JP2022009436A - 経皮直流電流ブロックによる神経伝導変更システム及び方法 - Google Patents

経皮直流電流ブロックによる神経伝導変更システム及び方法 Download PDF

Info

Publication number
JP2022009436A
JP2022009436A JP2021173524A JP2021173524A JP2022009436A JP 2022009436 A JP2022009436 A JP 2022009436A JP 2021173524 A JP2021173524 A JP 2021173524A JP 2021173524 A JP2021173524 A JP 2021173524A JP 2022009436 A JP2022009436 A JP 2022009436A
Authority
JP
Japan
Prior art keywords
nerve
conduction
skin
peripheral nerve
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021173524A
Other languages
English (en)
Inventor
キルゴア,ケビン・エル
Kevin L Kilgore
ヴァン・アッカー,グスタフ
Van Acker Gustaf
ヴラベッツ,ティナ
Vrabec Tina
バドラ,ニロイ
Bhadra Niloy
バドラ,ナレンドラ
Bhadra Narendra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Case Western Reserve University
Original Assignee
Case Western Reserve University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Case Western Reserve University filed Critical Case Western Reserve University
Publication of JP2022009436A publication Critical patent/JP2022009436A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/205Applying electric currents by contact electrodes continuous direct currents for promoting a biological process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Figure 2022009436000001
【課題】本開示の一態様は、DCの経皮印加(例えば、ブロック又は減衰)によって神経内の伝導(tDCB)を変更できるシステムに関する。
【解決手段】前記システムは、DCを発生させる電流発生器を含んでもよい。第1皮膚電極は電流発生器に結合されて、DCを標的神経を通して経皮的に第2皮膚電極に伝達することができる。標的神経における伝導は、DCに応答して発生された電場の結果として直接変更される。
【選択図】図1

