JP2022001750A - Sub chamber type diesel engine - Google Patents

Sub chamber type diesel engine Download PDF

Info

Publication number
JP2022001750A
JP2022001750A JP2020106910A JP2020106910A JP2022001750A JP 2022001750 A JP2022001750 A JP 2022001750A JP 2020106910 A JP2020106910 A JP 2020106910A JP 2020106910 A JP2020106910 A JP 2020106910A JP 2022001750 A JP2022001750 A JP 2022001750A
Authority
JP
Japan
Prior art keywords
chamber
sub
heat shield
nozzle portion
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020106910A
Other languages
Japanese (ja)
Inventor
洋樹 尾曽
Hiroki Oso
貢 奥田
Mitsugi Okuda
雄介 宮田
Yusuke Miyata
祐次 篠原
Yuji Shinohara
新吾 松延
Shingo Matsunobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2020106910A priority Critical patent/JP2022001750A/en
Publication of JP2022001750A publication Critical patent/JP2022001750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

To provide a sub chamber type diesel engine capable of preventing a nozzle part 4a of a fuel injector 4 from being overheated.SOLUTION: In a sub chamber type diesel engine, a nozzle part accommodating chamber 3a comprises a heat shield wall 3b that covers a tip surface 4b of a nozzle part 4a; the heat shield wall 3b is composed of a thick wall that comprises an injection fuel passage hole 3c and is continuous with the surrounding sub-chamber peripheral wall 2a; the nozzle part accommodating chamber 3a comprises a heat shield space 3d between the tip surface 4b of the nozzle part 4a and the heat shield wall 3b; and the heat shield space 3d communicates with a sub chamber 2 via the injection fuel passage hole 3c.SELECTED DRAWING: Figure 1

Description

本発明は、副室式ディーゼルエンジンに関し、詳しくは、燃料インジェクタのノズル部が過熱し難い副室式ディーゼルエンジンに関する。 The present invention relates to a sub-chamber diesel engine, and more particularly to a sub-chamber diesel engine in which the nozzle portion of a fuel injector is unlikely to overheat.

従来、シリンダヘッド内に設けられた副室と、副室に向けてシリンダヘッドを貫通するインジェクタ挿通孔と、インジェクタ挿通孔に挿通された燃料インジェクタと、燃料インジェクタのノズル部を収容するインジェクタ挿通孔のノズル部収容部を備えた、副室式ディーゼルエンジンがある(例えば、特許文献1参照)。 Conventionally, a sub chamber provided in the cylinder head, an injector insertion hole penetrating the cylinder head toward the sub chamber, a fuel injector inserted through the injector insertion hole, and an injector insertion hole for accommodating the nozzle portion of the fuel injector. There is a sub-chamber diesel engine provided with a nozzle housing (see, for example, Patent Document 1).

特開2000−345940号公報(図1,2参照)Japanese Unexamined Patent Publication No. 2000-345940 (see FIGS. 1 and 2)

《問題点》
特許文献1のエンジンでは、燃料インジェクタのノズル部を覆う防熱キャップを備えているため、シリンダヘッドと別部品である防熱キャップの熱は、シリンダヘッドに伝わり難く、防熱キャップが高温になり、燃料インジェクタのノズル部が過熱し易い。
"problem"
Since the engine of Patent Document 1 is provided with a heat shield cap that covers the nozzle portion of the fuel injector, the heat of the heat shield cap, which is a separate component from the cylinder head, is not easily transferred to the cylinder head, the heat shield cap becomes hot, and the fuel injector becomes hot. The nozzle part of the engine tends to overheat.

本発明の課題は、燃料インジェクタのノズル部が過熱し難い副室式ディーゼルエンジンを提供することにある。 An object of the present invention is to provide a sub-chamber diesel engine in which the nozzle portion of the fuel injector is less likely to overheat.

本願発明の主要な構成は、次の通りである。
図1〜3に例示するように、ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)を覆う防熱壁(3b)を備え、防熱壁(3b)は、噴射燃料通過孔(3c)を備えると共に、周囲の副室内周壁(2a)と連続するシリンダヘッド(1)の肉壁で構成され、
ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)と防熱壁(3b)の間に防熱空間(3d)を備え、防熱空間(3d)は、噴射燃料通過孔(3c)を介して副室(2)と連通している、ことを特徴とする副室式ディーゼルエンジン。
The main configurations of the present invention are as follows.
As illustrated in FIGS. 1 to 3, the nozzle portion accommodating chamber (3a) includes a heat shield wall (3b) that covers the tip surface (4b) of the nozzle portion (4a), and the heat shield wall (3b) allows injection fuel to pass through. It is provided with a hole (3c) and is composed of a wall of a cylinder head (1) that is continuous with the surrounding sub-chamber peripheral wall (2a).
The nozzle portion accommodating chamber (3a) is provided with a heat shield space (3d) between the tip surface (4b) of the nozzle portion (4a) and the heat shield wall (3b), and the heat shield space (3d) is an injection fuel passage hole (3c). A sub-chamber diesel engine characterized in that it communicates with the sub-chamber (2) via).

