JP2022006620A - Processing method for recycling wastes to useful materials - Google Patents

Processing method for recycling wastes to useful materials Download PDF

Info

Publication number
JP2022006620A
JP2022006620A JP2020108961A JP2020108961A JP2022006620A JP 2022006620 A JP2022006620 A JP 2022006620A JP 2020108961 A JP2020108961 A JP 2020108961A JP 2020108961 A JP2020108961 A JP 2020108961A JP 2022006620 A JP2022006620 A JP 2022006620A
Authority
JP
Japan
Prior art keywords
metal
waste
ash
based catalyst
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020108961A
Other languages
Japanese (ja)
Inventor
亨 久保田
Toru Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samurai Co Ltd
Original Assignee
Samurai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samurai Co Ltd filed Critical Samurai Co Ltd
Priority to JP2020108961A priority Critical patent/JP2022006620A/en
Publication of JP2022006620A publication Critical patent/JP2022006620A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a processing method for recycling wastes to useful materials containing metals in water-insoluble states thus having high safety, which can be used multipurpose including ceramic materials at relatively low temperature with good efficiency, and a processor thereof.SOLUTION: A raw material supply passage 2 where fine powder-like raw materials prepared by adding metal insolubilization agents to incineration ashes of combustible general wastes or waste plastic fine powders can be supplied to is connected with a reductive reaction furnace 1, further connected with a combustion gas supply passage 3; furnace walls of this reductive reaction furnace 1 are formed from refractory bricks containing predetermined metal catalysts. The fine powder-like raw materials are heated to 200-400°C by far-infrared ray in a reductive atmosphere while being in contact with metal insolubilization agents and metallic catalysts to convert incineration ashes and wastes to useful materials.SELECTED DRAWING: Figure 1

Description

この発明は、都市ごみなどの一般廃棄物やその焼却灰を再資源化し、再利用できるようにするための廃棄物の資材化処理方法及び資材化処理装置に関する。 The present invention relates to a waste materialization treatment method and a materialization treatment apparatus for recycling general waste such as municipal waste and its incineration ash so that it can be reused.

都市ごみなどの一般廃棄物には、比較的多くの種類の有機物及び無機物が含まれており、可燃ごみの種類としては、例えばプラスチック類、ゴム類、紙類、厨芥類、繊維類、木や竹類などがあり、また不燃ごみとしては、鉄類、ガラスまたは陶磁器類などがある。 General waste such as municipal waste contains a relatively large number of types of organic and inorganic substances, and the types of combustible waste include, for example, plastics, rubbers, papers, kitchen wastes, textiles, wood and the like. There are bamboos and the like, and non-burnable wastes include irons, glass or ceramics.

これらはいずれも焼成後に酸化物や炭化物となり、それらの混合物を含む焼却灰が残渣となって残る。このような残渣に含まれる主な元素としては、炭素(C)、酸素(O)、水素(H)、窒素(N)、硫黄(S)、塩素(Cl)等の非金属元素、また鉄(Fe)、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、マンガン(Mn)、ニッケル(Ni)、錫(Sn)、鉛(Pb)等の金属元素が挙げられる。
これらを無害化し、かつ有用な状態になるように再資源化することが、以前から要望されてきた。
All of these become oxides and carbides after firing, and incinerator ash containing a mixture thereof remains as a residue. The main elements contained in such residues are non-metal elements such as carbon (C), oxygen (O), hydrogen (H), nitrogen (N), sulfur (S), chlorine (Cl), and iron. Examples thereof include metal elements such as (Fe), aluminum (Al), copper (Cu), zinc (Zn), manganese (Mn), nickel (Ni), tin (Sn), and lead (Pb).
It has long been requested to detoxify these and recycle them so that they are in a useful state.

また可燃性の廃棄物は、有機物と共に水分も多く含んでおり、焼却に要する燃焼時間は水分量に関係して相当に長くなるため、自ずと処理効率が悪くなり、水溶性の重金属化合物や有機塩素化合物などを含んでいる場合には、ヒトその他の生物が存在する環境に有害な影響を与える危険性があり、無害化処理する必要がある。 In addition, combustible waste contains a large amount of water as well as organic matter, and the burning time required for incineration is considerably long in relation to the amount of water, so the treatment efficiency naturally deteriorates, and water-soluble heavy metal compounds and organic chlorine. If it contains compounds, it may have a harmful effect on the environment in which humans and other organisms exist, and it is necessary to detoxify it.

水分を蒸発させてから充分に無害化されるように廃棄物を燃焼するには、処理効率の高い処理装置や処理プラントが必要であり、また廃棄物は、時期や場所ごとにまとめて収集して効率よく大量に処理する必要があるため、処理装置は大きく複雑になり、多額の設備費等を要することになる。 In order to burn waste so that it is sufficiently detoxified after evaporating the water, a treatment device or treatment plant with high treatment efficiency is required, and the waste is collected together at each time and place. Since it is necessary to process a large amount efficiently, the processing apparatus becomes large and complicated, and a large amount of equipment cost or the like is required.

これまでに知られた廃棄物や焼却灰の再資源化方法としては、一般廃棄物を通常の焼却温度(800℃以上)で焼却された後に残る焼却灰を、さらに還元雰囲気の乾留条件下で、有機質廃棄物を炭化した微粒子状の炭化物と混合して接触させ、焼却灰に含まれる金属類を難溶性金属化合物に変化させ、触媒作用と吸着能を賦活して、活性炭に再加工して廃棄物から活性炭をつくる方法が知られている(特許文献1)。 As a method of recycling waste and incinerated ash known so far, the incinerated ash remaining after incinerating general waste at a normal incineration temperature (800 ° C or higher) is further subjected to dry distillation conditions in a reducing atmosphere. , Organic waste is mixed with carbonized fine-grained carbonized material and brought into contact with it to change the metals contained in the incinerator into a sparingly soluble metal compound, which activates catalytic action and adsorption capacity and is reprocessed into activated carbon. A method for producing activated carbon from waste is known (Patent Document 1).

また、焼却灰に調整剤として硫酸カリウム、硫酸ナトリウムおよびポルトランドセメントからなる重金属不溶化剤を添加してロータリーキルンで加熱処理し、さらに微粉体化してセメント化することが知られている(特許文献2)。 Further, it is known that a heavy metal insolubilizer composed of potassium sulfate, sodium sulfate and Portland cement is added to incinerated ash as an adjusting agent, heat-treated with a rotary kiln, and further pulverized into cement (Patent Document 2). ..

さらにまた、外気と接触の少ない密閉された建築物の中で、ゴミ焼却の前処理工程と炭化乾留工程と冷却工程を行う処理方法であり、金属酸化物を含む遷移金属を粉体として焼き固めて乾留炉の炉壁に成形し、金属酸化物と多孔質無定形炭素を利用した化学反応を利用してごみを再資源化可能な炭化物にすることが知られている(特許文献3)。 Furthermore, it is a treatment method in which a pretreatment step for carbonization, a carbonization carbonization step, and a cooling step are performed in a closed building with little contact with the outside air. It is known that carbonization is formed on the furnace wall of a carbonization furnace and a chemical reaction using a metal oxide and a porous amorphous carbon is used to turn waste into a recyclable carbide (Patent Document 3).

