JP2022008772A - Processing apparatus and processing method for cylindrical member - Google Patents

Processing apparatus and processing method for cylindrical member Download PDF

Info

Publication number
JP2022008772A
JP2022008772A JP2020110856A JP2020110856A JP2022008772A JP 2022008772 A JP2022008772 A JP 2022008772A JP 2020110856 A JP2020110856 A JP 2020110856A JP 2020110856 A JP2020110856 A JP 2020110856A JP 2022008772 A JP2022008772 A JP 2022008772A
Authority
JP
Japan
Prior art keywords
processing chamber
processing
solidified body
central axis
columnar member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020110856A
Other languages
Japanese (ja)
Inventor
祐輔 木下
Yusuke Kinoshita
秋月 朴
Chiu-Yueh Park
利光 稲垣
Toshimitsu Inagaki
勝博 岩崎
Katsuhiro Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2020110856A priority Critical patent/JP2022008772A/en
Publication of JP2022008772A publication Critical patent/JP2022008772A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

To provide a technique capable of processing a cylindrical member while properly rotating it even if the cylindrical member varies in outer diameter as the processing advances.SOLUTION: There is provided a processing apparatus (100) for cylindrical member, which comprises: a rotary cavity body (10) which internally has a cylindrical processing chamber (15) having a larger diameter than a cylindrical member; support parts (12, 12) which support the rotary cavity body (10) with a center axis of the processing chamber (15) held horizontally; and a rotary drive part (21) which rotates the rotary cavity body (10) around the center axis of the processing chamber (15). According to the present invention, the cylindrical member which is a hardened body obtained by form removal after mixing, a hardener with a raw material solution consisting of, for example, raw material powder, distilled water and hardening resin and injecting and hardening the mixture in a molding tool can be processed as it is with a surface state and size precision thereof held excellently.SELECTED DRAWING: Figure 1

Description

本発明は、型成形により円柱状部材を作製するための処理装置に関する。 The present invention relates to a processing apparatus for producing a columnar member by mold molding.

光通信の伝送路やレーザガイド等に使用される光ファイバは、屈折率の高いコアと、その周りを取り囲む、屈折率の低いクラッド層とから構成され、共にシリカガラス、フッ化物ガラス等の非金属無機物質を主な材料とする。 An optical fiber used for an optical communication transmission path, a laser guide, etc. is composed of a core having a high refractive index and a clad layer having a low refractive index surrounding the core, both of which are non-silica glass, fluoride glass, etc. The main material is metal-inorganic substances.

前記光ファイバは、光ファイバの母材を線引きすることにより形成される。光ファイバ母材は、通常VAD法(気相軸付け法:Vaper phase Axial Deposition method)を利用して製造されるが、より高機能な空孔アシストファイバやフォトニック結晶型ファイバ、
マルチコアファイバ等の製造の際には、例えばシリカガラス粉末、蒸留水、分散剤、硬化性樹脂から成るガラス原料溶液に硬化剤を混合し、この混合物を、コア用ロッドが配置された成形型に注入して硬化させた後、脱型し、乾燥、脱脂、焼成することにより好適に製造される(特許文献1)。
The optical fiber is formed by drawing a base material of the optical fiber. The optical fiber base material is usually manufactured by using the VAD method (Vaper phase Axial Deposition method), but more sophisticated pore-assisted fibers and photonic crystal type fibers are used.
When manufacturing multi-core fibers and the like, for example, a curing agent is mixed with a glass raw material solution consisting of silica glass powder, distilled water, a dispersant, and a curable resin, and this mixture is put into a molding mold in which a core rod is arranged. It is suitably produced by injecting and curing, then demolding, drying, degreasing, and baking (Patent Document 1).

成形型内で固化した混合物(固化体)を該成形型から脱離させた固化体は乾燥させる必要がある。固化体の表面と内部とで乾燥状態が異なると、固化体が変形したり、割れが生じたりする。そこで、従来は、固化体の変形、割れを防止するため、例えばV字溝状の載置面を有する支持台に固化体を横に寝かせた状態で、低温で且つ時間をかけてゆっくり自然乾燥させている。 It is necessary to dry the solidified body obtained by removing the mixture (solidified body) solidified in the mold from the mold. If the dry state is different between the surface and the inside of the solidified body, the solidified body may be deformed or cracked. Therefore, conventionally, in order to prevent deformation and cracking of the solidified body, for example, in a state where the solidified body is laid sideways on a support base having a V-shaped groove-shaped mounting surface, the solidified body is slowly naturally dried at a low temperature over a long period of time. I'm letting you.

上記の支持台では、載置面をV字状にすることにより、円柱状部材の固化体の直線性を維持しながら乾燥するようにしているが、反りが発生する場合があった。また、固化体を同じ向きで支持台に寝かせたまま乾燥を続けると、固化体の外周面の乾燥状態が不均一になる。さらに、固化体の外周面のうち支持台の載置面と接触している箇所に接触痕がつく場合がある。そこで、乾燥工程の途中で固化体を回転させて支持台の載置面と接触する箇所を変更しなければならず、人手が必要となる。 In the above-mentioned support base, the mounting surface is V-shaped so that the solidified body of the columnar member is dried while maintaining the linearity, but warpage may occur. Further, if the solidified body is continuously dried while being laid on the support table in the same direction, the dried state of the outer peripheral surface of the solidified body becomes non-uniform. Further, contact marks may be formed on the outer peripheral surface of the solidified body in contact with the mounting surface of the support base. Therefore, in the middle of the drying process, it is necessary to rotate the solidified body to change the position where it comes into contact with the mounting surface of the support base, which requires manpower.

上述した問題を解決するものとして、所定の間隔を置いて平行に配置された2本の回転ローラから成る支持台で固化体を支持し、該2本の回転ローラで固化体を回転させながら乾燥させる方法が提案されている(特許文献2)。 To solve the above-mentioned problems, the solidified body is supported by a support base consisting of two rotating rollers arranged in parallel at predetermined intervals, and the solidified body is dried while being rotated by the two rotating rollers. A method for causing the reaction has been proposed (Patent Document 2).

特開2013-147384号公報Japanese Unexamined Patent Publication No. 2013-147384 特開平07-142247号公報Japanese Unexamined Patent Publication No. 07-142247

特許文献2の方法では、固化体の外周面に載置面との接触痕がついたり、乾燥状態が不均一になったりすることはない。ところが、2本の回転ローラの間で確実に固化体を支持しつつ固化体を回転させるためには、2本の回転ローラの間隔を適切に設定する必要がある。すなわち、回転ローラの間隔が広すぎると固化体が両回転ローラの間に挟まってしまい、うまく回転させることできないおそれがある。一方、回転ローラの間隔が狭すぎると、両回転ローラの外に固化体が転げ落ちてしまう。 In the method of Patent Document 2, the outer peripheral surface of the solidified body does not have contact marks with the mounting surface, and the dried state does not become uneven. However, in order to rotate the solidified body while reliably supporting the solidified body between the two rotating rollers, it is necessary to appropriately set the distance between the two rotating rollers. That is, if the distance between the rotating rollers is too wide, the solidified body may be sandwiched between the rotating rollers and may not be rotated properly. On the other hand, if the distance between the rotating rollers is too narrow, the solidified body will fall out of both rotating rollers.

