JP2022001385A - Tool holding structure, load detection structure, and tool state monitoring system - Google Patents

Tool holding structure, load detection structure, and tool state monitoring system Download PDF

Info

Publication number
JP2022001385A
JP2022001385A JP2020106329A JP2020106329A JP2022001385A JP 2022001385 A JP2022001385 A JP 2022001385A JP 2020106329 A JP2020106329 A JP 2020106329A JP 2020106329 A JP2020106329 A JP 2020106329A JP 2022001385 A JP2022001385 A JP 2022001385A
Authority
JP
Japan
Prior art keywords
strain
main body
causing
tool
position adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020106329A
Other languages
Japanese (ja)
Other versions
JP6948440B1 (en
Inventor
達郎 高碕
Tatsuro Takasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2020106329A priority Critical patent/JP6948440B1/en
Priority to PCT/JP2021/014924 priority patent/WO2021206147A1/en
Application granted granted Critical
Publication of JP6948440B1 publication Critical patent/JP6948440B1/en
Publication of JP2022001385A publication Critical patent/JP2022001385A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)
  • Turning (AREA)

Abstract

To provide a tool holding structure that has both a function of holding a rod-like tool and a function of detecting a thrust load placed on the rod-like tool, and can supply cutting oil to the held rod-like tool.SOLUTION: A tool holding structure that holds a rod-like tool and also detects a thrust load placed on the rod-like tool comprises: a cylindrical main body part such that the rod-like tool is inserted into an opening on one end side; a tool clamping part which clamps the rod-like tool inserted into the opening of the main body part; a strain inducer which is arranged inside the cylindrical main body part more on the other end side than the opening of the cylindrical main body part; a strain gauge which is fitted to the strain inducer; and a supply path which is provided inside the cylindrical main body part, and supplies cutting oil to the rod-like tool. The tool holding structure holds the rod-like tool in contact with the strain inducer so as to detect the thrust load.SELECTED DRAWING: Figure 7

Description

本発明は、工具保持構造、荷重検出構造、及び工具状態監視システムに関する。 The present invention relates to a tool holding structure, a load detecting structure, and a tool condition monitoring system.

ドリル刃を用いた被加工物への穿孔等が広く行われている。ドリル刃を用いた被加工物の加工の際、フライス盤、マシニングセンタ、ハンドドリル等においてはドリル刃を回転させる。一方で、旋盤等においては、ドリル刃を固定工具として用い、被加工物を回転させる。 Drilling into a workpiece using a drill blade is widely performed. When machining a workpiece using a drill blade, the drill blade is rotated in a milling machine, machining center, hand drill, or the like. On the other hand, in a lathe or the like, a drill blade is used as a fixing tool to rotate a workpiece.

ドリル刃を用いて被加工物の加工を行う際、切削抵抗を検知することが知られている。特許文献1は、穴開けスラストを表示するためのスラスト・インジケータ・アセンブリを含むハンドドリルを開示している。 It is known to detect cutting resistance when machining a workpiece using a drill bit. Patent Document 1 discloses a hand drill including a thrust indicator assembly for displaying a drilling thrust.

特表2014−530119号Special Table 2014-530119

旋盤等においてドリル刃等の棒状工具を固定工具として用いる際に、当該棒状工具に加わるスラスト荷重を検知可能な構造が求められている。特許文献1に記載のスラスト・インジケータ・アセンブリは、ドリル刃を回転工具として用いる際に適用されるアセンブリであり、構造も複雑であるため、これを転用することは適切とは言い難い。 When a rod-shaped tool such as a drill blade is used as a fixing tool in a lathe or the like, a structure capable of detecting the thrust load applied to the rod-shaped tool is required. The thrust indicator assembly described in Patent Document 1 is an assembly applied when a drill blade is used as a rotary tool, and has a complicated structure. Therefore, it cannot be said that it is appropriate to divert it.

本発明は、ドリル刃等の棒状工具を保持する機能と当該棒状工具に加わるスラスト荷重を検出する機能とを共に備え且つ保持した棒状工具に切削油を供給可能な工具保持構造、当該工具保持構造において用いる荷重検出構造、及び当該工具保持構造を含む工具状態監視システムを提供することを目的とする。 The present invention has a tool holding structure capable of supplying cutting oil to a rod-shaped tool that has both a function of holding a rod-shaped tool such as a drill blade and a function of detecting a thrust load applied to the rod-shaped tool, and a tool holding structure. It is an object of the present invention to provide a load detection structure used in the above and a tool condition monitoring system including the tool holding structure.

本発明の第1の態様に従えば、
棒状工具を保持し且つ該棒状工具に付加されるスラスト荷重を検出する工具保持構造であって、
一端側の開口に前記棒状工具が挿入される筒状の本体部と、
前記本体部の前記開口に挿入された前記棒状工具を挟持する工具挟持部と、
前記筒状の本体部の前記開口よりも他端側において、前記筒状の本体部の内部に配置される起歪体と、
前記起歪体に取り付けられたひずみゲージと、
前記筒状の本体部の内部に設けられ、前記棒状工具に切削油を供給する供給路とを備え、
前記スラスト荷重を検出するために前記棒状工具を前記起歪体に当接させて保持する工具保持構造が提供される。
According to the first aspect of the present invention,
It is a tool holding structure that holds a rod-shaped tool and detects the thrust load applied to the rod-shaped tool.
A cylindrical main body into which the rod-shaped tool is inserted into the opening on one end side, and
A tool holding portion for holding the rod-shaped tool inserted into the opening of the main body portion, and a tool holding portion.
A strain-causing body arranged inside the tubular main body on the other end side of the opening of the tubular main body.
The strain gauge attached to the strain-causing body and
It is provided inside the cylindrical main body and is provided with a supply path for supplying cutting oil to the rod-shaped tool.
A tool holding structure is provided in which the rod-shaped tool is brought into contact with and held by the strain-causing body in order to detect the thrust load.

第1の態様の工具保持構造において、前記起歪体は前記筒状の本体部の軸上に配置されていてもよく、前記棒状工具は前記筒状の本体部の軸上において前記起歪体に当接してもよく、前記筒状の本体部の内周面と前記起歪体の外縁との間の空間が前記供給路の一部を構成してもよい。 In the tool holding structure of the first aspect, the strain-causing body may be arranged on the shaft of the tubular main body portion, and the rod-shaped tool may be arranged on the shaft of the tubular main body portion. The space between the inner peripheral surface of the tubular main body and the outer edge of the strain-causing body may form a part of the supply path.

第1の態様の工具保持構造は、前記筒状の本体部の前記起歪体よりも他端側において前記起歪体を支持する起歪体支持部を更に備えてもよく、前記起歪体支持部は、前記起歪体と前記起歪体支持部との間に密閉空間が形成されるように前記起歪体の外縁を支持してもよく、前記ひずみゲージが前記密閉空間内に配置されていてもよい。 The tool holding structure of the first aspect may further include a strain-causing body support portion that supports the strain-causing body on the other end side of the strain-causing body of the tubular main body portion, and the strain-causing body may be further provided. The support portion may support the outer edge of the strain-causing body so that a closed space is formed between the strain-causing body and the strain-causing body support portion, and the strain gauge is arranged in the closed space. It may have been done.

第1の態様の工具保持構造は、長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に前記筒状の本体部の軸に沿って配置されており、前記起歪体と一体として前記軸方向に移動可能である位置調整部を更に備えてもよい。 The tool holding structure of the first aspect is a long position adjusting portion, and the cylinder is inside the cylindrical main body at the other end side of the strain-causing body of the tubular main body. A position adjusting portion which is arranged along the axis of the main body portion and is movable in the axial direction integrally with the strain-causing body may be further provided.

第1の態様の工具保持構造において、前記位置調整部は前記筒状の本体部の軸上に配置されていてもよく、前記筒状の本体部の内周面と前記位置調整部の外周面との間の空間が前記供給路の一部を構成してもよい。 In the tool holding structure of the first aspect, the position adjusting portion may be arranged on the axis of the cylindrical main body portion, and the inner peripheral surface of the tubular main body portion and the outer peripheral surface of the position adjusting portion. The space between and may form a part of the supply path.

第1の態様の工具保持構造において、前記位置調整部は、前記位置調整部の外周面の少なくとも一部に形成された雄ねじと、前記位置調整部の長手方向において前記雄ねじの一方側と他方側とを連通させる連通路とを有してもよく、前記位置調整部の前記雄ねじが、前記筒状の本体部の内周面に形成された雌ねじに螺合していてもよい。 In the tool holding structure of the first aspect, the position adjusting portion includes a male screw formed on at least a part of the outer peripheral surface of the position adjusting portion, and one side and the other side of the male screw in the longitudinal direction of the position adjusting portion. The male screw of the position adjusting portion may be screwed into the female screw formed on the inner peripheral surface of the tubular main body portion.

第1の態様の工具保持構造において、前記位置調整部の前記雄ねじが形成された領域における外径が、前記位置調整部の他の領域における外径よりも大きくてもよい。 In the tool holding structure of the first aspect, the outer diameter of the position adjusting portion in the region where the male screw is formed may be larger than the outer diameter in the other region of the position adjusting portion.

第1の態様の工具保持構造は、前記筒状の本体部の前記起歪体よりも他端側において前記起歪体を支持する起歪体支持部と、前記起歪体支持部に取り付けられた補償用ひずみゲージと、長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に前記筒状の本体部の軸に沿って配置されており、前記起歪体と一体として前記軸方向に移動可能である位置調整部とを更に備えてもよく、前記起歪体支持部は、前記起歪体と前記起歪体支持部との間に密閉空間が形成されるように前記起歪体の外縁を支持してもよく、前記位置調整部は、前記起歪体支持部と前記位置調整部との間に密閉空間が形成されるように前記起歪体支持部の外縁を支持してもよく、前記ひずみゲージが前記起歪体と前記起歪体支持部との間の密閉空間内に配置されてもよく、前記補償用ひずみゲージが前記起歪体支持部と前記位置調整部との間の密閉空間内に配置されてもよい。 The tool holding structure of the first aspect is attached to the strain-causing body support portion that supports the strain-causing body on the other end side of the strain-causing body of the tubular main body portion and the strain-causing body support portion. A strain gauge for compensation and a long position adjusting portion, wherein the tubular main body is inside the tubular main body on the other end side of the strain-causing body of the tubular main body. The strain-causing body support portion may be further provided with a position adjusting portion which is arranged along the axis of the portion and is movable in the axial direction integrally with the strain-causing body. The outer edge of the strain-causing body may be supported so that a closed space is formed between the strain-causing body support portion, and the position adjusting portion is formed by the strain-causing body support portion and the position adjusting portion. The outer edge of the strain-causing body support portion may be supported so that a closed space is formed between the strain gauges, and the strain gauge is arranged in the closed space between the strain-causing body and the strain-causing body support portion. The compensating strain gauge may be arranged in a closed space between the strain-causing body support portion and the position adjusting portion.

第1の態様の工具保持構造は、前記本体部の他端側の開口に取り付けられ、且つ前記供給路に切削油を給油するための給油口を有する流路付ボルトを更に備えてもよく、前記位置調整部が前記流路付ボルトを貫通して前記本体部の後方に突出していてもよい。 The tool holding structure of the first aspect may be further provided with a flow path bolt attached to the opening on the other end side of the main body portion and having an oil supply port for supplying cutting oil to the supply path. The position adjusting portion may penetrate the bolt with a flow path and project to the rear of the main body portion.

第1の態様の工具保持構造において、前記起歪体が膜状の起歪部を有してもよく、該起歪部に前記ひずみゲージが取り付けられていてもよい。 In the tool holding structure of the first aspect, the strain-causing body may have a film-like strain-causing portion, and the strain gauge may be attached to the strain-causing portion.

第1の態様の工具保持構造において、前記起歪体が、前記膜状の起歪部から前記本体部の前記一端側へと突出する突起部を有してもよく、前記工具保持構造は前記棒状工具を前記突起部に当接させた状態で前記棒状工具を保持してもよい。 In the tool holding structure of the first aspect, the strain-causing body may have a protrusion protruding from the film-like strain-raising portion toward the one end side of the main body portion, and the tool holding structure may have the above-mentioned tool holding structure. The rod-shaped tool may be held in a state where the rod-shaped tool is in contact with the protrusion.

第1の態様の工具保持構造において、前記工具挟持部は、前記本体部の一端に嵌入されて前記棒状工具を挟持する、前記本体部とは別体の挟持部材であってもよい。 In the tool holding structure of the first aspect, the tool holding portion may be a holding member separate from the main body portion, which is fitted into one end of the main body portion to hold the rod-shaped tool.

第1の態様の工具保持構造において、前記挟持部材がコレットであってもよい。 In the tool holding structure of the first aspect, the holding member may be a collet.

本発明の第2の態様に従えば、
棒状工具を保持し且つ該棒状工具に付加されるスラスト荷重を検出する工具保持構造であり、一端側の開口に前記棒状工具が挿入される筒状の本体部、及び前記本体部の前記開口に挿入された前記棒状工具を挟持する工具挟持部を備える工具保持構造に用いられる荷重検出構造であって、
前記筒状の本体部の前記開口よりも他端側において、前記筒状の本体部の内部に配置され、前記棒状工具が当接される起歪体と、
前記起歪体に取り付けられたひずみゲージと
長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に、前記筒状の本体部の軸に沿って、前記起歪体と一体として前記軸方向に移動可能に配置される位置調整部とを備え、
前記筒状の本体部の内部に配置された状態において、前記筒状の本体部の内周面と前記荷重検出構造との間に前記棒状工具に切削油を供給する供給路を構成する荷重検出構造が提供される。
According to the second aspect of the present invention,
It is a tool holding structure that holds a rod-shaped tool and detects the thrust load applied to the rod-shaped tool. A load detection structure used in a tool holding structure including a tool holding portion for holding the inserted rod-shaped tool.
On the other end side of the opening of the cylindrical main body, a strain-causing body arranged inside the tubular main body and with which the rod-shaped tool is abutted.
A strain gauge and a long-shaped position adjusting portion attached to the strain-causing body, at the other end of the tubular main body portion from the strain-generating body, inside the tubular main body portion. A position adjusting portion is provided along the axis of the cylindrical main body portion so as to be movable in the axial direction together with the strain-causing body.
A load detection that constitutes a supply path for supplying cutting oil to the rod-shaped tool between the inner peripheral surface of the tubular main body and the load detection structure in a state of being arranged inside the tubular main body. The structure is provided.

第2の態様の荷重検出構造において、前記位置調整部は、前記位置調整部の外周面の少なくとも一部に形成された雄ねじと、前記位置調整部の長手方向において前記雄ねじの一方側と他方側とを連通させる連通路とを有してもよい。 In the load detection structure of the second aspect, the position adjusting portion includes a male screw formed on at least a part of the outer peripheral surface of the position adjusting portion, and one side and the other side of the male screw in the longitudinal direction of the position adjusting portion. It may have a communication passage that communicates with.