本願発明は、次の効果を奏する。
《効果1》 燃料インジェクタ(4)のノズル部(4a)が過熱し難い。
このエンジンでは、図1〜3に示すように、ノズル部(4a)の先端面(4b)を覆う防熱壁(3b)は、周囲の副室内周壁(2a)と連続するシリンダヘッド(1)の肉壁で構成されているため、防熱壁(3b)の熱が、シリンダヘッド(1)に放熱され、防熱壁(3b)が高温にならず、燃料インジェクタ(4)のノズル部(4a)が過熱し難い。
The invention of the present application has the following effects.
<< Effect 1 >> The nozzle portion (4a) of the fuel injector (4) is unlikely to overheat.
In this engine, as shown in FIGS. 1 to 3, the heat shield wall (3b) covering the tip surface (4b) of the nozzle portion (4a) is a cylinder head (1) continuous with the surrounding sub-chamber peripheral wall (2a). Since it is composed of a wall, the heat of the heat shield wall (3b) is dissipated to the cylinder head (1), the heat shield wall (3b) does not become hot, and the nozzle portion (4a) of the fuel injector (4) becomes hot. It is hard to overheat.

《効果2》 ノズル部(4a)の過熱抑制機能が高い。
このエンジンでは、図1〜3に示すノズル部(4a)の過熱抑制機能が高い。その理由は、次のように推定される。
このエンジンでは、圧縮上死点付近で副室(2)内に発生した高圧の燃焼ガスが、噴射燃料通過孔(3c)から防熱空間(3d)に高速で流入しようとするため、噴射燃料通過孔(3c)を通過する燃焼ガスの圧力損失が大きくなり、燃焼ガスの防熱空間(3d)への流入が抑制され、防熱空間(3d)内に比較的多くの後述する低温の空気が残留し、この低温の空気の断熱作用で、防熱壁(3b)からノズル部(4a)の先端面(4b)への熱伝達が抑制される。そして、燃焼行程中に防熱空間(3d)内で昇温した比較的低圧の高温空気が、排気行程や吸気行程で、噴射燃料通過孔(3c)から副室(2)に低速で流出しようとするため、噴射燃料通過孔(3c)を通過する高温空気の圧力損失が小さくなり、高温空気の副室(2)への流出が促進される。そして、圧縮行程前半に、主燃焼室(9)から副室(2)内に押し込まれた比較的低圧の低温空気が噴射燃料通過孔(3c)から防熱空間(3d)に低速で流入しようとするため、噴射燃料通過孔(3c)を通過する低温空気の圧力損失が小さくなり、低温空気の防熱空間(3d)への流入が促進される。このため、防熱空間(3d)の高温空気と副室(2)の低温空気の交換が促進され、低温空気でノズル部(4a)が強力に冷却され、ノズル部(4a)の過熱が抑制される。
<< Effect 2 >> The overheat suppression function of the nozzle portion (4a) is high.
In this engine, the overheat suppression function of the nozzle portion (4a) shown in FIGS. 1 to 3 is high. The reason is presumed as follows.
In this engine, the high-pressure combustion gas generated in the sub chamber (2) near the compression top dead point tries to flow into the heat shield space (3d) from the injection fuel passage hole (3c) at high speed, so that the injection fuel passes. The pressure loss of the combustion gas passing through the hole (3c) becomes large, the inflow of the combustion gas into the heat shield space (3d) is suppressed, and a relatively large amount of low-temperature air described later remains in the heat shield space (3d). Due to the heat insulating action of this low temperature air, heat transfer from the heat insulating wall (3b) to the tip surface (4b) of the nozzle portion (4a) is suppressed. Then, the relatively low-pressure high-temperature air heated in the heat-shielding space (3d) during the combustion stroke tries to flow out from the injection fuel passage hole (3c) to the sub chamber (2) at a low speed in the exhaust stroke and the intake stroke. Therefore, the pressure loss of the high-temperature air passing through the injection fuel passage hole (3c) is reduced, and the outflow of the high-temperature air to the sub-chamber (2) is promoted. Then, in the first half of the compression stroke, relatively low-pressure low-temperature air pushed from the main combustion chamber (9) into the sub chamber (2) tries to flow into the heat-shielding space (3d) from the injection fuel passage hole (3c) at a low speed. Therefore, the pressure loss of the low-temperature air passing through the injection fuel passage hole (3c) is reduced, and the inflow of the low-temperature air into the heat-shielding space (3d) is promoted. Therefore, the exchange of the high temperature air in the heat shield space (3d) and the low temperature air in the sub chamber (2) is promoted, the nozzle portion (4a) is strongly cooled by the low temperature air, and the overheating of the nozzle portion (4a) is suppressed. To.

本発明の第1実施形態に係る副室式ディーゼルエンジンの要部断面図である。It is sectional drawing of the main part of the sub-chamber type diesel engine which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る副室式ディーゼルエンジンの要部断面図である。It is sectional drawing of the main part of the sub-chamber type diesel engine which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る副室式ディーゼルエンジンの要部断面図である。It is sectional drawing of the main part of the sub-chamber type diesel engine which concerns on 3rd Embodiment of this invention.

