに対し、循環型濾過装置を用い、得られたシリカ粒子の分散液の循環濾過を行って製造した実施例1及び実施例2のシリカゾルは、中間生成物が確認されなかった。
したがって、本発明のシリカ粒子の製造装置で得られたシリカゾルは、中間生成物が少なく、粘度が低いことから、得られる研磨液の研磨特性に優れ、研磨後の被研磨体からの研磨液の除去性に優れると共に、得られるシリカゾル及び研磨液の保存安定性や取り扱い性に優れることが期待される。
As can be seen from Table 1, the silica sol of Comparative Example 1 produced without using the circulation type filtration device was produced by circulating filtration of the obtained dispersion of silica particles using the circulation type filtration device. The silica sol of Example 1 and Example 2 had a low viscosity.
Further, as can be seen from FIGS. 2 to 4, the silica sol of Comparative Example 1 produced without using the circulation type filtration device was obtained by using the circulation type filtration device while the intermediate product was confirmed. No intermediate product was confirmed in the silica sol of Example 1 and Example 2 produced by circulating filtration of the dispersion liquid of the silica particles.
Therefore, the silica sol obtained by the silica particle manufacturing apparatus of the present invention has a small amount of intermediate products and a low viscosity, so that the obtained polishing liquid has excellent polishing characteristics, and the polishing liquid from the object to be polished after polishing is excellent. It is expected to be excellent in removability, storage stability and handleability of the obtained silica sol and polishing liquid.

本発明のシリカ粒子の製造装置で得られたシリカ粒子、本発明のシリカ粒子の製造方法で得られたシリカ粒子、本発明のシリカゾルの製造方法で得られたシリカゾルは、研磨用途に好適に用いることができ、例えば、シリコンウェハ等の半導体材料の研磨、ハードディスク基板等の電子材料の研磨、集積回路を製造する際の平坦化工程における研磨(化学的機械的研磨)、フォトマスクや液晶に用いる合成石英ガラス基板の研磨、磁気ディスク基板の研磨等に用いることができる。中でもシリコンウェハの研磨や化学的機械的研磨に特に好適に用いることができる。 The silica particles obtained by the apparatus for producing silica particles of the present invention, the silica particles obtained by the method for producing silica particles of the present invention, and the silica sol obtained by the method for producing a silica sol of the present invention are suitably used for polishing applications. It can be used, for example, for polishing semiconductor materials such as silicon wafers, polishing electronic materials such as hard disk substrates, polishing in the flattening process when manufacturing integrated circuits (chemical mechanical polishing), photomasks and liquid crystals. It can be used for polishing synthetic quartz glass substrates, polishing magnetic disk substrates, and the like. Above all, it can be particularly preferably used for polishing silicon wafers and chemical mechanical polishing.

10 反応槽
21 溶媒・分散媒供給タンク
22 原料供給タンク
23 触媒供給タンク
30 循環型濾過装置
31 限外濾過膜
32 循環ポンプ
10 Reaction tank 21 Solvent / dispersion medium supply tank 22 Raw material supply tank 23 Catalyst supply tank 30 Circulation type filtration device 31 Ultrafiltration membrane 32 Circulation pump

Claims (11)

反応槽、溶媒・分散媒供給タンク及び循環型濾過装置を含む、シリカ粒子の製造装置。 A device for producing silica particles, including a reaction tank, a solvent / dispersion medium supply tank, and a circulation type filtration device. 前記循環型濾過装置が、限外濾過膜及び循環ポンプを含む、請求項1に記載のシリカ粒子の製造装置。 The silica particle manufacturing apparatus according to claim 1, wherein the circulation type filtration device includes an ultrafiltration membrane and a circulation pump. 前記限外濾過膜の分画分子量が、1,000~100,000である、請求項2に記載のシリカ粒子の製造装置。 The apparatus for producing silica particles according to claim 2, wherein the ultrafiltration membrane has a molecular weight cut-off of 1,000 to 100,000. 前記反応槽が、槽内面が樹脂でコーティングされた反応槽である、請求項1~3のいずれか1項に記載のシリカ粒子の製造装置。 The apparatus for producing silica particles according to any one of claims 1 to 3, wherein the reaction tank is a reaction tank whose inner surface is coated with a resin. 請求項1~4のいずれか1項に記載のシリカ粒子の製造装置を用いてシリカ粒子を製造する、シリカ粒子の製造方法。 A method for producing silica particles, which comprises producing silica particles using the silica particle producing apparatus according to any one of claims 1 to 4. 得られたシリカ粒子のDLS法により測定した平均2次粒子径が、20nm~100nmである、請求項5に記載のシリカ粒子の製造方法。 The method for producing silica particles according to claim 5, wherein the obtained silica particles have an average secondary particle diameter of 20 nm to 100 nm measured by the DLS method. 100℃以上に加熱する工程を含まない、請求項5又は6に記載のシリカ粒子の製造方法。 The method for producing silica particles according to claim 5 or 6, which does not include a step of heating to 100 ° C. or higher. 請求項5~7のいずれか1項に記載のシリカ粒子の製造方法を含む、シリカゾルの製造方法。 A method for producing silica sol, which comprises the method for producing silica particles according to any one of claims 5 to 7. 得られたシリカゾル中のシリカ粒子の含有率が、シリカゾル全量100質量%中、3質量%~50質量%である、請求項8に記載のシリカゾルの製造方法。 The method for producing silica sol according to claim 8, wherein the content of silica particles in the obtained silica sol is 3% by mass to 50% by mass in 100% by mass of the total amount of silica sol. 請求項8又は9に記載のシリカゾルの製造方法により、シリカゾル中の中間生成物を除去する、シリカゾル中の中間生成物の抑制方法。 A method for suppressing an intermediate product in a silica sol, which removes the intermediate product in the silica sol by the method for producing a silica sol according to claim 8 or 9. 請求項5~7のいずれか1項に記載のシリカ粒子の製造方法で得られたシリカ粒子を含む研磨組成物を用いて研磨する、研磨方法。
A polishing method for polishing using a polishing composition containing silica particles obtained by the method for producing silica particles according to any one of claims 5 to 7.
JP2020117901A 2020-07-08 2020-07-08 Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method Active JP7505304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117901A JP7505304B2 (en) 2020-07-08 2020-07-08 Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020117901A JP7505304B2 (en) 2020-07-08 2020-07-08 Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method