第2の態様の荷重検出構造において、前記位置調整部の前記雄ねじが形成された領域における外径が、前記位置調整部の他の領域の外径よりも大きくてもよい。 In the load detection structure of the second aspect, the outer diameter of the position adjusting portion in the region where the male screw is formed may be larger than the outer diameter of the other region of the position adjusting portion.

本発明の第3の態様に従えば、
第1の態様の工具保持構造と、
前記工具保持構造のひずみゲージの検出結果に基づいて棒状工具の交換要否を判定する制御部とを備える工具状態監視システムが提供される。
According to the third aspect of the present invention,
The tool holding structure of the first aspect and
A tool condition monitoring system including a control unit for determining whether or not a rod-shaped tool needs to be replaced based on a detection result of a strain gauge of the tool holding structure is provided.

本発明によれば、ドリル刃等の棒状工具を保持する機能と当該棒状工具に加わるスラスト荷重を検出する機能とを共に備え且つ保持した棒状工具に切削油を供給可能な工具保持構造、当該工具保持構造において用いる荷重検出構造、及び当該工具保持構造を含む工具状態監視システムが提供される。 According to the present invention, a tool holding structure capable of supplying cutting oil to a rod-shaped tool having both a function of holding a rod-shaped tool such as a drill blade and a function of detecting a thrust load applied to the rod-shaped tool and capable of supplying cutting oil to the rod-shaped tool. A load detection structure used in a holding structure and a tool condition monitoring system including the tool holding structure are provided.

図1は、本発明の実施形態に係る工具保持構造の斜視図である。FIG. 1 is a perspective view of a tool holding structure according to an embodiment of the present invention. 図2は、本発明の実施形態に係る工具保持構造の分解斜視図である。FIG. 2 is an exploded perspective view of the tool holding structure according to the embodiment of the present invention. 図3(a)は、本体部を、本体部の中心軸を含む面に沿って切断した断面図である。図3(b)は、図3(a)のIIIB−IIIB線に沿った断面図である。FIG. 3A is a cross-sectional view of the main body portion cut along a surface including the central axis of the main body portion. FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A. 図4は、給油部を、給油部の中心軸を含む面に沿って切断した断面図である。FIG. 4 is a cross-sectional view of the refueling section cut along a surface including the central axis of the refueling section. 図5(a)は、位置調整部を、位置調整部の中心軸を含む面に沿って切断した断面図である。図5(b)は、図5(a)のVB−VB線に沿った断面図である。FIG. 5A is a cross-sectional view of the position adjusting portion cut along a surface including the central axis of the position adjusting portion. 5 (b) is a cross-sectional view taken along the line VB-VB of FIG. 5 (a). 図6は、荷重検出部を、荷重検出部の中心軸を含む面に沿って切断した断面図である。FIG. 6 is a cross-sectional view of the load detection unit cut along a surface including the central axis of the load detection unit. 図7は、本発明の実施形態に係る工具保持構造を、工具保持構造の中心軸を含む面に沿って切断した断面図である。FIG. 7 is a cross-sectional view of the tool holding structure according to the embodiment of the present invention cut along a surface including the central axis of the tool holding structure. 図8は、工具保持構造が取り付けられる旋盤の構成を示す概略図である。FIG. 8 is a schematic view showing the configuration of a lathe to which a tool holding structure is attached. 図9は、工具保持構造の内部に画定された切削油用の供給流路を説明するための説明図である。FIG. 9 is an explanatory diagram for explaining a supply flow path for cutting oil defined inside the tool holding structure. 図10は、本発明の変形例に係る工具保持構造を、工具保持構造の中心軸を含む面に沿って切断した断面図である。FIG. 10 is a cross-sectional view of the tool holding structure according to the modified example of the present invention cut along a surface including the central axis of the tool holding structure. 図11は、本発明の他の変形例に係る工具保持構造を、工具保持構造の中心軸を含む面に沿って切断した断面図である。FIG. 11 is a cross-sectional view of the tool holding structure according to another modification of the present invention cut along a surface including the central axis of the tool holding structure.

<実施形態>
本発明の実施形態の工具保持構造100及び荷重検出構造110について、工具保持構造100を用いてドリル刃を旋盤に固定して、被加工物(ワーク)の旋削加工を行う場合を例として説明する。
<Embodiment>
The tool holding structure 100 and the load detection structure 110 according to the embodiment of the present invention will be described as an example in which the drill blade is fixed to the lathe by using the tool holding structure 100 and the workpiece (workpiece) is turned. ..

図1、図2に示す通り、工具保持構造100は中心軸Xを有する長尺形状であり、筒状の本体部1と、本体部1の一端側に取り付けられた給油部2と、本体部1の内部に配置された位置調整部3及び荷重検出部4と、本体部1の他端側でドリルDを挟持する工具挟持部5とを有する。 As shown in FIGS. 1 and 2, the tool holding structure 100 has a long shape having a central axis X, and has a cylindrical main body portion 1, a refueling portion 2 attached to one end side of the main body portion 1, and a main body portion. It has a position adjusting unit 3 and a load detecting unit 4 arranged inside the body 1, and a tool holding unit 5 for sandwiching the drill D on the other end side of the main body 1.

以下の説明においては、中心軸Xの延びる方向を工具保持構造100の軸方向と呼び、中心軸Xから延びる放射方向及び中心軸X回りの方向をそれぞれ、工具保持構造100の径方向、周方向と呼ぶ。軸方向においては、本体部1の工具挟持部5側、給油部2側をそれぞれ、前側、後側と呼ぶ。 In the following description, the extending direction of the central axis X is referred to as the axial direction of the tool holding structure 100, and the radial direction extending from the central axis X and the direction around the central axis X are the radial direction and the circumferential direction of the tool holding structure 100, respectively. Called. In the axial direction, the tool holding portion 5 side and the refueling portion 2 side of the main body portion 1 are referred to as front side and rear side, respectively.

本体部1は、金属(一例として工具鋼(例えばSK材)等)により形成されている。本体部1は、軸(中心軸)A1を有する円筒状であり、軸A1に沿って延びる内孔1hを有する(図2、図3)。本体部1の軸A1は工具保持構造100の中心軸Xに等しい。 The main body 1 is made of metal (for example, tool steel (for example, SK material)). The main body 1 has a cylindrical shape having a shaft (central shaft) A1 and has an inner hole 1h extending along the shaft A1 (FIGS. 2 and 3). The axis A1 of the main body 1 is equal to the central axis X of the tool holding structure 100.

本体部1は、軸方向の後側から順番に、被保持領域11と、前端領域12とを含む。 The main body portion 1 includes a held region 11 and a front end region 12 in order from the rear side in the axial direction.

被保持領域11における本体部1の外周面OS1には、本体部1の径方向に直交する3つの平面p1、p2、p3が形成されている(図3(b))。平面p1、p3の法線は互いに一致しており、平面p2の法線は平面p1、p3の法線に直交している。平面p1、p3は互いに反対側を向いている。平面p1、p2、p3はそれぞれ平面視矩形であり、被保持領域11の軸方向略全域に渡って延びている。被保持領域11における本体部1の外径は軸方向の略全域に渡って一定であり、一例として10mm〜40mm程度、より好適には20mm〜32mm程度とし得る。なお、外周面OS1には平面p1〜p3の少なくとも1つが形成されているのみでもよく、平面p1〜p3が形成されていなくてもよい。 Three planes p1, p2, and p3 orthogonal to the radial direction of the main body 1 are formed on the outer peripheral surface OS 1 of the main body 1 in the held region 11 (FIG. 3 (b)). The normals of the planes p1 and p3 coincide with each other, and the normals of the planes p2 are orthogonal to the normals of the planes p1 and p3. The planes p1 and p3 face opposite to each other. The planes p1, p2, and p3 are rectangular in plan view, and extend over substantially the entire axial direction of the held region 11. The outer diameter of the main body 1 in the held region 11 is constant over substantially the entire axial direction, and may be, for example, about 10 mm to 40 mm, more preferably about 20 mm to 32 mm. It should be noted that the outer peripheral surface OS1 may only have at least one of the planes p1 to p3 formed, and the planes p1 to p3 may not be formed.

被保持領域11においては、内孔1hを画定する内周面IS1の断面形状(軸方向に直交する面による断面の形状)は、軸方向の全域において円形である。 In the held region 11, the cross-sectional shape of the inner peripheral surface IS1 defining the inner hole 1h (the shape of the cross-section of the plane orthogonal to the axial direction) is circular over the entire axial direction.

被保持領域11において、内周面IS1は、軸方向の後側から順に、後側大径領域IS1a、小径領域IS1b、前側大径領域IS1cを含む。後側大径領域IS1aと小径領域IS1b、小径領域IS1bと前側大径領域IS1cはそれぞれ、テーパ状に接続されている。 In the held region 11, the inner peripheral surface IS1 includes the rear large diameter region IS1a, the small diameter region IS1b, and the front large diameter region IS1c in this order from the rear side in the axial direction. The rear large diameter region IS1a and the small diameter region IS1b, and the small diameter region IS1b and the front large diameter region IS1c are connected in a tapered shape.

後側大径領域IS1aにより画定される内孔1hの径は、一例として10mm〜15mm程度とし得る。後側大径領域IS1aの後端近傍の領域には雌ねじFSが形成されている。 The diameter of the inner hole 1h defined by the rear large diameter region IS1a may be, for example, about 10 mm to 15 mm. A female screw FS is formed in a region near the rear end of the rear large diameter region IS1a.

小径領域IS1bにより画定される内孔1hの径は、後側大径領域IS1aにより画定される内孔1hの径よりも小さく、一例として8mm〜13mm程度とし得る。小径領域IS1bには、軸方向の全域において雌ねじFSが形成されている。 The diameter of the inner hole 1h defined by the small diameter region IS1b is smaller than the diameter of the inner hole 1h defined by the rear large diameter region IS1a, and may be, for example, about 8 mm to 13 mm. A female screw FS is formed in the small diameter region IS1b over the entire area in the axial direction.

前側大径領域IS1cにより画定される内孔1hの径は、小径領域IS1bにより画定される内孔1hの径よりも大きく、一例として、後側大径領域IS1aにより画定される内孔1hの径と同一とし得る。 The diameter of the inner hole 1h defined by the front large diameter region IS1c is larger than the diameter of the inner hole 1h defined by the small diameter region IS1b, and as an example, the diameter of the inner hole 1h defined by the rear large diameter region IS1a. Can be the same as.

前端領域12における本体部1の外周面OS1には雄ねじMSが形成されている。 A male screw MS is formed on the outer peripheral surface OS1 of the main body 1 in the front end region 12.

前端領域12においては、内孔1hを画定する内周面IS1の断面形状(軸方向に直交する面による断面の形状)は、軸方向の全域において円形である。前端領域12における本体部1の内周面IS1は、軸方向前側に向かうにしたがって広がるテーパ状に形成されている。即ち、前端領域12においては、内孔1hの径は、後端において最も小さく、前側に向かうにしたがって次第に大きくなる。 In the front end region 12, the cross-sectional shape of the inner peripheral surface IS1 defining the inner hole 1h (the shape of the cross-section of the plane orthogonal to the axial direction) is circular over the entire axial direction. The inner peripheral surface IS1 of the main body 1 in the front end region 12 is formed in a tapered shape that expands toward the front side in the axial direction. That is, in the front end region 12, the diameter of the inner hole 1h is the smallest at the rear end and gradually increases toward the front side.

図1、図3(a)に示すように、本実施形態では、本体部1の外周面OS1に、被保持領域11と前端領域12とにまたがるフランジFが形成されている。 As shown in FIGS. 1 and 3A, in the present embodiment, a flange F is formed on the outer peripheral surface OS1 of the main body 1 so as to straddle the held region 11 and the front end region 12.

給油部2は、本体部1の内孔1hに切削油を供給するための給油口を与える部分である。 The refueling unit 2 is a portion that provides a refueling port for supplying cutting oil to the inner hole 1h of the main body portion 1.

図1、2に示す通り、給油部2は、本体部1の後端部に取り付けられた流路付ボルト21と、流路付ボルト21に取り付けられたホースジョイント22とを含む。 As shown in FIGS. 1 and 2, the refueling unit 2 includes a flow path bolt 21 attached to the rear end portion of the main body portion 1 and a hose joint 22 attached to the flow path bolt 21.

図4に示す通り、流路付ボルト21は軸(中心軸)A2を有するボルトであり、頭部21Hと、頭部21Hから軸A2に沿って前方に延びる軸部21Aとを含む。 As shown in FIG. 4, the bolt 21 with a flow path is a bolt having a shaft (central shaft) A2, and includes a head portion 21H and a shaft portion 21A extending forward along the shaft A2 from the head head 21H.

頭部21Hは六角柱状である。頭部21Hには、軸A2に沿って延びる内孔21h1、21h2と、頭部21Hの外周面に凹設されたねじ孔thと、径方向に延びて内孔21h2とねじ孔thとを繋ぐ連結孔chとが形成されている。なお、頭部21Hは本実施形態では六角柱状であるが、これには限定されず、円筒形状等の任意の形状とし得る。 The head 21H has a hexagonal columnar shape. The head 21H connects the inner holes 21h1 and 21h2 extending along the axis A2, the screw holes th recessed on the outer peripheral surface of the head 21H, and the inner holes 21h2 extending in the radial direction and the screw holes th. A connecting hole ch is formed. The head 21H has a hexagonal columnar shape in the present embodiment, but is not limited to this, and may have an arbitrary shape such as a cylindrical shape.

内孔21h2は内孔21h1よりも前方に位置しており、内孔21h1よりも径が大きい。内孔21h1の径は一例として4mm〜8mm程度、内孔21h2の径は一例として6mm〜10mm程度とし得る。内孔21h1と内孔21h2とは互いに連通して、頭部21Hを軸方向に貫通する貫通孔を構成している。内孔21h1を画定する周面には、周方向の全域に渡って溝G21が形成されている。 The inner hole 21h2 is located in front of the inner hole 21h1 and has a larger diameter than the inner hole 21h1. The diameter of the inner hole 21h1 may be about 4 mm to 8 mm as an example, and the diameter of the inner hole 21h2 may be about 6 mm to 10 mm as an example. The inner hole 21h1 and the inner hole 21h2 communicate with each other to form a through hole that penetrates the head portion 21H in the axial direction. A groove G 21 is formed on the peripheral surface defining the inner hole 21h1 over the entire area in the circumferential direction.

連通孔chは、内孔21h1と内孔21h2との接続部の近傍において、内孔21h2に連通している。 The communication hole ch communicates with the inner hole 21h2 in the vicinity of the connection portion between the inner hole 21h1 and the inner hole 21h2.

軸部21Aは円筒状である。軸部21Aの外周面には雄ねじMSが形成されている。軸部21Aの中心部には、軸A2に沿って延びる内孔21h3が形成されている。内孔21h3は頭部21Hの内孔21h2に連通している。内孔21h2の径と内孔21h3の径は同一とし得る。 The shaft portion 21A has a cylindrical shape. A male screw MS is formed on the outer peripheral surface of the shaft portion 21A. An inner hole 21h3 extending along the shaft A2 is formed in the center of the shaft portion 21A. The inner hole 21h3 communicates with the inner hole 21h2 of the head 21H. The diameter of the inner hole 21h2 and the diameter of the inner hole 21h3 can be the same.