Description

この研究は、少なくとも部分的に、国立衛生研究所(National Institutes of Health、NIH)-神経障害及び脳卒中研究所(National Institute of Neurological Disorders and Stroke、NINDS)のファンド番号R01-NS-074149によってサポートされた。米国政府は本発明に対して一定の権利を有する場合がある。
この出願は2015年9月8日に出願された発明の名称「電流の経皮印加による神経伝導変更システム及び方法(SYSTEMS AND METHODS FOR APPLYING CURRENT TRANSCUTANEOUSLY TO ALTER NERVE CONDUCTION)」の米国仮出願第62/215,267号の権利を要求する。この仮出願の全内容はすべての目的のためにここに援用されている。
本開示は、神経伝導の変更に関し、具体的に、経皮直流電流印加による神経伝導変更システム及び方法に関する。
神経学的障害は、特徴として、膀胱機能不全、自律神経機能不全、痛みや痙攣性筋収縮のような慢性副作用を引き起こす可能性のある望ましくない神経活動となる可能性があり、未治療のまま放置すると、経時的に悪化する。この望ましくない神経活動を阻止する従来の治療には、薬理学的アプローチ又は手術が含まれる。しかしながら、薬品は効くまで時間がかかり、望ましくない副作用を伴い、手術は通常不可逆的である。電気刺激による神経伝導ブロックは、この望ましくない神経活動をダウンレギュレーション又はブロックするための薬理学的アプローチ及び手術から広がる代替治療戦略である。本質的な電気伝導ブロックは、外科的に埋め込まれた電極を必要とするキロヘルツの周波数範囲の高周波交流電流の変形及び/又は標的神経へ直接印加する直流電流を用いるのが一般的であるが、外科的に埋め込まれた電極の侵襲性によりこの電気伝導ブロックの用途が制限される。一方、従来の非侵襲性電気刺激アプローチは、局所神経回路をブロックするのではなくむしろ活性化させるものであり、間接的手段による阻害効果をもたらし、それによる有効性が制限される可能性がある。
一般的に、本開示は神経伝導変更(例えば、ダウンレギュレーション又はブロック)に関する。例えば、本明細書に記載のシステム及び方法は、神経学的障害に罹患した患者の膀胱機能不全、自律神経機能障害、痛み及び/又は痙攣性筋収縮を引き起こす制御不能な神経伝導の変更に利用できる。具体的には、本開示は、直流電流(DC)を経皮的に印加することによる神経伝導変更システム及び方法に関する。例えば、DCは、標的神経における活動電位の伝導を変更するのに十分な方向にDCの流動を案内するように、患者の皮膚に幾何学的形状に配置された少なくとも2つの表面電極の間に経皮的に印加される。実際、DCの経皮印加は、伝達部位での神経伝導の直接ブロックを提供する。
一態様において、本開示は、標的神経における伝導を変更するための方法を含み得る。前記方法は、患者の皮膚の表面上に少なくとも2つの電極を配置するステップと、少なくとも2つの電極の間にある標的神経における活動電位の伝導を変化させるのに十分な振幅を有するDCを印加するステップと、DCの印加による電場に基づいて、標的神経における活動電位の伝導を変更するステップとを含む。
別の態様では、本開示は、標的神経における伝導を変更するシステムを含み得る。前記システムはDCを発生させる電流発生器を含む。電流発生器はDCを標的神経を通して経皮的に第2皮膚電極に伝達する第1皮膚電極に結合される。標的神経における伝導はDCに応答して発生された電場の結果として変更され得る。
さらなる態様では、本開示は、標的神経における伝導を変更するための方法を含み得る。DCは経皮電極対を介して標的神経を通過して印加できる。DCは標的神経における伝導をブロック又は減衰するのに十分な振幅を有する。経皮電極対は、患者の皮膚の表面上に幾何学的形状に配置されて、DCの流動を、標的神経における伝導をブロック又は減衰させるのに十分な電場の発生を促進する方向に案内する。
本開示の前述及び他の特徴は、添付の図面を参照して以下の説明を読むことにより、当業者にとって明らかになる。
本開示の一態様による標的神経における伝導を変更するシステムを示す模式図である。 図1のシステムによって生成され印加され得る陽極極性(左)及び陰極極性(右)を有する直流電流(DC)波形の実例を示す。 図1のシステムによって生成され印加され得る二相DC波形の実例を示す。 図1のシステムによって生成され印加され得るDC波形の実例を示す。 図1のシステムによって生成され印加され得るDC波形の実例を示す。 図1のシステムによって生成され印加され得るDC波形の実例を示す。 患者の皮膚に印加された(内側ビュー)図1のシステムを示す模式図である。 図7のシステムの軸方向図である。 本開示の別の態様におけるDCの経皮印加による標的神経における伝導を変更するフローチャートである。 ラット大腿の実験的セットアップを示す模式図である。ラットの座骨神経及び枝を外科的に露出させ、近位座骨神経周囲に近位刺激バイポーラカフ電極を配置し、1~2Hz(A)の二相パルスを与える。これらの刺激パルスは、関連運動神経枝を介して、腓腹筋又は前脛骨筋のいずれかの最大の筋収縮活性化を提供する。代わりの枝は標的筋肉を隔離するように作用している。発生させた最大の筋収縮は力変換器により測定される(同図、足首の背屈(B)と同線になる)。各試験の途中で、神経伝導(tDCB)を変更するための直流電流の経皮印加を、筋収縮(C)を駆動する無傷の神経に印加して、筋収縮力を減弱させる。 標的神経に対する例示的な電極の配向を示す模式図である。A)神経、筋肉及び皮膚を有する脚に対する電極の軸方向図を示す。破線は、標的神経に近接して配置された陰極電極と陽極電極との間に生成される仮想の電場を示す。B)神経、筋肉及びインライン力変換器(FT)に対して示された近位刺激電極(PS)を有する内外視(ML:mediolateral view)図。丸数字は、電流供給用の陰極電極と陽極電極の対を示す。羅針図は各図におけるラットの配向-腹側(V)、背側(D)、内側(M)、側方(L)、吻側(R)及び尾側(C)を示す。 最大運動出力(2Hzの近位座骨神経刺激から生じる力出力)の間に印加されたtDCBを示すグラフである。この力は近位刺激のみが印加される場合又はプレDCベースライン(黒い点線の水平線)の間に最大である。DC電場印加時(赤い実線)、プラトー相の期間(黒い実線)期間又はDCが一定のレベルに保持されている期間に、運動出力が94.8%の安定部分ブロックに減少した。DCの急速な変化に関連する運動活動の開始及び解消を緩和させるために、プラトーまでのランプアップ及びランプダウンが含まれている。最大力振幅は、近位座骨神経刺激によって得られた最大力出力であり、0力振幅は刺激なしでベースラインに位置している。 直流電流と伝導ブロックとの関係を示すグラフである。これらのデータは、印加された直流電流の振幅と得られたブロックのパーセンテージとの間の関係を示し、他のすべてのパラメータが一定に保持されている。赤色の垂直実線は2Hzの近位刺激によって駆動される力出力であり、赤色のランプ波形によって示される6mAのDC電流で試験の途中で減衰が達成された。色付きの三角形は、関連する色分けされたDC波形が達成したピーク位置である。ブロック電流振幅が増加するにつれて、ブロックパーセンテージも増大する。各電流レベルでのブロックは、各tDCBプラトーの10秒間の持続期間に一致している。垂直破線はDC電流が一定に保たれた10秒間のDCプラトーの開始を示す。最大力振幅は近位座骨神経刺激を介して得られた最大力出力であり、0力振幅は刺激なしでベースラインに位置している。 強直筋収縮のtDCBを示すグラフである。前脛骨筋の強直活動は40Hzの二相性刺激訓練を座骨神経に適用することによって実現された(PS開始)。次いでtDCB(DC波形)を利用して力出力の部分ブロックを生じた。一旦tDCBがオフになると、強直活動が回復して、近位刺激がオフになると、強直活動が止まる(PS終了)。tDCBを20mAで印加した。最大力振幅は40Hzの近位座骨神経刺激によって得られた最大力出力であり、0力振幅は刺激なしでベースラインに位置している。
I.定義
他に定義されない限り、本明細書に使用されている全ての技術用語は、当業者が一般的に理解するものと同じ意味を有する。
本開示の文脈において、単数形「1つ」(a)、(an)及び「前記」(the)は、文脈上他に明白に示さない限り、複数形を含んでもよい。
本明細書に使用されている用語「含む(comprises)」及び/又は「含んでいる(comprising)」は、前記特徴、ステップ、操作、要素及び/又はコンポーネントの存在を特定することができるが、1つ又は複数のその他の機能、ステップ、操作、要素、コンポーネント、及び/又は組み合わせを排除しない。
本明細書に記載のとおり、用語「及び/又は」は、1つ又は複数の関連する列挙された項目の任意の及びすべての組み合わせを含み得る。
本明細書に記載のとおり、「XとYとの間」及び「約XとYとの間」などの語句はX及びYを含むと解釈すべきである。
本明細書に記載のとおり、「約XとYとの間」などの語句は、「約Xと約Yとの間」を意味し得る。
本明細書に記載のとおり、「約XからYまで」などの句は「約Xから約Yまで」を意味し得る。
なお、ある要素が別の要素の「上に位置する」、別の要素に「装着される」、別の要素に「接続される」、別の要素に「結合される」、別の要素に「接触する」等と記載されるとき、ある要素が、例えば、別の要素に「直接」位置したり、装着されたり、接続されたり、結合されたり、接触したりしてもよいし、中間要素が存在してもよい。それに対して、ある要素が別の要素に「直接」位置したり、装着されたり、接続されたり、結合されたり、接触したりするなどと記載されている場合、中間要素が存在しない。当業者によって、別の構成に隣接して配置された構造又は構成と記載される場合は、この隣接構成と重なる部分又はその下にある部分を含む場合がある。
