JP2022013983A - Manufacturing method of steel pipe and manufacturing apparatus of steel pipe - Google Patents

Manufacturing method of steel pipe and manufacturing apparatus of steel pipe Download PDF

Info

Publication number
JP2022013983A
JP2022013983A JP2020116063A JP2020116063A JP2022013983A JP 2022013983 A JP2022013983 A JP 2022013983A JP 2020116063 A JP2020116063 A JP 2020116063A JP 2020116063 A JP2020116063 A JP 2020116063A JP 2022013983 A JP2022013983 A JP 2022013983A
Authority
JP
Japan
Prior art keywords
twist
seam portion
pipe
thermal image
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020116063A
Other languages
Japanese (ja)
Inventor
雅典 松宮
Masanori Matsumiya
直道 原田
Naomichi Harada
瑛一 浦畑
Eiichi Urahata
聡 堤
Satoshi Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020116063A priority Critical patent/JP2022013983A/en
Publication of JP2022013983A publication Critical patent/JP2022013983A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of a steel pipe which can prevent the quality deterioration due to twisting of a joint pipe after welding and a manufacturing apparatus of the steel pipe.SOLUTION: A manufacturing method of a steel pipe comprises: a heating step of heating an edge portion of band steel; a welding step of molding a tubular joint pipe by holding the band steel with at least one pair of pressure rolls, making the edge portions of the band steel face each other and welding the edge portions; a cooling step of cooling a seam portion of the joint pipe; a thermal image acquisition step of acquiring a thermal image by imaging the joint pipe; a twisting detection step of detecting twisting in the peripheral direction at the position of the seam portion based on the thermal image acquired in the thermal image acquisition step; and a correction step of correcting the twisting by displacing one of the pair of pressure rolls in the welding step in the thrust direction with respect to the other on the basis of the twisting detected in the detection step.SELECTED DRAWING: Figure 1

Description

本発明は、帯鋼のエッジ部を溶接して成型される鋼管の製造方法及び鋼管の製造装置に関する。 The present invention relates to a method for manufacturing a steel pipe formed by welding an edge portion of a strip of steel and an apparatus for manufacturing a steel pipe.

鋼管を製造する際、加熱された帯鋼のエッジ部に対し、高周波電流等により加熱して高温にした後、成型ロールで筒状に成型しながら、両端のエッジ部同士に圧着接合等による溶接が施される。エッジ部同士を接合した部分はシーム部と呼ばれ、シーム部以外の部分は母管部と呼ばれる。筒状に成型された接合管は、絞り圧延加工により製品外径になるよう成型される。 When manufacturing a steel pipe, the edge of the heated steel strip is heated to a high temperature by high-frequency current, etc., and then welded to the edges at both ends by pressure bonding, etc., while forming into a cylinder with a molding roll. Is given. The part where the edge parts are joined is called the seam part, and the part other than the seam part is called the mother pipe part. The cylindrically molded joint pipe is molded to have the outer diameter of the product by drawing and rolling.

絞り圧延加工を行う際、接合前に集中的に加熱されて高温になっているシーム部を高温状態のままにして接合管を圧延すると、母管部とシーム部との温度差により円周方向に変形抵抗差が生じ、圧延仕上がり寸法精度が悪くなる。そこで、圧延前の接合管の円周方向の温度差が小さくするように、溶接成型後にシーム部への冷却機構による強制冷却が行われ、シーム部の温度を低下させることでシーム部と母材部と温度差が解消される。冷却機構には接合管のシーム部が所定の位置に位置決めされた状態で搬送され、冷却機構において接合管の所定の位置に冷却水が噴射される。 When rolling the joint pipe while keeping the seam part, which is heated intensively and hot before joining, in a high temperature state during drawing rolling, the temperature difference between the mother pipe part and the seam part causes the circumferential direction. Deformation resistance difference occurs, and the rolling finish dimensional accuracy deteriorates. Therefore, in order to reduce the temperature difference in the circumferential direction of the joint pipe before rolling, forced cooling is performed on the seam portion by a cooling mechanism after welding, and the temperature of the seam portion is lowered to lower the temperature of the seam portion and the base metal. The temperature difference between the part and the part is eliminated. The seam portion of the joint pipe is conveyed to the cooling mechanism in a state of being positioned at a predetermined position, and the cooling water is sprayed to the predetermined position of the joint pipe in the cooling mechanism.

ここで、成型時もしくは絞り圧延加工の影響で接合管に円周方向の捩じれが生じることがあり、捩じれにより強制冷却する部位がシーム部から外れてしまうことがある。上述のように、接合管の周方向の温度偏差を小さくして良質な圧延仕上がりを行うためには、シーム部の位置の検出および捩じれの矯正を行う必要がある。そこで、従来から接合管の温度に基づいてシーム部の位置を検出することが提案されている(例えば特許文献1参照)。特許文献1には、円周方向の温度分布を走査型放射温度計により測定して円周方向のシーム部位置を検出し、後段の捩じれ矯正装置で捩じれを制御する方法が開示されている。 Here, the joint pipe may be twisted in the circumferential direction due to the influence of molding or drawing rolling, and the portion to be forcibly cooled may be separated from the seam portion due to the twisting. As described above, in order to reduce the temperature deviation in the circumferential direction of the joint pipe and obtain a high-quality rolled finish, it is necessary to detect the position of the seam portion and correct the twist. Therefore, it has been conventionally proposed to detect the position of the seam portion based on the temperature of the joint pipe (see, for example, Patent Document 1). Patent Document 1 discloses a method in which a temperature distribution in the circumferential direction is measured by a scanning radiation thermometer to detect the position of a seam portion in the circumferential direction, and twisting is controlled by a twist correction device in a subsequent stage.

特開平11-277147号公報Japanese Unexamined Patent Publication No. 11-277147

しかしながら、特許文献1の方法では、放射温度計の測定結果を後段の捩じれ矯正装置にフィードフォワードすることで捩じれ矯正が行われる。このため、溶接時に捩じれが生じた際にシーム部への冷却が正常に行われない場合があり、周方向の偏熱による偏肉の発生等の圧延仕上がりが良質にならない場合がある。 However, in the method of Patent Document 1, twist correction is performed by feeding forward the measurement result of the radiation thermometer to the twist correction device in the subsequent stage. Therefore, when twisting occurs during welding, the seam portion may not be cooled normally, and the rolled finish may not be good due to uneven thickness generated due to uneven heat in the circumferential direction.

そこで、本発明は、溶接後の接合管の捩じれによる品質の劣化を防止することができる鋼管の製造方法及び鋼管の製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a steel pipe manufacturing method and a steel pipe manufacturing apparatus capable of preventing quality deterioration due to twisting of the joined pipe after welding.