ホースジョイント22(図1、図2)は、貫通孔22hを有する筒状であり、軸方向に沿ってホース接続部221、六角部222、雄ねじ部223を有する。ホースジョイント22としては例えば、市販のタケノコ継手や、一般的なホール/管用のインレットを使用し得る。 The hose joint 22 (FIGS. 1 and 2) has a cylindrical shape having a through hole 22h, and has a hose connection portion 221, a hexagonal portion 222, and a male screw portion 223 along the axial direction. As the hose joint 22, for example, a commercially available bamboo shoot joint or a general hole / pipe inlet can be used.

ホースジョイント22は、雄ねじ部223を流路ボルト21の頭部21Hのねじ孔thに螺合することにより、流路付ボルト21に接続されている。 The hose joint 22 is connected to the flow path bolt 21 by screwing the male threaded portion 223 into the screw hole th of the head portion 21H of the flow path bolt 21.

給油部2は、図7に示すように、流路付ボルト21の軸部21Aの雄ねじMSを、本体部1の内周面IS1の後側小径領域IS1aに形成された雌ねじFSに螺合させて、本体部1の後端に取り付けられている。この状態において、流路付ボルト21の軸A2は、本体部1の軸A1に一致している。また、本体部1の後端面と、流路付ボルト21の頭部21Hの前面との間には、これらの面に密着した状態で環状のガスケットGKが挟まれている。これにより、工具保持構造100の内部に切削油が流される際(詳細後述)に、切削油の漏れが防止される。 As shown in FIG. 7, the refueling unit 2 screwes the male screw MS of the shaft portion 21A of the flow path bolt 21 into the female screw FS formed in the rear small diameter region IS1a of the inner peripheral surface IS1 of the main body portion 1. It is attached to the rear end of the main body 1. In this state, the shaft A2 of the flow path bolt 21 coincides with the shaft A1 of the main body 1. Further, an annular gasket GK is sandwiched between the rear end surface of the main body 1 and the front surface of the head portion 21H of the flow path bolt 21 in close contact with these surfaces. This prevents the cutting oil from leaking when the cutting oil is poured inside the tool holding structure 100 (details will be described later).

位置調整部3(図5)は、荷重検出部4(詳細後述)を後方から支持するとともに、荷重検出部4と一体に軸方向に移動して荷重検出部4の軸方向の位置を調整する部材である。 The position adjusting unit 3 (FIG. 5) supports the load detecting unit 4 (details will be described later) from behind, and moves in the axial direction integrally with the load detecting unit 4 to adjust the axial position of the load detecting unit 4. It is a member.

位置調整部3は、炭素鋼(一例としてSC材)、ステンレス鋼等の金属で形成された略円筒状の部材であり、軸(中心軸)A3に沿って延びる内孔3hを有する。位置調整部3は、軸方向の後端側から順番に、後端領域31、延在領域32、大径領域33、支持領域34を含む。 The position adjusting portion 3 is a substantially cylindrical member made of a metal such as carbon steel (SC material as an example) or stainless steel, and has an inner hole 3h extending along a shaft (central shaft) A3. The position adjusting unit 3 includes the rear end region 31, the extending region 32, the large diameter region 33, and the support region 34 in order from the rear end side in the axial direction.

図1、図2に示す通り、後端領域31にはDカット部DCが形成されており、Dカット面DCsが軸A3に平行な面内に延びている(図1)。なお、Dカット部DCにDカット面DCsと平行な他のDカット面を更に設けてもよい。この場合、2つのDカット面をスパナ等で挟んで位置調整部3を回転させることができる。 As shown in FIGS. 1 and 2, a D-cut portion DC is formed in the rear end region 31, and the D-cut surface DCs extend in a plane parallel to the axis A3 (FIG. 1). In addition, another D-cut surface parallel to the D-cut surface DCs may be further provided on the D-cut portion DC. In this case, the position adjusting unit 3 can be rotated by sandwiching the two D-cut surfaces with a spanner or the like.

延在領域32における位置調整部3の外径は、後端領域31における位置調整部3の外径よりも大きく、一例として4mm〜8mm程度とし得る。 The outer diameter of the position adjusting portion 3 in the extending region 32 is larger than the outer diameter of the position adjusting portion 3 in the rear end region 31, and may be about 4 mm to 8 mm as an example.

大径領域33における位置調整部3の外径は、延在領域32における位置調整部3の外径よりも大きく、一例として8mm〜13mm程度とし得る。大径領域33の後端近傍は、テーパ状に径が小さくなって延在領域32に接続している。大径領域33の前端近傍も同様に、テーパ状に径が小さくなって支持領域34に接続している。 The outer diameter of the position adjusting portion 3 in the large diameter region 33 is larger than the outer diameter of the position adjusting portion 3 in the extending region 32, and may be about 8 mm to 13 mm as an example. The vicinity of the rear end of the large diameter region 33 has a tapered diameter and is connected to the extending region 32. Similarly, the vicinity of the front end of the large diameter region 33 has a tapered diameter and is connected to the support region 34.

大径領域33においては、位置調整部3の外周面OS3に雄ねじMSが形成されている。また、大径領域33においては、外周面OS3の周方向3か所に、軸方向に延びる溝(連通路)G33が形成されている。溝G33はそれぞれ、軸方向において大径領域33の全域に渡って延びており、大径領域33の前側及び後側に開口している。なお、本実施形態では3つの溝G33が周方向に等間隔に設けられているがこれには限られない。溝G33の数、及び配置は適宜変更し得る。 In the large diameter region 33, a male screw MS is formed on the outer peripheral surface OS 3 of the position adjusting portion 3. Further, in the large diameter region 33, grooves (continuous passages) G 33 extending in the axial direction are formed at three locations in the circumferential direction of the outer peripheral surface OS 3. The grooves G 33 extend over the entire area of the large diameter region 33 in the axial direction, and are open to the front side and the rear side of the large diameter region 33, respectively. In the present embodiment, the three grooves G 33 are provided at equal intervals in the circumferential direction, but the present invention is not limited to this. The number and arrangement of the grooves G 33 may be changed as appropriate.

支持領域34における位置調整部3の外径は、大径領域33における位置調整部3の外径よりも小さく、一例として6mm〜12mm程度とし得る。支持領域34の前端近傍の領域には凹部R3が形成されている。凹部R3は、位置調整部3の前端面3fsの中央部に形成された断面円形の凹孔であり、その深さは、本実施形態では、支持領域34の軸方向の長さの約1/2程度である。凹部R3の底面には内孔3hの前端が開口している。 The outer diameter of the position adjusting portion 3 in the support region 34 is smaller than the outer diameter of the position adjusting portion 3 in the large diameter region 33, and may be about 6 mm to 12 mm as an example. A recess R3 is formed in a region near the front end of the support region 34. The concave portion R3 is a concave hole having a circular cross section formed in the central portion of the front end surface 3fs of the position adjusting portion 3, and the depth thereof is about 1 / of the axial length of the support region 34 in the present embodiment. It is about 2. The front end of the inner hole 3h is open on the bottom surface of the recess R3.

内孔3hは、荷重検出部4から延びる配線W42、W44(図7)を通すための通路であり、任意の径を有し得る。 The inner hole 3h is a passage for passing the wirings W 42 and W 44 (FIG. 7) extending from the load detection unit 4, and may have an arbitrary diameter.

図7に示す通り、位置調整部3は、本体部1の内孔1hに、本体部1と同軸状に挿入されている。この状態においては、大径領域33における外周面OS3の雄ねじMSが、本体部1の内周面IS1の小径領域IS1bの雌ねじFSに螺合している。また、延在領域32が、給油部2の流路付ボルト21の内孔21h1〜21h3を貫通しており、後端領域31は本体部1及び給油部2の後方に突出している。 As shown in FIG. 7, the position adjusting portion 3 is inserted into the inner hole 1h of the main body portion 1 coaxially with the main body portion 1. In this state, the male screw MS of the outer peripheral surface OS3 in the large diameter region 33 is screwed into the female screw FS of the small diameter region IS1b of the inner peripheral surface IS1 of the main body 1. Further, the extending region 32 penetrates the inner holes 21h1 to 21h3 of the flow path bolt 21 of the refueling unit 2, and the rear end region 31 projects to the rear of the main body portion 1 and the refueling unit 2.

流路付ボルト21の内孔21h1に設けられた溝G21にはOリングORが配置されている。OリングORは、内孔21h1を貫通する位置調整部3の延在部32の外周面OS3に密接している。これにより、工具保持構造100の内部に切削油が流される際(詳細後述)に、切削油の漏れが防止される。 An O-ring OR is arranged in the groove G 21 provided in the inner hole 21h1 of the flow path bolt 21. The O-ring OR is in close contact with the outer peripheral surface OS3 of the extending portion 32 of the position adjusting portion 3 penetrating the inner hole 21h1. This prevents the cutting oil from leaking when the cutting oil is poured inside the tool holding structure 100 (details will be described later).

荷重検出部4は、工具保持構造100がドリル刃Dを保持した状態において、ドリル刃Dに軸方向に加えられる荷重(スラスト荷重)を検出する、ダイヤフラム型のロードセルである。 The load detection unit 4 is a diaphragm type load cell that detects a load (thrust load) applied to the drill blade D in the axial direction while the tool holding structure 100 holds the drill blade D.

荷重検出部4は、図6に示す通り、起歪体41と、起歪体41に貼り付けられた検出用ひずみゲージ42と、起歪体41を支持する起歪体支持部43と、起歪体支持部43に貼り付けられた補償用ひずみゲージ44とを有する。 As shown in FIG. 6, the load detection unit 4 includes a strain-causing body 41, a detection strain gauge 42 attached to the strain-causing body 41, a strain-causing body support unit 43 that supports the strain-causing body 41, and a riser. It has a compensating strain gauge 44 attached to the strain body support portion 43.

起歪体41は、一例として鉄、ステンレス鋼(SUS)やアルミニウム(アルミニウム合金)等の金属で形成されている。 The strain-causing body 41 is made of a metal such as iron, stainless steel (SUS) or aluminum (aluminum alloy) as an example.

起歪体41は、軸A4に直交する面内に軸A4を中心として広がる円形膜状の起歪部411と、起歪部411の中央部から軸A4方向の一方側に突出する突起部412と、起歪部411の外周部から突起部412と同じ方向に立ち上がる壁部413と、壁部413の先端から起歪部411の径方向の外側に突出するフランジ部414とを含む。起歪部411、突起部412、壁部413、及びフランジ部414は一体に形成されていてもよい。 The strain-causing body 41 has a circular film-shaped strain-causing portion 411 that extends around the axis A4 in a plane orthogonal to the axis A4, and a protrusion 412 that protrudes from the central portion of the strain-causing portion 411 to one side in the axis A4 direction. A wall portion 413 that rises from the outer peripheral portion of the strain-causing portion 411 in the same direction as the protrusion 412, and a flange portion 414 that protrudes outward in the radial direction from the tip of the wall portion 413. The strain-causing portion 411, the protrusion portion 412, the wall portion 413, and the flange portion 414 may be integrally formed.

起歪部411の外径は、一例として6mm〜12mm程度、厚さは一例として0.5mm〜2mm程度とし得る。起歪部411は膜状であるため他の部分よりも変形しやすく、突起部412により軸A4の方向に押されることによって容易に変形し、ひずみを生じる(詳細後述)。 The outer diameter of the strain-causing portion 411 may be, for example, about 6 mm to 12 mm, and the thickness may be, for example, about 0.5 mm to 2 mm. Since the strain-causing portion 411 is in the form of a film, it is more easily deformed than other portions, and is easily deformed by being pushed in the direction of the axis A4 by the protrusion 412 to cause strain (details will be described later).

突起部412は、略円錐状であり、先端tpには丸みが与えられている。突起部412は、突起部412の中心軸が軸A4に一致するように設けられている。突起部412の長さは限定されないが、一例として2mm〜10mm程度とし得る。突起部412の径は、起歪部411との接続部において1〜4mm程度とし得る。 The protrusion 412 has a substantially conical shape, and the tip tp is rounded. The protrusion 412 is provided so that the central axis of the protrusion 412 coincides with the axis A4. The length of the protrusion 412 is not limited, but may be about 2 mm to 10 mm as an example. The diameter of the protrusion 412 may be about 1 to 4 mm at the connection with the strain-causing portion 411.

壁部413は、起歪部411の周方向全域に設けられている。壁部413の内面413iは、軸A4に対して傾いている。 The wall portion 413 is provided in the entire circumferential direction of the strain generating portion 411. The inner surface 413i of the wall portion 413 is tilted with respect to the axis A4.

フランジ部414は、壁部413の周方向全域に設けられている。 The flange portion 414 is provided in the entire circumferential direction of the wall portion 413.

検出用ひずみゲージ42は、起歪部411の、突起部412が形成された面とは反対側の面に貼り付けられている。検出用ひずみゲージ42の構造は任意であるが、一例として4つのひずみ受感素子を備えるひずみゲージを用いてよい。 The detection strain gauge 42 is attached to the surface of the strain generating portion 411 opposite to the surface on which the protrusion 412 is formed. The structure of the detection strain gauge 42 is arbitrary, but as an example, a strain gauge provided with four strain-sensitive elements may be used.

検出用ひずみゲージ42は、本実施形態では起歪部411の中央部に貼り付けられている。 In the present embodiment, the detection strain gauge 42 is attached to the central portion of the strain generating portion 411.

起歪体支持部43は、本実施形態では起歪体41と同一の材料で形成されている。 In the present embodiment, the strain-causing body support portion 43 is made of the same material as the strain-causing body 41.

起歪体支持部43は、軸A4を中心軸とする略円筒状の部材であり、軸A4方向に並ぶ大径領域43L及び小径領域43Sを含む。大径領域43Lの外径は、起歪部41のフランジ部414の外径と同一であり、位置調整部3の支持領域34における外径に等しい。小径領域43Sの外径は大径領域43Lの外径よりも小さい。大径領域43Lと小径領域43Sとの接続部には環状の段差面ssが画定されている。 The strain-causing body support portion 43 is a substantially cylindrical member with the axis A4 as the central axis, and includes a large-diameter region 43L and a small-diameter region 43S arranged in the axis A4 direction. The outer diameter of the large diameter region 43L is the same as the outer diameter of the flange portion 414 of the strain generating portion 41, and is equal to the outer diameter of the support region 34 of the position adjusting portion 3. The outer diameter of the small diameter region 43S is smaller than the outer diameter of the large diameter region 43L. An annular stepped surface ss is defined at the connection portion between the large diameter region 43L and the small diameter region 43S.

起歪体支持部43の大径領域43Lには、端面43Lsから軸A4方向に延びる凹部R4が形成されている。凹部R4の断面形状は円形である。 In the large diameter region 43L of the strain-causing body support portion 43, a recess R4 extending from the end surface 43Ls in the axis A4 direction is formed. The cross-sectional shape of the recess R4 is circular.