図1〜3は、本発明の実施形態に係る副室式ディーゼルエンジンを説明する図で、図1は第1実施形態、図2は第2実施形態、図3は第3実施形態を示している。この実施形態では、立形の水冷渦室式ディーゼルエンジンについて説明する。 1 to 3 are views for explaining a sub-chamber diesel engine according to an embodiment of the present invention, FIG. 1 shows a first embodiment, FIG. 2 shows a second embodiment, and FIG. 3 shows a third embodiment. There is. In this embodiment, a vertical water-cooled vortex chamber type diesel engine will be described.

まず、第1実施形態について説明する。
図1に示すように、この第1実施形態のエンジンは、シリンダブロック(5)と、シリンダブロック(5)の上部に組み付けられたシリンダヘッド(1)と、ピストンヘッド(8)を備えている。
First, the first embodiment will be described.
As shown in FIG. 1, the engine of the first embodiment includes a cylinder block (5), a cylinder head (1) assembled on the upper part of the cylinder block (5), and a piston head (8). ..

図1に示すように、シリンダブロック(5)は、シリンダ部(5a)を備え、シリンダ部(5a)内にはピストンヘッド(8)が昇降自在に内嵌され、シリンダ部(5a)内にシリンダヘッド(1)とピストンヘッド(8)で挟まれた主燃焼室(9)が形成されている。 As shown in FIG. 1, the cylinder block (5) includes a cylinder portion (5a), and a piston head (8) is retractably fitted in the cylinder portion (5a) so as to be retractably fitted in the cylinder portion (5a). A main combustion chamber (9) sandwiched between a cylinder head (1) and a piston head (8) is formed.

図1に示すように、シリンダヘッド(1)は、副室(2)を備えている。
シリンダヘッド(1)は、その下面から上向きに凹入された凹入部(1b)を備え、凹入部(1b)の奥側に上側に凹入された上側半球面(1c)を備え、凹入部(1b)の入口側には口金(10)が内嵌され、口金(10)は、その上側から下向きに凹入された下側半球面(10a)を備え、上側半球面(1c)と下側半球面(10a)で球形の副室(2)が形成されている。
副室(2)は、口金(10)の噴口(10b)で主燃焼室(9)と連通している。
副室(2)には、燃料インジェクタ(4)のノズル部(4a)が臨み、グロープラグ(12)が差し込まれている。
図1に示すように、燃料インジェクタ(4)の燃料噴射軸線(4c)は、渦室(2)の中心点(2d)と噴口(10b)を通過して、主燃焼室(9)に向けられている。
燃料インジェクタ(4)の燃料噴射軸線(4c)は、渦室(2)の中心部と噴口(10b)を通過して、主燃焼室(9)に向けられているものであればよい。渦室(2)の中心部とは、渦室(2)の中心点(2d)とその周辺を含む領域をいう。
As shown in FIG. 1, the cylinder head (1) includes a sub chamber (2).
The cylinder head (1) has a recessed portion (1b) recessed upward from the lower surface thereof, and has an upper hemispherical surface (1c) recessed upward on the inner side of the recessed portion (1b). A base (10) is internally fitted on the inlet side of (1b), and the base (10) has a lower hemisphere (10a) recessed downward from the upper side thereof, and has an upper hemisphere (1c) and a lower side. A spherical sub-chamber (2) is formed by the side hemisphere (10a).
The sub chamber (2) communicates with the main combustion chamber (9) by the nozzle (10b) of the base (10).
The nozzle portion (4a) of the fuel injector (4) faces the sub chamber (2), and the glow plug (12) is inserted.
As shown in FIG. 1, the fuel injection axis (4c) of the fuel injector (4) passes through the center point (2d) and the injection port (10b) of the vortex chamber (2) and is directed toward the main combustion chamber (9). Has been done.
The fuel injection axis (4c) of the fuel injector (4) may be directed to the main combustion chamber (9) through the central portion of the vortex chamber (2) and the injection port (10b). The central portion of the vortex chamber (2) means a region including the central point (2d) of the vortex chamber (2) and its periphery.

図1に示すように、シリンダヘッド(1)は、副室(2)を周囲から取り囲むヘッドジャケット(1a)を備え、シリンダブロック(5)は、シリンダ部(5a)を周囲から取り囲むシリンダジャケット(5b)を備えている。シリンダジャケット(5b)とヘッドジャケット(1a)は相互に連通して水冷ジャケット(11)を構成し、水冷ジャケット(11)内を通過するエンジン冷却水で、シリンダ部(5a)とシリンダヘッド(1)が水冷される。 As shown in FIG. 1, the cylinder head (1) includes a head jacket (1a) that surrounds the sub chamber (2) from the surroundings, and the cylinder block (5) has a cylinder jacket (5a) that surrounds the cylinder portion (5a) from the surroundings. 5b) is provided. The cylinder jacket (5b) and the head jacket (1a) communicate with each other to form a water-cooled jacket (11), and the engine cooling water passing through the water-cooled jacket (11) is the cylinder portion (5a) and the cylinder head (1). ) Is water-cooled.