説明の便宜上、本明細書では、「下方」、「下面」、「下」、「上方」、「上面」等のような空間的に相対的な用語を用いて、ある要素又は構成と図示している他の要素との関係を説明することができる。なお、前記空間的に相対的な用語は、図面に説明された方向に加えて、使用又は操作中の装置の別の方向を包含し得る。例えば、図中の装置が逆の場合、「他の要素又は構成の「下方」又は「下」に位置すると記載される要素は、他の要素又は構成の「上方」に配置されることになる。
また、本明細書では「第1」、「第2」などの用語を用いて様々な要素を説明することができるが、これらの要素はこれらの用語によって限定されるべきではない。これらの用語はある要素を別の要素と区別するためにのみ使用される。したがって、以下に説明する「第1」要素は、本開示の教示から逸脱することなく「第2」要素と呼ぶことも可能である。操作(又は動作/ステップ)の順番は、特に断りのない限り、請求項又は図に示された順序に限定されない。
本明細書で使用される場合、用語「変更」(alter)又は「変更している」(altering)は、神経伝導に関して使用される場合、標的神経において活動電位が伝導される様式に影響を及ぼす又は変化させることを指すことができる。いくつかの例では、神経伝導は、神経に沿って移動するときにある時点で活動電位を解消することによって変更できる(神経伝導「ブロック」とも呼ばれる)。他の例では、神経伝導は、標的神経の活性化閾値を増大させる及び/又は標的神経の伝導速度を低下させること(「神経伝達を「減衰させる」とも呼ばれる)によって変更できる。神経伝導を減衰させることは、完全な神経伝導ブロックを引き起こして正常な神経活動(例えば、正常な活動電位伝導)を変える可能性がある。いずれの場合にも、神経伝導が変化すると、神経伝導は直接ブロック又は減衰され得る。
本明細書で使用される場合、神経伝導は、活動電位が神経を通過する際に、標的神経を通る活動電位の伝達が完全に解消(例えば、100%解消)したときに「ブロック」される。ブロックは標的神経を含む神経膜の脱分極又は過分極によって達成できる。換言すれば、「ブロックされた」という用語は完全な伝導ブロックを指し得る
本明細書中で使用される場合、神経伝導は、「不完全な神経ブロック」が生じた場合に「減衰」される。「不完全なブロック」という用語は、標的神経を通る活動電位の100%未満(例えば、約90%未満、約80%未満、約70%未満、約60%未満、又は約50未満%)が解消する部分的ブロックを指し得る。一例では、神経伝導が減弱するとき、標的神経の活性化閾値が上昇し、その結果、標的神経を励起するのがより困難になる。換言すれば、用語「減衰」は安定した部分伝導ブロックを指すことができる。神経伝導は、外部電気信号を標的神経に印加することによって変更できる。例えば、標的神経における伝導を変更するのに十分な電場を発生させる「直流電流」又は「DC」を標的神経に印加する。DCはいずれかの極性(例えば、陰極又は陽極のいずれか)であり得る。場合によっては、DCは二相波形の第1相としても印加できる。二相波形の第2相は、第1相によって供給された総電荷の100%を(電荷平衡二相波形として)逆転させるか、又は第1相によって供給される総電荷の100%未満を逆転させることにより、皮膚表面に損害を与える光化学反応及び/又はDCを伝達するために使用される電極を減少させる。
DCは、標的神経の周りに配置された少なくとも2つの「表面電極」の間で「経皮的に」(例えば、皮膚を通して)印加できる。表面電極は、患者の皮膚表面に可逆的に取り付け可能な導電性材料で製造される。いくつかの例では、表面電極は、皮膚を通るDCの伝導を改善する導電性ゲルを介して患者の皮膚の表面に取り付けることができる。
本明細書で使用される場合、用語「神経」は、電気信号及び化学信号を介して運動、感覚及び/又は自律的情報を1つの身体部分から別の身体部分に伝達する1つ又は複数の繊維を指す。神経は、中枢神経系又は末梢神経系の成分のいずれかを指す。
本明細書で使用される場合、用語「可逆的」は、神経に関しては、印加されたDCが神経から除去された後に神経が正常な伝導に戻ることを意味し得る。いくつかの例では、変更した神経伝導は120秒以内に逆転することが可能である。他の例では、変更した神経伝導は60秒以内に逆転され得る。
本明細書で使用される場合、用語「神経学的障害」は、1つ以上の神経における異常な伝導によって少なくとも部分的に特徴づけられる状態又は疾患を意味する。場合によっては、神経学的障害に罹患した対象は、疼痛及び/又は筋痙攣を経験することがある。神経学的障害の例は、脳卒中、脳損傷、脊髄損傷(SCI)、脳性麻痺(CP)、多発性硬化症(MS)などを含む。
本明細書で使用される場合、「対象」及び「患者」という用語は互換的に使用でき、任意の温血生物であってもよく、ヒト、ブタ、ラット、マウス、イヌ、ネコ、ヤギ、ヒツジ、ウマ、サル、サル、ウサギなどが含まれるが、これらに制限されない。
本明細書で使用される場合、「医療専門家」という用語は患者にケアを提供する個人を指す。医療従事者は、例えば、医者、医師の助手、学生、看護師、介護者などであり得る。
II.概要
一般的に、本開示は、神経伝導変更に関し、具体的には、直流電流の経皮印加による神経伝導変更システム及び方法(以下、経皮直流電流ブロック(tDCB)と称する)に関する。tDCBを用いて神経伝導を変更することにより、実行可能で安価な非薬物代替治療として、多数の臨床病気を治療できる。
実際、tDCBは、皮膚表面に配置された電極を用いて末梢神経伝導を変更する完全に非侵襲的な手段を提供し、即時的に開始して容易に可逆的に作用できる。また、tDCBは定電流を印加し、細胞を反復脱極化に対して不応性にする。このようにして、tDCBは波形の特性に依存した純粋な阻害になる。
tDCBを用いた本明細書に記載のシステム及び方法は、利用可能な非侵襲性電気刺激に基づく従来のアプローチよりも優れる。これらのアプローチの実例には、経皮的電気神経刺激(TENS)及び脊髄刺激(SCS)が含まれる。具体的には、TENS及びSCSは、間接的手段を介して作用するものであり、あそらく交流電気(AC)を用いて神経系内の阻害回路又は競合回路のいずれかを活性化させる効果を生じる。本開示のシステム及び方法は、異なる原理を利用してtDCBを利用するものである。tDCBは伝達部位での神経伝導の直接ブロックを生じる。これは局所薬理学的ブロック剤に類似しているが、電気的に生成されるもので、最適な有効性のためにほぼ瞬間的かつ可逆的な滴定及びテーパリングの独特な能力を有する。
経皮的電気刺激の別の方法は経頭蓋直流電流電気刺激(tDCS)と呼ばれる。通常、tDCSは頭蓋骨を通して低振幅でDCを長期間印加する。tDCBと逆に、tDCSは神経刺激を通して効果を生じる。tDCSはブロックするのに十分な振幅を使用し、電荷平衡が20~30分持続している場合にDCを伝達する。本開示のシステム及び方法は異なる原理に従ってtDCBを使用して作動する。tDCBは伝達部位での神経伝導の直接ブロックを生じる。
DCは、総電荷などのパラメータ制御に関して、優れた安全性を有するとともに、頭蓋及び脊柱直流電流刺激の臨床・研究用途に広範に使用されている。しかし、経皮的DCの末梢神経における活動電位伝導変更に使用されたことはない。DCを経皮的に印加することによって、神経伝導をブロック、もしくは直接抑制又は減衰させるのに十分な強度と方向を有するDC磁場を発生させることができる。本開示のシステム及び方法は、tDCS(2mA)で使用される最大電流よりも有意に高い(>10mA)電流範囲を利用する。それは、本開示のシステム及び方法によって、皮膚への損傷を引き起こすレベル以下に全伝達時間を制限すること、皮膚を通してより高い電荷を伝達可能な電極材料及び構成を使用すること、及び/又はアクティブDC相に続く電荷平衡又は電荷回復相を使用することによって達成される。
III.システム
本開示の一態様では、直流電流(DC)を経皮的に印加することによって標的神経における伝導を変更(例えば、ブロック又は減衰)できるシステム10(図1)を含む。DCの経皮印加は完全に非侵襲性であり、伝達部位又はその付近の末梢神経(例えば、運動神経、感覚神経、及び/又は自律神経)における神経伝導の直接減衰を引き起こすことができる。システム10は、神経伝導をブロック、もしくは、抑制又は減衰させるのに十分な強度及び方向を有するDC磁場を発生できる。好ましくは、システム10は、より高い電流範囲を用いて、皮膚への損傷を引き起こすレベル以下に全伝達時間を制限すること、皮膚を通してより高い電荷を伝達可能な電極材料及び構成を使用すること、及び/又はアクティブDC相に続く電荷平衡又は電荷回復相を使用することによって達成できる。
一般的に、システム10は、電流を発生させるコンポーネント(例えば、電流発生器12)と、標的神経における伝導を変更するために電流(例えば、表面電極14,16)を経皮的に印加するためのコンポーネントとを含んでもよい。標的神経の実例は、末梢神経(例えば、運動神経、感覚神経及び/又は自律神経)及び中枢神経系(例えば、脳と脊髄)を含む神経又は神経組織を含み得る。以下により詳細に議論されるように、DCの標的神経への経皮的印加は、疼痛及び筋痙攣を含むがこれに限定されない様々な神経障害を治療するために使用され得る。
図1に示すように、システム10は、電流発生器12、第1表面電極14、及び第2表面電極16を含む。第1及び第2表面電極14,16は、患者の皮膚に装着されて電流発生器12に結合され得る。場合によっては、第1及び第2表面電極14,16は有線接続を介して電流発生器12に電気的に連通できる。他の例では、第1及び第2表面電極14,16は無線接続、及び/又は、有線接続と無線接続との組み合わせによって電流発生器12に電気的に連通できる。