凹部R4の底面と、起歪体支持部43の小径領域43S側の端面43Ssとの間には、軸A4沿いに延びる内孔43hが形成されている。内孔43hは、検出用ひずみゲージ42から延びる配線W42(図7)を通過させるための孔であり、任意の寸法を有し得る。 An inner hole 43h extending along the shaft A4 is formed between the bottom surface of the recess R4 and the end surface 43Ss on the small diameter region 43S side of the strain generating body support portion 43. The inner hole 43h is a hole for passing the wiring W 42 (FIG. 7) extending from the detection strain gauge 42, and may have an arbitrary dimension.

図6に示す通り、起歪体41と起歪体支持部43とは、起歪体41の起歪部411及び壁部413を起歪体支持部43の凹部R4に嵌入させることによる締まり嵌め結合により一体に結合されている。起歪体41と起歪体支持部43とが結合された状態において、起歪体41と起歪体支持部43とは同軸状であり、起歪体41のフランジ部414に起歪体支持部43の端面43Lsが当接している。 As shown in FIG. 6, the strain-causing body 41 and the strain-causing body support portion 43 are tightly fitted by fitting the strain-causing portion 411 and the wall portion 413 of the strain-causing body 41 into the recess R4 of the strain-causing body support portion 43. It is integrally bonded by bonding. In a state where the strain-causing body 41 and the strain-causing body support portion 43 are coupled, the strain-causing body 41 and the strain-causing body support portion 43 are coaxial, and the strain-causing body is supported by the flange portion 414 of the strain-causing body 41. The end faces 43Ls of the portion 43 are in contact with each other.

起歪体41と起歪体支持部43とが結合された状態において、凹部R4の内部に、起歪体41と起歪体支持部43とに囲まれた密閉空間が画定され、検出用ひずみゲージ42は当該空間内に配置される。凹部R4の深さは、起歪体41にひずみが生じた際に、起歪部411及び検出用ひずみゲージ42が起歪体支持部43に接触しないように設計される。これにより、荷重検出部4における荷重検出の精度が保たれる。 In a state where the strain-causing body 41 and the strain-causing body support portion 43 are coupled, a closed space surrounded by the strain-causing body 41 and the strain-causing body support portion 43 is defined inside the recess R4, and the strain for detection is defined. The gauge 42 is arranged in the space. The depth of the recess R4 is designed so that the strain-causing portion 411 and the detection strain gauge 42 do not come into contact with the strain-causing body support portion 43 when the strain-causing body 41 is strained. As a result, the accuracy of load detection in the load detection unit 4 is maintained.

補償用ひずみゲージ44は、起歪体支持部43の小径領域43S側の端面43Ssに貼り付けられている。補償用ひずみゲージ44の構造は任意であるが、検出用ひずみゲージ42と同一のひずみゲージを使用し得る。 The compensating strain gauge 44 is attached to the end surface 43Ss on the small diameter region 43S side of the strain generating body support portion 43. The structure of the compensating strain gauge 44 is arbitrary, but the same strain gauge as the detection strain gauge 42 may be used.

図7に示す通り、荷重検出部4は、起歪体支持部43の小径領域43Sを、位置調整部3の支持部34の凹部R3に嵌入させることによる締まり嵌め結合により位置調整部3に結合されている。この状態において荷重検出部4は、軸A4を本体部1の軸A1に一致させた状態で、本体部1の内孔1hの内部に配置されている。 As shown in FIG. 7, the load detection unit 4 couples the small diameter region 43S of the strain-causing body support portion 43 to the position adjustment portion 3 by a tight fitting coupling by fitting the small diameter region 43S of the support portion 34 of the position adjustment portion 3 into the recess R3. Has been done. In this state, the load detection unit 4 is arranged inside the inner hole 1h of the main body unit 1 with the shaft A4 aligned with the axis A1 of the main body unit 1.

検出用ひずみゲージ42から延びる配線W42は、起歪体支持部43の内孔43h及び位置調整部3の内孔3hを介して、工具保持構造100の後端側へと延びている。補償用ひずみゲージ44から延びる配線W44は、位置調整部3の内孔3hを介して、工具保持構造100の後端側へと延びている。 The wiring W 42 extending from the detection strain gauge 42 extends to the rear end side of the tool holding structure 100 via the inner hole 43h of the strain generating body support portion 43 and the inner hole 3h of the position adjusting portion 3. The wiring W 44 extending from the compensating strain gauge 44 extends to the rear end side of the tool holding structure 100 via the inner hole 3h of the position adjusting portion 3.

工具挟持部5(図1、図2)は、ドリルDを挟持するための構造である。 The tool holding portion 5 (FIGS. 1 and 2) has a structure for holding the drill D.

工具挟持部5は、本体部1の前端において内孔1hに嵌入されてドリルDを挟持するコレットCLと、本体部1の前端領域12の外周面OS1に形成された雄ねじMSに螺合してコレットCLを位置固定するコレットナットCNとを含む。 The tool holding portion 5 is screwed into a collet CL that is fitted into the inner hole 1h at the front end of the main body portion 1 to hold the drill D and a male screw MS formed on the outer peripheral surface OS 1 of the front end region 12 of the main body portion 1. Includes a collet nut CN for fixing the position of the collet CL.

コレットCLは、一般的なコレット(コレットチャック)である。即ち内孔CLhを有する略円筒形であり、軸方向に延びる複数のスリットSを有し、径方向内向きの力を受けた際に弾性変形して外径及び内径が縮小するように構成されている。内孔CLhの径(把握径)は一例として0.5mm〜13mm程度とし得る。本発明において「コレット」とは、内孔を有する円筒形又は略円筒形であり、軸方向に延びる少なくとも1つのスリットを有し、弾性変形により外径及び内径が縮小するように構成された部材を意味する。 Collet CL is a general collet (collet chuck). That is, it is a substantially cylindrical shape having an inner hole CLh, has a plurality of slits S extending in the axial direction, and is configured to elastically deform and reduce the outer diameter and the inner diameter when receiving a radial inward force. ing. The diameter (grasping diameter) of the inner hole CLh can be, for example, about 0.5 mm to 13 mm. In the present invention, the "collet" is a cylindrical or substantially cylindrical member having an inner hole, having at least one slit extending in the axial direction, and being configured such that the outer diameter and the inner diameter are reduced by elastic deformation. Means.

コレットCLは、軸方向の一端の近傍に外径が最も大きい大径部MXを有し、大径部MXから当該一端部に向かうにしたがって外径が小さくなる第1テーパ領域T1と、大径部MXから他端部に向かうにしたがって外径が小さくなる第2テーパ領域T2とを有する。第2テーパ領域T2のテーパ角は第1テーパ領域T1のテーパ角よりも小さい。 The collet CL has a large diameter portion MX having the largest outer diameter in the vicinity of one end in the axial direction, and a first tapered region T1 in which the outer diameter becomes smaller toward the one end portion from the large diameter portion MX, and a large diameter. It has a second tapered region T2 whose outer diameter becomes smaller toward the other end from the portion MX. The taper angle of the second taper region T2 is smaller than the taper angle of the first taper region T1.

コレットナットCNは、一般的なコレットナットであり、円筒状の本体部MPと、本体部MPの一端に設けられた蓋部LP(図7)とを有する。本体部MPの外周面には、締結工具を係合するための複数の係合溝EG(図1、図2)が、周方向に沿って等間隔に設けられている。 The collet nut CN is a general collet nut, and has a cylindrical main body MP and a lid LP (FIG. 7) provided at one end of the main body MP. A plurality of engaging grooves EG (FIGS. 1 and 2) for engaging the fastening tool are provided on the outer peripheral surface of the main body MP at equal intervals along the circumferential direction.

本体部MPの内周面は、蓋部LPが設けられた端部から他端側へと向かうにしたがって内径が大きくなるテーパ領域T3(図7)と、テーパ領域T3と他端側との間のねじ領域S1とを有する。テーパ領域T3のテーパ角は、コレットCLの第1テーパ領域T1のテーパ角に略等しい。ねじ領域S1には雌ねじFSが形成されている。 The inner peripheral surface of the main body MP is between a tapered region T3 (FIG. 7) whose inner diameter increases toward the other end from the end where the lid LP is provided, and between the tapered region T3 and the other end. Has a threaded region S1 of. The taper angle of the taper region T3 is substantially equal to the taper angle of the first taper region T1 of the collet CL. A female screw FS is formed in the screw region S1.

蓋部LPの中央部には、円形状の貫通孔LPh(図7)が形成されている。貫通孔LPhの径は、一例として0.5mm〜13mm程度とし得る。後述する通り、切削油は貫通孔LPhを介してドリルDに噴出するため、貫通孔LPhを小さくするほど、より高速度で噴出する。 A circular through hole LPh (FIG. 7) is formed in the central portion of the lid portion LP. The diameter of the through hole LPh can be, for example, about 0.5 mm to 13 mm. As will be described later, since the cutting oil is ejected to the drill D through the through hole LPh, the smaller the through hole LPh is, the higher the speed is ejected.

工具挟持部5のコレットCLは、図7に示す通り、ドリル刃Dの後端領域DRを内孔CLh内に配置した状態で、第2テーパ領域T2が本体部1の前端領域12の内孔1hにはめ込まれている。大径部MXの外径が本体部1の前端における内孔1hの径よりも大きいため、大径部MXは軸方向において本体部1の外側に位置している。 As shown in FIG. 7, in the collet CL of the tool holding portion 5, the second tapered region T2 is the inner hole of the front end region 12 of the main body portion 1 in a state where the rear end region DR of the drill blade D is arranged in the inner hole CLh. It is fitted in 1h. Since the outer diameter of the large diameter portion MX is larger than the diameter of the inner hole 1h at the front end of the main body portion 1, the large diameter portion MX is located outside the main body portion 1 in the axial direction.

工具挟持部5のコレットナットCNの雌ねじFSは、図7に示す通り、ドリル刃Dが蓋部LPの貫通孔LPhを貫通し、コレットCLの第1テーパ領域T1の外周面がテーパ領域T3の内周面に当接した状態で、本体部1の前端領域12の雄ねじMSに螺合している。 As shown in FIG. 7, in the female screw FS of the collet nut CN of the tool holding portion 5, the drill blade D penetrates the through hole LPh of the lid portion LP, and the outer peripheral surface of the first tapered region T1 of the collet CL is the tapered region T3. It is screwed into the male screw MS of the front end region 12 of the main body 1 in a state of being in contact with the inner peripheral surface.

この状態において、コレットナットCNを締めれば、コレットCLが後方に押されて内孔1hに入り込み、コレットCLの内孔CLhの径は小さくなる。したがって、ドリル刃DはコレットCLにより挟持されて、工具保持構造100に保持される。この状態において、ドリル刃Dの中心軸は工具保持構造100の中心軸Xに一致する。 In this state, if the collet nut CN is tightened, the collet CL is pushed backward and enters the inner hole 1h, and the diameter of the inner hole CLh of the collet CL becomes smaller. Therefore, the drill bit D is sandwiched by the collet CL and held by the tool holding structure 100. In this state, the central axis of the drill bit D coincides with the central axis X of the tool holding structure 100.

即ち工具保持構造100は、ドリル刃Dが工具保持構造100の前端から前方へと中心軸Xに沿って延び、ドリル刃Dの先端TP(図8)が工具保持構造100の前方に位置するように、ドリル刃Dを保持する。 That is, in the tool holding structure 100, the drill blade D extends forward from the front end of the tool holding structure 100 along the central axis X, and the tip TP (FIG. 8) of the drill blade D is located in front of the tool holding structure 100. Holds the drill bit D.

コレットナットCNを緩めれば、コレットCLが前方、即ち内孔1hから脱落する方向に移動可能となる。したがって、コレットCLの内孔CLhの径が大きくなり、ドリル刃Dの取り外しが可能となる。 If the collet nut CN is loosened, the collet CL can move forward, that is, in a direction in which the collet CL falls off from the inner hole 1h. Therefore, the diameter of the inner hole CLh of the collet CL becomes large, and the drill blade D can be removed.

上述した構造を有する工具保持構造100の内部には、ホースジョイント22の貫通孔22h、流路付ボルト21の接続孔ch、流路付ボルト21の内孔21h2、21h3を画定する周面と位置調整部3の外周面OS3との間の空間、本体部1の内周面IS1と位置調整部3の外周面OS3との間の空間(小径領域IS2bの雌ねじFSと大径領域33の雄ねじMSが螺合している領域においては溝G33)、本体部1の内周面IS1と荷重検出部4の外縁との間の空間、及びコレットCLのスリットSにより、切削油のための供給流路が構成されている。 Inside the tool holding structure 100 having the above-mentioned structure, the peripheral surface and the position defining the through hole 22h of the hose joint 22, the connection hole ch of the bolt 21 with a flow path, and the inner holes 21h2 and 21h3 of the bolt 21 with a flow path are defined. Space between the outer peripheral surface OS 3 of the adjusting unit 3 and space between the inner peripheral surface IS1 of the main body 1 and the outer peripheral surface OS 3 of the position adjusting unit 3 (female screw FS of the small diameter region IS2b and male screw MS of the large diameter region 33). The supply flow for cutting oil is provided by the groove G 33 ), the space between the inner peripheral surface IS1 of the main body 1 and the outer edge of the load detection unit 4, and the slit S of the collet CL in the region where The road is constructed.

なお、上述した構造を有する工具保持構造100のうち、荷重検出部4と位置調整部3とにより、本実施形態の荷重検出構造110(図2)が構成される。 Of the tool holding structure 100 having the above-mentioned structure, the load detection unit 4 and the position adjustment unit 3 constitute the load detection structure 110 (FIG. 2) of the present embodiment.

次に、本実施形態の工具保持構造100の使用方法を説明する。 Next, a method of using the tool holding structure 100 of the present embodiment will be described.

(1)ドリル刃Dの工具保持構造100への取り付け
工具保持構造100にドリル刃Dを取り付ける際には、まず、位置調整部3を回転させて位置調整部3及び荷重検出部4を後方に移動させる。具体的には、位置調整部3の後端領域31のDカット部DCに工具を係合させて位置調整部3を軸A3回りに回転させる。これにより、大径部33の雄ねじMSが本体部1の内周面IS1の雌ねじFSに螺合している位置調整部3は、本体部1に対して軸方向に移動する。
(1) Attaching the Drill Blade D to the Tool Holding Structure 100 When attaching the drill blade D to the tool holding structure 100, first, the position adjusting section 3 is rotated to move the position adjusting section 3 and the load detecting section 4 to the rear. Move it. Specifically, the tool is engaged with the D-cut portion DC of the rear end region 31 of the position adjusting portion 3 to rotate the position adjusting portion 3 around the axis A3. As a result, the position adjusting portion 3 in which the male screw MS of the large diameter portion 33 is screwed into the female screw FS of the inner peripheral surface IS1 of the main body portion 1 moves in the axial direction with respect to the main body portion 1.

次いで、工具挟持部5のコレットナットCNを緩め、コレットナットCNの貫通孔LPhを介して、コレットCLの内孔CLhにドリル刃Dの後端領域DRを挿入する。 Next, the collet nut CN of the tool holding portion 5 is loosened, and the rear end region DR of the drill blade D is inserted into the inner hole CLh of the collet CL via the through hole LPh of the collet nut CN.