図1に示すように、このエンジンは、シリンダヘッド(1)内に設けられた副室(2)と、インジェクタ挿通孔(3)と、インジェクタ挿通孔(3)に挿通された燃料インジェクタ(4)と、燃料インジェクタ(4)のノズル部(4a)を収容するインジェクタ挿通孔(3)のノズル部収容室(3a)を備えている。 As shown in FIG. 1, this engine has a sub chamber (2) provided in the cylinder head (1), an injector insertion hole (3), and a fuel injector (4) inserted into the injector insertion hole (3). ) And the nozzle portion accommodating chamber (3a) of the injector insertion hole (3) accommodating the nozzle portion (4a) of the fuel injector (4).

図1に示すように、ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)を覆う防熱壁(3b)を備え、防熱壁(3b)は、噴射燃料通過孔(3c)を備えると共に、周囲の副室内周壁(2a)と連続するシリンダヘッド(1)の肉壁で構成されている。
ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)と防熱壁(3b)の間に防熱空間(3d)を備え、防熱空間(3d)は、噴射燃料通過孔(3c)を介して副室(2)と連通している。
As shown in FIG. 1, the nozzle portion accommodating chamber (3a) is provided with a heat shield wall (3b) that covers the tip surface (4b) of the nozzle portion (4a), and the heat shield wall (3b) is an injection fuel passage hole (3c). ), And is composed of a wall of the cylinder head (1) that is continuous with the surrounding sub-chamber peripheral wall (2a).
The nozzle portion accommodating chamber (3a) is provided with a heat shield space (3d) between the tip surface (4b) of the nozzle portion (4a) and the heat shield wall (3b), and the heat shield space (3d) is an injection fuel passage hole (3c). ) To communicate with the sub-room (2).

このエンジンでは、図1に示すように、ノズル部(4a)の先端面(4b)を覆う防熱壁(3b)は、周囲の副室内周壁(2a)と連続するシリンダヘッド(1)の肉壁で構成されているため、防熱壁(3b)の熱が、シリンダヘッド(1)に伝わり易く、防熱壁(3b)が高温になり難く、燃料インジェクタ(4)のノズル部(4a)が過熱し難い。 In this engine, as shown in FIG. 1, the heat shield wall (3b) covering the tip surface (4b) of the nozzle portion (4a) is a wall of the cylinder head (1) continuous with the surrounding sub-chamber peripheral wall (2a). Since the heat shield wall (3b) is easily transferred to the cylinder head (1), the heat shield wall (3b) does not easily reach a high temperature, and the nozzle portion (4a) of the fuel injector (4) overheats. hard.

このエンジンでは、図1に示すノズル部(4a)の過熱抑制機能が高い。その理由は、次のように推定される。
このエンジンでは、圧縮上死点付近で副室(2)内に発生した高圧の燃焼ガスが、噴射燃料通過孔(3c)から防熱空間(3d)に高速で流入しようとするため、噴射燃料通過孔(3c)を通過する燃焼ガスの圧力損失が大きくなり、燃焼ガスの防熱空間(3d)への流入が抑制され、防熱空間(3d)内に比較的多くの後述する低温の空気が残留し、この低温の空気の断熱作用で、防熱壁(3b)からノズル部(4a)の先端面(4b)への熱伝達が抑制される。そして、燃焼行程中に防熱空間(3d)内で昇温した比較的低圧の高温空気が、排気行程や吸気行程で、噴射燃料通過孔(3c)から副室(2)に低速で流出しようとするため、噴射燃料通過孔(3c)を通過する高温空気の圧力損失が小さくなり、高温空気の副室(2)への流出が促進される。そして、圧縮行程前半に、主燃焼室(9)から副室(2)内に押し込まれた比較的低圧の低温空気が噴射燃料通過孔(3c)から防熱空間(3d)に低速で流入しようとするため、噴射燃料通過孔(3c)を通過する低温空気の圧力損失が小さくなり、低温空気の防熱空間(3d)への流入が促進される。このため、防熱空間(3d)の高温空気と副室(2)の低温空気の交換が促進され、低温空気でノズル部(4a)が強力に冷却され、ノズル部(4a)の過熱が抑制される。
In this engine, the overheat suppression function of the nozzle portion (4a) shown in FIG. 1 is high. The reason is presumed as follows.
In this engine, the high-pressure combustion gas generated in the sub chamber (2) near the compression top dead point tries to flow into the heat shield space (3d) from the injection fuel passage hole (3c) at high speed, so that the injection fuel passes. The pressure loss of the combustion gas passing through the hole (3c) becomes large, the inflow of the combustion gas into the heat shield space (3d) is suppressed, and a relatively large amount of low-temperature air described later remains in the heat shield space (3d). Due to the heat insulating action of this low temperature air, heat transfer from the heat insulating wall (3b) to the tip surface (4b) of the nozzle portion (4a) is suppressed. Then, the relatively low-pressure high-temperature air heated in the heat-shielding space (3d) during the combustion stroke tries to flow out from the injection fuel passage hole (3c) to the sub chamber (2) at a low speed in the exhaust stroke and the intake stroke. Therefore, the pressure loss of the high-temperature air passing through the injection fuel passage hole (3c) is reduced, and the outflow of the high-temperature air to the sub-chamber (2) is promoted. Then, in the first half of the compression stroke, relatively low-pressure low-temperature air pushed from the main combustion chamber (9) into the sub chamber (2) tries to flow into the heat-shielding space (3d) from the injection fuel passage hole (3c) at a low speed. Therefore, the pressure loss of the low-temperature air passing through the injection fuel passage hole (3c) is reduced, and the inflow of the low-temperature air into the heat-shielding space (3d) is promoted. Therefore, the exchange of the high temperature air in the heat shield space (3d) and the low temperature air in the sub chamber (2) is promoted, the nozzle portion (4a) is strongly cooled by the low temperature air, and the overheating of the nozzle portion (4a) is suppressed. To.