第1及び第2表面電極14,16は経皮電極又は皮膚電極として構成されており、電極が皮膚表面を貫通することなく患者の皮膚の表面に適用され得ることを意味する。表面電極14,16は、標的神経における伝導を変更するために患者の皮膚を通る電流の伝達を容易にするような大きさ及び寸法に調整できる。例えば、表面電極14,16の少なくとも1つは、正方形、長方形、円形、楕円形、三角形、又は患者の皮膚下で電場の発生を促進できる任意の他の形状にして標的神経における伝導を変更してもよい。表面電極14,16は、少なくとも1種の導電性材料(例えば、ステンレス鋼、白金、金、銀、カーボン、カーボンゲル、導電性シリコンゴム、導電性接着剤ゲルなど)で製造できる。いくつかの例では、表面電極14,16は、患者の皮膚に適用されるときに皮膚への望ましくない反応を引き起こさないように生体適合性であるように構成してもよい。他の例では、表面電極14,16は、ゲル又は他の保護物質によって患者の皮膚に結合することができる。いくつかの例では、導電性ゲル又は他の電解質は電極-電解質界面で望ましくない反応生成物から皮膚を保護するために大きな物理的バッファーを生成できる。ゲルは、患者の皮膚を通る電流の伝導を改善するための導電性ゲル(例えば、電解質を含む)であってもよい。
表面電極14,16は、患者の皮膚の表面上に幾何学的形状に配置され、標的神経における活動電位の伝動を変更するのに十分な方向に電流の流動を案内する。一例では、図7及び図8に示すように、少なくとも2つの表面電極14,16は患者の皮膚72上に標的神経74の対向側に配置することができる。なお、システム10は、本明細書に記載されたものよりも多くの表面電極14,16を含んでもよい。しかしながら、多くの場合、より多くの表面電極14,16の場合も、患者の皮膚の表面上に幾何学的形状に配置され、標的神経における活動電位の伝達を変更するのに十分な方向に電流の流動を案内する。なお、例えば、DCによって生成された電界を成形するように、追加の電極を使用しても構わない。
電流発生器12は、DCなどの電流を発生させるように構成又は製造できる。したがって、電流発生器12は、標的神経への経皮的印加のための特定の電流を発生させてその伝導を変更するように構成又は製造される任意の装置としてもよい。電流発生器12の一例として、バッテリにより電気が供給された携帯型発電機が挙げられる。電流発生器12の別の例は植込み型発生器(IPG)である。なお、電流発生器12は、振幅変調器(図示せず)のような電流波形を調整する追加のコンポーネントを含んでもよい。
いくつかの例では、電流発生器12によって発生された電流は、図2に示されるように、DCとすることができる。発生されたDCは、陽極極性22又は陰極極性24と、標的神経における伝導を変更する電場を発生させるのに十分な振幅を有する。電場は、標的神経に近接して患者の皮膚内で発生した脱分極又は過分極電場であり得る。いくつかの例では、電流発生器12は、図3に示すように、二相波形を有するDCを発生させるように構成又は製造することができる。場合によっては、電流発生器12は、図3に示されるように、二相波形を有するDCを発生させるように構成又は製造することができ、この場合、変更DCは、所定時間持続している第1相において標的神経へ伝達し、反対極性を有する第2相が第1相による望ましくない影響(例えば、電気化学的反応生成物に起因する)を低減又は解消できる。望ましくない効果は、皮膚上の表面電極14,16及び/又は電極-皮膚界面で発生及び逆転できる。
図4~図6は、電流発生器12によって発生可能な例示的な二相DC波形を示す。いくつかの例では、発生された二相DC波形は、ゼロの正味電荷を発生させるする電荷平衡二相波形であり得る。他の例では、発生された二相性DC波形は、皮膚表面及び/又は表面電極14,16に損傷を与える電気化学的反応を低減させるために、小さな正味電荷を発生させる実質的に電荷平衡のDC波形として印加してもよい。電流発生器12は、標的神経自体、患者の皮膚を損傷し及び/又は全身性の副作用を生じさせることなく、神経伝導を変更可能な二相波形を有するDCとして構成又は製造されてもよい。また、伝達されたDCによる変更は不可逆的である。例えば、標的神経へのDC印加が終了した後、標的神経は短時間(例えば、60~120秒以内)に正常な伝導に戻ることができる。
図7は、患者の皮膚に印加された図1のシステムを示す概略図(内側視野)である。図8は、図7のシステムの軸方向図である。DC(点線の矢印)は、皮膚の表面上の表面電極14を介して印加されて、患者の皮膚72と標的神経74を通って、患者の皮膚72から表面電極16に戻ることができる。DCは、標的神経74における神経伝導をブロック、もしくは他の方式で抑制又は減衰させるのに十分な強度及び方向を有するDC磁場(例えば、図8参照)を発生できる。
IV.方法
本開示の別の態様は、電流の経皮印加によって標的神経の少なくとも一部における伝導を変更(例えば、ブロック又は減衰)する方法80(図9)を含む。経皮印加は非侵襲的であるため、患者の体内に電極を埋め込む必要はない。方法80は、神経伝導をブロック、もしくは他の方式で抑制又は減衰するのに十分な強度及び方向を有する直流電流(DC)場を発生させる。好ましくは、方法80は、より高い電流範囲を利用して、皮膚への損傷を引き起こすレベル以下に全伝達時間を制限すること、皮膚を通してより高い電荷を伝達可能な電極材料及び構成を使用すること、及び/又はアクティブDC相に続く電荷平衡又は電荷回復相を使用することによって達成される。
通常、方法80は、患者の皮膚の表面上に少なくとも2つの電極を配置するステップ(ステップ82)と、前記少なくとも2つの電極の間にある標的神経にDCを印加するステップ(ステップ84)と、印加されたDCによる電場に基づいて標的神経における活動電位の伝導を変更する(ステップ86)とを含む。方法80は、流れ図を伴うプロセス流れ図として示されている。簡略化のために、方法80は連続して実行されるものとして示されるが、いくつかのステップが異なる順序で、及び/又は本明細書に示された他のステップと同時に行われ得ることから、本開示は例示された順序に限定されないことが理解すべきである。さらに、図示された態様の全ては方法80を実施するために必要とされるわけではない。
ステップ82では、少なくとも2つの電極(例えば、表面電極14,16)を患者の皮膚の表面上に配置する。少なくとも2つの電極は、標的神経の少なくとも一部における伝導を変更するのに適切な電流を伝達するような大きさ及び寸法に調整できる。少なくとも2つの電極は、標的神経における活動電位の伝導を変更するのに十分な方向にDCの流動を案内するように、患者の皮膚の表面に幾何学的形状に配置されてもよい。例えば、少なくとも2つの電極は、標的神経の対向側に配置される。
ステップ84では、電流発生器を作動させてDCを発生させる。発生されたDCは、少なくとも2つの電極の間にある標的神経において伝導が変更されるように、患者の皮膚を介して印加される。印加されたDCは陽極又は陰極であり得、標的神経における活動電位の伝達を変更できる電場を生成するのに十分な振幅を有する。いくつかの例では、DCは、図4-図6に示すものの1つのような2相波形として印加される。二相波形の第2相は、場合によって、第1相階によって供給された電荷を反転できる。他の例では、第2相は、皮膚表面及び/又は電極に損傷を与える電気化学的反応を低減させるために、二相波形の第1相によって供給される総電荷の100%未満を逆転できる。
ステップ86では、印加されたDCによる電界に応じて、標的神経における活動電位の伝導が変更(例えば、ブロック又は減衰)可能である。活動電位の伝導は、標的神経の構造、患者の皮膚を損なう及び/又は全身性の副作用を引き起こすことなく変更できる。また、変更した神経伝導は、電流の印加が終了した後、短時間(例えば60~120秒以内)に標的神経内の伝導が正常に戻るように可逆的である。
V.実例
以下の実施例は、例示のためのものであり、添付の特許請求の範囲を限定するものではない。
実施例I ラットのインビボ実験
この実施例は、DCの経皮(表面)印加によるラットの座骨神経における伝導変更(tDCB)の実行可能性を実証する。インビボ齧歯類モデルにおいて、tDCBは刺激パラメータ及び電極の幾何学的形状に依存して、座骨神経枝の安定した部分から完全な神経運動ブロックを生じる。完全な神経運動ブロックは6mAと低いtDCB振幅、且つ被験者の80%で20mA以下で達成される。本発明者らの結果として、tDCBを用いて神経運動活性が迅速、確実にかつ可逆的にブロックし得ることが明らかになる。
方法
外科手術手順
急性実験期間に10匹の成体Sprague-Dawleyラットからデータを収集する。各ステップごとに、イソフルランで全身麻酔を誘発して維持する。ラット座骨神経及び枝の外科的露出は以前に記載されているように行われる。簡単に言えば、ラットの後肢を剃り、切開部を長さ方向及び吻側で臀部の表面に形成し、座骨神経を正中線より1cmから脛骨及び腓骨神経分岐部まで露出させた。前脛骨筋の活性化及びブロックを必要とする準備作業については、腓腹筋及び脛骨神経枝を切断して腓腹筋への伝導をなくし、損傷しない腓骨神経を通した伝導を維持した。この準備作業では、足の背部に取り付けられたインライン力変換器を使用して足首の背屈をもたらす前脛骨筋の力出力を測定した。腓腹筋の活性化及びブロックを必要とする準備作業については、腓腹神経及び腓骨神経を切断し、脛骨神経をそのまま残す。アキレス腱は踵骨の挿入の近位で切断され、近位セグメントはクランプと縫糸で力変換器に装着された。このアタッチメントには、約1~2Nの受動的張力まで締め付けられた。
プラチナバイポーラJ-カフ電極を周方向に配置して、露出した座骨神経の約270°を近位に包含した。近位刺激電極を適所に置いて、筋肉及び皮膚を縫合して閉じた。実験終了時、ラットを人道的に安楽死させた。すべての手順は、動物試験委員会によって承認され、アメリカ合衆国保健福祉省及びアメリカ国立衛生研究所により出版された実験動物の管理と使用に関するガイドラインに合致している。
電気刺激