ドリル刃Dの軸方向位置を所望の位置に調整した後、工具挟持部5のコレットナットCNを締めて、コレットCLによりドリル刃Dを挟持する。荷重検出部4を後方に退避させた状態でドリル刃Dの位置調整を行うことで、ドリル刃Dの位置調整を、荷重検出部4に干渉されることなく自在に行うことができる。 After adjusting the axial position of the drill blade D to a desired position, the collet nut CN of the tool holding portion 5 is tightened, and the drill blade D is held by the collet CL. By adjusting the position of the drill blade D with the load detection unit 4 retracted rearward, the position of the drill blade D can be freely adjusted without being interfered by the load detection unit 4.

ドリル刃Dの位置を決定した後、位置調整部3を回転させて軸方向に移動させ、荷重検出部4をドリル刃Dに当接させる。具体的には、本体部1の軸A1上において、起歪体41の突起部412の頂部tpを、後方から、ドリル刃Dの後端面Dbsに当接させる(図7)。 After determining the position of the drill blade D, the position adjusting unit 3 is rotated and moved in the axial direction to bring the load detection unit 4 into contact with the drill blade D. Specifically, on the axis A1 of the main body 1, the top tp of the protrusion 412 of the strain generating body 41 is brought into contact with the rear end surface Dbs of the drill blade D from the rear (FIG. 7).

(2)工具保持構造100の旋盤1000への取り付け
次に、ドリル刃Dを保持した工具保持構造100を、旋盤1000に取り付ける。
(2) Attaching the Tool Holding Structure 100 to the Lathe 1000 Next, the tool holding structure 100 holding the drill blade D is attached to the lathe 1000.

旋盤1000は、図8に示す通り、ベース300、ベース300の一端側に設けられた主軸台400、主軸台400に回転可能に支持された主軸500、主軸500の軸500Xの方向に延びるベッド600、ベッド600に沿って移動可能な工具台700を主に有する。旋盤1000は更に、ベース300に設けられた制御部810、表示部820、及び切削油タンク900を有する。 As shown in FIG. 8, the lathe 1000 includes a base 300, a headstock 400 provided on one end side of the base 300, a spindle 500 rotatably supported by the headstock 400, and a bed 600 extending in the direction of the shaft 500X of the headstock 500. , Mainly has a tool post 700 that can be moved along the bed 600. The lathe 1000 further includes a control unit 810, a display unit 820, and a cutting oil tank 900 provided on the base 300.

主軸500は、不図示のモータにより駆動されて、軸500X回りに高速で回転可能である。主軸500には、不図示のチャックを介して被加工物(ワーク)Wが取り付けられる。 The spindle 500 is driven by a motor (not shown) and can rotate at high speed around the shaft 500X. A workpiece (work) W is attached to the spindle 500 via a chuck (not shown).

工具台700は、下端部においてベッド600に摺動可能に接続されている。また、工具台700は、主軸500の軸500Xと同軸状に延びる保持孔700hを有する。 The tool post 700 is slidably connected to the bed 600 at the lower end. Further, the tool base 700 has a holding hole 700h extending coaxially with the shaft 500X of the main shaft 500.

工具保持構造100は、旋盤1000の工具台700に取り付ける。具体的には、工具保持構造100の前端が主軸500に対向するように、即ちドリル刃Dの先端TPが主軸500に対向するように、工具保持構造100の本体部1の被保持領域11を工具台700の保持孔700hに挿入する。 The tool holding structure 100 is attached to the tool base 700 of the lathe 1000. Specifically, the held region 11 of the main body 1 of the tool holding structure 100 is set so that the front end of the tool holding structure 100 faces the spindle 500, that is, the tip TP of the drill blade D faces the spindle 500. It is inserted into the holding hole 700h of the tool base 700.

その後、保持孔700hの周壁を貫通する不図示の貫通孔に不図示の固定用ボルトを通して、工具保持構造100を固定する。これにより、工具保持構造100の中心軸X、及びドリル刃Dの中心軸が、主軸500の中心軸500Xに一致し、且つドリル刃Dの先端TPが主軸500に対向した状態で、工具保持構造100が旋盤1000に取り付けられる。固定用ボルトの先端を本体部1の平面p1〜p3のいずれかに押し当てることにより、工具保持構造100の回転を防止できる。 After that, the tool holding structure 100 is fixed by passing a fixing bolt (not shown) through a through hole (not shown) penetrating the peripheral wall of the holding hole 700h. As a result, the tool holding structure is in a state where the central axis X of the tool holding structure 100 and the central axis of the drill blade D coincide with the central axis 500X of the spindle 500 and the tip TP of the drill blade D faces the spindle 500. 100 is attached to the lathe 1000. By pressing the tip of the fixing bolt against any of the flat surfaces p1 to p3 of the main body 1, the rotation of the tool holding structure 100 can be prevented.

検出用ひずみゲージ42及び補償用ひずみゲージ44から延びる配線W42、W44は、制御部810に接続する。また、切削油タンク900から延びる給油ホース(不図示)を給油部2のホースジョイント22に接続する。 Wiring W 42 and W 44 extending from the detection strain gauge 42 and the compensation strain gauge 44 are connected to the control unit 810. Further, a refueling hose (not shown) extending from the cutting oil tank 900 is connected to the hose joint 22 of the refueling unit 2.

(3)切削油の供給
ドリル刃Dを用いた被加工物Wの加工中は、次の様にして、切削油タンク900の切削油が、工具保持構造100の切削油用の供給路を介して、ドリル刃Dと被加工物Wとの接触箇所に供給される。
(3) Supply of cutting oil
During machining of the workpiece W using the drill blade D, the cutting oil of the cutting oil tank 900 is passed through the supply path for the cutting oil of the tool holding structure 100 to the drill blade D and the workpiece as follows. It is supplied to the contact point with the work piece W.

切削油タンク900内に貯蔵された切削油は、給油ホース(不図示)の経路上に配置されたポンプ(不図示)により、給油ホースを介して、給油部2に送られる。給油部2に送られた切削油は、工具保持構造100の内部に構成された切削油用の供給路を流れて、ドリル刃Dと被加工物Wとの接触箇所に吹き付けられる。 The cutting oil stored in the cutting oil tank 900 is sent to the refueling unit 2 via the refueling hose by a pump (not shown) arranged on the path of the refueling hose (not shown). The cutting oil sent to the oil supply unit 2 flows through the supply path for cutting oil configured inside the tool holding structure 100, and is sprayed on the contact point between the drill blade D and the workpiece W.

切削油用の供給路においては、切削油は、次のように流れる(図9)。 In the supply path for cutting oil, the cutting oil flows as follows (Fig. 9).

切削油は、ホースジョイント22の貫通孔22h、流路付ボルト21の連結孔chを通って、流路付ボルト21の内孔21h2、21h3へと流される。 The cutting oil is flowed through the through hole 22h of the hose joint 22 and the connecting hole ch of the flow path bolt 21 to the inner holes 21h2 and 21h3 of the flow path bolt 21.

流路付ボルト21の内孔21h2、21h3においては、切削油は、内孔21h2を画定する内周面と位置調整部3の延在領域32における外周面OS3との間の筒状の空間SP1を、軸方向の前側に向かって流れる。内孔21h3においては、切削油は、内孔21h3を画定する内周面と位置調整部3の延在領域32における外周面OS3との間の筒状の空間SP2を、軸方向の前側に向かって流れる。 In the inner holes 21h2 and 21h3 of the bolt 21 with a flow path, the cutting oil is a cylindrical space SP1 between the inner peripheral surface defining the inner hole 21h2 and the outer peripheral surface OS3 in the extending region 32 of the position adjusting portion 3. Flows toward the front side in the axial direction. In the inner hole 21h3, the cutting oil directs the cylindrical space SP2 between the inner peripheral surface defining the inner hole 21h3 and the outer peripheral surface OS3 in the extending region 32 of the position adjusting portion 3 toward the front side in the axial direction. Flows.

その後、切削油は、本体部1の内周面IS1の後側大径領域IS1aと位置調整部3の延在領域32における外周面OS3との間の筒状の空間SP3、及び本体部1の内周面IS1の小径領域IS1bと位置調整部3の延在領域32における外周面OS3との間の筒状の空間SP4を、この順番で、軸方向の前側に向けて流れる。位置調整部3の大径領域33の雄ねじMSが、本体部1の内周面IS1の小径領域IS1bの雌ねじFSに螺合する領域においては、切削油は、位置調整部3の大径領域33に形成された3つの溝G33を通り、大径領域33の前側へと流れる。 After that, the cutting oil is applied to the cylindrical space SP3 between the rear large diameter region IS1a of the inner peripheral surface IS1 of the main body 1 and the outer peripheral surface OS3 in the extending region 32 of the position adjusting portion 3, and the main body 1. The cylindrical space SP4 between the small diameter region IS1b of the inner peripheral surface IS1 and the outer peripheral surface OS3 in the extending region 32 of the position adjusting portion 3 flows in this order toward the front side in the axial direction. In the region where the male screw MS of the large diameter region 33 of the position adjusting portion 3 is screwed into the female screw FS of the small diameter region IS1b of the inner peripheral surface IS1 of the main body portion 1, the cutting oil is the large diameter region 33 of the position adjusting portion 3. It flows to the front side of the large diameter region 33 through the three grooves G 33 formed in.

溝G33を抜けた切削油は、その後、本体部1の内周面IS1の前側大径領域IS1cと位置調整部3の支持領域34における外周面OS3との間の筒状の空間SP5、及び本体部1の内周面IS1の前側大径領域IS1cと荷重検出部4との間の筒状の空間SP6を流れて、荷重検出部4の前側へと至る。そして、コレットCLのスリットSを通って前方へ流れ、コレットナットCNの蓋部LPの貫通孔LPhを介して、ドリル刃Dと被加工物Wとの接触箇所に向けて噴出する。 The cutting oil that has passed through the groove G 33 is then discharged into a tubular space SP5 between the front large diameter region IS1c of the inner peripheral surface IS1 of the main body 1 and the outer peripheral surface OS3 in the support region 34 of the position adjusting portion 3. It flows through the tubular space SP6 between the large diameter region IS1c on the front side of the inner peripheral surface IS1 of the main body 1 and the load detection unit 4, and reaches the front side of the load detection unit 4. Then, it flows forward through the slit S of the collet CL, and is ejected toward the contact point between the drill blade D and the workpiece W through the through hole LPh of the lid LP of the collet nut CN.

即ち切削油は、給油部2の内孔21h2、21h3の内部、及び本体部1の内孔1hの内部において、位置調整部3と荷重検出部4とを含む荷重検出構造110の周囲に形成される空間を、軸方向の前側に向かって流れる。 That is, the cutting oil is formed around the load detection structure 110 including the position adjusting unit 3 and the load detecting unit 4 inside the inner holes 21h2 and 21h3 of the oil supply unit 2 and inside the inner hole 1h of the main body unit 1. It flows in the space toward the front side in the axial direction.

ここで、検出用ゲージ42は起歪体41と起歪体保持部43とにより囲まれた密閉空間に、補償用ゲージ44は起歪体保持部43と位置調整部3とにより囲まれた密閉空間にそれぞれ配置されているため、検出用ゲージ42、補償用ゲージ44が切削油に接触することはない。なお、「密閉空間」とは、切削油の流入が防止されるように密閉されている空間を意味する。そのため、切削油の存在しない外部空間に開放されている空間も「密閉空間」に含まれる。 Here, the detection gauge 42 is sealed in a closed space surrounded by the strain-causing body 41 and the strain-causing body holding portion 43, and the compensation gauge 44 is sealed in a closed space surrounded by the strain-causing body holding portion 43 and the position adjusting portion 3. Since they are arranged in the space, the detection gauge 42 and the compensation gauge 44 do not come into contact with the cutting oil. The "sealed space" means a space that is sealed so as to prevent the inflow of cutting oil. Therefore, the space open to the external space where cutting oil does not exist is also included in the "closed space".

ドリル刃Dと被加工物Wとの接触箇所に吹き付けられた切削油をドレンタンク(不図示)に回収した後、フィルタでろ過し、切削油タンク900に戻してもよい。 The cutting oil sprayed on the contact point between the drill blade D and the workpiece W may be collected in a drain tank (not shown), filtered by a filter, and returned to the cutting oil tank 900.

(4)工具保持構造100を用いた切削抵抗(スラスト荷重)の検出
ドリル刃Dを用いた被加工物Wの加工、及び加工時にドリル刃Dに付加されるスラスト荷重の検出は、次のように行う。
(4) Detection of cutting resistance (thrust load) using the tool holding structure 100 Machining of the workpiece W using the drill blade D and detection of the thrust load applied to the drill blade D during machining are as follows. To do.

被加工物Wの加工(ここでは穿孔)は、主軸500を回転させながら、工具台700を主軸500側に移動させることにより行う。これにより、主軸500と一体に回転する被加工物Wに、工具保持構造100を介して工具台700に保持されたドリル刃Dの先端TPが押し込まれ、被加工物Wに孔が形成される。 Machining of the workpiece W (here, drilling) is performed by moving the tool base 700 toward the spindle 500 while rotating the spindle 500. As a result, the tip TP of the drill blade D held on the tool base 700 via the tool holding structure 100 is pushed into the workpiece W that rotates integrally with the spindle 500, and a hole is formed in the workpiece W. ..

被加工物Wにドリル刃Dの先端TPが押し込まれるとき、被加工物Wからの反力により、ドリル刃Dに軸方向の荷重(スラスト荷重)が加えられる。スラスト荷重の大きさは、工具保持構造100により、次のようにして検出される。 When the tip TP of the drill blade D is pushed into the workpiece W, an axial load (thrust load) is applied to the drill blade D by the reaction force from the workpiece W. The magnitude of the thrust load is detected by the tool holding structure 100 as follows.

ドリル刃Dにスラスト荷重が加えられる時、ドリル刃Dを挟持する工具挟持部5のコレットCLがわずかに弾性変形する。これにより、コレットCLが軸方向の後方にわずかに移動し、ドリル刃Dも工具保持構造100の軸方向の後方にわずかに移動する。 When a thrust load is applied to the drill blade D, the collet CL of the tool holding portion 5 that holds the drill blade D is slightly elastically deformed. As a result, the collet CL moves slightly backward in the axial direction, and the drill blade D also moves slightly backward in the axial direction of the tool holding structure 100.

工具保持構造100の軸方向の後方に移動するドリル刃Dは、ドリル刃Dの後端面Dbsに当接する起歪体41の突起部412を軸方向の後方に押圧する。したがって、突起部412が設けられた起歪部411の中心部も軸方向の後方に押圧される。これにより、変形が生じやすい膜状である起歪部411に、突起部412が起歪部411を押す力の大きさ、ひいてはドリル刃Dに加えられるスラスト荷重の大きさに応じた大きさのひずみが生じる。 The drill blade D that moves rearward in the axial direction of the tool holding structure 100 presses the protrusion 412 of the strain-causing body 41 that abuts on the rear end surface Dbs of the drill blade D rearward in the axial direction. Therefore, the central portion of the strain-causing portion 411 provided with the protrusion 412 is also pressed backward in the axial direction. As a result, the magnitude of the force that the protrusion 412 pushes against the strain-causing portion 411, which is in the form of a film that is easily deformed, and the magnitude of the thrust load applied to the drill blade D. Distortion occurs.

