JP2021530623A - Spring steel with excellent fatigue life and its manufacturing method - Google Patents

Spring steel with excellent fatigue life and its manufacturing method Download PDF

Info

Publication number
JP2021530623A
JP2021530623A JP2021503062A JP2021503062A JP2021530623A JP 2021530623 A JP2021530623 A JP 2021530623A JP 2021503062 A JP2021503062 A JP 2021503062A JP 2021503062 A JP2021503062 A JP 2021503062A JP 2021530623 A JP2021530623 A JP 2021530623A
Authority
JP
Japan
Prior art keywords
spring steel
fatigue life
controlled
steel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021503062A
Other languages
Japanese (ja)
Other versions
JP7110480B2 (en
Inventor
贊 姚
峰 金
根 節 万
彦 峰 斉
振 平 呉
Original Assignee
宝山鋼鉄股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山鋼鉄股▲分▼有限公司 filed Critical 宝山鋼鉄股▲分▼有限公司
Publication of JP2021530623A publication Critical patent/JP2021530623A/en
Application granted granted Critical
Publication of JP7110480B2 publication Critical patent/JP7110480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

優れた疲労寿命を有するばね鋼及びその製造方法であって、その化学組成の重量百分率は:C:0.52−0.62%;Si:1.20−1.45%;Mn:0.25−0.75%;Cr:0.30−0.80%;V:0.01−0.15%;Nb:0.001−0.05%;N:0.001−0.009%;O:0.0005−0.0040%;P:≦0.015%;S:≦0.015%;Al:≦0.0045%;残部はFeおよび不可避不純物であり、かつ0.02≦(2Nb+V)/(20N+C)≦0.40を満たす。本発明にかかるばね鋼の微細組織は、焼戻トルースタイト+ソルバイト組織であり、元のオーステナイト結晶粒サイズ80um未満で、合金窒素・炭素析出物サイズは5〜60nmで、単一粒子介在物最大幅は30um未満である。上記のばね鋼は、2020MPa以上の加工強度を有し、同時に良好な塑性靭性(減面率≧40%)および≧80万回の疲労寿命を有し、自動車や機械などの産業には高応力ばねの要求を満たすことができる。A spring steel having an excellent fatigue life and a method for producing the same, the weight percentage of the chemical composition thereof is: C: 0.52-0.62%; Si: 1.20-1.45%; Mn: 0. 25-0.75%; Cr: 0.30-0.80%; V: 0.01-0.15%; Nb: 0.001-0.05%; N: 0.001-0.009% O: 0.0005-0.0040%; P: ≦ 0.015%; S: ≦ 0.015%; Al: ≦ 0.0045%; the balance is Fe and unavoidable impurities, and 0.02 ≦ Satisfy (2Nb + V) / (20N + C) ≦ 0.40. The fine structure of the spring steel according to the present invention is a tempered troostite + sorbite structure, the original austenite crystal grain size is less than 80 um, the alloy nitrogen / carbon precipitate size is 5 to 60 nm, and the single particle inclusions are the most. It is significantly less than 30 um. The above spring steel has a machining strength of 2020 MPa or more, and at the same time has good plastic toughness (surface reduction rate ≧ 40%) and fatigue life of ≧ 800,000 times, and is highly stressed in industries such as automobiles and machinery. Can meet the requirements of springs.

Description

本発明は、ばね鋼およびその製造方法、特に、2020MPa以上の加工強度、減面率≧40%、組織は微細化され、高い鋼純度を有し、低コストおよび優れた疲労寿命を有する車両用ばねを加工するために使用できる、優れた疲労寿命を有するばね鋼およびその製造方法に関わる。 The present invention relates to spring steel and its manufacturing method, particularly for vehicles having a processing strength of 2020 MPa or more, a surface reduction rate of ≥40%, a finely structured structure, high steel purity, low cost and excellent fatigue life. Involved in spring steels with excellent fatigue life and methods of manufacturing them that can be used to process springs.