遠位力変換器を介して検出可能な筋収縮を引き起こすために、J-カフ電極を用いて二相性刺激を座骨神経の近位端に伝達する(図10A)。電極は、露出した座骨神経の約270°を包囲するようにJ形に成形され、シリコーンシートに埋め込まれて寸法がそれぞれ2×1mmである、2つの白金露出窓から構成される。陰極による二相刺激パルス(1相ごとに20μs)を1~2Hzの周波数で近位座骨神経に印加する。最大の筋肉応答を発生させるこの信号の飽和閾値は、座骨神経の最大活性化を意味する力の出力が安定になるまで刺激電流を徐々に増加させながら力出力(図10B)を監視することによって決定される。この近位刺激の飽和閾値になると、これらの刺激パラメータをブロック刺激と同時に印加する(図10C)。
ブロック刺激を、座骨神経の近位刺激電極が移植された遠位の枝に経皮的に印加する。経皮直流電流ブロック(tDCB)を内径0.6及び外径1.2cm、全表面積約0.85cmのAg/AgClリング電極を介して印加する(EL-TP-RNG焼結;Stens Biofeedback Inc,San Rafael,CA)。導電性ゲル(Signa,Parker Laboratories Inc.,Fairfield,NJ,USA)を電極と皮膚表面との間の薄層に配置する。アクティブ電極及び参照電極を、標的神経に対する複数の方向からテストする(図11)。脚/神経の反対側に配置されて標的神経に対して垂直に配向されたアクティブ電極とリターン電極(図11B-1);標的神経に対して鋭角又は鈍角で脚/神経の対向側に配置されたアクティブ電極とリターン電極(図11B-2);脚/神経に対して同じ側に、標的神経に平行しかつその上に直接被覆されたアクティブ電極とリターン電極(図11C-3);脚/神経に対して同じ側に、標的神経に対して垂直に配向されたアクティブ電極とリターン電極(図11C-4)を含む4種類の一般的な電極構成について研究している。
ブロック電流は、1)ゼロ電流からのランプアップ相(通常持続時間2~4秒)、2)定電流でのプラトー相(通常持続時間4~10秒)、次に3)ランプダウン相(通常持続時間2~4秒)からなる波形として印加される。ランピングは電流開始/終了際に神経に活動電位が発生することを防止する。印加された電流強度は1~20mAの範囲内にある。
統計資料
ブロック電流は、1)ゼロ電流からのランプアップ相(通常持続時間2~4秒)、2)定電流でのプラトー相(通常持続時間4~10秒)、次に3)ランプダウン相(通常持続時間2~4秒)からなる波形として印加される。ランピングは電流開始/終了際に神経に活動電位が発生することを防止する。印加された電流強度は1~20mAの範囲内にある。
伝導ブロックのパーセンテージが、プレブロックベースラインと比較して経皮直流電流ブロック間の力出力の変化率として算出される。tDCBの期間の力出力が、tDCBのプラトー相の期間のピーク力出力とベースラインとの差として測定され、プレブロックベースライン期間の力出力が、ランピング開始前の5秒間の期間のピーク力出力とベースラインとの間の差として測定される。このアルゴリズムは一定の周波数でピークを検索し、見つからない場合は、例えば完全な神経運動ブロックの間に、ノイズがピークとして検出される。その結果、0%のブロックは達成されなかった。したがって、この研究では、完全な神経運動ブロックはこの分析を用いて≧95ブロック%として定義される。スチューデントt検定を用いて直流電流とブロックとの関係、電極構成と導電性ゲル厚さの比較におけるデータを比較する。MATLAB及びMicrosoft Excelを使用してデータを分析する。
結果
運動繊維活動の経皮直流電流ブロック
経皮直流電流神経ブロック(tDCB)を麻酔したラットの座骨神経の枝に印加するとともに、力変換器により測定されたとおり(図10)、近位座骨神経刺激(PS)により筋収縮が誘発される。このように、tDCBはPSと遠位運動出力との間の伝導をブロックし、その結果は力出力によって容易に測定できる。最適な刺激パラメータ及び電極形状が使用されたとき、tDCBは運動出力を安定的且つ確実に減衰できる。図12は、PSにより駆動された最大運動出力収縮を提供するtDCBの代表例を示しており、プラトー期間の間、又は直流が一定レベルに保持された期間の間に安定した部分ブロックが持続している。DC振幅のランプアップ及びダウンは、達成されたDC振幅とブロックレベルとの間の直接的及び動的関係を示している。
直流電流とブロックの関係
PSによる力出力を解消することにより明らかになった完全又はほぼ完全な神経運動ブロックは、通常、20mA以下(最低6mA)のDCブロック振幅で実現される。tDCB振幅と得られた運動ブロックのパーセンテージとの直接関係は観察されている。図13は、他の全てのパラメータが一定に保持しながら、単一部位での複数のDC振幅のうち、DC振幅とブロックのパーセンテージとの関係の一例を提供する。DCブロック振幅が増加するにつれて、得られたブロックパーセンテージも6mAでの完全ブロックの頂点(≧ブロック95%;方法参照)になるまで増大する。すべての10回の実験でこのような関係が確認されたため、一般的に、完全なブロックを達成させるまでに、より大きなブロックは、一般的に大きなブロック電流によって実現される。すべての10回の実験では、完全-ほぼ完全なブロックが達成されている。10回の実験のうち、8回は完全ブロックが実現された。すべての実験の組み合わせでは、ブロックパーセンテージの高い試験では、平均ブロックパーセンテージは91.5%±13.0であった。
強直筋収縮のtDCB
1~2Hzで極高PSを印加するときにブロック評価が実施された結果、個別の力収縮がベースラインの筋張力から明確に描出できる。実用的な観点から、例えば筋痙性の臨床的症例において、融合筋肉出力が起こり、強直筋収縮が起こる。tDCBが融合筋活動のブロックを発生できるかどうかを決定するために、40HzでPSを印加して強直筋活動を発生させる。tDCBをこの設定で印加すると、伝導ブロックが達成された(図14)。この例では、恐らく動物の呼吸(毎分約42回の呼吸)に対応して、ベースライン活動は約0.7Hzで変化している。
電極配置
標的神経に対するアクティブ電極とリターン電極の電極配向は、神経伝導ブロックを達成する能力に有意に影響を与える(図11)。図11Aは、陽電子と陰極との間の仮想電場線を示しており、ブロックの成功が電場内にある標的神経に依存する。特定の1つの電極配向対は伝導ブロックを提供するのに成功する。電極の幾何学的構成#1(図11B-1)では、アクティブ電極とリターン電極は対向側に配置され且つ脚/神経に垂直であるため、最も大きなブロック効果を有する。脚/神経に対して直接垂直にならないがアクティブ電極とリターン電極が対向側に配置された構成#2(図11B-2)では、少なく且つ非一致なブロックは得られた。アクティブ電極とリターン電極が脚/神経に対して同じ側に配置された構成#3と#4(図5C~図3、4)では、20mAの電流強度まで神経伝導ブロックを生じなかった。4種類の構成のブロック効果を比較したランダム化データセットでは、構成#1のみはブロック効果(23.5±7.0%)を有し、他の3つの構成(-3.9±2.0%;p=0.001、スチューデントt検定)よりも有意的に高い。10回の実験のそれぞれで達成された最大のブロックは、アクティブ電極とリターン電極を構成#1のように配置することによって得られた。
導電性ゲルの厚み比較
データは主に、ブロックされた神経の周りに正中に向いて横方向に配置されたAg/AgCl円盤状電極(方法参照)を用いて得られるものであり、薄層ゲルが電極と皮膚との間に挿入されている。この薄層ゲルを電極に塗布した後、電極を皮膚上に置き、テープで電極を所望の位置に固定して、導電性ゲルを最小限に抑える。この薄層ゲルを使用した場合、各段階の最後に皮膚損傷は観察されなかった。しかし、直流電流はヒト被験者において明らかな皮膚刺激を生じることが知られている。主に紅斑と記載されているこの皮膚刺激の根底にある原因は不明であり、熱、血管拡張や電気化学的反応などの要因が潜在的に原因であると考えられる。DCは、総電荷が電極界面の電気化学的な水の窓を超える位置に印加されると、不可逆的な電気化学的反応を引き起こす可能性がある。これらの不可逆的な電気化学的反応の発生を減少させるための方法が多数ある。そのような方法の1種として、大量の導電性ゲルの使用によって、改善された電気化学的バッファーを提供して、電極表面と皮膚との間の空間を増加させる。
円盤状電極と皮膚との間に介在するゴム製スペーサー内に配置された厚い電極ゲルバッファー(1cm)のブロック効果を、薄層ゲル(<0.5mm)を有する円盤状電極と比較した。2つの電極配置について32個のランダム化試験を行い、ブロックパーセンテージを比較した。その結果、薄いゲルを有する円盤状電極は、厚いゲル(63.9±14.8%;p=0.005;スチューデントt検定)よりも有意に大きな伝導ブロック(82.6±19.3%)を有する。これらのデータから明らかなように、1cmの導電性ゲルの使用が実現可能であり、特に、ヒト被験者にtDCBを印加する場合に好ましい。
神経損傷を示すシグナル減衰は観察されなかった。導電性ゲルを電極と皮膚との間の界面として使用した各試験の終了時に、電極の下に紅斑、変色や膨れなどの皮膚刺激は認められなかった。ゲルのない場所で皮膚刺激が起こるかどうかを評価するために、1つの試験では、ゲル界面を使用せずにtDCBを印加して、Ag/AgCl電極を皮膚と直接接触させた。次いで、20mAの電流を20分間伝達した。試験終了後、陰極電極の1つの約90°縁部に4つの約0.5mmの赤い点が観察された。
実例II - 潜在的な臨床応用
上記のtDCBは、神経伝導を変更(例えば、ブロック又は減弱)するためにDCを経皮的に印加することによって、神経学的障害を非侵襲的に治療するための多くの異なる臨床適用において使用できる。tDCBは可逆的であるため、tDCBがオフにされると、刺激された神経伝導が回復され得る。幾つかの非限定的な例示的臨床応用が以下に記載される。
痙攣