図1に示すように、副室(2)は渦室(2b)とされ、渦室(2b)に臨む防熱壁内周面(3ba)と、防熱壁内周面(3ba)の周囲の渦室内周面(2ba)で、球面形状の旋回流案内面(2c)が形成されている。 As shown in FIG. 1, the sub chamber (2) is a vortex chamber (2b), and the inner peripheral surface of the heat insulating wall (3ba) facing the vortex chamber (2b) and the vortex around the inner peripheral surface of the heat insulating wall (3ba). A spherical swirling flow guide surface (2c) is formed on the indoor peripheral surface (2ba).

このエンジンでは、図1に示す防熱壁内周面(3ba)と、防熱壁内周面(3ba)の周囲の渦室内周面(2ba)で形成される球面形状の旋回流案内面(2c)の案内で、渦室(2b)内の圧縮空気の旋回流(6)がスムーズに旋回するため、燃料インジェクタ(4)のノズル部(4a)から噴射された燃料(7)が圧縮空気にスムーズに拡散され、予混合燃焼の促進により、燃焼性能が高まる。
これにより、このエンジンでは、エンジン出力の向上、スモークの低減を図ることができる。
In this engine, a spherical swirling flow guide surface (2c) formed by the inner peripheral surface of the heat insulating wall (3ba) shown in FIG. 1 and the peripheral surface of the vortex chamber (2ba) around the inner peripheral surface of the heat insulating wall (3ba). Since the swirling flow (6) of the compressed air in the vortex chamber (2b) swirls smoothly, the fuel (7) injected from the nozzle portion (4a) of the fuel injector (4) is smoothly swirled into the compressed air. The combustion performance is enhanced by promoting premixed combustion.
As a result, in this engine, it is possible to improve the engine output and reduce smoke.

図1に示すように、ノズル部(4a)の先端面(4b)は防熱空間(3d)に向けて露出されている。
このエンジンでは、圧縮行程前半に図1に示す防熱空間(3d)に流入した低温空気でノズル部(4a)が冷却されるため、ノズル部(4a)の過熱抑制機能が高い。
As shown in FIG. 1, the tip surface (4b) of the nozzle portion (4a) is exposed toward the heat-shielding space (3d).
In this engine, the nozzle portion (4a) is cooled by the low-temperature air flowing into the heat-shielding space (3d) shown in FIG. 1 in the first half of the compression stroke, so that the nozzle portion (4a) has a high overheat suppression function.

次に、第2実施形態のエンジンについて説明する。
図2の第2実施形態は、図1の第1実施形態に環形突条(3bb)を追加したもので、他の点は第1実施形態と同じ構成と機能を備えている。図2中、図1の第1実施形態と同一の要素には、図1と同じ符号を付しておく。
図2に示すように、防熱壁(3b)は、噴射燃料通過孔(3c)の周縁部にノズル部(4a)の先端面(4b)に近づく環形突条(3bb)を備え、環形突条(3bb)とノズル部(4a)の先端面(4b)の間に、絞り隙間(3da)が形成されている。
Next, the engine of the second embodiment will be described.
The second embodiment of FIG. 2 has a ring-shaped ridge (3bb) added to the first embodiment of FIG. 1, and has the same configuration and function as the first embodiment in other respects. In FIG. 2, the same elements as those in the first embodiment of FIG. 1 are designated by the same reference numerals as those in FIG.
As shown in FIG. 2, the heat shield wall (3b) is provided with a ring-shaped ridge (3bb) approaching the tip surface (4b) of the nozzle portion (4a) at the peripheral edge of the injection fuel passage hole (3c). A throttle gap (3da) is formed between (3bb) and the tip surface (4b) of the nozzle portion (4a).

図2の第2実施形態のエンジンでは、図2に示すノズル部(4a)の過熱抑制機能が高い。その理由は、次のように推定される。
このエンジンでは、絞り隙間(3da)も、噴射燃料通過孔(3c)と同様に機能し、防熱空間(3d)の高温空気と副室(2)の低温空気の交換が促進され、ノズル部(4a)の過熱抑制機能が高い。
In the engine of the second embodiment of FIG. 2, the overheat suppressing function of the nozzle portion (4a) shown in FIG. 2 is high. The reason is presumed as follows.
In this engine, the throttle gap (3da) also functions in the same way as the injection fuel passage hole (3c), and the exchange of high temperature air in the heat shield space (3d) and low temperature air in the sub chamber (2) is promoted, and the nozzle portion (3da) 4a) has a high overheat suppression function.