また、低酸素状態で、焼却灰を約400~600℃に加熱して20~40分維持する還元反応処理工程を行ない、次いで処理温度200~450℃で40~60分維持する安定化反応処理工程、さらに80℃以下に冷却する処理工程を行なって、発生した排ガスを遷移金属触媒の存在下で加熱処理して無害化する焼却灰の処理方法が知られている(特許文献4)。 Further, in a low oxygen state, a reduction reaction treatment step is performed in which the incinerated ash is heated to about 400 to 600 ° C. and maintained for 20 to 40 minutes, and then a stabilization reaction treatment is carried out in which the incineration ash is maintained at a treatment temperature of 200 to 450 ° C. for 40 to 60 minutes. There is known a method for treating incinerated ash in which the generated exhaust gas is heat-treated in the presence of a transition metal catalyst to make it harmless by performing a step and a treatment step of cooling to 80 ° C. or lower (Patent Document 4).

特許第3840494号公報Japanese Patent No. 3840494 特許第3814337号公報Japanese Patent No. 3814337 特許第4599127号公報Japanese Patent No. 4599127 特許第4150800号公報Japanese Patent No. 4150800

しかし、特許文献1に記載される廃棄物や再資源化処理方法では、炭化物と焼却灰を混合して比較的高い温度で加熱するとき、多孔質性の活性炭は生成されるが、セラミックとしての有効利用が図れるような資材は生成されていない。また、粒径の大きな焼却灰を充分に脱水及び炭化し、さらに活性炭となるように多孔質化するためには、600℃程度の高温の加熱工程が必要であった。 However, in the waste and recycling treatment method described in Patent Document 1, when carbide and incineration ash are mixed and heated at a relatively high temperature, porous activated carbon is produced, but as a ceramic. No materials have been produced that can be effectively used. Further, in order to sufficiently dehydrate and carbonize the incinerator ash having a large particle size and to make it porous so as to become activated carbon, a high temperature heating step of about 600 ° C. is required.

また特許文献2に記載されるように、焼却灰に硫酸カリウム、硫酸ナトリウムおよびポルトランドセメントからなる重金属不溶化剤を添加して加熱処理する方法では、重金属が水に不溶化されるので安全性は高まるが、加熱処理前には粉砕されておらず、また600℃程度の高温で加熱処理され、その後に粉砕されるものであって、セメント材料としての利用可能性が開示されるに留まり、セメント以外に利用できる資材は示されていない。 Further, as described in Patent Document 2, in the method of adding a heavy metal insolubilizer composed of potassium sulfate, sodium sulfate and Portland cement to the incinerated ash and heat-treating it, the heavy metal is insoluble in water, so that the safety is enhanced. , It is not crushed before the heat treatment, is heat-treated at a high temperature of about 600 ° C., and is crushed after that. The materials available are not shown.

特許文献3に記載される処理方法では、金属酸化物を含む遷移金属を粉体とするキャスタブル耐火物を乾留炉の炉壁に用いた被処理物は解砕されているが微粉砕ではなく、乾留炉内での触媒作用の効率的利用について改良の余地があった。 In the treatment method described in Patent Document 3, the object to be treated using a castable refractory made of a transition metal containing a metal oxide as a powder for the furnace wall of a carbonization furnace is crushed but not finely pulverized. There was room for improvement in the efficient use of catalytic action in the carbonization furnace.

また、特許文献4に記載されている焼却灰の処理方法では、ダイオキシンを分解するために450℃以上の加熱処理が必要であり、またこの処理方法で得られる資材は水硬性セメント系の資材として示唆されているに過ぎない。 Further, the incinerator ash treatment method described in Patent Document 4 requires a heat treatment of 450 ° C. or higher in order to decompose dioxins, and the material obtained by this treatment method is a hydraulic cement-based material. It is only suggested.

そこで、この発明の課題は、セラミックにも利用可能な資材が安全性の高い状態のものとして得られ、しかも比較的低温の加熱処理で効率よく資源化できる焼却灰等の廃棄物の再資源化処理方法とすることである。また、このような処理方法に利用可能な廃棄物の再資源化処理装置を新たに創製することも課題である。 Therefore, the problem of the present invention is to recycle waste such as incineration ash, which can be obtained as a material that can be used for ceramics in a highly safe state and can be efficiently recycled by heat treatment at a relatively low temperature. It is a processing method. It is also an issue to newly create a waste recycling treatment device that can be used for such a treatment method.

上記の課題を解決するために、この発明は、微粉末状の焼却灰または廃プラスチックを、金属不溶化剤および前記焼却灰に含まれる金属由来の金属系触媒に接触させながら、還元雰囲気下で遠赤外線によって200~400℃に加熱する工程を必須工程とする廃棄物の資材化処理方法としたのである。 In order to solve the above-mentioned problems, the present invention presents a fine powder of incineration ash or waste plastic in contact with a metal insolubilizer and a metal-derived catalyst contained in the incineration ash, in a reducing atmosphere. This is a waste materialization method that requires a step of heating to 200 to 400 ° C. with infrared rays as an essential step.

上記の工程を必須とする廃棄物の資材化処理方法は、微粉末状の所定廃棄物を金属不溶化剤および金属系触媒に接触させながら還元雰囲気下で加熱するときに、所定廃棄物に含まれる金属類が前記金属不溶化剤と反応して、金属硫化物などの非水溶性化合物(固体)になる。なお、金属不溶化剤と炭素との化合物である二硫化炭素等は、共有結合化合物であるから、これも非水溶性化合物であり、非水溶性化合物の外部環境への負荷は小さい。 The waste materialization treatment method that requires the above steps is included in the predetermined waste when the predetermined waste in the form of fine powder is heated in a reducing atmosphere while being in contact with the metal insolubilizer and the metal-based catalyst. Metals react with the metal insolubilizer to become a water-insoluble compound (solid) such as metal sulfide. Since carbon disulfide, which is a compound of a metal insolubilizer and carbon, is a covalent bond compound, it is also a water-insoluble compound, and the load on the external environment of the water-insoluble compound is small.

前記金属系触媒は、このような非水溶性化合物の還元雰囲気下での生成反応を促進し、遠赤外線によって200~400℃という比較的低温での前記反応を可能にする。
さらにまた、処理対象物の焼却灰や廃プラスチックが微粉末状であることにより、遠赤外線による加熱反応が効率よく行われる。このように加熱反応を効率よく行えるように、上記焼却灰が、水分含有率5~7質量%の焼却灰であることが好ましい。
The metal-based catalyst promotes the formation reaction of such a water-insoluble compound in a reducing atmosphere, and enables the reaction at a relatively low temperature of 200 to 400 ° C. by far infrared rays.
Furthermore, since the incinerated ash and waste plastic of the object to be treated are in the form of fine powder, the heating reaction by far infrared rays is efficiently performed. In order to efficiently carry out the heating reaction in this way, it is preferable that the incinerator ash is an incinerator ash having a water content of 5 to 7% by mass.