tDCBは、関節拘縮を予防又は逆転させる目的で、筋痙攣又は痙攣を軽減又は排除するために使用できる。特に、脳性麻痺、脳卒中、多発性硬化症や脊髄損傷及び整形外科手術のような疾患に適用可能である。これらの各症例では、筋痙攣及び痙攣は重大な合併症であり、患者がリラックスしたいときには関節を収縮させるとともに収縮を続ける。時間の経過とともに、このような収縮は、収縮した筋肉の生理的な短縮をもたらし、恒久的な関節拘縮や関節の運動範囲の喪失を引き起こす。これらの拘縮が起こるとき、従来の治療は一般的に破壊的で不可逆的であり、且つ不良な結果を伴う。例えば、従来の治療方法は、化学的又は外科的手術、又は腱の外科的切開によって神経繊維を損傷するものである。それに対して、tDCBは運動神経又は感覚神経上の痙攣シグナルをブロックして、経皮的に印加されたDCを用いて筋肉を弛緩させるため、好ましい手法と言える。いくつかの例では、開ループ制御システムによりtDCBを印加することができ、患者にスイッチ又は他の入力装置を提供して、ブロックをオン及びオフにして、ブロックの程度を制御することが可能である。
tDCBは可逆的であるため、患者が必要に応じて筋肉を弛緩させ、必要に応じてブロックを逆転させることができる。例えば、tDCBは夜間に休んでいる期間、又は活動が少ない期間に、筋肉を完全にリラックスさせ、活動が多い期間にオフ(逆転)にすることが可能である。tDCBによる治療は破壊的ではないので、疾患の進行早期に利用して拘縮が起こらないようにすることもできる。
いくつかの例では、tDCBは部分的な神経ブロックを発生させることができ、これは運動機能を維持するのに有益であり得る。部分的なブロックでは、筋線維への一部の神経信号がブロックされて、筋収縮力が軽減される。それによって、痙攣性筋肉に共通する制御不能な収縮を誘発することなく、痙攣性筋肉の自発的運動を可能にする。この場合、アンタゴニストの筋肉は、運動の全範囲を通して関節を動かすのに十分なほど強くてもよい。
tDCBの適用例は、痙性脳性麻痺における拘縮の予防/治療のためのものである。脳性麻痺の痙攣性足首足底屈筋及び股関節屈筋は、機能を制限して衛生を困難にして痛くなる可能性がある拘縮の特徴的なパターンをもたらす。腱延長又は神経剥離による食道の緊張の解放は、通常、これらの処置の不可逆的性質のため最終手段としてのみ行われる。いくつかの例では、可逆的なtDCBは、股関節外転筋を弛緩させるために閉塞神経に、及び踝の足底をブロックするために後脛骨神経に印加され得る。患者は、運動しようとするときにブロックをオフにすることができる。tDCBの別の適用例は斜頸であり、胸鎖乳突筋及び場合によっては後頚部筋肉のブロックにより、ジストニア、舞踏病や痙攣のような状態で生じる不随意運動及び痙攣を治療/予防するために使用する。
いくつかの例では、DCは、一方の極性がプラトーに上がって一定の期間(例えば、10秒)持続して、続いて反対の極性の電流が減少するように構成される平衡DC波形として印加されてもよく、tDCBに適用できる。各相のプラトーは同じであってもよいが、一般的に第2相は第1相の振幅の10~30%である。総電荷供給量はゼロであるか、又は各相の電荷よりも実質的に小さい(例えば、<10%の電荷不均衡)。波形は、第1相のプラトーの間に脱分極又は過分極の神経ブロックを発生させ、場合によっては第2相プラトーの間にもブロックを生じる。神経における活動電位の発生を排除するように、電流のゼロからプラトーまでの増大は数秒間に亘ってゆっくりと行われる。また、DC波形を神経に伝達するために異なる接点間を循環することによって一定の伝導ブロックを維持するために複数の電極接点が使用され得る。
疼痛
tDCBは、例えば、癌、膵炎、神経腫、子宮内膜症、ヘルペス後神経痛、背痛、頭痛及び関節置換による急性・慢性疼痛の治療に利用できる。実際、tDCBは神経剥離術又は化学的ブロックの代わりとして疼痛の知覚につながる任意の神経伝導をブロックするために使用できる。特に、tDCBは可逆性であり治療の早期に使用できる。なぜなら、副作用があれば、ブロックをオフにすることによって即座に緩和できるからである。また、tDCBの強度及び程度(例えば、開ループシステムとして)も調節可能である。
tDCBで処置した疼痛に応じて、電極接点を標的神経の付近に配置してもよい。いくつかの例では、tDCBを自律神経(例えば、交感神経節)まで伝達できる。
いくつかの例では、DCは、一方の極性がプラトーに上がって一定の期間(例えば、10秒)持続して、続いて反対の極性の電流が減少するように構成される電荷平衡DC波形として印加されてもよく、tDCBに利用できる。各相のプラトーは同じであってもよいが、一般的に第2相は第1相の振幅の10~30%である。総電荷伝達量はゼロであるか、又は各相の電荷よりも実質的に少ない(例えば、<10%の電荷不均衡)。波形は、第1相のプラトーの間に脱分極又は過分極の神経ブロックを発生させ、場合によっては第2相のプラトーの間にもブロックを発生させる。神経における活動電位の発生を排除するために、電流のゼロからプラトーまでの増加は一般的に数秒間にわたってゆっくりと行われる。また、DC波形を神経に伝達するために異なる接点間を循環することによって一定の伝導ブロックを維持するために複数の電極接点が使用され得る。
尿道括約筋の弛緩
可逆的なtDCBは、コマンド(例えば、開ループシステム)に応じて尿括約筋の弛緩を発生させるために利用できる。これが重要な用途の例は、脊髄損傷を有する対象のために膀胱排出を生じるように設計された電気刺激システムにある。これらのシステムでは、仙骨根の刺激は、排出のための膀胱収縮を生じるが、望ましくない括約筋収縮も生じる。本開示の方法は、膀胱の活性化の間の括約筋活動を防止するために、陰部神経に左右及び経皮的に適用することができる。膀胱が空になった後、ブロックをオフにして自制を回復させる。ブロック電極接点は弱い括約筋の活性化、自制向上用の刺激としても用いられ得る。仙骨感覚根に対する神経伝導ブロックはまた、自発的な膀胱収縮を防止して、自制を向上させることにも有用である。方法はまた、脊髄損傷による膀胱括約筋協調不全を制御するために使用することもできる。
多汗症
可逆的なtDCBは、交感神経系の神経構造(例えば、開ループ系)に用いて多汗症(汗腺)を治療できる。tDCBは、交感神経鎖における繊維の永久的な外科的破壊を伴う従来の交感神経切除術の可逆的な代替手段である。交感神経切除術は永久的であり且つ不可逆的な副作用(例えば、乾燥皮膚及び交感神経系の破壊に伴う他の副作用を招く過剰な減少なし)がある。それに対して、tDCBは、任意の神経構造にも永久的な損傷を生じさせることなく、同じ望ましい効果を達成できる。tDCBは、望ましくない副作用なしに、必要に応じて経皮的に印加して、手掌の発汗の所望の程度の低下を実現できる。
一例では、tDCBは、交感神経系の特定の領域に経皮的に印加できる。例えば、tDCBは、2つの交感神経節内又は交感神経節間で伝達される活動電位がブロック又はダウンレギュレートされるのに十分な強度を有する電場を発生させるように、標的交感神経節に隣接して配置される電極接点によって経皮的に印加され得る。
いくつかの例では、DCは、一方の極性がプラトーに上がって一定の期間(例えば、10秒)持続して、続いて反対の極性の電流が減少するように構成される電荷平衡DC波形として印加されてもよく、tDCBに利用できる。各相のプラトーは同じであってもよいが、一般的に第2相は第1相の振幅の10~30%である。総電荷伝達量はゼロであるか、又は各相の電荷よりも実質的に少ない(例えば、<10%の電荷不均衡)。波形は、第1相のプラトーの間に脱分極又は過分極の神経ブロックを発生させ、場合によっては第2相のプラトーの間にもブロックを発生させる。神経における活動電位の発生を排除するために、電流のゼロからプラトーまでの増加は一般的に数秒間にわたってゆっくりと行われる。また、DC波形を神経に伝達するために異なる接点間を循環することによって一定の伝導ブロックを維持するために複数の電極接点が使用され得る。
流涎
流涎又は唾液分泌過多は、脳性麻痺の患児や神経変性疾患の患者に対して主な問題になる。現在の医療処理(局所薬剤、経口薬剤、及びボツリヌス毒素を使用する)は、治療効果がないか又は必要に応じて唾液が十分に分泌できないことを含む有害な副作用を生じるため、不十分である。好ましくは、tDCBは、これらの従来の治療の代替物として、唾液腺の活性化を迅速かつ可逆的にブロックして、必要に応じて唾液産生を減少できる。tDCBの利点には、必要に応じて患者又は介護者が唾液腺を活性化させる能力をオン・オフにすることが可能であることが含まれる。また、tDCBは、唾液分泌を除去するのではなく、部分的又は不完全なブロックを提供して唾液分泌を減少させるため、望ましくない副作用を伴わずに症状を緩和できる。唾液腺の緩和用のtDCBは、1つ又は複数の神経を標的として唾液腺の活性化に繋がる神経枝に印加できる。tDCBは各唾液腺の付近に経皮的に印加できる。
いくつかの例では、DCは、一方の極性がプラトーに上がって一定の期間(例えば、10秒)持続して、続いて反対の極性の電流が減少するように構成される電荷平衡DC波形として印加されてもよく、tDCBに利用できる。各相のプラトーは同じであってもよいが、一般的に第2相は第1相の振幅の10~30%である。総電荷伝達量はゼロであるか、又は各相の電荷よりも実質的に少ない(例えば、<10%の電荷不均衡)。波形は、第1相のプラトーの間に脱分極又は過分極の神経ブロックを発生させ、場合によっては第2相のプラトーの間にもブロックを発生させる。神経における活動電位の発生を排除するために、電流のゼロからプラトーまでの増加は一般的に数秒間にわたってゆっくりと行われる。また、DC波形を神経に伝達するために異なる接点間を循環することによって一定の伝導ブロックを維持するために複数の電極接点が使用され得る。
上記の説明から、当業者であれば、改良、変更おや修正が理解できる。そのような改良、変更や修正は、当業者の技術の範囲内であり、添付の特許請求の範囲によってカバーされることが意図される。