本発明は、これら課題を解決するために以下の構成を有する。
[1] 帯鋼のエッジ部を加熱する加熱工程と、少なくとも1対の圧延ロールを用いて前記帯鋼を挟んで前記帯鋼のエッジ部を互いに対向させ溶接することによって管形状の接合管を成形する溶接工程と、前記接合管のシーム部を冷却する冷却工程と、を有する鋼管の製造方法であって、
前記接合管を撮像して熱画像を取得する熱画像取得工程と、
前記熱画像取得工程において取得された熱画像に基づき、前記シーム部の位置の周方向の捩じれを検出する捩じれ検出工程と、
前記検出工程により検出した捩じれに基づいて、前記溶接工程での前記1対の圧延ロールのうちの一方を他方に対してスラスト方向に変位させて捩じれを矯正する矯正工程と、
を有する鋼管の製造方法。
[2] 前記捩じれ検出工程において、前記熱画像内における前記接合管の各部位の温度差に基づいて前記接合管の前記シーム部の位置を検出し、検出した前記シーム部の位置を用いて前記シーム部の位置の周方向の捩じれを検出する[1]に記載の鋼管の製造方法。
[3] 前記接合管の温度のうち最も高い温度の位置を前記シーム部の位置として検出する[2]に記載の鋼管の製造方法。
[4] 前記矯正工程において、前記シーム部の捩じれ量に応じて溶接工程における前記圧延ロールのロール軸方向の位置を制御することにより、前記シーム部の捩じれ量を制御する[1]から[3]のいずれかに記載の鋼管の製造方法。
[5] 帯鋼のエッジ部を加熱する加熱機構と、
少なくとも1対の圧延ロールを用いて前記帯鋼を挟んで前記帯鋼のエッジ部を互いに対向させ溶接することによって管形状の接合管を成形する溶接機構と、
前記接合管のシーム部を冷却する冷却機構と、
前記接合管のシーム部の周方向の捩じれを検出する捩じれ検出装置と、
を備え、
前記捩じれ検出装置は、
前記接合管を撮像して熱画像を取得する熱画像取得部と、
前記熱画像取得部において取得された熱画像に基づきシーム部の位置の周方向の捩じれを検出する捩じれ検出部と、
を有し、
前記溶接機構は、前記捩じれ検出装置により検出した捩じれに基づいて、前記1対の圧延ロールのうちの一方を他方に対してスラスト方向に変位させて捩じれを矯正する鋼管の製造装置。
The present invention has the following configurations in order to solve these problems.
[1] A pipe-shaped joint pipe is formed by a heating step of heating the edge portion of the strip and welding by sandwiching the strip using at least one pair of rolling rolls and welding the edge portions of the strip so as to face each other. A method for manufacturing a steel pipe, comprising a welding step for forming and a cooling step for cooling the seam portion of the joined pipe.
A thermal image acquisition step of imaging the junction tube to acquire a thermal image,
A twist detection step of detecting a twist in the circumferential direction of the position of the seam portion based on the thermal image acquired in the thermal image acquisition step, and a twist detection step.
Based on the twist detected by the detection step, one of the pair of rolling rolls in the welding step is displaced with respect to the other in the thrust direction to correct the twist.
A method for manufacturing a steel pipe having.
[2] In the twist detection step, the position of the seam portion of the joint pipe is detected based on the temperature difference of each part of the joint pipe in the thermal image, and the position of the seam portion detected is used as described above. The method for manufacturing a steel pipe according to [1], which detects a twist in the circumferential direction of the position of the seam portion.
[3] The method for manufacturing a steel pipe according to [2], wherein the position of the highest temperature among the temperatures of the joined pipe is detected as the position of the seam portion.
[4] In the straightening step, the twist amount of the seam portion is controlled by controlling the position of the rolling roll in the roll axis direction in the welding step according to the twist amount of the seam portion [1] to [3]. ]. The method for manufacturing a steel pipe according to any one of.
[5] A heating mechanism that heats the edge of the steel strip,
A welding mechanism for forming a pipe-shaped joint pipe by sandwiching the strip with at least one pair of rolling rolls and welding the edges of the strip with the edges facing each other.
A cooling mechanism that cools the seam portion of the joint pipe,
A twist detection device that detects a twist in the circumferential direction of the seam portion of the joint pipe, and a twist detection device.
Equipped with
The twist detection device is
A thermal image acquisition unit that captures an image of the junction tube and acquires a thermal image,
A twist detection unit that detects a twist in the circumferential direction of the position of the seam portion based on the thermal image acquired by the thermal image acquisition unit, and a twist detection unit.
Have,
The welding mechanism is a steel pipe manufacturing apparatus that corrects the twist by displaces one of the pair of rolling rolls in the thrust direction with respect to the other based on the twist detected by the twist detection device.

本発明によれば、熱画像から検出された接合管の捩じれを溶接工程において矯正することにより、母管部が捩じれることによるシーム部への冷却不足を抑制し、鋼管の品質の劣化を防止することができる。 According to the present invention, by correcting the twist of the joint pipe detected from the thermal image in the welding process, insufficient cooling to the seam portion due to the twist of the mother pipe portion is suppressed, and deterioration of the quality of the steel pipe is prevented. can do.

本発明の鋼管の製造装置の好ましい実施形態を示す模式図である。It is a schematic diagram which shows the preferable embodiment of the steel pipe manufacturing apparatus of this invention. 図1の溶接機構において上下方向に位置する1対の圧延ロールの一例を示す模式図である。It is a schematic diagram which shows an example of a pair of rolling rolls located in the vertical direction in the welding mechanism of FIG. 図1の熱画像取得部において取得される熱画像の一例を示す写真である。It is a photograph which shows an example of the thermal image acquired by the thermal image acquisition part of FIG. 図3の熱画像における周方向の温度分布を示すグラフである。It is a graph which shows the temperature distribution in the circumferential direction in the thermal image of FIG. 図1の熱画像取得部において取得される熱画像の別の一例を示す写真である。It is a photograph which shows another example of the thermal image acquired by the thermal image acquisition part of FIG. 図5の熱画像における周方向の温度分布を示すグラフである。It is a graph which shows the temperature distribution in the circumferential direction in the thermal image of FIG. 図1の溶接機構の一例を示す模式図である。It is a schematic diagram which shows an example of the welding mechanism of FIG.