このように上記廃棄物の資材化処理を行なえば、所定廃棄物のセラミック資材化処理を効率よく行うことができ、脱臭剤、吸湿剤、耐火レンガ、土壌改良剤などに用途のある汎用性のあるセラミック資材が得られる。 If the above-mentioned waste materialization treatment is performed in this way, the ceramic materialization treatment of the predetermined waste can be efficiently performed, and it is versatile and can be used as a deodorant, a hygroscopic agent, a refractory brick, a soil conditioner, and the like. A certain ceramic material is obtained.

また上記焼却灰は、一般廃棄物の焼却灰を採用可能であり、さらに焼却灰に代えて粉末化された廃プラスチックまたはこれに前記焼却灰を混ぜて、この発明の資材化処理を行うこともできる。 Further, as the incinerator ash, the incinerator ash of general waste can be adopted, and further, instead of the incinerator ash, powdered waste plastic or the incinerator ash may be mixed with the powdered waste plastic to carry out the materialization treatment of the present invention. can.

上述した廃棄物の資材化処理方法に用いる資材化処理装置は、可燃性の一般廃棄物の焼却灰の微粉末または廃プラスチックの微粉末に、金属不溶化剤が添加された微粉末状の原材料が搬送および供給される供給路が接続された還元反応炉を備えており、この還元反応炉には加熱源として燃焼ガスの供給路が接続されている。 The materialization treatment equipment used in the above-mentioned waste materialization treatment method is a fine powder of combustible general waste incinerator ash fine powder or waste plastic fine powder to which a metal insolubilizer is added. It is equipped with a reduction reaction furnace to which a supply path for transportation and supply is connected, and a supply path for combustion gas is connected to this reduction reaction furnace as a heating source.

還元反応炉は、その炉壁が所定の金属系触媒とセラミック製耐火物とが一体的に複合した遠赤外線放射性素材で構成されている。前記金属系触媒は、前記焼却灰に含まれる金属由来の金属系触媒を利用できる。 The reduction reaction furnace is made of a far-infrared radioactive material whose wall is integrally composed of a predetermined metal catalyst and a ceramic refractory. As the metal-based catalyst, a metal-based catalyst derived from a metal contained in the incinerator ash can be used.

このように資材化処理装置は、還元反応炉の炉壁を、上記所定の金属系触媒とセラミック製耐火物とが複合的に一体に構成された遠赤外線放射性素材で形成したことにより、比較的低温に加熱されている炉壁から還元反応炉内に遠赤外線を放射することができ、その際に炉壁面に露出している金属系触媒に焼却灰等の微粉末状の原材料が上記の遠赤外線で加熱されながら接触する。 As described above, in the materialization processing apparatus, the furnace wall of the reduction reaction furnace is made of a far-infrared radioactive material in which the predetermined metal-based catalyst and the ceramic refractory are compositely integrally formed, so that the furnace wall is relatively. Far-infrared rays can be emitted from the furnace wall heated to a low temperature into the reduction reaction furnace, and at that time, the above-mentioned far-infrared raw materials such as incineration ash are attached to the metal-based catalyst exposed on the furnace wall surface. Contact while being heated by infrared rays.

これにより、還元雰囲気下での非水溶性化合物などの生成反応が促進され、この発明の資材化処理を効率よく行える。 As a result, the reaction for producing a water-insoluble compound or the like in a reducing atmosphere is promoted, and the materialization treatment of the present invention can be efficiently performed.

この発明は、廃棄物の資材化処理方法を、微粉末状の焼却灰または廃プラスチックを処理対象として、所定の金属不溶化剤と金属系触媒に接触させながら還元雰囲気下で遠赤外線によって低温条件で加熱する工程を必須工程にしたので、汎用性のあるセラミック系資材が得られ、そのような資材中の金属は安全性の高い非水溶性化合物になっており、また遠赤外線による加熱作用と金属系触媒による作用が相まって比較的低温で効率よく再資材化処理が可能となる利点がある。
また、この発明の資材化処理装置を用いれば、上記の利点ある処理方法をより効率よく行えるという利点もある。
In the present invention, the method for treating waste as a material is to treat fine powdery incinerated ash or waste plastic as a treatment target, and in contact with a predetermined metal insolubilizer and a metal-based catalyst, under low temperature conditions by far infrared rays in a reducing atmosphere. Since the heating process is an essential process, versatile ceramic materials can be obtained, and the metal in such materials is a highly safe water-insoluble compound, and the heating action by far infrared rays and the metal Combined with the action of the system catalyst, there is an advantage that the rematerialization process can be efficiently performed at a relatively low temperature.
Further, if the materialization processing apparatus of the present invention is used, there is an advantage that the above-mentioned advantageous processing method can be performed more efficiently.

実施形態の資材化処理装置の一部を切欠いて示す正面図Front view showing a part of the materialization processing apparatus of the embodiment notched. 図1のII-II線断面図Section II-II sectional view of FIG. 図1のIII-III線断面図Section III-III sectional view of FIG. 実施形態の資材化処理装置を配置したプラントの説明図Explanatory drawing of the plant which arranged the materialization processing apparatus of embodiment 実施形態の処理方法で得た資材を用いて製造した耐火煉瓦の耐熱試験の結果を示し、温度と線膨張率の関係を示す図表A chart showing the results of heat resistance tests of refractory bricks manufactured using the materials obtained by the treatment method of the embodiment, and showing the relationship between temperature and linear expansion rate.

この発明の実施形態を以下に添付図面を利用して説明する。
図1-4に示されるように、この発明の資材化処理方法に用いられる資材化処理装置(プラント)は、還元反応炉1を備えたものであり、還元反応炉1には、可燃性の一般廃棄物の焼却灰または廃プラスチックの微粉末に対し、金属不溶化剤が添加された微粉末状原料が供給可能な原料供給路2が接続されており、さらに燃焼ガス供給路3も接続されている。燃焼ガス供給路3には、可燃性ガスや石油などが燃焼した高温の燃焼ガスが加熱装置4(図4)から供給される。
An embodiment of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1-4, the materialization processing apparatus (plant) used in the materialization processing method of the present invention includes a reduction reaction furnace 1, and the reduction reaction furnace 1 is flammable. A raw material supply path 2 capable of supplying a fine powdered raw material to which a metal insolubilizer is added is connected to fine powder of incinerator ash or waste plastic of general waste, and a combustion gas supply path 3 is also connected. There is. A high-temperature combustion gas obtained by burning combustible gas, petroleum, or the like is supplied to the combustion gas supply path 3 from the heating device 4 (FIG. 4).