次に、第3実施形態のエンジンについて説明する。
図3の第3実施形態は、図1の第1実施形態に防熱板(3e)を追加したもので、他の点は第1実施形態と同じ構成と機能を備えている。図3中、図1の第1実施形態と同一の要素には、図1と同じ符号を付しておく。
このエンジンでは、図3に示す防熱空間(3d)に、金属製の防熱板(3e)が収容され、防熱板(3e)は、ノズル部(4a)の先端面(4b)と防熱壁(3b)の間に挟み付けられている。
Next, the engine of the third embodiment will be described.
The third embodiment of FIG. 3 has a heat insulating plate (3e) added to the first embodiment of FIG. 1, and has the same configuration and function as the first embodiment in other respects. In FIG. 3, the same elements as those in the first embodiment of FIG. 1 are designated by the same reference numerals as those in FIG.
In this engine, a metal heat insulating plate (3e) is housed in the heat insulating space (3d) shown in FIG. 3, and the heat insulating plate (3e) includes the tip surface (4b) of the nozzle portion (4a) and the heat insulating wall (3b). ) Is sandwiched between them.

このエンジンでは、図3に示すノズル部(4a)の過熱抑制機能が高い。その理由は、次のように推定される。
このエンジンでは、燃料インジェクタ(4)の燃料噴射時に副室(2)内で発生した高圧の燃焼ガスの熱が、防熱板(3e)で遮られるため、燃料インジェクタ(4)の先端面(4b)に伝わり難い。また、燃料インジェクタ(4)のノズル部(4a)の先端面(4b)の熱が、圧縮行程前半に副室(2)から防熱空間(3d)内に押し込まれた比較的低温の空気で冷却された金属製の防熱板(3e)と防熱壁(3b)を介してシリンダヘッド(1)に放熱される。これらの理由により、このエンジンでは、ノズル部(4a)の過熱抑制機能が高い。
In this engine, the overheat suppression function of the nozzle portion (4a) shown in FIG. 3 is high. The reason is presumed as follows.
In this engine, the heat of the high-pressure combustion gas generated in the sub chamber (2) during fuel injection of the fuel injector (4) is blocked by the heat shield plate (3e), so that the tip surface (4b) of the fuel injector (4) is blocked. ) Is difficult to convey. Further, the heat of the tip surface (4b) of the nozzle portion (4a) of the fuel injector (4) is cooled by the relatively low temperature air pushed into the heat shield space (3d) from the sub chamber (2) in the first half of the compression stroke. The heat is dissipated to the cylinder head (1) via the heat shield plate (3e) and the heat shield wall (3b) made of metal. For these reasons, in this engine, the overheat suppression function of the nozzle portion (4a) is high.

図1〜3に示すように、各実施形態では、噴射燃料通過孔(3c)の最小部(3ca)の直径は、ノズル部(4a)の先端面(4b)の直径の20%以上で50%未満の範囲内の長さとされている。 As shown in FIGS. 1 to 3, in each embodiment, the diameter of the minimum portion (3ca) of the injected fuel passage hole (3c) is 50% or more of the diameter of the tip surface (4b) of the nozzle portion (4a). The length is within the range of less than%.

このエンジンでは、ノズル部(4a)の過熱抑制機能が高い。
その理由は、次のように推定される。
噴射燃料通過孔(3c)の最小部(3ca)の直径がノズル部(4a)の先端面(4b)の直径の20%以上未満の長さであると、噴射燃料通過孔(3c)が小さくなり過ぎ、噴射される燃料(7)が噴射燃料通過孔(3c)の周壁に接触し、防熱空間(3d)内に拡散し、燃焼により、防熱空間(3d)内の空気の温度が上昇し、ノズル部(4a)を過熱させるおそれがある。他方、噴射燃料通過孔(3c)の最小部(3ca)の直径がノズル部(4a)の先端面(4b)の直径の50%以上の長さであると、噴射燃料通過孔(3c)が大きくなり過ぎ、副室(2)から防熱空間(3d)への燃焼ガスの流入が促進され、防熱空間(3d)内の空気の温度が上昇し、ノズル部(4a)を過熱させるおそれがある。これに対し、噴射燃料通過孔(3c)の最小部(3ca)の直径が、ノズル部(4a)の先端面(4b)の直径の20%以上で50%未満の範囲内の長さとされている場合には、上記問題がなく、ノズル部(4a)の過熱抑制機能が高い。
なお、噴射燃料通過孔(3c)は、副室(2)から防熱空間(3d)に向かって次第に内径が小さくなる錐台形状とされている。また、ノズル部(4a)の先端面(4b)は円形とされている。
In this engine, the overheat suppression function of the nozzle portion (4a) is high.
The reason is presumed as follows.
When the diameter of the minimum portion (3ca) of the injection fuel passage hole (3c) is less than 20% or more of the diameter of the tip surface (4b) of the nozzle portion (4a), the injection fuel passage hole (3c) becomes small. The fuel (7) injected too much comes into contact with the peripheral wall of the injected fuel passage hole (3c) and diffuses into the heat shield space (3d), and the temperature of the air in the heat shield space (3d) rises due to combustion. , There is a risk of overheating the nozzle portion (4a). On the other hand, when the diameter of the minimum portion (3ca) of the injection fuel passage hole (3c) is 50% or more of the diameter of the tip surface (4b) of the nozzle portion (4a), the injection fuel passage hole (3c) becomes It becomes too large, the inflow of combustion gas from the sub chamber (2) into the heat shield space (3d) is promoted, the temperature of the air in the heat shield space (3d) rises, and the nozzle portion (4a) may be overheated. .. On the other hand, the diameter of the minimum portion (3ca) of the injected fuel passage hole (3c) is 20% or more and less than 50% of the diameter of the tip surface (4b) of the nozzle portion (4a). If so, the above problem does not occur, and the overheat suppression function of the nozzle portion (4a) is high.
The injected fuel passage hole (3c) has a frustum shape in which the inner diameter gradually decreases from the sub chamber (2) toward the heat shield space (3d). Further, the tip surface (4b) of the nozzle portion (4a) is circular.