また、乾燥が進むと固化体は収縮するため、固化体の外径が小さくなる。そのため、収縮した固化体が両回転ローラの間に挟まってしまうことを防止するためには、乾燥工程の途中で回転ローラの間隔を変更する必要があり、やはり、人手が必要となる。 Further, as the drying progresses, the solidified body shrinks, so that the outer diameter of the solidified body becomes smaller. Therefore, in order to prevent the shrunk solidified body from being pinched between the two rotating rollers, it is necessary to change the interval between the rotating rollers in the middle of the drying process, which also requires manpower.

なお、ここでは、型成形により光ファイバ母材を作製する工程の途中で得られる固化体を乾燥する場合について述べたが、型成形により作製される部材が円柱状であれば光ファイバ母材に限らない。また、型成形により円柱状部材を作製する工程の途中で行われる処理であって、その処理の進行とともに円柱状部材の外径が変化するような処理であれば、乾燥以外の処理であっても同様の問題があった。 Here, the case where the solidified body obtained in the middle of the process of producing the optical fiber base material by mold molding is dried has been described, but if the member produced by mold molding is columnar, the optical fiber base material can be used. Not exclusively. Further, if the process is performed in the middle of the process of producing the columnar member by mold molding and the outer diameter of the columnar member changes as the process progresses, it is a process other than drying. Had a similar problem.

本発明が解決しようとする課題は、処理の進行とともに円柱状部材の外径寸法が変化しても、前記円柱状部材を適切に回転させつつ処理することができる技術を提供することである。 An object to be solved by the present invention is to provide a technique capable of processing while appropriately rotating the columnar member even if the outer diameter dimension of the columnar member changes with the progress of the process.

上記課題を解決するために成された本発明は、円柱状部材の処理装置であって、
前記円柱状部材より大径の円柱状の処理室を内部に有する回転空洞体と、
前記処理室の中心軸を横にした状態で、前記回転空洞体を回転自在に支持する支持部と、
前記回転空洞体を前記中心軸を中心に回転させる回転駆動部と、
を備えることを特徴とする。
The present invention, which has been made to solve the above problems, is a processing device for a columnar member.
A rotating cavity having a columnar processing chamber with a larger diameter than the columnar member inside,
A support portion that rotatably supports the rotating cavity with the central axis of the processing chamber lying down, and a support portion.
A rotary drive unit that rotates the rotary cavity around the central axis,
It is characterized by having.

本発明の処理装置の処理の対象となる円柱状部材は、外周が円筒状であればよく、内部は中実であっても中空であっても構わない。中空の円柱状部材には、該部材の中心軸と平行で且つ該部材を貫通する1個または複数の孔を有するものも含む。回転空洞体は、内部に円柱状の処理室を有していれば、外形の断面形状は円形に限らず多角形でもよく、両端は閉鎖されていても開放されていてもよい。処理室の中心軸を横にした状態とは、典型的には、中心軸を水平にした状態を指すが、処理室に収容された円柱状部材の回転軸が該処理室の中心軸と略平行となるように円柱状部材を回転させることができれば、水平から多少傾いていてもよい。処理室は、該処理室に収容された円柱状部材の回転軸が該処理室の中心軸と略平行となるように円柱状部材を回転させることができるような大きさに設定される。具体的には、処理室の内径は、円柱状部材の外径よりも大きく設定され(つまり、円柱状部材よりも大径の円柱状の処理室とされ)、処理室の軸方向長さは、円柱状部材の軸方向長さとほぼ同じか、それよりも大きく設定される。円柱状部材の用途によっては該円柱状部材の軸方向長さよりも処理室の軸方向長さの方が小さくてもよい。回転空洞体の回転によって、その内壁面は円柱状部材と接触を繰り返す。従って、円柱状部材の外周面に滑らかさが求められる場合には、回転空洞体の内壁面は、円柱状部材との接触によって、その外周面に傷を生じさせない表面形状(つまり平滑面)であることが好ましい。一方、円柱状部材の外周面が滑らかでない場合、あるいは、滑らかにする必要がない場合は、回転空洞体の内壁面はどのような表面形状でもよい。 The columnar member to be processed by the processing apparatus of the present invention may have a cylindrical outer circumference, and the inside may be solid or hollow. Hollow columnar members also include those having one or more holes parallel to the central axis of the member and penetrating the member. As long as the rotating cavity has a columnar processing chamber inside, the cross-sectional shape of the outer shape is not limited to a circle but may be polygonal, and both ends may be closed or open. The state in which the central axis of the processing chamber is laid down typically refers to the state in which the central axis is horizontal, but the rotation axis of the columnar member housed in the processing chamber is abbreviated as the central axis of the processing chamber. As long as the columnar members can be rotated so as to be parallel, they may be slightly tilted from the horizontal. The processing chamber is set to a size such that the columnar member can be rotated so that the rotation axis of the columnar member housed in the processing chamber is substantially parallel to the central axis of the processing chamber. Specifically, the inner diameter of the processing chamber is set to be larger than the outer diameter of the columnar member (that is, a cylindrical processing chamber having a larger diameter than the cylindrical member), and the axial length of the processing chamber is set. , It is set to be approximately the same as or larger than the axial length of the columnar member. Depending on the use of the columnar member, the axial length of the processing chamber may be smaller than the axial length of the columnar member. Due to the rotation of the rotating cavity, the inner wall surface repeatedly contacts the columnar member. Therefore, when smoothness is required on the outer peripheral surface of the columnar member, the inner wall surface of the rotating cavity has a surface shape (that is, a smooth surface) that does not cause scratches on the outer peripheral surface due to contact with the columnar member. It is preferable to have. On the other hand, if the outer peripheral surface of the columnar member is not smooth or does not need to be smooth, the inner wall surface of the rotating cavity may have any surface shape.

本発明の処理装置では、まず、円柱状部材をその中心軸が処理室の中心軸と略平行になるようにして処理室に入れる。そして、この状態で回転空洞体を支持部で支持し、回転駆動部により回転空洞体を回転させると、処理室内の円柱状部材は、該処理室内の最低部に移動しようとして回転する。このとき、円柱状部材の外径寸法が変化しても、処理室内から逸脱することがない。処理の途中で外径寸法が変化する可能性のある円柱状部材として、型成形及び焼成を含む工程により作製される部材の途中の工程で得られる中間体、例えば原料粉末、蒸留水、硬化性樹脂から成る原料溶液に硬化剤を混合し、この混合物を成形型に注入して硬化させた後、脱型して得られる固化体が挙げられる。特に、シリカガラス粉末、蒸留水、分散剤、硬化性樹脂から成るガラス原料溶液に硬化剤を混合し、この混合物を成形型に注入して硬化させて作製する固化体の場合、脱型後の固化体を処理する工程において固化体の外径寸法が変化する(小さくなる)ことが一般的であるため、本発明の処理装置は、このような固化体の処理装置として有用である。 In the processing apparatus of the present invention, first, the columnar member is placed in the processing chamber so that its central axis is substantially parallel to the central axis of the processing chamber. Then, when the rotating cavity is supported by the support portion in this state and the rotating cavity is rotated by the rotation driving unit, the columnar member in the processing chamber rotates in an attempt to move to the lowest portion in the processing chamber. At this time, even if the outer diameter of the columnar member changes, it does not deviate from the processing chamber. As a columnar member whose outer diameter may change during the treatment, an intermediate obtained in the middle of the process of the member manufactured by a step including molding and firing, for example, raw material powder, distilled water, curability. Examples thereof include a solidified product obtained by mixing a curing agent with a raw material solution composed of a resin, injecting this mixture into a molding die, curing the mixture, and then removing the die. In particular, in the case of a solidified body prepared by mixing a curing agent with a glass raw material solution consisting of silica glass powder, distilled water, a dispersant, and a curable resin, and injecting this mixture into a molding die and curing the mixture, after demolding. Since the outer diameter of the solidified body generally changes (becomes smaller) in the step of treating the solidified body, the processing apparatus of the present invention is useful as a processing apparatus for such a solidified body.