以下、本発明の実施形態について説明する。図1は、本発明の鋼管の製造装置の好ましい実施形態を示す模式図である。図1の鋼管の製造装置1は、例えば帯鋼SSから鋼管を熱間圧延により製造する製造ラインであって、帯鋼SSを加熱する加熱機構2と、加熱された帯鋼SSを曲げてエッジ同士を溶接し接合管Pを成型する溶接機構3と、接合管Pのシーム部SWを冷却する冷却機構4とを有する。さらに、図1の鋼管の製造装置1は、冷却機構4により冷却された接合管Pを設定外径まで絞り加工を行う絞り圧延機構(サイジング機構)5を有している。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a schematic view showing a preferred embodiment of the steel pipe manufacturing apparatus of the present invention. The steel pipe manufacturing apparatus 1 of FIG. 1 is, for example, a manufacturing line for manufacturing a steel pipe from a strip steel SS by hot rolling, and has a heating mechanism 2 for heating the strip steel SS and a bent edge of the heated strip steel SS. It has a welding mechanism 3 for welding each other to form a joint pipe P, and a cooling mechanism 4 for cooling the seam portion SW of the joint pipe P. Further, the steel pipe manufacturing apparatus 1 of FIG. 1 has a drawing rolling mechanism (sizing mechanism) 5 that draws the joined pipe P cooled by the cooling mechanism 4 to a set outer diameter.

加熱機構2は、帯鋼SS全体を加熱する予熱炉2aと、予熱炉2aにおいて加熱された帯鋼SSのうち、両端のエッジ部をさらに加熱するエッジ加熱部2bとを備える。エッジ加熱部2bは例えば誘導加熱により帯鋼SSの両端のエッジ部を加熱する。なお、加熱方法は電磁誘導による加熱に限らず、例えば超音波等の公知の技術を用いることができる。溶接機構3は、帯鋼SSのエッジ部を互いに対向させ圧接(鍛着)させることによって溶接するものであり、これにより管形状の接合管Pが成型される。溶接機構3は、上下方向及び左右方向から加熱された帯鋼SSを挟み込み、両端のエッジ部を突き合わせるように帯鋼SSを円筒状に丸めていく複数のスクイズロール(圧延ロール)を備える。 The heating mechanism 2 includes a preheating furnace 2a that heats the entire strip steel SS, and an edge heating section 2b that further heats the edge portions at both ends of the strip steel SS heated in the preheating furnace 2a. The edge heating portion 2b heats the edge portions at both ends of the strip steel SS by, for example, induction heating. The heating method is not limited to heating by electromagnetic induction, and known techniques such as ultrasonic waves can be used. The welding mechanism 3 welds by pressing and welding (forging) the edge portions of the strip steel SS so as to face each other, whereby a pipe-shaped joint pipe P is formed. The welding mechanism 3 includes a plurality of squeeze rolls (rolling rolls) that sandwich the strip steel SS heated from the vertical direction and the horizontal direction and roll the strip steel SS into a cylindrical shape so as to abut the edges at both ends.

図2は、図1の溶接機構において上下方向に位置する1対の圧延ロールの一例を示す模式図である。図2の1対の圧延ロール3a、3bは、上下方向から帯鋼SSを挟み込んで帯鋼SSを円筒形状に成形する。この際、溶接機構3は、帯鋼SSの両端のエッジ部が接合管Pの下側のパイプ中心で突合うように成形し、接合管Pの下側のパイプ中心を基準位置Prefとして両端のエッジ部が圧着されることでシーム部SWが形成される。基準位置Prefがパイプ中心の下側の位置に設定されている場合について例示しているが、パイプ中心の上側等の周方向の任意の位置に設定することができる。1対の圧延ロール3a、3bは、互いの相対位置をスラスト方向(すなわち圧延ロール3a、3bのロール軸方向)に移動可能に制御されており、圧延ロール3a、3bのロール軸方向の位置を制御して相対位置を変化させることにより、接合管Pの周方向に掛かる力を制御することができる。 FIG. 2 is a schematic view showing an example of a pair of rolling rolls located in the vertical direction in the welding mechanism of FIG. The pair of rolling rolls 3a and 3b of FIG. 2 sandwich the strip steel SS from the vertical direction to form the strip steel SS into a cylindrical shape. At this time, the welding mechanism 3 is formed so that the edges of both ends of the strip steel SS abut at the center of the pipe on the lower side of the joint pipe P, and the center of the pipe on the lower side of the joint pipe P is set as the reference position Def at both ends. The seam portion SW is formed by crimping the edge portion. Although the case where the reference position Pref is set to the lower position of the pipe center is illustrated, it can be set to any position in the circumferential direction such as the upper side of the pipe center. The pair of rolling rolls 3a and 3b are controlled so that their relative positions can be moved in the thrust direction (that is, the roll axis direction of the rolling rolls 3a and 3b), and the positions of the rolling rolls 3a and 3b in the roll axis direction are controlled. By controlling and changing the relative position, it is possible to control the force applied in the circumferential direction of the joint pipe P.

図1の冷却機構4は、例えば気水ミストノズル噴射装置からなり、接合管Pのシーム部SWに冷却水を噴射して冷却する。上述の通り、接合管Pは、基準位置Prefにシーム部SWが形成され、その状態で溶接機構3から冷却機構4へ搬送される。冷却機構4は、基準位置Prefに位置するシーム部SWに対して冷却水を噴射してシーム部SWを冷却する。 The cooling mechanism 4 of FIG. 1 is composed of, for example, a gas-water mist nozzle injection device, and injects cooling water into the seam portion SW of the joint pipe P to cool the joint pipe P. As described above, the joint pipe P has a seam portion SW formed at the reference position Pref, and is conveyed from the welding mechanism 3 to the cooling mechanism 4 in that state. The cooling mechanism 4 injects cooling water to the seam portion SW located at the reference position Pref to cool the seam portion SW.

ここで、接合管Pが溶接機構3から冷却機構4へ搬送される際、接合管Pが周方向に捩じれる場合がある。上述のように、冷却機構4は、基準位置Prefにシーム部SWが位置決めされていることを前提として冷却水を噴射するため、接合管Pが捩じれるとシーム部SWが冷却水により冷却されない。すると、後段の絞り圧延機構5で圧延加工される際に偏肉等の鋼管の品質劣化につながる。そこで、図1の鋼管の製造装置1においては、冷却機構4と絞り圧延機構5との間に、接合管Pのシーム部SWの捩じれを検出する捩じれ検出装置10が設けられ、捩じれ検出装置10での検出結果が溶接機構3にフィードバックされるようになっている。 Here, when the joint pipe P is conveyed from the welding mechanism 3 to the cooling mechanism 4, the joint pipe P may be twisted in the circumferential direction. As described above, since the cooling mechanism 4 injects cooling water on the premise that the seam portion SW is positioned at the reference position Pref, the seam portion SW is not cooled by the cooling water when the joint pipe P is twisted. Then, when rolling is performed by the drawing rolling mechanism 5 in the subsequent stage, the quality of the steel pipe is deteriorated due to uneven thickness or the like. Therefore, in the steel pipe manufacturing apparatus 1 of FIG. 1, a twist detecting device 10 for detecting the twist of the seam portion SW of the joint pipe P is provided between the cooling mechanism 4 and the drawing rolling mechanism 5, and the twist detecting device 10 is provided. The detection result in is fed back to the welding mechanism 3.