図示した方形状箱型の還元反応炉1は、鉄板製の外装板5の内側に重ねて、耐火性のある軽量骨材にアルミナセメントを配合した耐火コンクリート等のキャスタブル耐火物層6が被覆されており、その内側に耐火煉瓦7を隙間なく配置して還元反応室8を設け、その下方に燃焼室10を設けている。なお、符号9は還元反応炉1の組み立て(ボルト結合)に用いる鉄製縁枠である。 The illustrated square box-shaped reduction reactor 1 is superposed on the inside of an iron plate exterior plate 5 and is covered with a castable refractory layer 6 such as refractory concrete in which alumina cement is mixed with a fire-resistant lightweight aggregate. The refractory bricks 7 are arranged without gaps inside the reduction reaction chamber 8, and the combustion chamber 10 is provided below the reduction reaction chamber 8. Reference numeral 9 is an iron edge frame used for assembling (bolt coupling) the reduction reaction furnace 1.

還元反応炉1の内側の炉壁は、所定の金属系触媒とセラミック製耐火物が一体に構成された遠赤外線放射性素材である耐火煉瓦7が隙間なく配置され炉壁面が覆われている。 On the inner wall of the reduction reaction furnace 1, refractory bricks 7, which are far-infrared radioactive materials in which a predetermined metal catalyst and a ceramic refractory are integrally formed, are arranged without gaps and the furnace wall surface is covered.

前記した燃焼ガス供給路3は、還元反応炉1の下方に別途設けた燃焼室10に接続されており、図中の矢印で示されるように高温の燃焼ガスが還元反応室8の床面開口部から上向きに噴出する。そして、長方形筒状の耐熱金属製の吹き出し口11の上端の内向きの開口部から還元反応室8の中央に向かって燃焼ガスが噴出されるから、その気流は炉壁面に沿って還元反応室8内の隅々まで流れ、還元反応室8内の雰囲気を攪拌する。 The combustion gas supply path 3 described above is connected to a combustion chamber 10 separately provided below the reduction reaction furnace 1, and as shown by an arrow in the figure, high-temperature combustion gas opens on the floor of the reduction reaction chamber 8. It spouts upward from the part. Then, since the combustion gas is ejected from the inward opening at the upper end of the rectangular tubular heat-resistant metal outlet 11 toward the center of the reduction reaction chamber 8, the airflow flows along the furnace wall surface of the reduction reaction chamber. It flows to every corner of the 8 and stirs the atmosphere in the reduction reaction chamber 8.

還元反応炉1には、上部の蓋材に接続された原料供給路2から、焼却灰及び/又は廃プラスチックの微粉末に金属不溶化剤が添加された微粉末状の処理対象物(原料)が、図外のゲート弁の調整によって適量ずつ供給される。 In the reduction reaction furnace 1, a fine powder-like object (raw material) to which a metal insolubilizer is added to fine powder of incinerated ash and / or waste plastic is provided from the raw material supply path 2 connected to the upper lid material. , It is supplied in appropriate amounts by adjusting the gate valve (not shown).

還元反応炉1内では、燃焼ガスの熱伝導および加熱された耐火煉瓦7から放射される遠赤外線によって焼却灰及び廃プラスチックの微粉末の混合物が加熱されるが、その際に燃焼ガスの気流に乗って浮遊してエアロゾル状態の微粉末は、均等に効率よく加熱され、さらに耐火煉瓦7の表面に露出している金属系触媒に何度も接触しながら加熱される。 In the reduction reactor 1, a mixture of incinerator ash and fine powder of waste plastic is heated by the heat conduction of the combustion gas and the far infrared rays emitted from the heated refractory bricks 7, and at that time, the airflow of the combustion gas is generated. The fine powder that floats on the refractory and is in an aerosol state is heated evenly and efficiently, and is further heated while being in contact with the metal-based catalyst exposed on the surface of the refractory brick 7 many times.

このようにして実施形態の資材化処理装置を用いると、微粉末状の焼却灰及び廃プラスチックを、金属不溶化剤および金属系触媒に対してエアロゾル状態または乾式混合に相当する状態で接触させながら、還元雰囲気下における遠赤外線によって200~400℃に加熱することができる。 In this way, when the materialization treatment apparatus of the embodiment is used, the incinerator ash in the form of fine powder and the waste plastic are brought into contact with the metal insolubilizer and the metal-based catalyst in an aerosol state or a state corresponding to dry mixing. It can be heated to 200 to 400 ° C. by far infrared rays in a reducing atmosphere.

還元反応後の資材化処理物は、方形状の還元反応炉1の対向する2つの側壁面に沿って耐火煉瓦7製の床面に長方形状に開口する処理物出口12から燃焼室10の側部を経由し(別途設けた迂回路を経由してもよい。)、燃焼室10のキャスタブル耐火物層6で形成された床面に開口する処理物出口12からホッパー13内に落下して回収される。 The materialized processed product after the reduction reaction is located on the side of the combustion chamber 10 from the processed product outlet 12 which opens in a rectangular shape on the floor surface made of refractory bricks 7 along the two facing side wall surfaces of the rectangular reduction reaction furnace 1. It falls into the hopper 13 from the processed material outlet 12 that opens to the floor surface formed by the castable refractory layer 6 of the combustion chamber 10 and is collected via the section (may be via a detour provided separately). Will be done.

図4に示すように可燃性の一般廃棄物及びその焼却灰を微粉末化するには、一般廃棄物が収容室(ピット)14からコンベア15で搬送される際、必要に応じて磁力で磁性金属類を除去してから、段階的に細かく所要数の破砕機16を経由させて粉末化し、さらに一次乾燥機17を経由した後、微粉砕機18で粒径100~150μmの微粉末状に粒径を調整することが好ましい。
微粉砕機18には、予め別途焼成された一般廃棄物の焼却灰が導入路18aから適宜に供給される。
As shown in FIG. 4, in order to pulverize combustible general waste and its incineration ash, when the general waste is transported from the storage chamber (pit) 14 by the conveyor 15, magnetic force is applied as necessary. After removing the metals, the powder is pulverized step by step through the required number of crushers 16 and then passed through the primary dryer 17, and then the pulverizer 18 is used to form a fine powder having a particle size of 100 to 150 μm. It is preferable to adjust the particle size.
Incinerator ash of general waste, which has been separately fired in advance, is appropriately supplied to the fine pulverizer 18 from the introduction path 18a.

微粉砕機18からの搬出物には、その搬送路に敷設された混合器19において金属不溶化剤などの添加剤が添加されると共に攪拌及び混合され、必要に応じてロータリー二次乾燥機20で水分量6%を目安にして5~7%程度に調整された後、還元反応炉1に供給される。 Additives such as a metal insolubilizer are added to the material to be carried out from the fine pulverizer 18 in the mixer 19 laid in the transport path, and the mixture is stirred and mixed, and if necessary, the rotary secondary dryer 20 is used. After adjusting the water content to about 5 to 7% with 6% as a guide, it is supplied to the reduction reaction furnace 1.