ところで、2本の回転ローラの外周面に円柱状部材の外周面が接触するように回転させる従来の装置では、回転ローラの外周面と円柱状部材の外周面の接触による接触点(線)が2か所存在した状態で回転する。一般的に、回転ローラの方が円柱状部材よりも曲率が大きいため、円柱状部材の外周面に対して回転ローラの外周面は相対的に凸面となる。従って、円柱状部材は2か所の接触点において凸面と接触しつつ回転することになるため、回転に伴い、円柱状部材の外形状が変形したり、真円度が低下したりする。 By the way, in the conventional device that rotates so that the outer peripheral surface of the columnar member comes into contact with the outer peripheral surfaces of the two rotating rollers, the contact point (line) due to the contact between the outer peripheral surface of the rotating roller and the outer peripheral surface of the columnar member is formed. It rotates with two places present. In general, since the rotary roller has a larger curvature than the columnar member, the outer peripheral surface of the rotary roller is relatively convex with respect to the outer peripheral surface of the columnar member. Therefore, since the columnar member rotates while being in contact with the convex surface at two contact points, the outer shape of the columnar member is deformed or the roundness is lowered due to the rotation.

これに対して、本発明の処理装置では、円柱状部材は、その外周面が回転空洞体の内周面、つまり凹面と接触した状態で回転するため、回転に伴い円柱状部材の外周面の外形状が変形したり、真円度が損なわれたりすることがない。
また、上述した、ガラス原料溶液と硬化剤の混合物から得られる固化体の場合、該固化体の表面に微細なシリカガラス粉末が存在する。従って、このような固化体を2本の回転ローラで回転させると、固化体表面に微細変形、不均一さが発生し、場合によっては所望の寸法形状、表面性が得られなくなるおそれがあるが、本発明の処理装置ではこのような問題がなく、脱型後の固化体の良好な状態を保つことができる。
On the other hand, in the processing apparatus of the present invention, the columnar member rotates in a state where the outer peripheral surface thereof is in contact with the inner peripheral surface of the rotating cavity, that is, the concave surface. The outer shape is not deformed and the roundness is not impaired.
Further, in the case of the solidified body obtained from the above-mentioned mixture of the glass raw material solution and the curing agent, fine silica glass powder is present on the surface of the solidified body. Therefore, when such a solidified body is rotated by two rotating rollers, fine deformation and non-uniformity occur on the surface of the solidified body, and in some cases, the desired dimensional shape and surface properties may not be obtained. The processing apparatus of the present invention does not have such a problem and can maintain a good state of the solidified body after demolding.

本発明の処理装置は、例えば円柱状部材の乾燥装置や、円柱状部材を液体に浸漬して該円柱状部材に含まれる液体を置換したり、該円柱状部材の硬化を進行させたりする装置として用いることができる。
成形型から取り出した直後の未だ柔らかい固化体のような円柱状部材の場合も、回転空洞体の内周面、つまり凹面と接触しつつ回転されることにより、外周面の表面状態を良好に保つことができる
The processing apparatus of the present invention is, for example, a device for drying a columnar member, an apparatus for immersing a columnar member in a liquid to replace the liquid contained in the columnar member, or an apparatus for advancing the curing of the columnar member. Can be used as.
Even in the case of a columnar member such as a solidified body that is still soft immediately after being taken out from the molding die, the surface condition of the outer peripheral surface is kept good by rotating while contacting the inner peripheral surface of the rotating cavity, that is, the concave surface. be able to

回転空洞体が、前記処理室の内部と外部とを連通する孔を備え、前記処理室に所定のガスを供給するガス供給部を備えるようにしても良い。本発明に係る処理装置が例えば固化体の乾燥装置である場合は、処理室の内部には空気又は他のガスが供給される。 The rotating cavity may be provided with a hole for communicating the inside and the outside of the processing chamber, and may be provided with a gas supply unit for supplying a predetermined gas to the processing chamber. When the processing apparatus according to the present invention is, for example, a solidified body drying apparatus, air or other gas is supplied to the inside of the processing chamber.

処理装置が、円柱状部材を液体に浸漬して処理するために用いられる装置の場合は、処理室を液密に構成することが好ましい。液密な構成とは、処理室に液体を入れて回転空洞体を回転させたときに処理室から外部に液体が洩れない構造を意味し、この構造の場合は回転空洞体の両端は閉鎖される。また、回転空洞体自体を液体に浸漬した状態で回転させることで、円柱状部材を液体に浸漬する処理をすることもできる。 When the processing device is an device used for immersing a columnar member in a liquid for processing, it is preferable to configure the processing chamber to be liquid-tight. The liquid-tight structure means a structure in which the liquid does not leak from the processing chamber to the outside when the liquid is put into the processing chamber and the rotating cavity is rotated. In this structure, both ends of the rotating cavity are closed. To. Further, by rotating the rotating cavity itself in a state of being immersed in the liquid, it is possible to perform a process of immersing the columnar member in the liquid.

さらに、処理室の内部の温度を検出するセンサと、処理室の内部を加熱する加熱要素と、センサの検出結果に応じて加熱要素を制御するコントローラ等により、処理室の内部の雰囲気の制御を行うこともできる。また、処理室の内部の雰囲気を直接的に制御する他、処理装置が配置されている空間の雰囲気を制御することにより間接的に処理室の内部の雰囲気を制御することもできる。 Furthermore, the atmosphere inside the processing chamber is controlled by a sensor that detects the temperature inside the processing chamber, a heating element that heats the inside of the processing chamber, and a controller that controls the heating element according to the detection result of the sensor. You can also do it. In addition to directly controlling the atmosphere inside the processing room, it is also possible to indirectly control the atmosphere inside the processing room by controlling the atmosphere in the space where the processing device is arranged.

上記の処理装置においては、前記回転空洞体が、前記処理室の内部をその中心軸に沿う方向に複数の空間に分割する隔壁を有することが好ましい。
この構成によれば、処理室の内部の複数の空間にそれぞれ円柱状部材を配置することができるため、複数の円柱状部材をまとめて処理することができる。
In the above processing apparatus, it is preferable that the rotating cavity has a partition wall that divides the inside of the processing chamber into a plurality of spaces in a direction along the central axis thereof.
According to this configuration, since the columnar members can be arranged in each of the plurality of spaces inside the processing chamber, the plurality of columnar members can be processed together.