重要な衝撃吸収および機能部品として、ばねは社会的生産および人々の生活のいろいろな側面で、例えば、交通輸送、機械製造、自動車産業、軍事工業および日常生活で広く使用されている。ばねは弾性範囲内で使用され、除荷後に元の位置に戻るはずで、そして塑性変形が小さいほど良いので、鋼線は、高い弾性限界、降伏強度、引張強度を持つことが望まれている。降伏比が高いほど、弾性限界が引張強度に近くなり、そして強度利用率が高くなり、製造されたばねの弾力が強くなる。ばねは弾性変形に依存して衝撃エネルギーを吸収するため、ばね鋼線は高い可塑性である必要がないが、少なくともばねの形成に耐えれる可塑性及び衝撃エネルギーに耐えるのに十分な靭性を備えている必要がある。ばねは、通常に、交番応力で長時間動作するため、高い疲労限界と、耐クリープ性と抗弾性低下性が優れている必要がある。 As an important shock absorber and functional component, springs are widely used in various aspects of social production and people's lives, such as transportation, machinery manufacturing, automobile industry, military industry and daily life. Steel wires are desired to have high elastic limits, yield strength, and tensile strength, as springs are used within the elastic range, should return to their original position after unloading, and the smaller the plastic deformation, the better. .. The higher the yield ratio, the closer the elastic limit is to the tensile strength, the higher the strength utilization, and the stronger the elasticity of the manufactured spring. Since the spring absorbs impact energy depending on the elastic deformation, the spring steel wire does not need to be highly plastic, but at least it has enough plasticity to withstand the formation of the spring and sufficient toughness to withstand the impact energy. There is a need. Since springs normally operate for a long time under alternating stress, they need to have a high fatigue limit, excellent creep resistance, and excellent anti-elasticity reduction property.

自動車・機械産業の技術進歩に伴い、ばね部品の強度・疲労寿命への要求が高まっており、各国の先進鉄鋼会社では、高強度・可塑性・耐疲労信頼性に優れたばね製造材料の開発が注目されている。 With technological advances in the automobile and machinery industries, the demand for strength and fatigue life of spring parts is increasing, and advanced steel companies in each country are paying attention to the development of spring manufacturing materials with excellent strength, plasticity, and fatigue resistance. Has been done.

現在、従来のCr−V系、Cr−Mn系、Si−Mn系ばね鋼材料は、高強度ばねの製造要求を満たすことができず、より高い強度とより良い降伏比を備えた一般的に使用されるSi−Cr系ばね鋼も、強度と疲労寿命の限界に達した。 Currently, conventional Cr-V-based, Cr-Mn-based, and Si-Mn-based spring steel materials cannot meet the manufacturing requirements for high-strength springs and generally have higher strength and better yield ratio. The Si—Cr spring steel used has also reached the limits of strength and fatigue life.

中国特許CN101787493Bに開示されている高強度ばね鋼の合金組成は0.56%〜0.64%C、0.80%〜1.10%Si、0.80%〜1.20%Mn、P≦0.035%、S≦0.03%、0.80%〜1.20%Cr、0.60%〜1.00%Mo、0.20%〜0.30% V、0.05%〜0.12%Nb、0.01%〜0.060%N、0.02%〜0.07%REであり、残りはFeである。当該設計材料には、Mn、Cr、Mo合金元素が大量に追加され、ただし、Moは主に、鋼の焼き戻し安定性、耐持続クリープ性、耐熱性を向上させるために使用される。 The alloy composition of high-strength spring steel disclosed in Chinese Patent CN101787493B is 0.56% to 0.64% C, 0.80% to 1.10% Si, 0.80% to 1.20% Mn, P. ≤0.035%, S≤0.03%, 0.80% to 1.20% Cr, 0.60% to 1.00% Mo, 0.20% to 0.30% V, 0.05% ~ 0.12% Nb, 0.01% to 0.060% N, 0.02% to 0.07% RE, and the rest is Fe. A large amount of Mn, Cr, and Mo alloy elements are added to the design material, but Mo is mainly used to improve tempering stability, sustained creep resistance, and heat resistance of steel.

中国特許CN100455691Cに開示されているばね鋼合金の組成は、0.4−0.6%C、1.7−2.5%Si、0.1−0.4%Mn、0.5−2.0%Cr、0−0.006%N、および0.021−0.07%Alである。ただし、高炭素・高シリコン・低マンガン合金の設計ルートを採用し、主に、残るオーステナイトの量とサイズを制御することで、鋼の水素脆化耐性を強化することを考慮するので、材料の急冷・焼き戻し工程の要求が高くなると同時に、合金Alの含有量が多いため、製錬工程での介在物の制御が困難になり、硬くて脆いアルミナは、ばねの疲労寿命を低下させやすくなる。 The composition of the spring steel alloy disclosed in Chinese patent CN100455691C is 0.4-0.6% C, 1.7-2.5% Si, 0.1-0.4% Mn, 0.5-2. It is 0.0% Cr, 0-0.006% N, and 0.021-0.07% Al. However, since the design route of high carbon, high silicon, low manganese alloy is adopted, and mainly by controlling the amount and size of the remaining austenite, it is considered to enhance the hydrogen embrittlement resistance of the steel. At the same time as the demand for quenching and tempering processes increases, the content of alloy Al is high, which makes it difficult to control inclusions in the smelting process, and hard and brittle alumina tends to reduce the fatigue life of the spring. ..