なお、搬送路に用いるコンベアは、被搬送物を密閉状態で搬送可能な密封型スクリューコンベアを採用することが粉塵等の飛散防止のために好ましく、また最終加熱後に得られた資材は、水冷式のスクリューコンベア21で冷却されながら、処理物貯留槽22に収容され、適宜に資材として利用されることが好ましい。 As the conveyor used for the transport path, it is preferable to use a sealed screw conveyor that can transport the object to be transported in a sealed state in order to prevent the scattering of dust and the like, and the material obtained after the final heating is a water-cooled type. It is preferable that the product is stored in the processed material storage tank 22 while being cooled by the screw conveyor 21 of the above, and is appropriately used as a material.

上記微粉末状の焼却灰は、都市ごみなどの一般廃棄物が、800℃以上の燃焼により炭素化された焼却灰であり、通常は一般廃棄物由来の焼却灰を用いることができる。
このような焼却灰に比較的多くの含まれる可能性が高い有機物は、例えばプラスチック類、ゴム類、紙類、厨芥類、繊維類、木や竹類などである。
The fine powdered incinerator ash is an incinerator in which general waste such as municipal waste is carbonized by combustion at 800 ° C. or higher, and incinerator ash derived from general waste can be usually used.
Organic substances that are likely to be contained in a relatively large amount in such incinerator ash are, for example, plastics, rubbers, papers, kitchen ash, fibers, wood and bamboo.

上記有機物の焼却灰に含まれる酸化物や炭化物等またはそれに含まれる元素は、炭素(C)、酸素(O)、水素(H)、窒素(N)、硫黄(S)、塩素(Cl)等の非金属元素、また鉄(Fe)、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、マンガン(Mn)、ニッケル(Ni)、錫(Sn)、鉛(Pb)等の金属元素が代表的なものである。 The oxides and carbides contained in the incineration ash of the organic substances or the elements contained therein are carbon (C), oxygen (O), hydrogen (H), nitrogen (N), sulfur (S), chlorine (Cl) and the like. Non-metal elements such as iron (Fe), aluminum (Al), copper (Cu), zinc (Zn), manganese (Mn), nickel (Ni), tin (Sn), lead (Pb), etc. It is a typical one.

上記微粉末状の焼却灰としては、粒径100~150μmの微粉末状に調整された焼却灰を用いることが遠赤外線による加熱効率がよいので好ましく、また遠赤外線が焼却灰に対し、さらに効率よく加熱作用を及ぼすように、焼却灰に含まれる水分含有率6質量%を最適な値として5~7質量%程度の範囲に調整することが好ましい。 As the fine powder incinerator ash, it is preferable to use incinerator ash adjusted to have a particle size of 100 to 150 μm because the heating efficiency by far infrared rays is good, and far infrared rays are more efficient than incinerator ash. It is preferable to adjust the water content of 6% by mass contained in the incinerator ash to an optimum value in the range of about 5 to 7% by mass so as to exert a good heating action.

焼却灰が、粒径100μm未満の微粉末では、粉末の調製作業が容易ではなくなり、資材化処理効率がかなり低下するので好ましくない。また粒径150μmを超える大粒径の焼成灰は、金属系触媒の作用が充分でなくなるためか、遠赤外線による加熱反応を効率よく行うことが困難になる。 If the incinerated ash is a fine powder having a particle size of less than 100 μm, the powder preparation work becomes difficult and the materialization treatment efficiency is considerably lowered, which is not preferable. Further, in the case of calcined ash having a large particle size exceeding 150 μm, it becomes difficult to efficiently carry out a heating reaction by far infrared rays, probably because the action of the metal-based catalyst is insufficient.

この発明に用いられる金属不溶化剤は、焼却灰に含まれる金属を硫化して非水溶性で安定した硫化金属化合物を生成可能な周知の金属不溶化剤である。 The metal insolubilizer used in the present invention is a well-known metal insolubilizer capable of sulfurizing a metal contained in incinerator ash to produce a water-insoluble and stable metal sulfide compound.

このような金属不溶化剤としては、硫酸カリウム(K2SO4)、塩化カリウム(KCl)、硫酸ナトリウム(Na2SO4)、ケイ酸ナトリウム(Na2SiO3・nH2O)、硫化ナトリウム(Na2S・5H20)、塩化カルシウム(CaCl2)、炭酸カルシウム(CaCO3)、水酸化ナトリウム(Ca(OH)2)、石膏(Na2SO42H2O)、塩化アンモニウム(NH4Cl)、硫化鉄(FeS2)などが例示されるが、このうち硫酸カリウムおよび硫酸ナトリウムなどの硫化物系の金属不溶化剤が特に好ましい。 Examples of such metal insolubilizers include potassium sulfate (K 2 SO 4 ), potassium chloride (KCl), sodium sulfate (Na 2 SO 4 ), sodium silicate (Na 2 SiO 3 · nH 2 O), and sodium sulfide (Na 2 SiO 3 · nH 2 O). Na 2 S ・ 5H 20 ), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), sodium hydroxide (Ca (OH) 2 ), gypsum (Na 2 SO 4 2H 2 O), ammonium chloride (NH 4 ) Cl), iron sulfide (FeS 2 ) and the like are exemplified, and among these, sulfide-based metal insolubilizers such as potassium sulfate and sodium sulfate are particularly preferable.

この発明に用いる金属系触媒は、前記焼却灰に含まれる金属または金属酸化物などの金属触媒及び金属酸化物触媒などであり、一般廃棄物由来の重金属等が含まれており、通常は複数の異種金属の混合された組成物である。 The metal-based catalyst used in the present invention is a metal catalyst such as a metal or a metal oxide contained in the incineration ash, a metal oxide catalyst, and the like, and includes heavy metals derived from general waste and the like, and usually has a plurality of metals. It is a composition in which dissimilar metals are mixed.

このような金属系触媒を構成する成分の具体例としては、酸化鉄(Fe34)、助触媒として酸化カリウム(K2O)(0.5~1.5%)、アルミナ(Al23)(2~4%)、酸化カルシウム(CaO)(1~3%)、シリカ(SiO2)(0.2~1%)、酸化マグネシウム(MgO)(0.2~4%)などが挙げられ、重金属は酸化物、水酸化物、硫酸化物、硫化物、リン化物等の形態で含まれる。 Specific examples of the components constituting such a metal-based catalyst include iron oxide (Fe 3 O 4 ), potassium oxide (K 2 O) (0.5 to 1.5%) as an auxiliary catalyst, and alumina (Al 2 ). O 3 ) (2-4%), calcium oxide (CaO) (1-3%), silica (SiO 2 ) (0.2-1%), magnesium oxide (MgO) (0.2-4%), etc. The heavy metal is contained in the form of oxides, hydroxides, sulfates, sulfides, phosphates and the like.