本発明は、円柱状部材を処理する方法にも向けられる。
すなわち、本発明は、円柱状部材の処理方法であって、
前記円柱状部材より大径の円柱状の処理室を内部に有する回転空洞体の前記処理室の内部に、前記処理室の中心軸と前記円柱状部材の中心軸とが平行になるように前記円柱状部材を配置する工程と、
前記円柱状部材の中心軸及び前記処理室の中心軸を横にした状態で、前記処理室の中心軸を中心に前記回転空洞体を回転させる工程と、
を有する。
The present invention is also directed to a method of processing a columnar member.
That is, the present invention is a method for treating a columnar member.
The central axis of the processing chamber and the central axis of the columnar member are parallel to each other inside the processing chamber of a rotating cavity having a cylindrical processing chamber having a diameter larger than that of the cylindrical member. The process of arranging columnar members and
A step of rotating the rotating cavity around the central axis of the processing chamber with the central axis of the columnar member and the central axis of the processing chamber lying sideways.
Have.

本発明によれば、処理の進行とともに円柱状部材の外径寸法が変化しても、前記円柱状部材を適切に回転させつつ処理させることができる。 According to the present invention, even if the outer diameter dimension of the columnar member changes as the processing progresses, the columnar member can be processed while being appropriately rotated.

本発明に係る処理装置の一実施形態である乾燥装置の概略構成図。The schematic block diagram of the drying apparatus which is one Embodiment of the processing apparatus which concerns on this invention. 円筒状容器の回転に伴い、処理室の内部の固化体が回転する様子を示す図。The figure which shows how the solidified body inside a processing chamber rotates with the rotation of a cylindrical container. 載置面に固化体が載置された支持台を示す図。The figure which shows the support base on which the solidified body was placed on the mounting surface. 実施例1において、固化体の乾燥を開始してから経過した時間と固化体の重量の関係を示すグラフ。In Example 1, the graph which shows the relationship between the time elapsed from the start of drying of a solidified body, and the weight of a solidified body. 実施例2において、固化体の乾燥を開始してから経過した時間と固化体の重量の関係を示すグラフ。In Example 2, the graph which shows the relationship between the time elapsed from the start of drying of a solidified body, and the weight of a solidified body. 窒素ガスの流量を0.5L/minの区間における固化体の重量の変化直線を示すグラフ。A graph showing a straight line of changes in the weight of a solidified body in a section where the flow rate of nitrogen gas is 0.5 L / min. 窒素ガスの流量を1.0L/minの区間における固化体の重量の変化直線を示すグラフ。A graph showing a straight line of changes in the weight of a solidified body in a section where the flow rate of nitrogen gas is 1.0 L / min. 窒素ガスの流量を1.5L/minの区間における固化体の重量の変化直線を示すグラフ。A graph showing a straight line of changes in the weight of a solidified body in a section where the flow rate of nitrogen gas is 1.5 L / min. 窒素ガスの流量と固化体の重量変化速度(傾き)との関係を示すグラフ。The graph which shows the relationship between the flow rate of nitrogen gas and the weight change rate (slope) of a solidified body. 乾燥装置の別の例の円筒状容器を示す概略図。The schematic which shows the cylindrical container of another example of a drying apparatus. 乾燥装置のさらに別の変形例の概略構成図。Schematic diagram of still another modification of the drying device. 本発明に係る処理装置を液体浸漬装置に適用した実施形態の概略図。The schematic diagram of the embodiment which applied the processing apparatus which concerns on this invention to a liquid immersion apparatus.

以下、本発明の実施形態について図面を用いて説明する。
図1は、本発明に係る処理装置を乾燥装置に適用した実施形態を示す概略図である。
この乾燥装置100は、回転空洞体としての円筒状容器10と、該円筒状容器10を横にした状態でその両端部を支持する一対の支持部12と、該一対の支持部12を同じ方向に同期して回転させる回転駆動部20とを備える。回転駆動部20は、例えばモータ21と、該モータ21の回転力を支持部12に伝導する伝導ベルト(図示せず)とを含む。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment in which the processing apparatus according to the present invention is applied to a drying apparatus.
The drying device 100 has a cylindrical container 10 as a rotating cavity, a pair of support portions 12 that support both ends of the cylindrical container 10 in a horizontal position, and the pair of support portions 12 in the same direction. It is provided with a rotation drive unit 20 that rotates in synchronization with the above. The rotation drive unit 20 includes, for example, a motor 21 and a conduction belt (not shown) that conducts the rotational force of the motor 21 to the support unit 12.

円筒状容器10の両端面のうち一方の端面には複数の通気孔14が形成されている。また、円筒状容器10の他方の端面は開口しており、そこには着脱自在な蓋16が取り付けられている。蓋16にはガスボンベ30に接続されたチューブ32が取り付けられている。ガスボンベ30及びチューブ32は本発明のガス供給部を構成する。円筒状容器10内の空間(以下、処理室15という)に処理対象物50を出し入れするときは、該円筒状容器10から蓋16が取り外される。 A plurality of ventilation holes 14 are formed on one end surface of both end faces of the cylindrical container 10. Further, the other end surface of the cylindrical container 10 is open, and a removable lid 16 is attached to the other end surface. A tube 32 connected to the gas cylinder 30 is attached to the lid 16. The gas cylinder 30 and the tube 32 constitute the gas supply unit of the present invention. When the object to be processed 50 is taken in and out of the space inside the cylindrical container 10 (hereinafter referred to as the processing chamber 15), the lid 16 is removed from the cylindrical container 10.

ガスボンベ30には例えば窒素ガスが収容されており、ガスボンベ30内の窒素ガスはチューブ32を通して処理室15に供給される。窒素ガスの流量は、チューブ32に取り付けられた流量調整バルブ33によって調整される。モータ21及び調整バルブ33は、制御部40によって制御される。 For example, nitrogen gas is contained in the gas cylinder 30, and the nitrogen gas in the gas cylinder 30 is supplied to the processing chamber 15 through the tube 32. The flow rate of nitrogen gas is adjusted by a flow rate adjusting valve 33 attached to the tube 32. The motor 21 and the adjusting valve 33 are controlled by the control unit 40.

上記構成の乾燥装置100は、細長い円柱状の処理対象物50を円筒状容器10の中に入れ、処理対象物50の乾燥処理に使用される。制御部40には、操作パネル、電源スイッチ等を備えた入力部41が接続されている。ユーザによる入力部41の操作信号が制御部40に入力されると、制御部40はその操作信号に応じた内容でモータ21及び流量調整バルブ33を駆動する。その結果、円筒状容器10が回転し、円筒状容器10の内部の処理室15に窒素ガスが流入する。したがって、本実施形態では、制御部40は回転駆動部20に含まれる。また、制御部40が流量調整バルブ33を制御することにより処理室15の内部の雰囲気が制御される。 In the drying device 100 having the above configuration, the elongated cylindrical object to be processed 50 is placed in the cylindrical container 10 and used for the drying process of the object to be processed 50. An input unit 41 including an operation panel, a power switch, and the like is connected to the control unit 40. When the operation signal of the input unit 41 by the user is input to the control unit 40, the control unit 40 drives the motor 21 and the flow rate adjusting valve 33 according to the operation signal. As a result, the cylindrical container 10 rotates, and nitrogen gas flows into the processing chamber 15 inside the cylindrical container 10. Therefore, in the present embodiment, the control unit 40 is included in the rotation drive unit 20. Further, the atmosphere inside the processing chamber 15 is controlled by the control unit 40 controlling the flow rate adjusting valve 33.