図1の捩じれ検出装置10は、接合管Pのシーム部SWの周方向の捩じれを検出するものであり、例えば冷却機構4の下流側に設置されている。捩じれ検出装置10は熱画像取得部11及び捩じれ検出部12を備える。熱画像取得部11は、接合管Pを撮像して熱画像TPを取得するサーモグラフィカメラからなる。熱画像取得部11は、熱画像TP内にシーム部SWが含まれるようにするため、例えば搬送中の接合管Pを下側から撮像する位置に設置されている。 The twist detection device 10 of FIG. 1 detects a twist in the circumferential direction of the seam portion SW of the joint pipe P, and is installed, for example, on the downstream side of the cooling mechanism 4. The twist detection device 10 includes a thermal image acquisition unit 11 and a twist detection unit 12. The thermal image acquisition unit 11 includes a thermography camera that captures the junction tube P and acquires the thermal image TP. The thermal image acquisition unit 11 is installed at a position where, for example, the junction tube P being transported is imaged from below so that the seam unit SW is included in the thermal image TP.

図3は、熱画像取得部において取得される熱画像の一例を示す写真であり、図4は図3の熱画像における周方向の温度分布を示すグラフである。図3及び図4において、溶接機構3から冷却機構4への搬送中に、シーム部SWの位置が基準位置Prefに対し捩じれ量θだけ捩じれた場合について例示している。このため、冷却機構4においてシーム部SWの冷却が正常に行われておらず、母管部からシーム部SWに近づくにつれて温度が高くなっていき、接合管Pの周方向においてシーム部SWにおいて最も温度が高くなる。 FIG. 3 is a photograph showing an example of a thermal image acquired by the thermal image acquisition unit, and FIG. 4 is a graph showing a temperature distribution in the circumferential direction in the thermal image of FIG. 3 and 4 illustrate a case where the position of the seam portion SW is twisted by a twist amount θ with respect to the reference position Pref during transportation from the welding mechanism 3 to the cooling mechanism 4. Therefore, the seam portion SW is not normally cooled in the cooling mechanism 4, and the temperature increases as the seam portion SW approaches from the mother pipe portion, and the seam portion SW is the most in the circumferential direction of the joint pipe P. The temperature rises.

図1の捩じれ検出部12は、例えばコンピュータ等の制御機器からなり、熱画像取得部11において取得された熱画像TPに基づいて、接合管Pの周方向の捩じれを検出する。この際、捩じれ検出部12は、熱画像TP内における接合管Pの各部位の温度差に基づいて、接合管Pのシーム部SWの位置を検出し、検出したシーム部SWの位置を用いてシーム部SWの位置の周方向の捩じれを検出する。 The twist detection unit 12 of FIG. 1 comprises a control device such as a computer, and detects a twist in the circumferential direction of the junction pipe P based on the thermal image TP acquired by the thermal image acquisition unit 11. At this time, the twist detection unit 12 detects the position of the seam portion SW of the junction pipe P based on the temperature difference of each portion of the junction pipe P in the thermal image TP, and uses the detected position of the seam portion SW. Detects a twist in the circumferential direction of the position of the seam portion SW.

具体的には、捩じれ検出部12は、熱画像TPにおける最も温度の高い位置をシーム部SWの位置として検出する。なお、母管部の温度は、例えば予熱炉2aで設定されている帯鋼SSの加熱温度に設定してもよいし、熱画像TPからエッジ検出等により母管部を特定して温度を検出するようにしてもよい。図3及び図4に示すように、溶接機構3から冷却機構4の間に生じる捩じれが検出されたときには、シーム部SWの温度が最も高くなる。これを利用し、捩じれ検出部12は、最も高い温度になっている位置をシーム部SWの位置として検出する。次に、図3及び図4で示すように、パイプ中心の下側が基準位置Prefとして設定されているため、捩じれ検出部12は、検出したシーム部SWの位置と基準位置Prefとのズレに基づいて、周方向の捩じれを検出する。なお、捩じれ検出部12は、シーム部SWの位置と基準位置Prefとがずれていれば、捩じれが生じていると判断してもよいし、シーム部SWの位置と基準位置Prefとの位置ずれが設定量よりも大きくなっている場合、捩じれが発生していると判断し、設定量以下である場合、捩じれは許容範囲であると判断するようにしてもよい。 Specifically, the twist detection unit 12 detects the position with the highest temperature in the thermal image TP as the position of the seam unit SW. The temperature of the mother pipe may be set to, for example, the heating temperature of the steel strip SS set in the preheating furnace 2a, or the mother pipe may be specified by edge detection or the like from the thermal image TP to detect the temperature. You may try to do it. As shown in FIGS. 3 and 4, when the twist generated between the welding mechanism 3 and the cooling mechanism 4 is detected, the temperature of the seam portion SW becomes the highest. Utilizing this, the twist detection unit 12 detects the position where the temperature is the highest as the position of the seam unit SW. Next, as shown in FIGS. 3 and 4, since the lower side of the center of the pipe is set as the reference position Def, the twist detection unit 12 is based on the deviation between the detected seam portion SW position and the reference position Def. And detect the twist in the circumferential direction. If the position of the seam portion SW and the reference position Def deviate from each other, the twist detection unit 12 may determine that twisting has occurred, or the position of the seam portion SW and the reference position Def may deviate from each other. If is larger than the set amount, it may be determined that twisting has occurred, and if it is less than or equal to the set amount, it may be determined that the twist is within the allowable range.

なお、捩じれ検出部12が、図3及び図4のようなシーム部SWが冷却機構4により冷却されていない場合の捩じれを検出する場合について例示したが、冷却機構4を通過後に捩じれが生じる場合がある。図5は図1の熱画像取得部において取得される熱画像の別の一例を示す模式図であり、図6は図5の熱画像における周方向の温度分布を示すグラフである。図5及び図6において、冷却機構4から絞り圧延機構5への搬送中に、シーム部SWの位置が基準位置Prefに対し捩じれ量θだけ捩じれた場合について例示している。冷却機構4によりシーム部SWが冷却された場合、図5及び図6に示すように、予熱炉2aで加熱された母管部よりも、冷却機構4で冷却されたシーム部SWの方が温度は低くなるため、シーム部SWにおいて最も温度が低くなる。 Although the case where the twist detection unit 12 detects the twist when the seam portion SW as shown in FIGS. 3 and 4 is not cooled by the cooling mechanism 4 is exemplified, the case where the twist occurs after passing through the cooling mechanism 4. There is. FIG. 5 is a schematic diagram showing another example of the thermal image acquired by the thermal image acquisition unit of FIG. 1, and FIG. 6 is a graph showing the temperature distribution in the circumferential direction in the thermal image of FIG. 5 and 6 illustrate a case where the position of the seam portion SW is twisted by the twist amount θ with respect to the reference position Pref during transportation from the cooling mechanism 4 to the drawing rolling mechanism 5. When the seam portion SW is cooled by the cooling mechanism 4, as shown in FIGS. 5 and 6, the temperature of the seam portion SW cooled by the cooling mechanism 4 is higher than that of the mother pipe portion heated by the preheating furnace 2a. Is the lowest, so the temperature is the lowest in the seam portion SW.