Claims (7)

  1. 直流電流(DC)を発生させる電流発生器と、
    患者の肢の一側の皮膚上に配置されるように構成され、前記電流発生器に結合される円盤状のアクティブ電極と、
    前記患者の肢の一側とは反対側の皮膚上に配置されるように構成された円盤状のリターン電極とを備えるシステムであって、
    前記円盤状のアクティブ電極は、前記DCを、前記肢の内部の標的末梢神経を通して経皮的に前記リターン電極に伝達し、
    前記円盤状のアクティブ電極と前記円盤状のリターン電極とは、それぞれの中心軸が前記標的末梢神経の長さに対して垂直に配向されることにより、前記標的末梢神経を通す前記DCの流動を、前記標的末梢神経における伝導をブロック又は減衰させるのに十分な電場の発生を促進する方向に案内し、
    前記円盤状のアクティブ電極の中心軸の位置と前記円盤状のリターン電極の中心軸の位置とを結ぶ線が、前記標的末梢神経の長さに対して垂直に配向され、
    前記DCに応答して発生された電場の結果として、前記標的末梢神経における伝導がブロック又は減衰されることを特徴とするシステム。
  2. 直流電流(DC)を発生させる電流発生器と、
    患者の肢の一側の皮膚上に配置されるように構成され、前記電流発生器に結合される円盤状のアクティブ電極と、
    前記患者の肢の一側とは反対側の皮膚上に配置されるように構成された円盤状のリターン電極とを備えるシステムであって、
    前記円盤状のアクティブ電極は、前記DCを、前記肢の内部の標的末梢神経を通して経皮的に前記リターン電極に伝達し、
    前記円盤状のアクティブ電極と前記円盤状のリターン電極とは、それぞれの中心軸が前記標的末梢神経の長さに対して垂直に配向されることにより、前記標的末梢神経を通す前記DCの流動を、前記標的末梢神経における伝導をブロック又は減衰させるのに十分な電場の発生を促進する方向に案内し、
    前記円盤状のアクティブ電極の中心軸の位置と前記円盤状のリターン電極の中心軸の位置とを結ぶ線が、前記標的末梢神経の長さに対して垂直でないように配向され、
    前記DCに応答して発生された電場の結果として、前記標的末梢神経における伝導がブロック又は減衰されることを特徴とするシステム。
  3. 前記円盤状のアクティブ電極は、導電性材料で構成される請求項1又は請求項2に記載のシステム。
  4. 前記円盤状のアクティブ電極は、前記皮膚を介する前記DCの伝達を向上させるように導電性電解質ゲルで前記皮膚に結合される請求項1又は請求項2に記載のシステム。
  5. 前記標的末梢神経における前記伝導は、1つ又は複数の活動電位が前記標的末梢神経を通過することを阻止することによりブロック又は減衰される請求項1又は請求項2に記載のシステム。
  6. 前記DCは、ゼロの正味電荷を発生させる、電荷平衡化された二相性波形として印加される請求項1又は請求項2に記載のシステム。
  7. 前記DCは、前記皮膚の表面及び/又は前記電極に損傷を与える電気化学的反応を減少させるように、10%未満の電荷不均衡を有する二相性波形として印加される請求項1又は請求項2に記載のシステム。
JP2021173524A 2015-09-08 2021-10-22 経皮直流電流ブロックによる神経伝導変更システム及び方法 Pending JP2022009436A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562215267P 2015-09-08 2015-09-08
US62/215,267 2015-09-08
PCT/US2016/050643 WO2017044542A1 (en) 2015-09-08 2016-09-08 Systems and methods for transcutaneous direct current block to alter nerve conduction
JP2018512384A JP7176949B2 (ja) 2015-09-08 2016-09-08 経皮直流電流ブロックによる神経伝導変更システム及び方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018512384A Division JP7176949B2 (ja) 2015-09-08 2016-09-08 経皮直流電流ブロックによる神経伝導変更システム及び方法