金属元素の中の遷移金属である鉄、コバルト、ニッケル、銅および白金属と云われるルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金は、水素分子を解離し、水素原子にして活性化を高めるので、触媒の成分として含まれることが好ましいものである。因みに、水素分子を解離するエネルギーは、約450キロジュールのエネルギーであるが、水素原子はNi、Pd、Ptなどの表面上では、室温で容易に解離してNi、Pd、Pt上に吸着する。この解離をさせる原動力は金属表面の水素原子に対する化学親和力である。 The transition metals among the metal elements such as iron, cobalt, nickel, copper and white metals such as ruthenium, rhodium, palladium, osmium, iridium and platinum dissociate hydrogen molecules into hydrogen atoms and enhance their activation. , It is preferable that it is contained as a component of a catalyst. Incidentally, the energy for dissociating hydrogen molecules is about 450 kilojoules, but hydrogen atoms are easily dissociated at room temperature on the surface of Ni, Pd, Pt, etc. and adsorbed on Ni, Pd, Pt. .. The driving force for this dissociation is the chemical affinity for hydrogen atoms on the metal surface.

解離した水素原子は、反応性に富むので、金属表面に近づいてくる炭化水素(エチレンやプロピレンなど)に付加し、また炭素と酸素の化合物など有機化合物にも付加して水素化物を生成する。また、白金属やFe、Co、Niは、炭化水素のC-H結合を解離して水素化分解をさせる。このように触媒は、金属分子を活性のある金属原子にして、化学反応を熱源に頼らずに促進する力を有している。 Since the dissociated hydrogen atom is highly reactive, it is added to a hydrocarbon (ethylene, propylene, etc.) approaching the metal surface, and also to an organic compound such as a compound of carbon and oxygen to form a hydride. Further, white metal, Fe, Co, and Ni dissociate the CH bond of the hydrocarbon and cause hydrocracking. As described above, the catalyst has the ability to turn a metal molecule into an active metal atom and promote a chemical reaction without relying on a heat source.

また焼却灰の中には、典型元素が多く、遷移元素は少ない。遷移金属のTi、V、Cr、Mn、Fe、Cu、Znなどは酸素との結合が強すぎて金属酸化物となってしまうため、酸素量を6%程度に減らすことが好ましい。 Incinerator ash has many typical elements and few transition elements. Since the transition metals Ti, V, Cr, Mn, Fe, Cu, Zn and the like have too strong a bond with oxygen and become a metal oxide, it is preferable to reduce the amount of oxygen to about 6%.

遷移金属酸化物は、酸化に活性を示すものと、脱水素に活性を示すものに分けられる。Fe23、Cr23は、水素分子が存在していても金属状態に還元されないので脱水素に対して良い触媒となる。 Transition metal oxides are divided into those that are active in oxidation and those that are active in dehydrogenation. Fe 2 O 3 and Cr 2 O 3 are good catalysts for dehydrogenation because they are not reduced to the metallic state even in the presence of hydrogen molecules.

焼却灰中のCrは、CrO3の三酸化クロムで水に溶け易い化合物なので水素との反応で水酸化クロムとなり、水酸化クロムの燃焼行程により安定不溶化の三酸化二クロム化合物となる。SiO2、Al23、MgOなどの典型金属酸化物は、反応分子と酸塩基相互作用をし、反応分子にプロトンを与え、反応分子がプロトンを引き抜いて分子を活性化する。
上記金属系触媒が、セラミック製の耐火物と一体に設けられた金属系触媒であることは、この発明の廃棄物の資材化処理方法において好ましい態様である。
Cr in the incinerated ash is a chromium trioxide trioxide of CrO 3 , which is easily dissolved in water, so that it becomes chromium hydroxide by the reaction with hydrogen, and becomes a stable insolubilized dichromium trioxide compound by the combustion process of chromium hydroxide. Typical metal oxides such as SiO 2 , Al 2 O 3 , and MgO have an acid-base interaction with the reaction molecule, give a proton to the reaction molecule, and the reaction molecule abstracts the proton to activate the molecule.
It is a preferable aspect in the waste materialization treatment method of the present invention that the metal-based catalyst is a metal-based catalyst provided integrally with a ceramic refractory.

この発明に採用される還元雰囲気は、外気との絶縁された脱酸素状態で加熱する際の雰囲気をいい、還元雰囲気で満たされる還元反応炉内の加熱温度は200~400℃であり、所定の遠赤外線放射性素材で形成された還元反応炉で遠赤外線が発生し、その作用が顕著であるように250℃~400℃の範囲で20~60分程度加熱することが好ましい。 The reducing atmosphere adopted in the present invention refers to an atmosphere when heating in a deoxidized state isolated from the outside air, and the heating temperature in the reduction reaction furnace filled with the reducing atmosphere is 200 to 400 ° C., which is predetermined. Far-infrared rays It is preferable to heat in a range of 250 ° C. to 400 ° C. for about 20 to 60 minutes so that far-infrared rays are generated in a reduction reaction furnace made of a radioactive material and the action is remarkable.

焼却灰を低酸素雰囲気下で加熱処理する際、微細な焼却灰が供給される雰囲気下で遠赤外線による加熱(200~400℃)が行なわれ、焼却灰中に存在する可能性のある塩化水素やダイオキシン類は脱塩素化して分解される。
すなわち、酸化雰囲気下ではダイオキシン類は前駆体物質等から焼却灰中の塩化物、炭素等と反応して300℃付近で多く生成されるが、特定の触媒に接触する還元雰囲気下では遠赤外線を利用して200~400℃に加熱すれば、塩化水素やダイオキシン類は分解される。
When the incinerator ash is heat-treated in a low oxygen atmosphere, it is heated by far infrared rays (200 to 400 ° C.) in an atmosphere where fine incinerator ash is supplied, and hydrogen chloride that may be present in the incinerator ash. And dioxins are dechlorinated and decomposed.
That is, in an oxidizing atmosphere, dioxins are produced in large quantities from precursor substances and the like by reacting with chlorides, carbons, etc. in incinerator ash at around 300 ° C., but far infrared rays are emitted in a reducing atmosphere in contact with a specific catalyst. If it is used and heated to 200 to 400 ° C., hydrogen chloride and dioxins are decomposed.

この発明に利用する遠赤外線は、還元反応炉内の炉壁が、前記した金属系触媒とセラミック製耐火物が一体に構成された遠赤外線放射性素材で形成されており、前記した所定温度に加熱することによって発生させることができる。 In the far-infrared ray used in the present invention, the furnace wall in the reduction reaction furnace is formed of the far-infrared ray radioactive material in which the metal-based catalyst and the ceramic refractory are integrally formed, and is heated to the above-mentioned predetermined temperature. It can be generated by doing.

遠赤外線放射性素材は、セラミック製の耐火煉瓦を例示したが、ある程度の耐火性があれば特に素材を問わずに通常の煉瓦を採用してもよい。周知の耐火煉瓦の主成分となる材料としては、アルミナやシリカを含む粘土である。 As the far-infrared radioactive material, ceramic refractory bricks are exemplified, but ordinary bricks may be adopted regardless of the material as long as they have a certain degree of refractory resistance. The main component of well-known refractory bricks is clay containing alumina and silica.