中国特許CN1279204Cに開示されたばね鋼合金の組成設計は:0.30−0.50%C、0.80−2.0%Si、0.50−1.0%Mn、0.40−1.0%Cr、0.01−0.5%W、0.08−0.30%V、0.005−0.25%希土類元素であり、0.001−0.10%Bを含んでも良い;当該合金は、主に低炭素設計を採用し、Si元素の含有量を増やすことで強度を高めると同時に、元素Wの添加で鋼の焼き入れ性を改善し、耐変形性を向上し、脱炭を防ぐが、Wと希土類元素の精錬と熱処理を制御することは困難である。 The composition design of the spring steel alloy disclosed in Chinese patent CN1279204C is: 0.30-0.50% C, 0.80-2.0% Si, 0.50-1.0% Mn, 0.40-1. It is 0% Cr, 0.01-0.5% W, 0.08-0.30% V, 0.005-0.25% rare earth element, and may contain 0.001-0.10% B. The alloy mainly adopts a low carbon design and increases the strength by increasing the content of Si element, and at the same time, the addition of element W improves the hardenability of steel and improves the deformation resistance. Although it prevents decarburization, it is difficult to control the refining and heat treatment of W and rare earth elements.

中国特許CN1039725Cは、車両サスペンションばね用の脱炭が少なく、靭性が高いばね鋼を開示している。このような鋼では、元素のSi含有量は、C含有量を減らすことなく増加し、0.5〜0.7%のC、1.0−3.5%Si、0.3−1.5%Mn、0.3−1.0%Cr、0.05−0.5%Vおよび/またはNb、0.02%未満のP、0.02%未満のS、0.5〜5.0%のNi、およびその他の避けられない不純物を含み、残部はFeである。当該材料には、脱炭問題を解決し、材料の靭性を改善するために、多くのNi元素を添加し、合金のコストが高くなる。 Chinese patent CN1039725C discloses spring steel with low decarburization and high toughness for vehicle suspension springs. In such steels, the Si content of the element increases without reducing the C content, 0.5-0.7% C, 1.0-3.5% Si, 0.3-1. 5% Mn, 0.3-1.0% Cr, 0.05-0.5% V and / or Nb, P less than 0.02%, S less than 0.02%, 0.5-5. It contains 0% Ni and other unavoidable impurities, with the balance being Fe. In order to solve the decarburization problem and improve the toughness of the material, a large amount of Ni elements are added to the material, and the cost of the alloy increases.

既存の合金には、主に、C、Si、Mn元素の調整で、材料の強度を向上させるが、Si含有量が少なすぎると、材料の弾性限界が低下し、抗弾性低下性が低下しつつ、Si含有量が多すぎると、材料の可塑性が低下すると同時に脱炭制御が困難になり、ばねの疲労寿命に影響を与える。合金元素を過剰に添加すると、材料コストが高くなると同時に、析出物のサイズに影響を与え、材料の疲労性能が低下する。材料の設計強度はまだ低く、かつばねの疲労寿命はあまり考慮されていない。 In existing alloys, the strength of the material is improved mainly by adjusting the elements of C, Si, and Mn, but if the Si content is too small, the elastic limit of the material is lowered and the antielasticity lowering property is lowered. On the other hand, if the Si content is too high, the plasticity of the material is lowered and at the same time, decarburization control becomes difficult, which affects the fatigue life of the spring. Excessive addition of alloying elements increases the material cost and at the same time affects the size of the precipitate and reduces the fatigue performance of the material. The design strength of the material is still low and the fatigue life of the spring is not considered very much.