(1)…シリンダヘッド、(2)…副室、(2a)…副室内周壁、(2b)…渦室、(2ba)…渦室内周面、(2c)…旋回流案内面、(3)…インジェクタ挿通孔、(3a)…ノズル部収容室、(3b)…防熱壁、(3ba)…防熱壁内周面、(3bb)…環形突条、(3c)…噴射燃料通過孔、(3ca)…最小部、(3d)…防熱空間、(3da)…絞り隙間、(3e)…防熱板、(4)…燃料インジェクタ、(4a)…ノズル部、(4b)…先端面。 (1) ... Cylinder head, (2) ... Sub chamber, (2a) ... Sub chamber peripheral wall, (2b) ... Vortex chamber, (2ba) ... Vortex chamber peripheral surface, (2c) ... Swirling flow guide surface, (3) ... Injector insertion hole, (3a) ... Nozzle accommodation chamber, (3b) ... Heat shield wall, (3ba) ... Heat shield inner peripheral surface, (3bb) ... Ring-shaped ridge, (3c) ... Injection fuel passage hole, (3ca) ) ... Minimum part, (3d) ... Heat shield space, (3da) ... Squeeze gap, (3e) ... Heat shield plate, (4) ... Fuel injector, (4a) ... Nozzle part, (4b) ... Tip surface.

Claims (6)

シリンダヘッド(1)内に設けられた副室(2)と、インジェクタ挿通孔(3)と、インジェクタ挿通孔(3)に挿通された燃料インジェクタ(4)と、燃料インジェクタ(4)のノズル部(4a)を収容するインジェクタ挿通孔(3)のノズル部収容室(3a)を備えた、副室式ディーゼルエンジンにおいて、
ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)を覆う防熱壁(3b)を備え、防熱壁(3b)は、噴射燃料通過孔(3c)を備えると共に、周囲の副室内周壁(2a)と連続するシリンダヘッド(1)の肉壁で構成され、
ノズル部収容室(3a)は、ノズル部(4a)の先端面(4b)と防熱壁(3b)の間に防熱空間(3d)を備え、防熱空間(3d)は、噴射燃料通過孔(3c)を介して副室(2)と連通している、ことを特徴とする副室式ディーゼルエンジン。
A sub chamber (2) provided in the cylinder head (1), an injector insertion hole (3), a fuel injector (4) inserted into the injector insertion hole (3), and a nozzle portion of the fuel injector (4). In a sub-chamber type diesel engine provided with a nozzle portion accommodating chamber (3a) of an injector insertion hole (3) accommodating (4a).
The nozzle portion accommodating chamber (3a) is provided with a heat shield wall (3b) that covers the tip surface (4b) of the nozzle portion (4a), and the heat shield wall (3b) is provided with an injection fuel passage hole (3c) and surroundings. It is composed of a wall of the cylinder head (1) that is continuous with the peripheral wall of the sub-chamber (2a).
The nozzle portion accommodating chamber (3a) is provided with a heat shield space (3d) between the tip surface (4b) of the nozzle portion (4a) and the heat shield wall (3b), and the heat shield space (3d) is an injection fuel passage hole (3c). A sub-chamber diesel engine characterized in that it communicates with the sub-chamber (2) via).
請求項1に記載された副室式ディーゼルエンジンにおいて、
副室(2)は渦室(2b)とされ、渦室(2b)に臨む防熱壁内周面(3ba)と、防熱壁内周面(3ba)の周囲の渦室内周面(2ba)で、球面形状の旋回流案内面(2c)が形成されている、ことを特徴とする副室式ディーゼルエンジン。
In the sub-chamber diesel engine according to claim 1,
The sub chamber (2) is a vortex chamber (2b), and the inner peripheral surface of the heat insulating wall (3ba) facing the vortex chamber (2b) and the peripheral surface of the vortex chamber (2ba) around the inner peripheral surface of the heat insulating wall (3ba). , A sub-chamber type diesel engine characterized in that a spherical swirling flow guide surface (2c) is formed.
請求項1または請求項2に記載された副室式ディーゼルエンジンにおいて、
ノズル部(4a)の先端面(4b)は防熱空間(3d)に向けて露出されている、ことを特徴とする副室式ディーゼルエンジン。
In the sub-chamber diesel engine according to claim 1 or 2.
A sub-chamber diesel engine characterized in that the tip surface (4b) of the nozzle portion (4a) is exposed toward the heat-shielding space (3d).
請求項1から請求項3のいずれかに記載された副室式ディーゼルエンジンにおいて、
防熱壁(3b)は、噴射燃料通過孔(3c)の周縁部にノズル部(4a)の先端面(4b)に近づく環形突条(3bb)を備え、環形突条(3bb)とノズル部(4a)の先端面(4b)の間に、絞り隙間(3da)が形成されている、ことを特徴とする副室式ディーゼルエンジン。
In the sub-chamber diesel engine according to any one of claims 1 to 3.
The heat shield wall (3b) is provided with a ring-shaped ridge (3bb) approaching the tip surface (4b) of the nozzle portion (4a) at the peripheral edge of the injection fuel passage hole (3c), and the ring-shaped ridge (3bb) and the nozzle portion (3b). A sub-chamber diesel engine characterized in that a throttle gap (3da) is formed between the tip surfaces (4b) of 4a).
請求項1から請求項3のいずれかに記載された副室式ディーゼルエンジンにおいて、
防熱空間(3d)に、金属製の防熱板(3e)が収容され、防熱板(3e)は、ノズル部(4a)の先端面(4b)と防熱壁(3b)の間に挟み付けられている、ことを特徴とする副室式ディーゼルエンジン。
In the sub-chamber diesel engine according to any one of claims 1 to 3.
A metal heat shield plate (3e) is housed in the heat shield space (3d), and the heat shield plate (3e) is sandwiched between the tip surface (4b) of the nozzle portion (4a) and the heat shield wall (3b). A sub-chamber diesel engine that is characterized by being.
請求項1から請求項5のいずれかに記載された副室式ディーゼルエンジンにおいて、
噴射燃料通過孔(3c)の最小部(3d)の直径は、ノズル部(4a)の先端面(4b)の直径の20%以上で50%未満の範囲内の長さとされている、ことを特徴とする副室式ディーゼルエンジン。
In the sub-chamber diesel engine according to any one of claims 1 to 5.
The diameter of the minimum portion (3d) of the injection fuel passage hole (3c) is 20% or more and less than 50% of the diameter of the tip surface (4b) of the nozzle portion (4a). It features a sub-chamber diesel engine.
JP2020106910A 2020-06-22 2020-06-22 Sub chamber type diesel engine Pending JP2022001750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020106910A JP2022001750A (en) 2020-06-22 2020-06-22 Sub chamber type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106910A JP2022001750A (en) 2020-06-22 2020-06-22 Sub chamber type diesel engine