Publications (2)

Publication Number Publication Date
JP2022015206A true JP2022015206A (en) 2022-01-21
JP7505304B2 JP7505304B2 (en) 2024-06-25

Family

ID=80120610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117901A Active JP7505304B2 (en) 2020-07-08 2020-07-08 Silica particle manufacturing apparatus, silica particle manufacturing method, silica sol manufacturing method, method for suppressing intermediate products in silica sol, and polishing method

Country Status (1)

Country Link
JP (1) JP7505304B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294417A (en) 2000-04-12 2001-10-23 Nippon Chem Ind Co Ltd Method of producing colloidal silica
CN101495409B (en) 2006-07-31 2011-07-27 扶桑化学工业股份有限公司 Silica sol and process for production thereof
JP5223411B2 (en) 2008-03-27 2013-06-26 Jsr株式会社 Method for producing silica-based hollow particles
EP2986670B1 (en) 2013-04-17 2018-11-21 Silbond Corporation Method of making a silica sol
JP6529412B2 (en) 2015-10-06 2019-06-12 日揮触媒化成株式会社 Method for producing silica using geothermal water
TWI762528B (en) 2016-12-02 2022-05-01 日商日揮觸媒化成股份有限公司 Silica-based particles for polishing and abrasives
JP2018164864A (en) 2017-03-28 2018-10-25 家田貿易株式会社 Suspension concentration system

Also Published As

Publication number Publication date
JP7505304B2 (en) 2024-06-25

Similar Documents

Publication Publication Date Title
JP7206695B2 (en) Silica sol, polishing composition, method for polishing silicon wafer, method for producing silicon wafer, chemical-mechanical polishing composition, and method for producing semiconductor device
KR102633383B1 (en) Method for producing silica sol
JP2005060217A (en) Silica sol and manufacturing method therefor
JP2005060219A (en) Silica sol and manufacturing method therefor
JP2021147267A (en) Method for producing silica particle, method for producing silica sol, polishing process, method for producing semiconductor wafer, and method for producing semiconductor device
JP2021116225A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
WO2021153502A1 (en) Silica particles, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer, and method for manufacturing semiconductor device
JP7443857B2 (en) Silica particle manufacturing method, silica sol manufacturing method, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP6756423B1 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method and semiconductor device manufacturing method
JP2022015206A (en) Apparatus for producing silica particle, method for producing silica particle, method for producing silica sol, method for suppressing intermediate product in silica sol, and polishing method
JP7567484B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP2023014749A (en) Silica particle, silica sol, polishing composition, polishing method, manufacturing method of semiconductor wafer, and manufacturing method of semiconductor device
JP7331437B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP7552019B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7225898B2 (en) Method for producing silica particles, method for producing silica sol, and method for polishing
JP7491081B2 (en) Method for producing silica particles, method for producing silica sol, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
JP7516763B2 (en) Method for producing silica particles, method for producing silica sol, method for removing intermediate product, and method for polishing
JP7464201B2 (en) Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device
JP7552145B2 (en) Silica sol, method for producing silica sol, polishing composition, polishing method, and method for producing semiconductor device
JP7331436B2 (en) Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP2020132479A (en) Silica particle, silica sol, polishing composition, polishing method, method of manufacturing semiconductor wafer, and method of manufacturing semiconductor device
JP7565671B2 (en) Method for producing silica sol and method for suppressing intermediate products in silica sol
JP2021123527A (en) Method for producing silica particle, method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2023043023A (en) Method for producing silica sol, polishing method, method for producing semiconductor wafer and method for producing semiconductor device
JP2024141877A (en) Method for producing silica particles, method for producing silica sol, method for producing polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527