起歪部411に貼り付けられた検出用ひずみゲージ42は、起歪部411に生じたひずみの大きさに応じてひずみ受感素子の抵抗値を変化させる。配線W42を介して検出用ひずみゲージ42に接続された制御部810は、この抵抗値の変化に基づいてドリル刃Dに加えられたスラスト荷重の大きさを求め、表示部820に表示する。 The detection strain gauge 42 attached to the strain-causing portion 411 changes the resistance value of the strain-sensitive element according to the magnitude of the strain generated in the strain-causing portion 411. The control unit 810 connected to the detection strain gauge 42 via the wiring W 42 obtains the magnitude of the thrust load applied to the drill blade D based on the change in the resistance value, and displays it on the display unit 820.

被加工物Wの加工時にドリルDに加えられるスラスト荷重の大きさは、ドリルDの刃先に欠けや鈍りが生じるにしたがって、即ち刃先の状態が悪化するにしたがって大きくなり得る。したがって、制御部810は、求めたスラスト荷重を所定の閾値と比較し、スラスト荷重が所定の閾値を越えた場合には、ドリルDの交換を促す情報を表示部820に表示してもよい。 The magnitude of the thrust load applied to the drill D during machining of the workpiece W may increase as the cutting edge of the drill D becomes chipped or dull, that is, as the state of the cutting edge deteriorates. Therefore, the control unit 810 may compare the obtained thrust load with a predetermined threshold value, and when the thrust load exceeds the predetermined threshold value, display information prompting the replacement of the drill D on the display unit 820.

本実施形態の工具保持構造100の製造においては、本体部1及び工具挟持部5を、市販のコレットホルダにより与えてもよい。コレットホルダの本体部により本体部1が、コレットホルダのコレット及びコレットナットにより工具挟持部5が与えられる。 In the manufacture of the tool holding structure 100 of the present embodiment, the main body portion 1 and the tool holding portion 5 may be provided by a commercially available collet holder. The main body of the collet holder provides the main body 1, and the collet and collet nut of the collet holder provide the tool holding portion 5.

この場合は、市販のコレットホルダにわずかな追加工を施して、本実施形態の荷重検出構造110を挿入することにより、容易に本実施形態の工具保持構造100を製造することができる。 In this case, the tool holding structure 100 of the present embodiment can be easily manufactured by inserting the load detection structure 110 of the present embodiment with a slight additional work on a commercially available collet holder.

本実施形態の効果を以下にまとめる。 The effects of this embodiment are summarized below.

本実施形態の工具保持構造100においては、本体部1の内部に、ドリルD等の工具に切削油を供給する供給路が設けられている。したがって、工具保持構造100によって保持されている工具に対して、容易且つ好適に切削油を供給することができる。 In the tool holding structure 100 of the present embodiment, a supply path for supplying cutting oil to a tool such as a drill D is provided inside the main body 1. Therefore, the cutting oil can be easily and suitably supplied to the tool held by the tool holding structure 100.

本実施形態の工具保持構造100においては、ドリル刃Dを保持するための工具挟持部5が取り付けられる本体部1の内部に、切削抵抗(スラスト荷重)を検出するための荷重検出部4が配置されている。したがって、工具保持機能とスラスト荷重検出機能とを共に備え且つ構造が簡易である。 In the tool holding structure 100 of the present embodiment, the load detecting unit 4 for detecting the cutting resistance (thrust load) is arranged inside the main body portion 1 to which the tool holding portion 5 for holding the drill blade D is attached. Has been done. Therefore, it has both a tool holding function and a thrust load detecting function, and has a simple structure.

本実施形態の工具保持構造100においては、荷重検出部4の起歪体41を本体部1の中心軸上に配置し、その周囲に切削油用の供給路を設けている。したがって、切削油用の供給路を有しつつも、ドリル刃Dのスラスト荷重を本体部1の中心軸上で起歪体41に付与して高い計測精度を保つことができる。 In the tool holding structure 100 of the present embodiment, the strain-causing body 41 of the load detection unit 4 is arranged on the central axis of the main body unit 1, and a supply path for cutting oil is provided around the central axis. Therefore, while having a supply path for cutting oil, the thrust load of the drill blade D can be applied to the strain generating body 41 on the central axis of the main body 1 to maintain high measurement accuracy.

本実施形態の工具保持構造100においては、工具挟持部5がコレットCLによりドリル刃Dを挟持している。したがって、ドリル刃Dの中心軸が工具保持構造100の中心軸に一致した好適な状態でのドリル刃Dの保持を、容易に実現することができる。 In the tool holding structure 100 of the present embodiment, the tool holding portion 5 holds the drill blade D by the collet CL. Therefore, it is possible to easily hold the drill blade D in a suitable state in which the central axis of the drill blade D coincides with the central axis of the tool holding structure 100.

本実施形態の工具保持構造100及び荷重検出構造110は、荷重検出部4が軸方向に移動可能であり、位置調整部3により荷重検出部4の軸方向位置を調整するように構成されている。したがって、ドリル刃Dの長さに応じて荷重検出部4の位置を変更することで、様々な寸法のドリル刃Dを、給油可能且つスラスト荷重の検出が可能な状態で保持することができる。 The tool holding structure 100 and the load detection structure 110 of the present embodiment are configured such that the load detection unit 4 is movable in the axial direction and the position adjustment unit 3 adjusts the axial position of the load detection unit 4. .. Therefore, by changing the position of the load detection unit 4 according to the length of the drill blade D, the drill blade D having various dimensions can be held in a state where refueling is possible and the thrust load can be detected.

本実施形態の工具保持構造100及び荷重検出構造110の荷重検出部4は、膜状の起歪部411を備えており、加えられるスラスト荷重に応じた起歪部411の変形量が比較的大きい。したがって、スラスト荷重が小さい場合でも、検出用ひずみゲージ42を用いた荷重検出を高い精度で行うことができる。 The load detection unit 4 of the tool holding structure 100 and the load detection structure 110 of the present embodiment includes a film-like strain-causing portion 411, and the amount of deformation of the strain-causing portion 411 according to the applied thrust load is relatively large. .. Therefore, even when the thrust load is small, the load detection using the detection strain gauge 42 can be performed with high accuracy.

本実施形態の工具保持構造100及び荷重検出構造110においては、荷重検出部4の起歪体41が、起歪部411の中心部から延びる突起部412を有しており、起歪体41は、突起部412においてドリル刃Dと当接している。このように、膜状の起歪部411とドリル刃Dとを直接当接させるのではなく、起歪部411から軸方向に延びる略棒状の突起部412をドリル刃Dに当接させることで、起歪体41を、様々な形状のドリル刃Dに、好適に当接させることができる。 In the tool holding structure 100 and the load detection structure 110 of the present embodiment, the strain-causing body 41 of the load detecting unit 4 has a protrusion 412 extending from the center of the strain-causing portion 411, and the strain-causing body 41 has a protrusion 412. , It is in contact with the drill blade D at the protrusion 412. In this way, instead of directly abutting the film-like strain-causing portion 411 and the drill blade D, the substantially rod-shaped protrusion 412 extending in the axial direction from the strain-causing portion 411 is brought into contact with the drill blade D. The strain-causing body 41 can be suitably brought into contact with a drill blade D having various shapes.

具体的には例えば、ドリル刃Dが短く、ドリル刃Dの後端面Dbsが工具挟持部5のコレットCLの後端よりも前方に位置する場合でも、突起部412をコレットCLの内孔CLhに挿入してドリル刃Dの後端面Dbsに当接させることができる。更に、ドリル刃Dの径が小さく、これを挟持するコレットCLの内孔CLhも小さい場合でも、突起部412をコレットCLの内孔CLhに挿入してドリル刃Dの後端面Dbsに当接させることができる。 Specifically, for example, even when the drill blade D is short and the rear end surface Dbs of the drill blade D is located in front of the rear end of the collet CL of the tool holding portion 5, the protrusion 412 is used as the inner hole CLh of the collet CL. It can be inserted and brought into contact with the rear end surface Dbs of the drill blade D. Further, even when the diameter of the drill blade D is small and the inner hole CLh of the collet CL holding the drill blade D is also small, the protrusion 412 is inserted into the inner hole CLh of the collet CL and brought into contact with the rear end surface Dbs of the drill blade D. be able to.

本実施形態の工具保持構造100及び荷重検出構造110は、荷重検出部4が補償用ひずみゲージ44を有しているため、荷重計測の精度が高い。即ち、ドリル刃Dからの荷重によっては変形せず、周囲の温度変化に応じた膨張/収縮のみを生じる起歪体支持部43に貼り付けられた補償用ひずみゲージ44の出力を参照することで、荷重検出時に温度誤差を抑制することができる。 In the tool holding structure 100 and the load detection structure 110 of the present embodiment, since the load detection unit 4 has the compensating strain gauge 44, the accuracy of load measurement is high. That is, by referring to the output of the compensating strain gauge 44 attached to the strain-causing body support portion 43, which is not deformed by the load from the drill blade D and only expands / contracts according to the ambient temperature change. , Temperature error can be suppressed at the time of load detection.

本実施形態の工具保持構造100の製造においては、市販のコレットホルダを活用して、製造コストの削減及び製造期間の短縮を実現することができる。 In the manufacture of the tool holding structure 100 of the present embodiment, a commercially available collet holder can be utilized to reduce the manufacturing cost and the manufacturing period.

<変形例>
上記実施形態の工具保持構造100において、次の変形態様を用いることもできる。
<Modification example>
In the tool holding structure 100 of the above embodiment, the following deformation mode can also be used.

上記実施形態の工具保持構造100においては、本体部1の後端に給油部2を取り付けて、本体部1の後端側で切削油を給油している。しかしながら、これには限られない。 In the tool holding structure 100 of the above embodiment, the refueling unit 2 is attached to the rear end of the main body 1 and the cutting oil is refueled on the rear end side of the main body 1. However, it is not limited to this.

具体的には例えば、図10に示す変形例の工具保持構造100’のように、本体部1’の前端側で切削油を給油してもよい。変形例の工具保持構造100’の、上記実施形態の工具保持構造100に対する相違点は、次の通りである。 Specifically, for example, as in the tool holding structure 100'of the modified example shown in FIG. 10, cutting oil may be supplied on the front end side of the main body portion 1'. The differences between the tool holding structure 100'of the modified example and the tool holding structure 100 of the above embodiment are as follows.

図10に示す変形例の工具保持構造100’は、本体部1’の内周面IS1’が、後側大径領域IS1a、小径領域IS1b、前側大径領域IS1cに分かれていない。即ち、内周面IS1’により画定される内孔1h’の径は軸方向全域において一定である。一方で本体部1’の被保持領域11’の前端に本体部1’を径方向に貫通するねじ孔th’が設けられており、ねじ孔th’にホースジョイント22’が螺合されている。 In the modified tool holding structure 100'shown in FIG. 10, the inner peripheral surface IS1'of the main body 1'is not divided into a rear large diameter region IS1a, a small diameter region IS1b, and a front large diameter region IS1c. That is, the diameter of the inner hole 1h'defined by the inner peripheral surface IS1'is constant over the entire axial direction. On the other hand, a screw hole th'that penetrates the main body 1'in the radial direction is provided at the front end of the held region 11'of the main body 1', and a hose joint 22'is screwed into the screw hole th'. ..

変形例の工具保持構造100’においては、流路付ボルト21’はねじ穴th及び連通孔chを有さず、ホースジョイント22も接続されていない。流路付ボルト21’は、主に内孔21h1’により位置調整部3’の径方向の位置を固定する機能を果たす。 In the tool holding structure 100'of the modified example, the bolt 21'with a flow path does not have the screw hole th and the communication hole ch, and the hose joint 22 is not connected. The flow path bolt 21'mainly functions to fix the radial position of the position adjusting portion 3'by the inner hole 21h1'.

変形例の工具保持構造100’においては、位置調整部3’の大径領域33’と支持領域34’は略同一の外径を有する。また、大径領域33’には雄ねじMSが切られているが、溝G33は形成されていない。大径領域33’の雄ねじMSは、本体部1’の内周面IS1’に形成された雌ねじFSに螺合しており、位置調整部3’を回転させることで、位置調整部3’を軸方向に移動することができる。 In the tool holding structure 100'of the modified example, the large diameter region 33'and the support region 34'of the position adjusting portion 3'have substantially the same outer diameter. Further, although the male screw MS is cut in the large diameter region 33', the groove G 33 is not formed. The male screw MS in the large diameter region 33'is screwed into the female screw FS formed on the inner peripheral surface IS1'of the main body 1', and the position adjusting portion 3'is rotated by rotating the position adjusting portion 3'. It can move in the axial direction.

変形例の工具保持構造100’においては、位置調整部3’の支持領域34’における外径、及び荷重検出部4’の起歪体41’のフランジ部414’の外径、起歪体支持部43’の大径領域43L’の外径が、本体部1’の内径に略等しい。そのため位置調整部3’の支持領域34’、及び荷重検出部4’は、本体部1’の内周面IS1’に摺動可能な程度に密接している。 In the tool holding structure 100'of the modified example, the outer diameter in the support area 34'of the position adjusting portion 3', the outer diameter of the flange portion 414' of the strain generating body 41'of the load detecting portion 4', and the strain generating body support. The outer diameter of the large diameter region 43L'of the portion 43'is substantially equal to the inner diameter of the main body portion 1'. Therefore, the support region 34'of the position adjusting portion 3'and the load detecting portion 4'are close to the inner peripheral surface IS1'of the main body portion 1'to the extent that they can be slidable.

変形例の工具保持構造100’において、ホースジョイント22’を介して供給された切削油は、内孔1h’内の、荷重検出部4の起歪部411’よりも前側の空間のみを流れて、コレットCLのスリットSを介して、ドリルDに向けて噴出する。また、位置調整部3や荷重検出部4の外周面と本体部1の内周面IS1’との間を通って切削油が後方にもれたとしても、流路付ボルト21’の内孔21h1’の溝G21に設けられたOリングORにより、工具保持構造100’の外側への切削油の漏出が防止される。 In the tool holding structure 100'of the modified example, the cutting oil supplied through the hose joint 22'flows only in the space in the inner hole 1h', which is in front of the strain generating portion 411'of the load detecting portion 4. , It is ejected toward the drill D through the slit S of the collet CL. Further, even if the cutting oil leaks rearward through between the outer peripheral surface of the position adjusting unit 3 or the load detecting unit 4 and the inner peripheral surface IS1'of the main body 1, the inner hole of the bolt 21'with a flow path. The O-ring OR provided in the groove G 21 of 21h1'prevents the leakage of cutting oil to the outside of the tool holding structure 100'.