ここで、図5及び図6に示すような捩れであっても、捩じれ検出部12は、母管部の温度よりも低い温度のシーム部SWの位置を検出することで、冷却機構4による冷却後の捩じれを検出することができる。そして、上述した図3及び図4の場合と同様、捩じれ検出部12は、シーム部SWの位置と基準位置Prefとに基づいて接合管Pの捩じれを検出する。 Here, even if the twist is as shown in FIGS. 5 and 6, the twist detection unit 12 detects the position of the seam portion SW having a temperature lower than the temperature of the mother pipe portion, thereby cooling by the cooling mechanism 4. Later twists can be detected. Then, as in the case of FIGS. 3 and 4 described above, the twist detection unit 12 detects the twist of the joint pipe P based on the position of the seam portion SW and the reference position Ref.

ここで、溶接機構3で溶接されている帯鋼SSもしくは接合管Pと、冷却機構4による冷却後の接合管Pとは、未だ切断されておらずつながった状態であるため、冷却を終えた接合管Pの捩じれが冷却前の接合管Pへの捩じれへと伝達され、現状はシーム部SWを冷却できていても将来的に溶接機構3で捩じれが生じるおそれがある。そのため、捩じれ検出部12が冷却後の捩じれも検出して溶接機構3にフィードバックすることにより、シーム部SWへの冷却不足による鋼管の品質劣化を防止することができる。なお、上記実施の形態において、図3及び図4の場合と図5及び図6の場合のいずれの捩じれも検出する場合について例示しているが、いずれか一方のみ検出するようにしてもよい。 Here, since the strip steel SS or the joint pipe P welded by the welding mechanism 3 and the joint pipe P after cooling by the cooling mechanism 4 are not yet cut and are in a connected state, cooling is completed. The twist of the joint pipe P is transmitted to the twist to the joint pipe P before cooling, and even if the seam portion SW can be cooled at present, the welding mechanism 3 may be twisted in the future. Therefore, the twist detection unit 12 also detects the twist after cooling and feeds it back to the welding mechanism 3, so that it is possible to prevent the quality deterioration of the steel pipe due to insufficient cooling to the seam portion SW. In the above embodiment, the case of detecting the twist in both the cases of FIGS. 3 and 4 and the case of FIGS. 5 and 6 is illustrated, but only one of them may be detected.

さらに、捩じれ検出部12が、熱画像TPにおける最も温度の高い位置、もしくは温度の低い位置をシーム部SWの位置として検出する場合について例示しているが、これに限定されず、シーム部SWが冷却機構4で冷却される位置までの捩じれ量を検出できるものであればよい。すなわち、冷却機構4は接合管Pの円周方向の一定の範囲に対し冷却水を噴射するものであり、この冷却範囲内にシーム部SWが位置すればよい。このため、例えば熱画像TPにおける最高温度もしくは最低温度を含む一定の範囲をシーム部SWの位置として検出してもよい。あるいは、熱画像TPの温度分解能に応じて、最高温度域もしくは最低温度域といった領域をシーム部SWの位置として検出してもよい。 Further, the case where the twist detection unit 12 detects the highest temperature position or the lowest temperature position in the thermal image TP as the position of the seam unit SW is illustrated, but the present invention is not limited to this, and the seam unit SW is not limited to this. Anything can be used as long as it can detect the amount of twist to the position where it is cooled by the cooling mechanism 4. That is, the cooling mechanism 4 injects cooling water into a certain range in the circumferential direction of the joining pipe P, and the seam portion SW may be located within this cooling range. Therefore, for example, a certain range including the maximum temperature or the minimum temperature in the thermal image TP may be detected as the position of the seam portion SW. Alternatively, a region such as the maximum temperature region or the minimum temperature region may be detected as the position of the seam portion SW according to the temperature resolution of the thermal image TP.

図1の捩じれ検出部12において検出された捩じれ量θは溶接機構3にフィードバックされる。そして、溶接機構3の溶接制御部3cは、捩じれ量θに基づいて図2の圧延ロール3aを圧延ロール3bに対してスラスト方向に移動させ、接合管Pの周方向にかかる力を制御する。すると、接合管Pは周方向に回転移動して捩じれが修正される。溶接制御部3cには、圧延ロール3a、3bのスラスト移動量xと捩じれ量θとの関係を示す関係式が予め記憶されており、関係式を用いて捩じれ量θからスラスト移動量xを導出し、圧延ロール3a、3bのスラスト移動を制御する。 The twist amount θ detected by the twist detection unit 12 in FIG. 1 is fed back to the welding mechanism 3. Then, the welding control unit 3c of the welding mechanism 3 moves the rolling roll 3a of FIG. 2 in the thrust direction with respect to the rolling roll 3b based on the twist amount θ, and controls the force applied in the circumferential direction of the joint pipe P. Then, the joint pipe P is rotationally moved in the circumferential direction to correct the twist. The welding control unit 3c stores in advance a relational expression showing the relationship between the thrust movement amount x of the rolling rolls 3a and 3b and the twist amount θ, and the thrust movement amount x is derived from the twist amount θ using the relational expression. Then, the thrust movement of the rolling rolls 3a and 3b is controlled.

図7は、圧延ロールのスラスト移動量と接合管の捩じれ量との関係を示すグラフである。図7に示すように、例えば捩じれ量θが大きくなるほど、スラスト移動量xが大きくなるような関係になっており、この関係は予め実験により求められる(例えばx=-0.03θ+0.05)。そして、溶接制御部3cは、捩じれ量θと関係式とに基づいて圧延ロール3a、3bのスラスト移動量xを制御する。すると、接合管Pは、捩じれが修正された状態で溶接機構3から冷却機構4へ搬送され、接合管Pが捩じれることによるシーム部SWの冷却の過不足冷却を防止することができる。その結果、絞り圧延機構5において接合管Pの周方向の偏熱による偏肉を抑制して品質の劣化を防止することができる。 FIG. 7 is a graph showing the relationship between the thrust movement amount of the rolling roll and the twist amount of the joint pipe. As shown in FIG. 7, for example, the larger the twist amount θ, the larger the thrust movement amount x, and this relationship can be obtained in advance by an experiment (for example, x = −0.03θ + 0.05). Then, the welding control unit 3c controls the thrust movement amount x of the rolling rolls 3a and 3b based on the twist amount θ and the relational expression. Then, the joint pipe P is conveyed from the welding mechanism 3 to the cooling mechanism 4 in a state where the twist is corrected, and it is possible to prevent excessive or insufficient cooling of the seam portion SW due to the twist of the joint pipe P. As a result, in the drawing rolling mechanism 5, it is possible to suppress the uneven thickness due to the uneven heat in the circumferential direction of the joint pipe P and prevent the deterioration of quality.