次に 上記乾燥装置100を用いて所定の処理対象物50の乾燥処理を実行した実施例について説明する。
[実施例1]
実施例1は、光ファイバ母材の製造工程の一つである固化体の乾燥工程に乾燥装置100を用いた例である。この実施例では、円筒状容器10として、外径が40mm、内径が34mm、長さL1(図1参照)が1000mmの、内周面が平滑な合成樹脂(ポリプロピレン樹脂)製のパイプを用いた。
Next, an example in which the predetermined object 50 is dried using the drying apparatus 100 will be described.
[Example 1]
Example 1 is an example in which the drying device 100 is used in the drying step of the solidified body, which is one of the manufacturing steps of the optical fiber base material. In this embodiment, as the cylindrical container 10, a pipe made of synthetic resin (polypropylene resin) having an outer diameter of 40 mm, an inner diameter of 34 mm, a length L1 (see FIG. 1) of 1000 mm, and a smooth inner peripheral surface was used. ..

まず、表1に示す処方の原料溶液をボールミルに入れ、24時間混合した。そして、ボールミルから混合物を取り出した後、この混合物と硬化剤(表1参照)を円筒状の成形型に注入し、室温下に放置した。その後、成形型内で硬化した混合物を成形型から脱離させ、処理対象物50としての円柱状の固化体(以下、固化体50とする。)を得た。得られた固化体50の直径(外径)は12.3mm、長さL2(図1参照)は500mmであった。 First, the raw material solutions of the formulations shown in Table 1 were placed in a ball mill and mixed for 24 hours. Then, after taking out the mixture from the ball mill, the mixture and the curing agent (see Table 1) were injected into a cylindrical mold and left at room temperature. Then, the mixture cured in the molding die was separated from the molding die to obtain a columnar solidified body (hereinafter referred to as solidified body 50) as the object to be treated 50. The diameter (outer diameter) of the obtained solidified body 50 was 12.3 mm, and the length L2 (see FIG. 1) was 500 mm.

Figure 2022008772000002
Figure 2022008772000002

次に、乾燥装置100の円筒状容器10から蓋16を外し、上記の固化体50を横にした状態で開口から処理室15の内部に入れて蓋16をした。このとき、固化体50を処理室15の長さ方向(軸方向)の中央付近に配置した。円筒状容器10の長さが1000mmであるため、処理室15の内部の中央付近に配置された固化体50の両端部と円筒状容器10の両端部との距離はそれぞれ約250mmになる。 Next, the lid 16 was removed from the cylindrical container 10 of the drying device 100, and the solidified body 50 was placed inside the processing chamber 15 through the opening in a state of lying down to cover the lid 16. At this time, the solidified body 50 was arranged near the center of the processing chamber 15 in the length direction (axial direction). Since the length of the cylindrical container 10 is 1000 mm, the distance between both ends of the solidified body 50 arranged near the center of the inside of the processing chamber 15 and both ends of the cylindrical container 10 is about 250 mm, respectively.

続いて、流量調整バルブ33を開口してガスボンベ30内の窒素ガスを処理室15の内部に流入させるとともに、モータ21を駆動した円筒状容器10を矢印Aで示す方向に回転させ、乾燥工程を実行した(回転乾燥)。処理室15に流入した窒素ガスは、通気孔14を通って処理室15の外部に排出される。したがって、処理室15の内部の窒素ガスはガスボンベ30から送られてくる窒素ガスによって置き換えられる(つまり、窒素ガスが流通する)ことになる。 Subsequently, the flow rate adjusting valve 33 is opened to allow the nitrogen gas in the gas cylinder 30 to flow into the processing chamber 15, and the cylindrical container 10 driving the motor 21 is rotated in the direction indicated by the arrow A to perform the drying step. Performed (rotational drying). The nitrogen gas that has flowed into the processing chamber 15 is discharged to the outside of the processing chamber 15 through the ventilation holes 14. Therefore, the nitrogen gas inside the processing chamber 15 is replaced by the nitrogen gas sent from the gas cylinder 30 (that is, the nitrogen gas flows).

また、図2に示すように、円筒状容器10が矢印A方向に回転すると、処理室15の内部の固化体50は処理室15の内部の最低部に向かって移動しようとするため、円筒状容器10と同じく矢印A方向に回転することになる。 Further, as shown in FIG. 2, when the cylindrical container 10 rotates in the direction of arrow A, the solidified body 50 inside the processing chamber 15 tends to move toward the lowest part inside the processing chamber 15, so that it is cylindrical. Like the container 10, it will rotate in the direction of arrow A.

なお、実施例1の乾燥処理との比較のため、実施例1と同じ成分、同じ方法で作製した固化体50を、図3に示すようなV字溝状の載置面61を有する支持台60に載置した状態で、固化体50を自然乾燥させた(以下、比較例1と称する)。
実施例1及び比較例1は、いずれも、温度、湿度が一定に保たれた同じ恒温室内に乾燥装置100及び支持台60を置いて、固化体50の乾燥工程を実行した。
For comparison with the drying treatment of Example 1, a solidified body 50 prepared by the same method and having the same components as that of Example 1 is used as a support base having a V-shaped groove-shaped mounting surface 61 as shown in FIG. The solidified body 50 was naturally dried while being placed on the 60 (hereinafter referred to as Comparative Example 1).
In both Example 1 and Comparative Example 1, the drying device 100 and the support base 60 were placed in the same constant temperature room where the temperature and humidity were kept constant, and the drying step of the solidified body 50 was executed.

実施例1及び比較例1の乾燥条件は以下の表2に示した通りである。

Figure 2022008772000003
The drying conditions of Example 1 and Comparative Example 1 are as shown in Table 2 below.
Figure 2022008772000003

<結果>
図4は、乾燥開始からの経過時間と固化体50の重量(乾燥開始時の重量を100としたときの割合(%))との関係を示すグラフである、図4のグラフにおいて横軸は経過時間を、縦軸は重量(%)を表している。また、グラフ中、四角の点が実施例1の重量を、丸い点が比較例1の重量を示している。図4から分かるように、上記乾燥装置100を用いて固化体50を乾燥させた場合と、支持台60を用いて固化体50を乾燥させた場合との間に、固化体50の重量の変化の仕方(変化を表す曲線の形状)に大きな違いはなかった。
<Result>
FIG. 4 is a graph showing the relationship between the elapsed time from the start of drying and the weight of the solidified body 50 (ratio (%) when the weight at the start of drying is 100). In the graph of FIG. 4, the horizontal axis is The elapsed time is represented by the vertical axis and the weight (%). Further, in the graph, the square points indicate the weight of Example 1, and the round points indicate the weight of Comparative Example 1. As can be seen from FIG. 4, the change in the weight of the solidified body 50 between the case where the solidified body 50 is dried using the drying device 100 and the case where the solidified body 50 is dried using the support base 60. There was no big difference in the way of (the shape of the curve representing the change).

一方、乾燥が十分に進んだ時点(図4においてTeで示す時点)の固化体50を水平面におき、両端部と水平面との距離を測定したところ、比較例1の固化体50は、7mmの反り量があったのに対し、実施例1の固化体50の反りはほぼ見られなかった。乾燥装置100を用いたことにより、乾燥による固化体50の反りが抑えられることが分かった。 On the other hand, when the solidified body 50 at the time when the drying was sufficiently advanced (the time point indicated by Te in FIG. 4) was placed on a horizontal plane and the distance between both ends and the horizontal plane was measured, the solidified body 50 of Comparative Example 1 was 7 mm. Although there was a warp amount, the warp of the solidified body 50 of Example 1 was hardly observed. It was found that the warpage of the solidified body 50 due to drying can be suppressed by using the drying device 100.