なお、上述した構造を有する変形例の工具保持構造100’のうち、荷重検出部4’と位置調整部3’とにより、変形例の荷重検出構造110’が構成される。 In the tool holding structure 100'of the modified example having the above-mentioned structure, the load detection unit 4'and the position adjusting unit 3'form the load detection structure 110' of the modified example.

その他の変形態様として、上記実施形態の工具保持構造100において、給油部2を上記変形例の流路付ボルト21’に置き換えて、上記変形例のホースジョイント22’を、本体部1の任意の位置において本体部1を径方向に貫通するねじ孔に螺合してもよい。ねじ孔の位置を内周面IS1の小径領域IS1bよりも前方とする場合は、位置調整部3の大径領域33の溝G33は省略し得る。 As another modification, in the tool holding structure 100 of the above embodiment, the lubrication section 2 is replaced with the flow path bolt 21'of the above modification, and the hose joint 22'of the above modification is an arbitrary of the main body 1. At the position, the main body 1 may be screwed into a screw hole penetrating in the radial direction. When the position of the screw hole is in front of the small diameter region IS1b of the inner peripheral surface IS1, the groove G 33 of the large diameter region 33 of the position adjusting portion 3 may be omitted.

上記実施形態の工具保持構造100においては、本体部1の内周面IS1の小径領域IS1bの雌ねじFSと、位置調整部3の大径部33の雄ねじMSとが螺合する領域においては、大径部33に設けた溝G33を介して切削油を流通させているが、これには限られない。 In the tool holding structure 100 of the above embodiment, the female screw FS of the small diameter region IS1b of the inner peripheral surface IS1 of the main body 1 and the male screw MS of the large diameter portion 33 of the position adjusting portion 3 are screwed together. Cutting oil is circulated through the groove G 33 provided in the diameter portion 33, but the present invention is not limited to this.

具体的には例えば、大径部33の内部に、大径部33を貫通して大径部33の前側と後側とを連通させる流路(連通路)を設け、当該流路を介して切削油を流してもよい。又は内周面IS1の小径領域IS1bに、軸方向に延びて小径領域IS1bの前側及び後側に開口する溝を設け、当該溝を介して切削油を流してもよい。 Specifically, for example, a flow path (communication passage) that penetrates the large diameter portion 33 and communicates the front side and the rear side of the large diameter portion 33 is provided inside the large diameter portion 33, and the flow path is provided through the flow path. Cutting oil may be poured. Alternatively, the small diameter region IS1b of the inner peripheral surface IS1 may be provided with a groove extending in the axial direction and opening on the front side and the rear side of the small diameter region IS1b, and cutting oil may flow through the groove.

上記実施形態の工具保持構造100及び荷重検出構造110においては、荷重検出部4の起歪体41は突起部412を有さなくてもよい。この場合は例えば、ドリル刃Dの後端面Dbsを起歪部411に直接当接させてもよい。なお、本発明において「起歪体が棒状工具に当接する」とは、起歪体と棒状工具とが直接接触する場合のみではなく、起歪体と棒状工具との間に、なんらかの介在物(荷重を伝達する部材)が存在する場合も含むものとする。 In the tool holding structure 100 and the load detection structure 110 of the above embodiment, the strain-causing body 41 of the load detection unit 4 does not have to have the protrusion 412. In this case, for example, the rear end surface Dbs of the drill blade D may be brought into direct contact with the strain generating portion 411. In the present invention, "the strain-causing body comes into contact with the rod-shaped tool" is not limited to the case where the strain-causing body and the rod-shaped tool come into direct contact with each other, but also some inclusions (in between the strain-causing body and the rod-shaped tool). It shall also include the case where there is a member that transmits the load).

上記実施形態の工具保持構造100及び荷重検出構造110において、膜状の起歪部411を有する起歪体41に代えて、コラム(円柱)型の起歪体45を用いてもよい(図11)。この場合は例えば、起歪体45の中心軸を本体部1の中心軸に一致させた状態で、起歪体45の一端面を凹部R4の底面に当接させ、他端面をドリル刃Dの後端面Dbsに当接させる。ひずみゲージ42(図11では不図示)は、起歪体45の外周面に取り付けられ、必要に応じて耐油性を有するフィルム等により覆うことにより保護される。ひずみゲージ42から延びる配線W42は例えば、凹部R4の底面及び内周面に形成された溝を介して内孔43hに導かれ得る。この態様においても、起歪体45は本体部1の軸A1上においてドリル刃Dに当接する。なお、本発明において、起歪体とドリル刃(棒状工具)とが軸上で当接するという場合は、起歪体と棒状工具とが実際に軸上で当接する態様のほか、起歪体と棒状工具とが、棒状工具から起歪体へと加えられる荷重の重心が軸上に位置するように当接する態様も含むものとする。 In the tool holding structure 100 and the load detection structure 110 of the above-described embodiment, a column (cylinder) type strain-causing body 45 may be used instead of the strain-causing body 41 having the film-like strain-causing portion 411 (FIG. 11). ). In this case, for example, with the central axis of the strain generating body 45 aligned with the central axis of the main body 1, one end surface of the strain generating body 45 is brought into contact with the bottom surface of the recess R4, and the other end surface of the drill blade D is used. It is brought into contact with the rear end surface Dbs. The strain gauge 42 (not shown in FIG. 11) is attached to the outer peripheral surface of the strain-causing body 45 and is protected by covering it with an oil-resistant film or the like, if necessary. The wiring W 42 extending from the strain gauge 42 may be guided to the inner hole 43h through a groove formed on the bottom surface and the inner peripheral surface of the recess R4, for example. Also in this embodiment, the strain-causing body 45 abuts on the drill blade D on the axis A1 of the main body 1. In the present invention, when the strain-causing body and the drill blade (rod-shaped tool) abut on the shaft, the strain-causing body and the rod-shaped tool actually abut on the shaft, as well as the strain-causing body. It also includes a mode in which the rod-shaped tool abuts so that the center of gravity of the load applied from the rod-shaped tool to the strain-causing body is located on the axis.

上記実施形態の工具保持構造100及び荷重検出構造110においては、荷重検出部4の起歪体41と起歪体支持部43とを同一の材料で形成しているが、これには限られない。起歪体支持部43は、起歪体41を形成する材料と線膨張係数が等しい又は類似する任意の材料により形成することができる。起歪体41を形成する材料と起歪体支持部43を形成する材料との間で線膨張係数が一致又は類似していれば、起歪体支持部43に貼り付けられた補償用ひずみゲージ44は、温度誤差補償機能を果たすことができる。 In the tool holding structure 100 and the load detection structure 110 of the above-described embodiment, the strain-causing body 41 and the strain-causing body support portion 43 of the load detection unit 4 are formed of the same material, but the present invention is not limited to this. .. The strain-causing body support portion 43 can be formed of any material having a linear expansion coefficient equal to or similar to that of the material forming the strain-causing body 41. If the coefficient of linear expansion is the same or similar between the material forming the strain-causing body 41 and the material forming the strain-causing body support portion 43, the compensating strain gauge attached to the strain-causing body support portion 43 44 can fulfill the temperature error compensation function.

上記実施形態の工具保持構造100及び荷重検出構造110において、起歪体保持部43を省略して、位置調整部3により起歪体41を保持してもよい。 In the tool holding structure 100 and the load detection structure 110 of the above embodiment, the strain generating body holding portion 43 may be omitted and the strain generating body 41 may be held by the position adjusting portion 3.

上記実施形態の工具保持構造100及び荷重検出構造110において、荷重検出部4の起歪体保持部43及び補償用ひずみゲージ44を省略してもよい。この場合は例えば、位置調整部3を起歪体41に当接させてもよい。 In the tool holding structure 100 and the load detecting structure 110 of the above embodiment, the strain-causing body holding portion 43 and the compensating strain gauge 44 of the load detecting section 4 may be omitted. In this case, for example, the position adjusting unit 3 may be brought into contact with the strain generating body 41.

上記実施形態の工具保持構造100及び荷重検出構造110において、検出用ひずみゲージ42は荷重検出機能を果たし得る任意の位置に取り付けてよく、補償用ひずみゲージ44は補償機能を果たし得る任意の位置に取り付けてよい。取付位置において切削油と接触する場合は、必要に応じて耐油フィルム等で覆って保護してもよい。 In the tool holding structure 100 and the load detection structure 110 of the above embodiment, the detection strain gauge 42 may be attached to an arbitrary position capable of fulfilling the load detection function, and the compensation strain gauge 44 may be attached to an arbitrary position capable of fulfilling the compensation function. It may be attached. When it comes into contact with cutting oil at the mounting position, it may be covered with an oil-resistant film or the like to protect it, if necessary.

上記実施形態の工具保持構造100及び荷重検出構造110において、検出用ひずみゲージ42から延びる配線W42、及び/又は補償用ひずみゲージ44から延びる配線W44を省略し、検出信号を無線により送信する構成としてもよい。また、この場合は、位置調整部3の内孔3h、及び荷重検出部4の起歪体支持部43の内孔43hを省略してもよい。 In the tool holding structure 100 and the load detection structure 110 of the above embodiment, the wiring W 42 extending from the detection strain gauge 42 and / or the wiring W 44 extending from the compensation strain gauge 44 is omitted, and the detection signal is transmitted wirelessly. It may be configured. Further, in this case, the inner hole 3h of the position adjusting unit 3 and the inner hole 43h of the strain-causing body support portion 43 of the load detection unit 4 may be omitted.

上記実施形態の工具保持構造100において、荷重検出部4は、本体部1の内部において位置固定されていてもよい。この場合は、位置調整部3及び移動規制部4は省略し得る。 In the tool holding structure 100 of the above embodiment, the load detection unit 4 may be fixed in position inside the main body unit 1. In this case, the position adjusting unit 3 and the movement restricting unit 4 may be omitted.

上記実施形態の工具保持構造100においては、工具挟持部5はコレットナットCNとテーパ形状を有するコレットCLとを有していたが、これには限られない。工具挟持部5は、ドリル刃Dを、周方向については旋削時に回転が生じない強さで固定し、且つ軸方向については微小な移動を許容する強さで固定する任意の態様でドリル刃Dを挟持し得る。 In the tool holding structure 100 of the above embodiment, the tool holding portion 5 has a collet nut CN and a collet CL having a tapered shape, but the present invention is not limited to this. The tool holding portion 5 fixes the drill blade D in the circumferential direction with a strength that does not cause rotation during turning, and in the axial direction, the drill blade D is fixed with a strength that allows minute movement. Can be pinched.

具体的には例えば、コレットCLはテーパ形状を有さなくてもよい。このようなコレットであっても、本体部1の前端領域12のテーパ状の内周面により、内径が縮小され、ドリル刃Dを挟持できる。 Specifically, for example, the collet CL does not have to have a tapered shape. Even with such a collet, the inner diameter is reduced by the tapered inner peripheral surface of the front end region 12 of the main body portion 1, and the drill blade D can be sandwiched.

コレットCL及びコレットナットCNに代えて、2つ以上のくさび型の挟持具によりドリル刃Dの後端領域DRを挟持し、当該くさび型の挟持具とドリル刃Dの後端領域DRとを、本体部1の前端領域12に嵌入してもよい。 Instead of the collet CL and the collet nut CN, the rear end region DR of the drill blade D is sandwiched by two or more wedge-shaped holding tools, and the wedge-shaped holding tool and the rear end region DR of the drill blade D are held. It may be fitted into the front end region 12 of the main body 1.

工具挟持部5の全部又は一部は、必ずしも本体部1と別体の部材である必要はない。例えば、単に本体部1の前端側にドリル刃Dの後端近傍を嵌入し、締まり嵌めによりドリル刃Dを保持してもよい。この場合は、ドリル刃Dの周方向の回転を防止するための、キー及びキー溝を、本体部1及びドリル刃Dに設けてもよい。また、ドリル刃Dにキー又はキー溝を与えるための取付具をドリル刃Dの後端領域DRに取り付けてもよい。この場合は例えば、ドリル刃Dの内部に切削油用の供給路を設けてもよい。 All or part of the tool holding portion 5 does not necessarily have to be a separate member from the main body portion 1. For example, the vicinity of the rear end of the drill blade D may be simply fitted to the front end side of the main body portion 1 and the drill blade D may be held by tightening. In this case, a key and a key groove may be provided on the main body 1 and the drill blade D to prevent the drill blade D from rotating in the circumferential direction. Further, a fixture for giving a key or a keyway to the drill blade D may be attached to the rear end region DR of the drill blade D. In this case, for example, a supply path for cutting oil may be provided inside the drill blade D.

上記実施形態においては、旋盤1000にドリル刃Dを固定する場合を例として説明したがこれには限られない。工具保持構造100は、工作機械において、任意の棒状工具を静止工具として使用する際に、これを保持することができる。棒状工具は、ドリル刃の他には例えば、タップやリーマを含む。 In the above embodiment, the case where the drill bit D is fixed to the lathe 1000 has been described as an example, but the present invention is not limited to this. The tool holding structure 100 can hold an arbitrary rod-shaped tool as a stationary tool in a machine tool. In addition to drill blades, rod-shaped tools include, for example, taps and reamers.

上記実施形態及び変形態様の工具保持構造と、旋盤1000が備える制御部800とにより、工具状態監視システムを構成してもよい。この工具状態監視システムは例えば、検出用ひずみゲージ42の出力に基づいてドリル刃Dに加えられた切削抵抗(スラスト荷重)を求め、求めた切削抵抗と所定の閾値との比較に基づいてドリル刃Dの交換の要否を判定する。具体的には例えば、求めた切削抵抗が所定の閾値を越えた場合に、ドリル刃Dの交換が必要であると判定する。判定結果は、任意の表示部に表示されてもよい。 A tool condition monitoring system may be configured by the tool holding structure of the above-described embodiment and the modified mode and the control unit 800 included in the lathe 1000. For example, this tool state monitoring system obtains the cutting resistance (thrust load) applied to the drill blade D based on the output of the detection strain gauge 42, and the drill blade is compared with the obtained cutting resistance and a predetermined threshold value. It is determined whether or not D needs to be replaced. Specifically, for example, when the obtained cutting resistance exceeds a predetermined threshold value, it is determined that the drill blade D needs to be replaced. The determination result may be displayed on any display unit.

上記の各変形例は、互いに矛盾が生じない限り、組み合わせて適用し得る。 Each of the above modifications can be applied in combination as long as they do not conflict with each other.

本発明及び本明細書において、「切削油」とは、油性の切削油、水溶性の切削油(切削剤)など、切削加工において用いられ得る様々な種類を含む。 In the present invention and the present specification, the "cutting oil" includes various types that can be used in cutting, such as oil-based cutting oils and water-soluble cutting oils (cutting agents).

本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 As long as the features of the present invention are maintained, the present invention is not limited to the above-described embodiment, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. ..