通常のレンガは、泥、シルト、シェールなどの一次鉱物及び粘土から作られ、耐火レンガはその成分の殆どが粘土のような二次鉱物で作られている。
例えば、国内産の蛙目粘土や木節粘土と通称される粘土材料が耐火レンガを作るための材料として容易に入手でき、これらの粘土に大量の水を混ぜで不純物を取り除いてから、前記した所定の金属系触媒を1~10質量%程度混合し、布の上で一定の厚みにしたシート状のものを数日かけて水気を切り、型抜きして長方形状に整えた状態で乾燥させ、その後に焼成炉内で焼成して、耐火煉瓦を調製する。
Ordinary bricks are made from primary minerals such as mud, silt and shale and clay, and refractory bricks are mostly made from secondary minerals such as clay.
For example, domestically produced clay materials commonly known as frogme clay and wood-brush clay are easily available as materials for making refractory bricks, and a large amount of water is mixed with these clays to remove impurities, and then the above-mentioned A predetermined metal-based catalyst is mixed in an amount of about 1 to 10% by mass, and a sheet of clay having a certain thickness is drained over several days, punched out, and dried in a rectangular shape. After that, refractory bricks are prepared by firing in a firing furnace.

また、このような耐火煉瓦等は、金属系触媒とセラミック製耐火物が粉体材料の状態で混合されたことにより一体に構成されたものであるが、セラミック製耐火物の表面に金属系触媒とセラミック材料からなるバインダーとの混合物をコーティングし、焼成により耐火物と一体にした複合物であってもよく、金属系触媒とセラミック製耐火物をそれぞれ層状に積み重ねて焼成した積層体とすることもできる。 Further, such refractory bricks and the like are integrally formed by mixing a metal-based catalyst and a ceramic refractory material in the state of a powder material, but the metal-based catalyst is formed on the surface of the ceramic refractory material. It may be a composite in which a mixture of ceramic and a binder made of a ceramic material is coated and integrated with a refractory by firing, and a metal catalyst and a ceramic refractory are stacked in layers to form a laminated body. You can also.

このようにして得られる遠赤外線放射性素材から放射される遠赤外線は、波長3μm以上、好ましくは波長4μm以上の電磁波であり、一般的には波長3μm以上、1mm以下の領域の電磁波は遠赤外線と呼ばれる。
上記した耐火煉瓦等の遠赤外線放射性素材は、200~600℃に加熱されると波長2.5μm~30μm程度の遠赤外線を放射可能である。
The far-infrared rays radiated from the far-infrared radioactive material thus obtained are electromagnetic waves having a wavelength of 3 μm or more, preferably a wavelength of 4 μm or more, and generally electromagnetic waves in a region having a wavelength of 3 μm or more and 1 mm or less are referred to as far-infrared rays. Called.
The far-infrared radioactive material such as refractory bricks described above can emit far-infrared rays having a wavelength of about 2.5 μm to 30 μm when heated to 200 to 600 ° C.

なお、ごみは焼却すると約850℃の燃焼熱を発生する。ごみ1tの発熱量は2000~3000kcal/kgのエネルギー価値があり、電力として420~630kwhが得られる。
上記実施形態においても還元反応炉内から、フィルターを経由して排出される排ガスを処理する際に、燃焼熱を排ガス処理装置に導入してもよい。すなわち、排ガスを廃熱ボイラで冷却し、蒸気として熱回収し、廃熱ガスにより発電設備を設置することも可能である。
When waste is incinerated, it generates combustion heat of about 850 ° C. The calorific value of 1 ton of waste has an energy value of 2000 to 3000 kcal / kg, and 420 to 630 kwh of electric power can be obtained.
Also in the above embodiment, the heat of combustion may be introduced into the exhaust gas treatment apparatus when the exhaust gas discharged from the reduction reaction furnace via the filter is treated. That is, it is also possible to cool the exhaust gas with a waste heat boiler, recover the heat as steam, and install a power generation facility with the waste heat gas.

廃プラスチックの微粉末状の破砕物に対し、一般廃棄物焼却灰の微粉末(平均粒径120μm)及び硫化物系金属不溶化剤(硫酸カリウムおよび硫酸ナトリウム)を約5質量%程度混合し、上記実施形態で図示した構造の還元反応炉1に供給し、資材化処理を行なった。
還元反応炉1の炉壁は、酸化鉄及びアルミナを含む金属系触媒を5%程度含有する耐火煉瓦で形成し、炉壁を250~400℃に加熱して還元雰囲気下で遠赤外線による資材化処理を行なった。
得られた資材に対し、重金属の溶出試験(昭和48年環境庁告示第13号「産業廃棄物に含まれる金属等の検定方法」)の分析結果を以下の表1に示した。
About 5% by mass of a fine powder of general waste incineration ash (average particle size 120 μm) and a sulfide-based metal insolubilizer (potassium sulfate and sodium sulfate) are mixed with the fine powder of waste plastic, and the above It was supplied to the reduction reaction furnace 1 having the structure shown in the embodiment and treated as a material.
The furnace wall of the reduction reactor 1 is made of refractory bricks containing about 5% of a metal catalyst containing iron oxide and alumina, and the furnace wall is heated to 250 to 400 ° C. and used as a material by far infrared rays in a reducing atmosphere. Processing was performed.
The analysis results of the heavy metal elution test (Notification No. 13 of the Environment Agency, 1973, "Testing method for metals contained in industrial waste") for the obtained materials are shown in Table 1 below.

Figure 2022006620000002
Figure 2022006620000002

表1の結果からも明らかなように、いずれの重金属も溶出することなく不検出または基準値以下の結果であり、資材中の金属が非水溶性で安全性の高い状態になっていることが確認できた。 As is clear from the results in Table 1, none of the heavy metals were eluted and the results were not detected or below the standard value, and the metals in the material were in a water-insoluble and highly safe state. It could be confirmed.

また、得られた資材を用いたセラミック製品の耐火煉瓦を製造し、その耐熱性を50℃から1180℃までの線膨張率の温度変化で調べ、結果を図5に示した。
図5に示される結果からも明らかなように、試験対象の耐火煉瓦(長さ85.54mm)は、1000℃まで熱線膨張率が-0.2~0.2%の範囲で安定しており、充分に使用に耐える耐火煉瓦であることが認められた。
Further, refractory bricks of ceramic products using the obtained materials were manufactured, and their heat resistance was investigated by the temperature change of the linear expansion rate from 50 ° C. to 1180 ° C., and the results are shown in FIG.
As is clear from the results shown in FIG. 5, the refractory bricks (length 85.54 mm) to be tested are stable in the heat ray expansion rate range of -0.2 to 0.2% up to 1000 ° C. , It was recognized that the refractory bricks can be used sufficiently.

このようにこの発明の資材化処理方法及びその装置により、セラミック系資資材が得られ、そのような資材中の金属は非水溶性で安全性の高い状態となり、250~400℃という比較的低温で効率よく焼却灰等の廃棄物の再資源化の処理が可能であることが確かめられた。 As described above, the materialization treatment method of the present invention and the apparatus thereof can obtain ceramic materials, and the metal in such materials becomes water-insoluble and highly safe, and has a relatively low temperature of 250 to 400 ° C. It was confirmed that it is possible to efficiently recycle waste such as incineration ash.