次に、図1を参照して、本発明の鋼管の製造方法の好ましい実施形態について説明する。はじめに、予熱炉2aにより予め帯鋼SS全体が加熱されるとともに、エッジ加熱部2bにおいて帯鋼SSのエッジ部が誘導加熱等により加熱される(加熱工程)。その後、加熱された帯鋼SSが複数の圧延ロール3a、3bにより挟み込まれ、帯鋼SSの両端のエッジ部が互いに対向させるように曲げられる。この対向するエッジ部同士が圧着(鍛着)されることによって管形状の接合管Pが成型される(溶接工程)。 Next, a preferred embodiment of the method for manufacturing a steel pipe of the present invention will be described with reference to FIG. First, the entire strip steel SS is preheated by the preheating furnace 2a, and the edge portion of the strip steel SS is heated by induction heating or the like in the edge heating portion 2b (heating step). After that, the heated strip steel SS is sandwiched between the plurality of rolling rolls 3a and 3b, and the edge portions at both ends of the strip steel strip SS are bent so as to face each other. A pipe-shaped joint pipe P is formed by crimping (forging) the opposing edge portions (welding process).

そして、接合管Pは冷却機構4に搬送され、冷却機構4において接合管Pのシーム部SWが冷却される(冷却工程)。冷却後の接合管Pの捩じれ量θが捩じれ検出装置10により検出される。この際、接合管Pを撮像した熱画像TPが取得される(熱画像取得工程、図3~図6参照)、熱画像TPに基づきシーム部SWの位置の周方向の捩じれが検出される(捩じれ検出工程)。その後、検出した捩じれ量θに基づいて、溶接機構3の圧延ロール3a、3bがスラスト方向に変位し、捩じれが矯正される(矯正工程)。そして、検出された捩じれ量θが溶接機構3にフィードバックされ、溶接機構3で接合管Pの捩じれの矯正が行われる(矯正工程)。 Then, the joining pipe P is conveyed to the cooling mechanism 4, and the seam portion SW of the joining pipe P is cooled in the cooling mechanism 4 (cooling step). The twist amount θ of the joint pipe P after cooling is detected by the twist detection device 10. At this time, the thermal image TP obtained by imaging the junction tube P is acquired (thermal image acquisition process, see FIGS. 3 to 6), and the twist of the position of the seam portion SW in the circumferential direction is detected based on the thermal image TP (see the thermal image acquisition process, FIGS. 3 to 6). Twist detection process). After that, the rolling rolls 3a and 3b of the welding mechanism 3 are displaced in the thrust direction based on the detected twist amount θ, and the twist is corrected (correction step). Then, the detected twist amount θ is fed back to the welding mechanism 3, and the welding mechanism 3 corrects the twist of the joint pipe P (correction step).

上記実施の形態によれば、シーム部SWの捩じれが生じている場合、捩じれ量θを溶接機構3にフィードバックし、溶接機構3において捩じれが矯正されることにより、捩じれによって冷却機構4でシーム部SWの冷却が行われないことを防止し、偏熱による偏肉の発生等の品質の劣化を防止することができる。より具体的には、例えば接合管Pの周方向の偏熱による偏肉率(偏肉率=最大管厚-最小管厚/平均管厚×100)を4.20から6.74と向上させる結果が得られた。 According to the above embodiment, when the seam portion SW is twisted, the twist amount θ is fed back to the welding mechanism 3, and the twist is corrected in the welding mechanism 3, so that the seam portion in the cooling mechanism 4 is twisted. It is possible to prevent the SW from not being cooled and to prevent quality deterioration such as generation of uneven thickness due to uneven heat. More specifically, for example, the uneven thickness ratio (unbalanced thickness ratio = maximum pipe thickness-minimum pipe thickness / average pipe thickness × 100) due to uneven heat in the circumferential direction of the joined pipe P is improved from 4.20 to 6.74. Results were obtained.

また、接合管Pの温度測定に基づきシーム部SWの位置を検出する際、筒状に成型した接合管Pの円周温度分布を連続して測定する熱画像TPに基づいて検出する。これにより、従来のような、温度の測定が不連続な走査型放射温度計を円弧方向に往復させる場合に比べてシーム部SWの位置の検出精度を高めることができる。 Further, when the position of the seam portion SW is detected based on the temperature measurement of the joint pipe P, it is detected based on the thermal image TP that continuously measures the circumferential temperature distribution of the joint pipe P molded into a tubular shape. As a result, it is possible to improve the detection accuracy of the position of the seam portion SW as compared with the conventional case where the scanning radiation thermometer whose temperature measurement is discontinuous is reciprocated in the arc direction.

さらに、溶接後の接合管Pはシーム部SWが最も温度が高くなり、冷却後の接合管Pはシーム部SWが最も温度が低くなることを利用して熱画像TPからシーム部SWの位置を検出するため、シーム部SWの位置の検出精度を高めることができる。 Further, the position of the seam portion SW is determined from the thermal image TP by utilizing the fact that the joint pipe P after welding has the highest temperature in the seam portion SW and the joint pipe P after cooling has the lowest temperature in the seam portion SW. Since it is detected, the detection accuracy of the position of the seam portion SW can be improved.

また、図2のように、圧延ロール3a、3bのスラスト移動により母管部の円周方向にかかる力を制御することができる構造となっており、その際、捩じれ量θ、圧延ロール3a、3bのスラスト移動量xを図4式に従い調整することで、熱画像TPから検出した捩じれを矯正し、適正な位置に制御することができる。これにより、接合管Pが捩じれることによるシーム部SWの過不足冷却を防止できるようになり、接合管Pの周方向の偏熱による偏肉を抑制することができる。 Further, as shown in FIG. 2, the structure is such that the force applied in the circumferential direction of the mother pipe portion can be controlled by the thrust movement of the rolling rolls 3a and 3b, and at that time, the twist amount θ, the rolling roll 3a, By adjusting the thrust movement amount x of 3b according to the formula of FIG. 4, the twist detected from the thermal image TP can be corrected and controlled to an appropriate position. As a result, it becomes possible to prevent excessive or insufficient cooling of the seam portion SW due to twisting of the joint pipe P, and it is possible to suppress uneven thickness due to uneven heat in the circumferential direction of the joint pipe P.