[実施例2]
実施例2では、実施例1と同じ材料で作製した円筒状の固化体50を処理対象物とし、これを乾燥装置100を用いて乾燥させた(回転乾燥)。固化体50は、外径が37.0mm、内径が10.0mm、長さL2(図1参照)が500mmであった。また、この実施例では、円筒状容器10として、外径が60mm、内径が54mm、長さL1(図1参照)が700mmの、内周面が平滑な合成樹脂(ポリプロピレン樹脂)製のパイプを用いた。
[Example 2]
In Example 2, a cylindrical solidified body 50 made of the same material as in Example 1 was used as an object to be treated, and this was dried using a drying device 100 (rotational drying). The solidified body 50 had an outer diameter of 37.0 mm, an inner diameter of 10.0 mm, and a length L2 (see FIG. 1) of 500 mm. Further, in this embodiment, as the cylindrical container 10, a pipe made of synthetic resin (polypropylene resin) having an outer diameter of 60 mm, an inner diameter of 54 mm, a length L1 (see FIG. 1) of 700 mm, and a smooth inner peripheral surface is used. Using.

実施例1と同様、実施例2でも固化体50は、処理室15の長さ方向(軸方向)の中央付近に配置した。円筒状容器10の長さが700mmであるため、処理室15の内部の中央付近に配置された固化体50の両端部と円筒状容器10の両端部との距離はそれぞれ約100mmになる。 Similar to Example 1, in Example 2, the solidified body 50 was arranged near the center in the length direction (axial direction) of the treatment chamber 15. Since the length of the cylindrical container 10 is 700 mm, the distance between both ends of the solidified body 50 arranged near the center inside the processing chamber 15 and both ends of the cylindrical container 10 is about 100 mm, respectively.

実施例2の乾燥条件を表3に示す。実施例2における乾燥時の処理室15の内部の温度及び円筒状容器10の回転速度は実施例1と同じであるが、窒素ガスの流量が実施例1と異なる。具体的には、実施例2では、乾燥開始時(0分)から時間t1までは窒素ガスの流量を0.5L/min(流量(1))に、時間t1から時間t2までは流量を1.0L/min(流量(2))に、時間t2から時間t3までは流量を1.5L/min(流量(3))に調整した。また、時間t3以降は処理室15から固化体50を取り出し、支持台60(図3参照)の上に固化体50を載置して自然乾燥を行った。なお、流量(1)で窒素ガスを流し始めてからの経過時間がt0~t1のいずれか(図5において※印をつけた区間)でガスボンベ30からチューブ32が外れ、処理室15に窒素ガスが供給されていなかったことに気づき、時間t1においてチューブ32をつけ直して実験を継続した。 The drying conditions of Example 2 are shown in Table 3. The temperature inside the processing chamber 15 and the rotation speed of the cylindrical container 10 at the time of drying in Example 2 are the same as those in Example 1, but the flow rate of nitrogen gas is different from that in Example 1. Specifically, in Example 2, the flow rate of nitrogen gas was 0.5 L / min (flow rate (1)) from the start of drying (0 minutes) to time t1, and the flow rate was 1.0 L from time t1 to time t2. The flow rate was adjusted to / min (flow rate (2)) and 1.5 L / min (flow rate (3)) from time t2 to time t3. Further, after the time t3, the solidified body 50 was taken out from the processing chamber 15, and the solidified body 50 was placed on the support table 60 (see FIG. 3) and air-dried. The tube 32 comes off from the gas cylinder 30 in any of t0 to t1 (the section marked with * in FIG. 5) after the elapsed time from the start of flowing nitrogen gas at the flow rate (1), and nitrogen gas is discharged into the processing chamber 15. Recognizing that it was not supplied, the tube 32 was reattached at time t1 and the experiment was continued.

Figure 2022008772000004
Figure 2022008772000004

<結果>
図5は、乾燥開始からの経過時間(分)と固化体50の重量(乾燥開始時の重量を100としたときの割合(%))との関係を示すグラフである。図5において、横軸は経過時間、縦軸は重量(%)を表している。図5中、(1)~(3)は、それぞれ窒素ガスの流量を表している。また、図6~図8は、図5において、窒素ガスの流量が(1)~(3)の各区間における固化体50の重量変化曲線について線形近似を行った結果を示している。さらに、図9は、窒素ガスの流量と固化体50の重量変化速度との関係を示している。
<Result>
FIG. 5 is a graph showing the relationship between the elapsed time (minutes) from the start of drying and the weight of the solidified body 50 (ratio (%) when the weight at the start of drying is 100). In FIG. 5, the horizontal axis represents the elapsed time and the vertical axis represents the weight (%). In FIG. 5, (1) to (3) represent the flow rates of nitrogen gas, respectively. Further, FIGS. 6 to 8 show the results of linear approximation of the weight change curve of the solidified body 50 in each section of the flow rate of nitrogen gas (1) to (3) in FIG. Further, FIG. 9 shows the relationship between the flow rate of nitrogen gas and the weight change rate of the solidified body 50.

図5~図9より、窒素ガスの流量を大きくすると、単位時間当たりの重量変化量(重量変化速度)が大きくなることが分かる。また、図5に示すように、窒素ガスの供給を止めて自然乾燥に切り替えた後も、固化体50の重量が減少していた。
一方、固化体50の反りは、流量(1)で窒素ガスを流し始めた直後にわずかに見られただけだった。
From FIGS. 5 to 9, it can be seen that when the flow rate of nitrogen gas is increased, the amount of weight change (weight change rate) per unit time increases. Further, as shown in FIG. 5, the weight of the solidified body 50 was reduced even after the supply of nitrogen gas was stopped and the natural drying was switched to.
On the other hand, the warp of the solidified body 50 was only slightly observed immediately after starting to flow nitrogen gas at the flow rate (1).

以上、本発明に係る実施形態について具体例を挙げて説明したが、本発明の趣旨の範内であれば適宜の変更が可能である。
例えば、上記実施形態では、ポリプロピレン樹脂製の円筒状容器(回転空洞体)を用いたが、ポリプロピレン樹脂以外の合成樹脂から円筒状容器を構成してもよい。また、金属製の円筒状容器を用いることも可能である。
Although the embodiments according to the present invention have been described above with specific examples, appropriate changes can be made within the scope of the gist of the present invention.
For example, in the above embodiment, a cylindrical container (rotary cavity) made of polypropylene resin is used, but the cylindrical container may be constructed from a synthetic resin other than polypropylene resin. It is also possible to use a metal cylindrical container.