また、上記の実施形態の資材化処理方法で得られた焼却灰の資材を用いて、粒状の土壌改良剤(ミネラル系肥料)を製造し、その性能を調べたところ、農作物のタマネギ、カボチャ、枝豆、スイカ、イネについてブランク(同肥料無添加)のものに対して、顕著に大きく成長し、良好な生育状態が得られた。 Further, when a granular soil conditioner (mineral fertilizer) was produced using the incineration ash material obtained by the materialization treatment method of the above embodiment and its performance was examined, onions, pumpkins, and agricultural crops were found. Green soybeans, watermelons, and rice grew significantly larger than those blank (without the addition of the same fertilizer), and good growth conditions were obtained.

1 還元反応炉
2 原料供給路
3 燃焼ガス供給路
4 加熱装置
5 外装板
6 キャスタブル耐火物層
7 耐火煉瓦
8 還元反応室
9 鉄製縁枠
10 燃焼室
11 吹き出し口
12 処理物出口
13 ホッパー
14 収容室
15 コンベア
16 破砕機
17 一次乾燥機
18 微粉砕機
18a 導入路
19 混合器
20 ロータリー二次乾燥機
21 スクリューコンベア
22 処理物貯留槽
1 Reduction reaction furnace 2 Raw material supply path 3 Combustion gas supply path 4 Heating device 5 Exterior plate 6 Castable refractory layer 7 Refractory bricks 8 Reduction reaction chamber 9 Iron edge frame 10 Combustion chamber 11 Outlet 12 Outlet 12 Hopper 14 Storage chamber 15 Refractory 16 Crusher 17 Primary dryer 18 Fine crusher 18a Introductory path 19 Mixer 20 Rotary secondary dryer 21 Screw conveyor 22 Processed material storage tank

Claims (5)

廃棄物の焼却灰または廃プラスチックを微粉末化し、金属不溶化剤および金属系触媒に接触させながら還元雰囲気下で遠赤外線によって200~400℃に加熱する工程を必須工程とし、前記金属系触媒が前記焼却灰に含まれる金属由来の金属系触媒である廃棄物の資材化処理方法。 The essential step is to pulverize the incinerated ash or waste plastic of the waste and heat it to 200 to 400 ° C. with far infrared rays in a reducing atmosphere while in contact with the metal insolubilizer and the metal-based catalyst. The metal-based catalyst is the above-mentioned. A method for materializing waste, which is a metal-based catalyst derived from metal contained in incineration ash. 上記焼却灰が、水分含有率5~7質量%の焼却灰である請求項1に記載の廃棄物の資材化処理方法。 The method for materializing waste according to claim 1, wherein the incinerated ash is incinerated ash having a water content of 5 to 7% by mass. 上記廃棄物の資材化処理が、焼却灰のセラミック資材化処理である請求項1または2に記載の廃棄物の資材化処理方法。 The waste materialization treatment method according to claim 1 or 2, wherein the waste materialization treatment is a ceramic materialization treatment of incineration ash. 上記焼却灰が、一般廃棄物の焼却灰である請求項1~3のいずれかに記載の廃棄物の資材化処理方法。 The method for materializing waste according to any one of claims 1 to 3, wherein the incineration ash is incineration ash of general waste. 請求項1に記載の廃棄物の資材化処理方法に用いられる資材化処理装置であり、可燃性の一般廃棄物及びその焼却灰の微粉末に対し、金属不溶化剤が添加された微粉末状原材料が供給可能な供給路、および燃焼ガスの供給路が接続された還元反応炉を備え、この還元反応炉の炉壁は、所定の金属系触媒とセラミック製耐火物が一体に構成された遠赤外線放射性素材からなり、前記金属系触媒が前記焼却灰に含まれる金属由来の金属系触媒である廃棄物の資材化処理装置。 It is a materialization treatment apparatus used in the materialization treatment method for waste according to claim 1, and is a fine powder raw material to which a metal insolubilizer is added to fine powder of combustible general waste and its incineration ash. It is equipped with a reduction reactor to which a supply path can be supplied and a supply path for combustion gas are connected. A waste materialization treatment apparatus made of a radioactive material, wherein the metal-based catalyst is a metal-based catalyst derived from a metal contained in the incineration ash.
JP2020108961A 2020-06-24 2020-06-24 Processing method for recycling wastes to useful materials Pending JP2022006620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020108961A JP2022006620A (en) 2020-06-24 2020-06-24 Processing method for recycling wastes to useful materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020108961A JP2022006620A (en) 2020-06-24 2020-06-24 Processing method for recycling wastes to useful materials

Publications (1)

Publication Number Publication Date
JP2022006620A true JP2022006620A (en) 2022-01-13

Family

ID=80110760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108961A Pending JP2022006620A (en) 2020-06-24 2020-06-24 Processing method for recycling wastes to useful materials

Country Status (1)

Country Link
JP (1) JP2022006620A (en)

Similar Documents

Publication Publication Date Title
Coutand et al. Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications
US4882067A (en) Process for the chemical bonding of heavy metals from sludge in the silicate structure of clays and shales and the manufacture of building and construction materials therewith
JP5194297B2 (en) Asbestos modification method
JP4460387B2 (en) Waste and pollutant reduction and detoxification methods and equipment
JPH11246247A (en) Cement producing device
CN106892601B (en) Non-sintered garbage tailing brick and preparation process thereof
WO2002049780A1 (en) Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them
JP2022006620A (en) Processing method for recycling wastes to useful materials
JP4150801B2 (en) Processing method and apparatus for detoxifying and recycling incineration ash
EP4101551A1 (en) Recycling system for general waste including waste plastic, recycling method for general waste, and far-infrared catalytic reduction apparatus for use in recycling system for general waste
JP4150800B2 (en) Processing method and apparatus for detoxification and recycling of incinerated ash at low temperature
Barros MSW ash
EP2650057B1 (en) Method for the inertisation of heavy metals, chlorides and other salt-forming compounds and soluble solids and metallic contaminations
Brooks et al. Thermal treatment of spent potliner in a rotary kiln
JP5583359B2 (en) Detoxification equipment for asbestos products
VALANČIENĖ Utilization of meat and bone meal bottom ash in ceramics
JP2000005730A (en) Treatment for detoxifying/recycling of incinerate ash and device therefor
JP5378901B2 (en) Refractory brick manufacturing method and fireproof brick made from asbestos detoxified material
JP3971813B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JPH0760229A (en) Treatment of incineration ash of combustible waste
JP3963003B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JP2022037715A (en) Waste regeneration material produced from waste combustible material, and production method and production apparatus thereof
JP2010247046A (en) Method of detoxifying asbestos-containing material whose raw material is asbestos
JP5955653B2 (en) Method for reducing hexavalent chromium elution amount in fired product and method for producing fired product
JPH11278887A (en) Production of cement clinker