本発明の実施形態は、上記実施形態に限定されず、種々の変更を加えることができる。例えば、図1において、熱画像取得部11は、冷却機構4と絞り圧延機構5との間に設置されている場合について例示しているが、溶接後の捩じれを検出するのであれば、溶接機構3と冷却機構4との間に設置されていてもよい。 The embodiment of the present invention is not limited to the above embodiment, and various modifications can be made. For example, in FIG. 1, the case where the thermal image acquisition unit 11 is installed between the cooling mechanism 4 and the drawing rolling mechanism 5 is illustrated, but if twisting after welding is detected, the welding mechanism is used. It may be installed between 3 and the cooling mechanism 4.

また、図1において、熱画像取得部11は、1つのサーモグラフィから1枚の熱画像を取得する場合について例示しているが、2以上のサーモグラフィを設けて複数枚の熱画像を取得するようにしてもよい。この場合、複数のサーモグラフィによる撮影方向はそれぞれ異なる方向から撮影するのが好ましい。例えば、接合管の上下にそれぞれサーモグラフィが設けられている場合、シーム部が90°以上周方向に捩じれて1つのサーモグラフィの撮影視野から外れてしまった場合であっても、他のサーモグラフィにより確実にシーム部を撮影することができるようになる。 Further, in FIG. 1, the thermal image acquisition unit 11 illustrates a case where one thermal image is acquired from one thermography, but two or more thermography is provided so as to acquire a plurality of thermal images. You may. In this case, it is preferable to shoot from different directions in the shooting direction by the plurality of thermography. For example, if thermography is provided on the top and bottom of the junction tube, even if the seam is twisted by 90 ° or more in the circumferential direction and deviates from the shooting field of view of one thermography, it can be reliably performed by another thermography. You will be able to shoot the seam part.

さらに、図1において、溶接工程は、エッジ加熱部2bでエッジ部を誘導加熱した後に、帯鋼SSを管状に成型(フォーミング)して圧着する場合について例示しているが、この手法に限定されない。例えば、帯鋼SSをフォーミング機構によりエッジ部同士を突き合わせるようにフォーミングした後に、超音波等によりエッジ部を加熱して圧着する超音波圧着等により溶接してもよい。この場合であっても、溶接後は冷却工程を行う必要があり、接合管Pの捩じれが生じる場合があるため、本発明を適用することができる。 Further, in FIG. 1, the welding process exemplifies a case where the edge portion is induced and heated by the edge heating portion 2b and then the strip steel SS is formed into a tubular shape (forming) and crimped, but the welding process is not limited to this method. .. For example, after forming the strip steel SS so as to abut the edge portions by a forming mechanism, the edge portions may be heated by ultrasonic waves or the like and welded by ultrasonic crimping or the like. Even in this case, it is necessary to perform a cooling step after welding, and the joint pipe P may be twisted. Therefore, the present invention can be applied.

1 鋼管の製造装置
2 加熱機構
2a 予熱炉
2b エッジ加熱部
3 溶接機構
3a、3b 圧延ロール
3c 溶接制御部
4 冷却機構
5 絞り圧延機構
10 捩じれ検出装置
11 熱画像取得部
12 捩じれ検出部
P 接合管
Pref 基準位置
SS 帯鋼
SW シーム部
TP 熱画像
θ 捩じれ量
x スラスト移動量
1 Steel pipe manufacturing equipment 2 Heating mechanism 2a Preheating furnace 2b Edge heating unit 3 Welding mechanism 3a, 3b Rolling roll 3c Welding control unit 4 Cooling mechanism 5 Stretching rolling mechanism 10 Twist detection device 11 Thermal image acquisition unit 12 Twist detection unit P Joining pipe Roll reference position SS strip steel SW seam part TP thermal image θ twist amount x thrust movement amount

Claims (5)

帯鋼のエッジ部を加熱する加熱工程と、少なくとも1対の圧延ロールを用いて前記帯鋼を挟んで前記帯鋼のエッジ部を互いに対向させ溶接することによって管形状の接合管を成形する溶接工程と、前記接合管のシーム部を冷却する冷却工程と、を有する鋼管の製造方法であって、
前記接合管を撮像して熱画像を取得する熱画像取得工程と、
前記熱画像取得工程において取得された熱画像に基づき、前記シーム部の位置の周方向の捩じれを検出する捩じれ検出工程と、
前記検出工程により検出した捩じれに基づいて、前記溶接工程での前記1対の圧延ロールのうちの一方を他方に対してスラスト方向に変位させて捩じれを矯正する矯正工程と、
を有する鋼管の製造方法。
Welding to form a pipe-shaped joint pipe by heating the edge of the strip and welding the edges of the strip with at least one pair of rolling rolls sandwiching the strip so that the edges of the strip face each other. A method for manufacturing a steel pipe, comprising a step and a cooling step of cooling the seam portion of the joined pipe.
A thermal image acquisition step of imaging the junction tube to acquire a thermal image,
A twist detection step of detecting a twist in the circumferential direction of the position of the seam portion based on the thermal image acquired in the thermal image acquisition step, and a twist detection step.
Based on the twist detected by the detection step, one of the pair of rolling rolls in the welding step is displaced with respect to the other in the thrust direction to correct the twist.
A method for manufacturing a steel pipe having.
前記捩じれ検出工程において、前記熱画像内における前記接合管の各部位の温度差に基づいて前記接合管の前記シーム部の位置を検出し、検出した前記シーム部の位置を用いて前記シーム部の位置の周方向の捩じれを検出する請求項1に記載の鋼管の製造方法。 In the twist detection step, the position of the seam portion of the joint pipe is detected based on the temperature difference of each portion of the joint pipe in the thermal image, and the position of the seam portion detected is used to detect the seam portion of the seam portion. The method for manufacturing a steel pipe according to claim 1, wherein the twist in the circumferential direction of the position is detected. 前記接合管の温度のうち最も高い温度の位置を前記シーム部の位置として検出する請求項2に記載の鋼管の製造方法。 The method for manufacturing a steel pipe according to claim 2, wherein the position of the highest temperature among the temperatures of the joined pipe is detected as the position of the seam portion. 前記矯正工程において、前記シーム部の捩じれ量に応じて溶接工程における前記圧延ロールのロール軸方向の位置を制御することにより、前記シーム部の捩じれ量を制御する請求項1から3のいずれか一項に記載の鋼管の製造方法。 Any one of claims 1 to 3 that controls the twist amount of the seam portion by controlling the position of the rolling roll in the roll axis direction in the welding step according to the twist amount of the seam portion in the straightening step. The method for manufacturing a steel pipe according to the section. 帯鋼のエッジ部を加熱する加熱機構と、
少なくとも1対の圧延ロールを用いて前記帯鋼を挟んで前記帯鋼のエッジ部を互いに対向させ溶接することによって管形状の接合管を成形する溶接機構と、
前記接合管のシーム部を冷却する冷却機構と、
前記接合管のシーム部の周方向の捩じれを検出する捩じれ検出装置と、
を備え、
前記捩じれ検出装置は、
前記接合管を撮像して熱画像を取得する熱画像取得部と、
前記熱画像取得部において取得された熱画像に基づきシーム部の位置の周方向の捩じれを検出する捩じれ検出部と、
を有し、
前記溶接機構は、前記捩じれ検出装置により検出した捩じれに基づいて、前記1対の圧延ロールのうちの一方を他方に対してスラスト方向に変位させて捩じれを矯正する鋼管の製造装置。
A heating mechanism that heats the edges of the steel strip,
A welding mechanism for forming a pipe-shaped joint pipe by sandwiching the strip with at least one pair of rolling rolls and welding the edges of the strip with the edges facing each other.
A cooling mechanism that cools the seam portion of the joint pipe,
A twist detection device that detects a twist in the circumferential direction of the seam portion of the joint pipe, and a twist detection device.
Equipped with
The twist detection device is
A thermal image acquisition unit that captures an image of the junction tube and acquires a thermal image,
A twist detection unit that detects a twist in the circumferential direction of the position of the seam portion based on the thermal image acquired by the thermal image acquisition unit, and a twist detection unit.
Have,
The welding mechanism is a steel pipe manufacturing apparatus that corrects the twist by displaces one of the pair of rolling rolls in the thrust direction with respect to the other based on the twist detected by the twist detection device.
JP2020116063A 2020-07-06 2020-07-06 Manufacturing method of steel pipe and manufacturing apparatus of steel pipe Pending JP2022013983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020116063A JP2022013983A (en) 2020-07-06 2020-07-06 Manufacturing method of steel pipe and manufacturing apparatus of steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020116063A JP2022013983A (en) 2020-07-06 2020-07-06 Manufacturing method of steel pipe and manufacturing apparatus of steel pipe