Publications (1)

Publication Number Publication Date
JP2022009436A true JP2022009436A (ja) 2022-01-14

Family

ID=56926357

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018512384A Active JP7176949B2 (ja) 2015-09-08 2016-09-08 経皮直流電流ブロックによる神経伝導変更システム及び方法
JP2021173524A Pending JP2022009436A (ja) 2015-09-08 2021-10-22 経皮直流電流ブロックによる神経伝導変更システム及び方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018512384A Active JP7176949B2 (ja) 2015-09-08 2016-09-08 経皮直流電流ブロックによる神経伝導変更システム及び方法

Country Status (6)

Country Link
US (1) US20180243555A1 (ja)
EP (1) EP3347089A1 (ja)
JP (2) JP7176949B2 (ja)
AU (2) AU2016320803A1 (ja)
CA (1) CA2997621A1 (ja)
WO (1) WO2017044542A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195434B2 (en) 2012-06-15 2019-02-05 Case Western Reserve University Treatment of pain using electrical nerve conduction block
US9387322B2 (en) 2012-06-15 2016-07-12 Case Western Reserve University Therapy delivery devices and methods for non-damaging neural tissue conduction block
US20150238764A1 (en) 2013-05-10 2015-08-27 Case Western Reserve University Systems and methods for preventing noise in an electric waveform for neural stimulation, block, or sensing
CN117482396A (zh) 2014-08-26 2024-02-02 阿文特投资有限责任公司 选择性神经纤维阻断方法和系统
CA2998748C (en) 2015-10-06 2020-07-14 Case Western Reserve University High-charge capacity electrodes to deliver direct current nerve conduction block
US10864373B2 (en) 2015-12-15 2020-12-15 Case Western Reserve University Systems for treatment of a neurological disorder using electrical nerve conduction block
US10272240B2 (en) * 2017-04-03 2019-04-30 Presidio Medical, Inc. Systems and methods for direct current nerve conduction block
US20200368528A1 (en) * 2017-07-28 2020-11-26 Galvani Bioelectronics Limited Treatment of eye disorders
EP3658218A4 (en) * 2017-07-28 2021-03-31 Galvani Bioelectronics Limited TREATMENT OF EYE DISEASES
ES2960730T3 (es) * 2017-12-28 2024-03-06 Univ Case Western Reserve Bloqueo de conducción nerviosa de corriente continua (CC) subumbral tras cebado supraumbral
WO2019164952A1 (en) * 2018-02-20 2019-08-29 Presidio Medical, Inc. Methods and systems for nerve conduction block
US10940312B2 (en) 2018-03-15 2021-03-09 Avent, Inc. Treatment kit to percutaneously block painful sensations hosted by a peripheral nerve
JP6495516B1 (ja) * 2018-06-14 2019-04-03 有限会社楽電 電気治療器、及び電気治療器の制御方法
EP3813925A4 (en) 2018-07-01 2022-04-13 Presidio Medical, Inc. SYSTEMS AND METHODS FOR NERVE BLOCK
US11602633B2 (en) * 2018-10-22 2023-03-14 Pathmaker Neurosystems Inc. Method and apparatus for controlling multi-site neurostimulation
WO2020168136A1 (en) 2019-02-13 2020-08-20 Avent, Inc Portable electrical stimulation system and method
WO2020190694A1 (en) * 2019-03-15 2020-09-24 Case Western Reserve University System for accelerated recovery from direct current (dc) nerve block using repolarization
AU2020388662A1 (en) 2019-11-24 2022-06-16 Presidio Medical, Inc. Pulse generation and stimulation engine systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431000A (en) * 1978-11-29 1984-02-14 Gatron Corporation Transcutaneous nerve stimulator with pseusorandom pulse generator
JP2010519003A (ja) * 2007-02-27 2010-06-03 アクセラレイティド ケア プラス コーポレイション 神経障害の治療のための電気刺激装置と方法
US20150174403A1 (en) * 2013-06-29 2015-06-25 Sumon K. PAL Transdermal electrical stimulation devices for modifying or inducing cognitive state
US20150190635A1 (en) * 2014-01-07 2015-07-09 Sooma Oy System and a method for transcranial stimulation of a head region of a subject
US20150196767A1 (en) * 2013-12-22 2015-07-16 Zaghloul Ahmed Trans-spinal direct current modulation systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO2209518T3 (ja) * 2007-10-29 2018-07-21
US9387322B2 (en) 2012-06-15 2016-07-12 Case Western Reserve University Therapy delivery devices and methods for non-damaging neural tissue conduction block

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431000A (en) * 1978-11-29 1984-02-14 Gatron Corporation Transcutaneous nerve stimulator with pseusorandom pulse generator
JP2010519003A (ja) * 2007-02-27 2010-06-03 アクセラレイティド ケア プラス コーポレイション 神経障害の治療のための電気刺激装置と方法
US20150174403A1 (en) * 2013-06-29 2015-06-25 Sumon K. PAL Transdermal electrical stimulation devices for modifying or inducing cognitive state
US20150196767A1 (en) * 2013-12-22 2015-07-16 Zaghloul Ahmed Trans-spinal direct current modulation systems
US20150190635A1 (en) * 2014-01-07 2015-07-09 Sooma Oy System and a method for transcranial stimulation of a head region of a subject

Also Published As

Publication number Publication date
WO2017044542A1 (en) 2017-03-16
EP3347089A1 (en) 2018-07-18
AU2016320803A1 (en) 2018-03-22
US20180243555A1 (en) 2018-08-30
AU2019240656A1 (en) 2019-10-31
JP2018526142A (ja) 2018-09-13
JP7176949B2 (ja) 2022-11-22
CA2997621A1 (en) 2017-03-16
AU2019240656B2 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP2022009436A (ja) 経皮直流電流ブロックによる神経伝導変更システム及び方法
US20210275802A1 (en) Treatment of pain using electrical nerve conduction block
US20210187278A1 (en) Non-invasive spinal cord stimulation for nerve root palsy, cauda equina syndrome, and restoration of upper extremity function
Lyons et al. An investigation of the effect of electrode size and electrode location on comfort during stimulation of the gastrocnemius muscle
US10076666B2 (en) Systems and methods for treating post-traumatic stress disorder
EP3212276B1 (en) System for monitoring and treating a medical condition via posterior tibial nerve stimulation
WO2001010375A2 (en) Inhibition of action potentials
JP2018537200A (ja) 電気神経伝導ブロックを用いて神経障害を治療するシステム
CA3033946A1 (en) Methods for applying epidural electrical stimulation
US10420939B2 (en) Nerve stimulation to promote neuroregeneration
Shapiro et al. Pudendal nerve block by low-frequency (≤ 1 kHz) biphasic electrical stimulation
US20220395686A1 (en) Neural Block by Super-Threshold Low Frequency Electrical Stimulation
WO2014143611A1 (en) Systems for treating post-traumatic stress disorder
Mundra et al. Spinal cord stimulation for spinal cord injury–Where do we stand? A narrative review
Sprague et al. Modalities Part 3: Electrotherapy and Electromagnetic Therapy
US9968773B1 (en) Method and system for rehabilitation of scar tissue
Dolan et al. Clinical Application of Electrotherapy.
WO2017198865A1 (en) Treatment of conditions associated with impaired glucose control
WO2024081232A1 (en) Systems and methods for onset-free conduction block
Bracciano Principles of Electrotherapy
Tomlinson Modalities Part 3: Electrotherapy and Electromagnetic Therapy
Lujána Functional electrical stimulation for the treatment of spinal cord injury
Guo et al. Functional Electrical Stimulation
Becher The Effect of Inter-Phase Interval on Electrically Induced Dorsifelxor Muscle Force and Fatigue in Subjects with Upper Motor Neuron Lesions
WO2014164763A2 (en) Spinal cord stimulation for the control of chronic itching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230301