また、上記実施形態では処理室15の内部に1個の固化体50を配置したが、複数の固化体50を配置するようにしても良い。例えば、図10は、乾燥装置の別の実施形態の円筒状容器10を示している。この円筒状容器10では、処理室15の内周面に隔壁70を有しており、これにより、処理室15の内部がその軸方向に複数(図10では3個)に分割されている。固化体50は、処理室15の内周面に沿って回転するため、中央に開口を有する円環状の隔壁70でも、十分に、固化体50同士が接触することを防止できる。また、円環状の隔壁70にすることにより、処理室15の内部を複数に区画しつつ、該処理室15に供給されるガスを処理室15の内部の全体に行き渡らせることができる。 Further, in the above embodiment, one solidified body 50 is arranged inside the processing chamber 15, but a plurality of solidified bodies 50 may be arranged. For example, FIG. 10 shows a cylindrical container 10 of another embodiment of a drying device. The cylindrical container 10 has a partition wall 70 on the inner peripheral surface of the processing chamber 15, whereby the inside of the processing chamber 15 is divided into a plurality of (three in FIG. 10) in the axial direction thereof. Since the solidified body 50 rotates along the inner peripheral surface of the processing chamber 15, even an annular partition wall 70 having an opening in the center can sufficiently prevent the solidified bodies 50 from coming into contact with each other. Further, by forming the annular partition wall 70, the inside of the processing chamber 15 can be divided into a plurality of parts, and the gas supplied to the processing chamber 15 can be distributed throughout the inside of the processing chamber 15.

図11は、乾燥装置のさらに別の実施形態を示している。この乾燥装置100Aでは、円筒状容器10を一対の回転ローラ80によって回転させている。固化体50の乾燥が進んでも、円筒状容器10の外径は変化することがないため、回転ローラ80で円筒状容器10を回転させても問題がない。この場合、回転ローラ80が本発明の処理装置の支持部と回転駆動部を兼ねている。 FIG. 11 shows yet another embodiment of the drying device. In this drying device 100A, the cylindrical container 10 is rotated by a pair of rotating rollers 80. Since the outer diameter of the cylindrical container 10 does not change even if the solidified body 50 is dried, there is no problem even if the cylindrical container 10 is rotated by the rotating roller 80. In this case, the rotary roller 80 serves as both a support portion and a rotary drive portion of the processing device of the present invention.

図12は、本発明に係る処理装置を液体浸漬装置に適用した実施形態である。図12は液体浸漬装置の構成要素である円筒状容器10Aを示している。この例では、処理室15の内部に液体200が収容されるため、円筒状容器10Aは密閉可能に構成されている。 FIG. 12 shows an embodiment in which the processing apparatus according to the present invention is applied to a liquid immersion apparatus. FIG. 12 shows a cylindrical container 10A which is a component of the liquid dipping device. In this example, since the liquid 200 is housed inside the processing chamber 15, the cylindrical container 10A is configured to be hermetically sealed.

100、100A…乾燥装置
10、10A…円筒状容器
12…支持部
14…通気孔
15…処理室
16…蓋
20…回転駆動機構
21…モータ
30…ガスボンベ
32…チューブ
33…調整バルブ
33…流量調整バルブ
40…制御部
41…入力部
50…処理対象物(固化体)
60…支持台
61…載置面
70…隔壁
80…回転ローラ
100, 100A ... Drying device 10, 10A ... Cylindrical container 12 ... Support 14 ... Ventilation hole 15 ... Processing chamber 16 ... Lid 20 ... Rotational drive mechanism 21 ... Motor 30 ... Gas cylinder 32 ... Tube 33 ... Adjustment valve 33 ... Flow rate adjustment Valve 40 ... Control unit 41 ... Input unit 50 ... Processing target (solidified body)
60 ... Support stand 61 ... Mounting surface 70 ... Partition wall 80 ... Rotating roller

ガスボンベ30には例えば窒素ガスが収容されており、ガスボンベ30内の窒素ガスはチューブ32を通して処理室15に供給される。窒素ガスの流量は、チューブ32に取り付けられた流量調整バルブ33によって調整される。モータ21及び流量調整バルブ33は、制御部40によって制御される。
For example, nitrogen gas is contained in the gas cylinder 30, and the nitrogen gas in the gas cylinder 30 is supplied to the processing chamber 15 through the tube 32. The flow rate of nitrogen gas is adjusted by a flow rate adjusting valve 33 attached to the tube 32. The motor 21 and the flow rate adjusting valve 33 are controlled by the control unit 40.

上記構成の乾燥装置100は、細長い円柱状の処理対象物50を円筒状容器10の中に入れ、処理対象物50の乾燥処理に使用される。制御部40には、操作パネル、電源スイッチ等を備えた入力部(図示せず)が接続されている。ユーザによる入力部の操作信号が制御部40に入力されると、制御部40はその操作信号に応じた内容でモータ21及び流量調整バルブ33を駆動する。その結果、円筒状容器10が回転し、円筒状容器10の内部の処理室15に窒素ガスが流入する。したがって、本実施形態では、制御部40は回転駆動部20に含まれる。また、制御部40が流量調整バルブ33を制御することにより処理室15の内部の雰囲気が制御される。
In the drying device 100 having the above configuration, the elongated cylindrical object to be processed 50 is placed in the cylindrical container 10 and used for the drying process of the object to be processed 50. An input unit (not shown) including an operation panel, a power switch, and the like is connected to the control unit 40. When the operation signal of the input unit by the user is input to the control unit 40, the control unit 40 drives the motor 21 and the flow rate adjusting valve 33 according to the operation signal. As a result, the cylindrical container 10 rotates, and nitrogen gas flows into the processing chamber 15 inside the cylindrical container 10. Therefore, in the present embodiment, the control unit 40 is included in the rotation drive unit 20. Further, the atmosphere inside the processing chamber 15 is controlled by the control unit 40 controlling the flow rate adjusting valve 33.

続いて、流量調整バルブ33を開口してガスボンベ30内の窒素ガスを処理室15の内部に流入させるとともに、モータ21を駆動した円筒状容器10を矢印A(図2参照)で示す方向に回転させ、乾燥工程を実行した(回転乾燥)。処理室15に流入した窒素ガスは、通気孔14を通って処理室15の外部に排出される。したがって、処理室15の内部の窒素ガスはガスボンベ30から送られてくる窒素ガスによって置き換えられる(つまり、窒素ガスが流通する)ことになる。
Subsequently, the flow rate adjusting valve 33 is opened to allow the nitrogen gas in the gas cylinder 30 to flow into the processing chamber 15, and the cylindrical container 10 driving the motor 21 is rotated in the direction indicated by the arrow A (see FIG. 2). And the drying process was carried out (rotational drying). The nitrogen gas that has flowed into the processing chamber 15 is discharged to the outside of the processing chamber 15 through the ventilation holes 14. Therefore, the nitrogen gas inside the processing chamber 15 is replaced by the nitrogen gas sent from the gas cylinder 30 (that is, the nitrogen gas flows).