1 本体部、2 給油部、3 位置調整部、4 荷重検出部、5 工具挟持部、21 起歪体、211 起歪部、212 突起部、22 検出用ひずみゲージ、23 起歪体保持部、CL コレット、CN コレットナット、D ドリル刃、 1000 旋盤
1 Main body, 2 Refueling unit, 3 Position adjustment unit, 4 Load detection unit, 5 Tool pinching unit, 21 Distortion body, 211 Distortion unit, 212 protrusion, 22 Detection strain gauge, 23 Distortion body holding unit, CL collet, CN collet nut, D drill bit, 1000 lathe

Claims (17)

棒状工具を保持し且つ該棒状工具に付加されるスラスト荷重を検出する工具保持構造であって、
一端側の開口に前記棒状工具が挿入される筒状の本体部と、
前記本体部の前記開口に挿入された前記棒状工具を挟持する工具挟持部と、
前記筒状の本体部の前記開口よりも他端側において、前記筒状の本体部の内部に配置される起歪体と、
前記起歪体に取り付けられたひずみゲージと、
前記筒状の本体部の内部に設けられ、前記棒状工具に切削油を供給する供給路とを備え、
前記スラスト荷重を検出するために前記棒状工具を前記起歪体に当接させて保持する工具保持構造。
It is a tool holding structure that holds a rod-shaped tool and detects the thrust load applied to the rod-shaped tool.
A cylindrical main body into which the rod-shaped tool is inserted into the opening on one end side, and
A tool holding portion for holding the rod-shaped tool inserted into the opening of the main body portion, and a tool holding portion.
A strain-causing body arranged inside the tubular main body on the other end side of the opening of the tubular main body.
The strain gauge attached to the strain-causing body and
It is provided inside the cylindrical main body and is provided with a supply path for supplying cutting oil to the rod-shaped tool.
A tool holding structure that holds the rod-shaped tool in contact with the strain-causing body in order to detect the thrust load.
前記起歪体は前記筒状の本体部の軸上に配置されており、
前記棒状工具は前記筒状の本体部の軸上において前記起歪体に当接し、
前記筒状の本体部の内周面と前記起歪体の外縁との間の空間が前記供給路の一部を構成する請求項1に記載の工具保持構造。
The strain-causing body is arranged on the axis of the cylindrical main body portion, and is arranged.
The rod-shaped tool abuts on the strain-causing body on the axis of the cylindrical main body portion, and the rod-shaped tool abuts on the strain-causing body.
The tool holding structure according to claim 1, wherein the space between the inner peripheral surface of the tubular main body and the outer edge of the strain-causing body constitutes a part of the supply path.
前記筒状の本体部の前記起歪体よりも他端側において前記起歪体を支持する起歪体支持部を更に備え、
前記起歪体支持部は、前記起歪体と前記起歪体支持部との間に密閉空間が形成されるように前記起歪体の外縁を支持し、
前記ひずみゲージが前記密閉空間内に配置されている請求項1又は2に記載の工具保持構造。
Further, a strain-causing body support portion for supporting the strain-causing body is further provided on the other end side of the tubular main body portion with respect to the strain-causing body.
The strain-causing body support portion supports the outer edge of the strain-causing body so that a closed space is formed between the strain-causing body and the strain-causing body support portion.
The tool holding structure according to claim 1 or 2, wherein the strain gauge is arranged in the enclosed space.
長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に前記筒状の本体部の軸に沿って配置されており、前記起歪体と一体として前記軸方向に移動可能である位置調整部を更に備える請求項1〜3のいずれか一項に記載の工具保持構造。 A long position adjusting portion, which is arranged inside the tubular main body along the axis of the tubular main body on the other end side of the strain-causing body of the tubular main body. The tool holding structure according to any one of claims 1 to 3, further comprising a position adjusting portion that is integrated with the strain-causing body and is movable in the axial direction. 前記位置調整部は前記筒状の本体部の軸上に配置されており、
前記筒状の本体部の内周面と前記位置調整部の外周面との間の空間が前記供給路の一部を構成する請求項4に記載の工具保持構造。
The position adjusting portion is arranged on the axis of the cylindrical main body portion.
The tool holding structure according to claim 4, wherein the space between the inner peripheral surface of the tubular main body portion and the outer peripheral surface of the position adjusting portion constitutes a part of the supply path.
前記位置調整部は、前記位置調整部の外周面の少なくとも一部に形成された雄ねじと、前記位置調整部の長手方向において前記雄ねじの一方側と他方側とを連通させる連通路とを有し、
前記位置調整部の前記雄ねじが、前記筒状の本体部の内周面に形成された雌ねじに螺合している請求項4又は5に記載の工具保持構造。
The position adjusting portion has a male screw formed on at least a part of the outer peripheral surface of the position adjusting portion, and a communication passage for communicating one side and the other side of the male screw in the longitudinal direction of the position adjusting portion. ,
The tool holding structure according to claim 4 or 5, wherein the male screw of the position adjusting portion is screwed into a female screw formed on the inner peripheral surface of the cylindrical main body portion.
前記位置調整部の前記雄ねじが形成された領域における外径が、前記位置調整部の他の領域における外径よりも大きい請求項6に記載の工具保持構造。 The tool holding structure according to claim 6, wherein the outer diameter of the position adjusting portion in the region where the male screw is formed is larger than the outer diameter in the other region of the position adjusting portion. 前記筒状の本体部の前記起歪体よりも他端側において前記起歪体を支持する起歪体支持部と、
前記起歪体支持部に取り付けられた補償用ひずみゲージと、
長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に前記筒状の本体部の軸に沿って配置されており、前記起歪体と一体として前記軸方向に移動可能である位置調整部とを更に備え、
前記起歪体支持部は、前記起歪体と前記起歪体支持部との間に密閉空間が形成されるように前記起歪体の外縁を支持し、
前記位置調整部は、前記起歪体支持部と前記位置調整部との間に密閉空間が形成されるように前記起歪体支持部の外縁を支持し、
前記ひずみゲージが前記起歪体と前記起歪体支持部との間の密閉空間内に配置され、前記補償用ひずみゲージが前記起歪体支持部と前記位置調整部との間の密閉空間内に配置された請求項1又は2に記載の工具保持構造。
A strain-causing body support portion that supports the strain-causing body on the other end side of the strain-causing body of the cylindrical main body, and a strain-causing body support portion.
Compensation strain gauge attached to the strain-causing body support,
A long position adjusting portion, which is arranged inside the tubular main body along the axis of the tubular main body on the other end side of the strain-causing body of the tubular main body. Further, a position adjusting unit that can move in the axial direction as a unit with the strain-causing body is further provided.
The strain-causing body support portion supports the outer edge of the strain-causing body so that a closed space is formed between the strain-causing body and the strain-causing body support portion.
The position adjusting portion supports the outer edge of the strain generating body support portion so that a closed space is formed between the strain generating body support portion and the position adjusting portion.
The strain gauge is arranged in a closed space between the strain-causing body and the strain-causing body support portion, and the compensating strain gauge is placed in the closed space between the strain-causing body support portion and the position adjusting portion. The tool holding structure according to claim 1 or 2 arranged in.
前記本体部の他端側の開口に取り付けられ、且つ前記供給路に切削油を給油するための給油口を有する流路付ボルトを更に備え、
前記位置調整部が前記流路付ボルトを貫通して前記本体部の後方に突出している請求項4〜8のいずれか一項に記載の工具保持構造。
Further provided with a bolt with a flow path attached to the opening on the other end side of the main body portion and having an oil supply port for supplying cutting oil to the supply path.
The tool holding structure according to any one of claims 4 to 8, wherein the position adjusting portion penetrates the bolt with a flow path and projects rearward of the main body portion.
前記起歪体が膜状の起歪部を有し、該起歪部に前記ひずみゲージが取り付けられている請求項1〜9のいずれか一項に記載の工具保持構造。 The tool holding structure according to any one of claims 1 to 9, wherein the strain-causing body has a film-like strain-causing portion, and the strain gauge is attached to the strain-causing portion. 前記起歪体が、前記膜状の起歪部から前記本体部の前記一端側へと突出する突起部を有し、
前記工具保持構造は前記棒状工具を前記突起部に当接させた状態で前記棒状工具を保持する請求項10に記載の工具保持構造。
The strain-causing body has a protrusion protruding from the film-like strain-causing portion toward the one end side of the main body portion.
The tool holding structure according to claim 10, wherein the tool holding structure holds the rod-shaped tool in a state where the rod-shaped tool is in contact with the protrusion.
前記工具挟持部は、前記本体部の一端に嵌入されて前記棒状工具を挟持する、前記本体部とは別体の挟持部材である請求項1〜11のいずれか一項に記載の工具保持構造。 The tool holding structure according to any one of claims 1 to 11, wherein the tool holding portion is fitted into one end of the main body portion to hold the rod-shaped tool, and is a holding member separate from the main body portion. .. 前記挟持部材がコレットである請求項12に記載の工具保持構造。 The tool holding structure according to claim 12, wherein the holding member is a collet. 棒状工具を保持し且つ該棒状工具に付加されるスラスト荷重を検出する工具保持構造であり、一端側の開口に前記棒状工具が挿入される筒状の本体部、及び前記本体部の前記開口に挿入された前記棒状工具を挟持する工具挟持部を備える工具保持構造に用いられる荷重検出構造であって、
前記筒状の本体部の前記開口よりも他端側において、前記筒状の本体部の内部に配置され、前記棒状工具が当接される起歪体と、
前記起歪体に取り付けられたひずみゲージと
長尺状の位置調整部であって、前記筒状の本体部の前記起歪体よりも他端側において、前記筒状の本体部の内部に、前記筒状の本体部の軸に沿って、前記起歪体と一体として前記軸方向に移動可能に配置される位置調整部とを備え、
前記筒状の本体部の内部に配置された状態において、前記筒状の本体部の内周面と前記荷重検出構造との間に前記棒状工具に切削油を供給する供給路を構成する荷重検出構造。
It is a tool holding structure that holds a rod-shaped tool and detects the thrust load applied to the rod-shaped tool. A load detection structure used in a tool holding structure including a tool holding portion for holding the inserted rod-shaped tool.
On the other end side of the opening of the cylindrical main body, a strain-causing body arranged inside the tubular main body and with which the rod-shaped tool is abutted.
A strain gauge and a long-shaped position adjusting portion attached to the strain-causing body, at the other end of the tubular main body portion from the strain-generating body, inside the tubular main body portion. A position adjusting portion is provided along the axis of the cylindrical main body portion so as to be movable in the axial direction together with the strain-causing body.
A load detection that constitutes a supply path for supplying cutting oil to the rod-shaped tool between the inner peripheral surface of the tubular main body and the load detection structure in a state of being arranged inside the tubular main body. structure.
前記位置調整部は、前記位置調整部の外周面の少なくとも一部に形成された雄ねじと、前記位置調整部の長手方向において前記雄ねじの一方側と他方側とを連通させる連通路とを有する請求項14に記載の荷重検出構造。 The position adjusting portion has a claim having a male screw formed on at least a part of the outer peripheral surface of the position adjusting portion and a communication passage for communicating one side and the other side of the male screw in the longitudinal direction of the position adjusting portion. Item 14. The load detection structure according to item 14. 前記位置調整部の前記雄ねじが形成された領域における外径が、前記位置調整部の他の領域の外径よりも大きい請求項15に記載の荷重検出構造。 The load detection structure according to claim 15, wherein the outer diameter of the position adjusting portion in the region where the male screw is formed is larger than the outer diameter of the other region of the position adjusting portion. 前記起歪体が、前記膜状の起歪部から前記本体部の前記一端側へと突出する突起部を有し、
前記工具保持構造は前記棒状工具を前記突起部に当接させた状態で前記棒状工具を保持する請求項10に記載の工具保持構造。
The strain-causing body has a protrusion protruding from the film-like strain-causing portion toward the one end side of the main body portion.
The tool holding structure according to claim 10, wherein the tool holding structure holds the rod-shaped tool in a state where the rod-shaped tool is in contact with the protrusion.
JP2020106329A 2020-04-10 2020-06-19 Tool holding structure, load detection structure, and tool condition monitoring system Active JP6948440B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020106329A JP6948440B1 (en) 2020-06-19 2020-06-19 Tool holding structure, load detection structure, and tool condition monitoring system
PCT/JP2021/014924 WO2021206147A1 (en) 2020-04-10 2021-04-08 Tool-holding structure, load detection structure, and tool-state-monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020106329A JP6948440B1 (en) 2020-06-19 2020-06-19 Tool holding structure, load detection structure, and tool condition monitoring system

Publications (2)

Publication Number Publication Date
JP6948440B1 JP6948440B1 (en) 2021-10-13
JP2022001385A true JP2022001385A (en) 2022-01-06

Family

ID=78001317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020106329A Active JP6948440B1 (en) 2020-04-10 2020-06-19 Tool holding structure, load detection structure, and tool condition monitoring system

Country Status (1)

Country Link
JP (1) JP6948440B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986067A (en) * 1972-12-11 1974-08-17
US4688970A (en) * 1985-08-09 1987-08-25 Dresser Industries, Inc. Power drill and automatic control system therefore
JPH01222851A (en) * 1988-03-03 1989-09-06 Kitamura Mach Co Ltd Method for detecting thrust force of main spindle of machine tool
US20110255930A1 (en) * 2008-11-05 2011-10-20 Atlas Copco Tools Ab Drill spindle unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986067A (en) * 1972-12-11 1974-08-17
US4688970A (en) * 1985-08-09 1987-08-25 Dresser Industries, Inc. Power drill and automatic control system therefore
JPH01222851A (en) * 1988-03-03 1989-09-06 Kitamura Mach Co Ltd Method for detecting thrust force of main spindle of machine tool
US20110255930A1 (en) * 2008-11-05 2011-10-20 Atlas Copco Tools Ab Drill spindle unit

Also Published As

Publication number Publication date
JP6948440B1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP5420528B2 (en) Device for adjusting the position of the blade of a rotary cutting tool
US8690500B2 (en) Tool interface
US7682109B2 (en) Cutting tool, tool body and cutting insert therefor
US8286972B2 (en) Low-vibration tool holder
US9468977B2 (en) Cylindrical grinding process and as-ground part resulting from such process
CN104955596B (en) For including the knife rest of the cutter with externally threaded handle of a knife
US8534963B2 (en) Tool for machining a workpiece
JP5725111B2 (en) Cutting tools
US10213843B2 (en) Stop for a drilling, milling or countersinking tool
KR20070061520A (en) Mandrel for a milling cutter holder
JPH0366512A (en) Rotary cutter for countersink and like
JP2019509183A (en) Cutting tools
EP0697932A1 (en) Tool extender for machining applications
JP6948440B1 (en) Tool holding structure, load detection structure, and tool condition monitoring system
WO2021206147A1 (en) Tool-holding structure, load detection structure, and tool-state-monitoring system
US10583497B2 (en) Rigid modular holding system with radial and axial compensation
JP6352850B2 (en) Tool positioning jig
JP6948432B1 (en) Tool holding structure, load detection structure, and tool condition monitoring system
KR20170135513A (en) A Machine Tools Having a Structure of Providing a Cutting Fluid through a Inner Path
JP5120734B2 (en) Tool holder
EP2285514B1 (en) Tool holder fixing structure
JP2007130739A (en) Boring tool
JP2003145378A (en) Tool holder and run-out correcting tool
US20220305566A1 (en) Multi-Part Modular Tool
JP4967863B2 (en) Drilling tool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210715

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6948440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150