Publications (1)

Publication Number Publication Date
JP2022001750A true JP2022001750A (en) 2022-01-06

Family

ID=79244215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106910A Pending JP2022001750A (en) 2020-06-22 2020-06-22 Sub chamber type diesel engine

Country Status (1)

Country Link
JP (1) JP2022001750A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131576U (en) * 1983-02-23 1984-09-04 いすゞ自動車株式会社 Heat shield for pre-chamber diesel engine
JPH0626421A (en) * 1992-03-26 1994-02-01 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engine
JPH0614440U (en) * 1992-07-29 1994-02-25 いすゞ自動車株式会社 Structure of sub-combustion chamber in sub-chamber engine
JPH0988607A (en) * 1995-09-26 1997-03-31 Kubota Corp Swirl chamber type combustion chamber for diesel engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131576U (en) * 1983-02-23 1984-09-04 いすゞ自動車株式会社 Heat shield for pre-chamber diesel engine
JPH0626421A (en) * 1992-03-26 1994-02-01 Robert Bosch Gmbh Fuel injection nozzle for internal combustion engine
JPH0614440U (en) * 1992-07-29 1994-02-25 いすゞ自動車株式会社 Structure of sub-combustion chamber in sub-chamber engine
JPH0988607A (en) * 1995-09-26 1997-03-31 Kubota Corp Swirl chamber type combustion chamber for diesel engine

Similar Documents

Publication Publication Date Title
JP5575926B2 (en) Spark ignition engine piston
US6314933B1 (en) Piston for internal combustion engines
JP2022001750A (en) Sub chamber type diesel engine
US9429066B2 (en) Subchamber type combustion chamber for diesel engine
JP6490440B2 (en) Monoblock engine cylinder structure
JP7419172B2 (en) Vortex chamber diesel engine
US3263659A (en) Internal combustion engine
JP2021011843A (en) Piston of internal combustion engine and internal combustion engine
JP2018112149A (en) piston
JP2019504959A (en) Piston bowl for internal combustion engine
JPH0134663Y2 (en)
JP2019113008A (en) Indirect injection diesel engine
JP2021105386A (en) Sub-chamber ignition device
JP6526456B2 (en) diesel engine
JP6393823B1 (en) Gas engine combustion chamber structure
JPS63215819A (en) Combustion chamber of diesel engine
JP2019007456A (en) Mouthpiece for sub chamber formation for diesel engine
JPH03115775A (en) Structure of fuel injection nozzle
JP3780161B2 (en) Diesel engine vortex chamber combustion chamber
JPH08232758A (en) Piston for internal combustion engine and manufacture thereof
JP2023128612A (en) internal combustion engine
JP2020106004A (en) engine
JP6654917B2 (en) piston
JP2024069954A (en) Hydrogen engine
KR20150122958A (en) Direct injection diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230808