Publications (1)

Publication Number Publication Date
JP2022013983A true JP2022013983A (en) 2022-01-19

Family

ID=80185129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020116063A Pending JP2022013983A (en) 2020-07-06 2020-07-06 Manufacturing method of steel pipe and manufacturing apparatus of steel pipe

Country Status (1)

Country Link
JP (1) JP2022013983A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288925A (en) * 1991-03-19 1992-10-14 Kawasaki Steel Corp Manufacture of welded steel pipe
JPH05317956A (en) * 1992-05-15 1993-12-03 Sumitomo Metal Ind Ltd Method and device for correcting seam distortion of welded tube
JPH11277147A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Detection of seamed position and tube manufacturing device
JP2000024714A (en) * 1998-07-13 2000-01-25 Sumitomo Metal Ind Ltd Method for controlling seam position of welded tube and device therefor
JP2005034882A (en) * 2003-07-16 2005-02-10 Jfe Steel Kk Method and device for correcting seam distortion of steel pipe
JP2009222408A (en) * 2008-03-13 2009-10-01 Jfe Steel Corp Ultrasonic flaw detection method, ultrasonic flaw detecting device, and production method for seam-welded pipe
JP2015004669A (en) * 2013-05-21 2015-01-08 Jfeスチール株式会社 Device and method for ultrasonic flaw detection of electro-resistance-welded tube and quality assurance method
JP2018030173A (en) * 2016-08-18 2018-03-01 Jfeスチール株式会社 Seam heat treatment device and seam heat treatment method of electroseamed steel pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288925A (en) * 1991-03-19 1992-10-14 Kawasaki Steel Corp Manufacture of welded steel pipe
JPH05317956A (en) * 1992-05-15 1993-12-03 Sumitomo Metal Ind Ltd Method and device for correcting seam distortion of welded tube
JPH11277147A (en) * 1998-03-26 1999-10-12 Kawasaki Steel Corp Detection of seamed position and tube manufacturing device
JP2000024714A (en) * 1998-07-13 2000-01-25 Sumitomo Metal Ind Ltd Method for controlling seam position of welded tube and device therefor
JP2005034882A (en) * 2003-07-16 2005-02-10 Jfe Steel Kk Method and device for correcting seam distortion of steel pipe
JP2009222408A (en) * 2008-03-13 2009-10-01 Jfe Steel Corp Ultrasonic flaw detection method, ultrasonic flaw detecting device, and production method for seam-welded pipe
JP2015004669A (en) * 2013-05-21 2015-01-08 Jfeスチール株式会社 Device and method for ultrasonic flaw detection of electro-resistance-welded tube and quality assurance method
JP2018030173A (en) * 2016-08-18 2018-03-01 Jfeスチール株式会社 Seam heat treatment device and seam heat treatment method of electroseamed steel pipe

Similar Documents

Publication Publication Date Title
US20150076117A1 (en) Method and device for longitudinal seam welding of profiled tubes on a tube welding system
US9156074B2 (en) Method for producing a large steel tube
JP6070967B2 (en) Manufacturing method of welded steel pipe
WO2013069748A1 (en) Monitoring device, method, and program for seam welding, and storage medium
JP6518956B2 (en) Heat treatment apparatus and seam heat treatment method for ERW steel pipe
KR20190126292A (en) Forming System and Forming Method
JP2022013983A (en) Manufacturing method of steel pipe and manufacturing apparatus of steel pipe
US4796798A (en) Method of and apparatus for continuous production of seam-welded metal tubing
RU2633123C2 (en) Control unit of bias offsetting and operation mode of bias offsetting in continuous tack welding device
JP4916940B2 (en) Heat treatment method and heat treatment apparatus for welded steel pipe
JP4998739B2 (en) Method for producing ERW steel pipe with good weld toughness
US4771931A (en) Continuous production of seam-welded metal tubing
JP4138929B2 (en) High frequency pipe making method
JPH0871638A (en) Method of controlling heat input in electric resistance welded tube
CN115815389A (en) Device and method for effectively controlling welding quality of cold-formed steel
JPH03155479A (en) Welding control method for resistance welded tube
JP4532977B2 (en) Welding method for ERW steel pipe with excellent welding quality
JPH11277147A (en) Detection of seamed position and tube manufacturing device
JPS632517A (en) Straightening method for uoe tube
JPH04344832A (en) Forming stabilizing method in forge welded steel tube manufacturing process
JP7435930B1 (en) ERW steel pipe welding management device, ERW steel pipe welding management method, ERW steel pipe manufacturing method, and ERW steel pipe welding management system
JP2852314B2 (en) Method for manufacturing large-diameter rectangular steel pipe for improving corner R member quality
JPH05317956A (en) Method and device for correcting seam distortion of welded tube
JP3682682B2 (en) Manufacturing method of thin wall forged pipe
JP3558000B2 (en) Manufacturing method of hot rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230725