100、100A…乾燥装置
10、10A…円筒状容器
12…支持部
14…通気孔
15…処理室
16…蓋
20…回転駆動
21…モータ
30…ガスボンベ
32…チューブ
33…流量調整バルブ
40…制御部
41…入力部
50…処理対象物(固化体)
60…支持台
61…載置面
70…隔壁
80…回転ローラ
100, 100A ... Drying device 10, 10A ... Cylindrical container 12 ... Support portion 14 ... Vent hole 15 ... Processing chamber 16 ... Lid 20 ... Rotational drive unit
21 ... Motor 30 ... Gas cylinder 32 ... Tube 33 ... Flow rate adjustment valve 40 ... Control unit 41 ... Input unit 50 ... Processing target (solidified body)
60 ... Support stand 61 ... Mounting surface 70 ... Partition wall 80 ... Rotating roller

Claims (7)

円柱状部材の処理装置であって、
前記円柱状部材より大径の円柱状の処理室を内部に有する回転空洞体と、
前記処理室の中心軸を横にした状態で、前記回転空洞体を回転自在に支持する支持部と、
前記回転空洞体を前記中心軸を中心に回転させる回転駆動部と、
を備える、処理装置。
It is a processing device for columnar members.
A rotating cavity having a columnar processing chamber with a larger diameter than the columnar member inside,
A support portion that rotatably supports the rotating cavity with the central axis of the processing chamber lying down, and a support portion.
A rotary drive unit that rotates the rotary cavity around the central axis,
A processing device.
請求項1に記載の処理装置において、
前記回転空洞体が、前記処理室の内部と外部とを連通する孔を備え、
前記処理室に所定のガスを供給するガス供給部を備える、処理装置。
In the processing apparatus according to claim 1,
The rotating cavity is provided with a hole that communicates the inside and the outside of the processing chamber.
A processing apparatus including a gas supply unit that supplies a predetermined gas to the processing chamber.
請求項1に記載の処理装置において、
前記処理室が液密に構成されている、処理装置。
In the processing apparatus according to claim 1,
A processing device in which the processing chamber is liquid-tightly configured.
請求項1~3のいずれかに記載の処理装置において、
前記回転空洞体が、前記処理室の内部を、その中心軸に沿う方向に複数の空間に分割する隔壁を有する、処理装置。
In the processing apparatus according to any one of claims 1 to 3,
A processing apparatus in which the rotating cavity has a partition wall that divides the inside of the processing chamber into a plurality of spaces in a direction along a central axis thereof.
請求項1~4のいずれかに記載の処理装置であって、処理する前記円柱状部材が、原料粉末、蒸留水、分散剤、硬化性樹脂から成る原料溶液に硬化剤を混合し、この混合物を、成形型に注入して硬化させた後、脱型した固化体である、処理装置。 The processing apparatus according to any one of claims 1 to 4, wherein the columnar member to be treated mixes a curing agent with a raw material solution composed of a raw material powder, distilled water, a dispersant, and a curable resin, and a mixture thereof. Is a solidified body that has been demolded after being poured into a molding die and cured. 請求項5に記載の処理装置であって、前記原料粉末がシリカガラス粉末である、処理装置。 The processing apparatus according to claim 5, wherein the raw material powder is silica glass powder. 円柱状部材の処理方法であって、
前記円柱状部材より大径の円柱状の処理室を内部に有する回転空洞体の前記処理室の内部に、前記処理室の中心軸と前記円柱状部材の中心軸とが平行になるように前記円柱状部材を配置する工程と、
前記円柱状部材の中心軸及び前記処理室の中心軸を横にした状態で、前記処理室の中心軸を中心に前記回転空洞体を回転させる工程と、
を有する、円柱状部材の処理方法。
It is a processing method for columnar members.
The central axis of the processing chamber and the central axis of the columnar member are parallel to each other inside the processing chamber of the rotating cavity having a cylindrical processing chamber having a diameter larger than that of the cylindrical member. The process of arranging columnar members and
A step of rotating the rotating cavity around the central axis of the processing chamber with the central axis of the columnar member and the central axis of the processing chamber lying sideways.
A method for treating a columnar member.
JP2020110856A 2020-06-26 2020-06-26 Processing apparatus and processing method for cylindrical member Pending JP2022008772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020110856A JP2022008772A (en) 2020-06-26 2020-06-26 Processing apparatus and processing method for cylindrical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110856A JP2022008772A (en) 2020-06-26 2020-06-26 Processing apparatus and processing method for cylindrical member

Publications (1)

Publication Number Publication Date
JP2022008772A true JP2022008772A (en) 2022-01-14

Family

ID=80115939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110856A Pending JP2022008772A (en) 2020-06-26 2020-06-26 Processing apparatus and processing method for cylindrical member

Country Status (1)

Country Link
JP (1) JP2022008772A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126250U (en) * 1986-01-31 1987-08-11
JP2002237405A (en) * 1999-04-26 2002-08-23 Sumitomo Special Metals Co Ltd Method of sealing void section of molded article and bonded magnet sealed by the method
JP2002258007A (en) * 2000-12-27 2002-09-11 Hoya Corp Graded refractive index rod lens, method of manufacturing the same and rod lens array
WO2006119587A1 (en) * 2005-05-09 2006-11-16 Bogoljub Tanasic Hygienic and easy-to-apply condom
JP2011242289A (en) * 2010-05-19 2011-12-01 Shimizu Corp Method for manufacturing bentonite compact, apparatus for drying the same, and bentonite compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126250U (en) * 1986-01-31 1987-08-11
JP2002237405A (en) * 1999-04-26 2002-08-23 Sumitomo Special Metals Co Ltd Method of sealing void section of molded article and bonded magnet sealed by the method
JP2002258007A (en) * 2000-12-27 2002-09-11 Hoya Corp Graded refractive index rod lens, method of manufacturing the same and rod lens array
WO2006119587A1 (en) * 2005-05-09 2006-11-16 Bogoljub Tanasic Hygienic and easy-to-apply condom
JP2011242289A (en) * 2010-05-19 2011-12-01 Shimizu Corp Method for manufacturing bentonite compact, apparatus for drying the same, and bentonite compact

Similar Documents

Publication Publication Date Title
US10759116B2 (en) Additive manufactured parts with smooth surface finishes
US11993038B2 (en) Systems and methods for the production of contact lenses
JP2005508776A5 (en)
JP2022008772A (en) Processing apparatus and processing method for cylindrical member
KR20190108790A (en) Apparatus and method for coating of tube for manufacturing metallic fuel slug
US5331133A (en) Process permitting the modification of the chemical composition of the inner face of a barrel, and machine implementing such a process
EP0650823B1 (en) Method of manufacturing a heat-resistant resinous tube
JP2665795B2 (en) Roll coating method
KR102189266B1 (en) Apparatus for forming a thin film and method of forming a thin film using the same
JPH052583Y2 (en)
JP2003063833A (en) Method for making glass preform and apparatus for making glass ball preform
JP2510818B2 (en) Method and apparatus for manufacturing gradient index lenses
JP2007224330A (en) Method for manufacturing rolling member, rolling member, bearing, tapered roller bearing and treating apparatus
JP3467864B2 (en) Molding machine
US20200346375A1 (en) Dip-coating method and apparatus using supporting liquid, and fabricating method of hollow tube using the same
KR100459500B1 (en) Manufacture Apparatus of Contact Lens with Automatic Process
KR101816263B1 (en) Method of manufacturing vaccum-casting-product
KR20050013343A (en) silicone coating device for injector
JPH09218311A (en) Production of preform for graded index plastic optical fiber and apparatus therefor
JP4236951B2 (en) Manufacturing method of quartz glass base material
JP7025809B2 (en) Manufacturing method of molded product
RU2072917C1 (en) Method and apparatus for centrifugal molding of products from polymeric composition
KR200287236Y1 (en) Manufacture Apparatus of Contact Lens with Automatic Process
JP2621930B2 (en) Optical element molding method
SU1486272A1 (en) Apparatus for applying coatings of metal powders onto inner surface of articles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102