自動車の軽量化と機械産業の技術進歩により、ばね材料の強度は継続的に改善しているが、現在、一般的に使用されているCr−V系、Cr−Mn系、Si−Mn系、Cr−Si系のばね鋼もう材料の限界に達した。 Although the strength of spring materials is continuously improving due to the weight reduction of automobiles and technological progress of the mechanical industry, the Cr-V type, Cr-Mn type, Si-Mn type, which are generally used at present, are used. Cr-Si based spring steel has already reached the limit of materials.

本発明の目的は、優れた疲労寿命を有するばね鋼およびその製造方法を提供し、上記のばね鋼は、2020MPa以上の加工強度を有し、同時に良好な塑性靭性(減面率≧40%)および≧80万回の疲労寿命を有し、自動車や機械などの産業には高応力ばねの要求を満たすことができる。 An object of the present invention is to provide a spring steel having an excellent fatigue life and a method for producing the same, and the above-mentioned spring steel has a processing strength of 2020 MPa or more and at the same time has good plastic toughness (surface reduction rate ≥ 40%). And with a fatigue life of ≧ 800,000 times, it can meet the demand for high stress springs in industries such as automobiles and machinery.

上記目的を果たすために、本発明の技術方案は:
優れた疲労寿命を有するばね鋼であって、その化学組成の重量百分率は
C:0.52−0.62%;
Si:1.20−1.45%;
Mn:0.25−0.75%;
Cr:0.30−0.80%;
V:0.01−0.15%;
Nb:0.001−0.05%;
N:0.001−0.009%;
O:0.0005−0.0040%;
P:≦0.015%;
S:≦0.015%;
Al:≦0.0045%;
残部はFeおよび不可避不純物であり、かつ0.02≦(2Nb+V)/(20N+C)≦0.40を満たす。
In order to achieve the above object, the technical plan of the present invention is:
A spring steel with excellent fatigue life, the weight percentage of its chemical composition is C: 0.52-0.62%;
Si: 1.20-1.45%;
Mn: 0.25-0.75%;
Cr: 0.30-0.80%;
V: 0.01-0.15%;
Nb: 0.001-0.05%;
N: 0.001-0.009%;
O: 0.0005-0.0040%;
P: ≤0.015%;
S: ≤0.015%;
Al: ≤0.0045%;
The balance is Fe and unavoidable impurities, and satisfies 0.02 ≦ (2Nb + V) / (20N + C) ≦ 0.40.

本発明にかかるばね鋼の微細組織は、焼戻トルースタイト+ソルバイト組織であり、元のオーステナイト結晶粒サイズ≦80umで、合金窒素・炭素析出物サイズは5−60nmで、単一粒子介在物最大幅≦30umである。 The fine structure of the spring steel according to the present invention is a tempered troostite + sorbite structure, the original austenite crystal grain size ≤ 80 um, the alloy nitrogen / carbon precipitate size is 5-60 nm, and the single particle inclusions are the largest. Significantly ≤30 um.

本発明にかかるばね鋼の成分設計において:
Cは、ばね鋼の室温強度と焼き入れ性を確保するために必要な成分であり、ばね鋼が高い弾性限界と良好な抗弾性低下性に達するための元素でもある;C含有量が0.52%未満の場合、当該合金ばね鋼の強度が2020MPa以上にすることは保証できず、微量合金元素の炭窒化物の析出にとって不利であるが、C含有量が多すぎると、焼き戻し工程で炭化物のサイズが大きくなりすぎると同時に、材料の可塑性が低下し、高強度で良好な塑性靭性のにとって不利で、材料の疲労寿命に影響を与えるため、C元素含有量は0.62%未満である必要がある。
In the component design of spring steel according to the present invention:
C is a component necessary to ensure the room temperature strength and hardenability of the spring steel, and is also an element for the spring steel to reach a high elastic limit and good anti-elasticity lowering property; C content is 0. If it is less than 52%, it cannot be guaranteed that the strength of the alloy spring steel will be 2020 MPa or more, which is disadvantageous for the precipitation of carbon nitride of trace alloy elements. At the same time as the size of the carbide becomes too large, the plasticity of the material decreases, which is disadvantageous for high strength and good plastic toughness and affects the fatigue life of the material, so the C element content is less than 0.62%. There must be.

Siは非炭化物形成元素であり、主にフェライト相に固溶し、強化の役割を果たし、合金シリコン含有量を増やすと、材料の弾性限界と抗弾性低下性の向上に寄与し、ばね性能が最適化されるが、Si含有量が多すぎると、材料の可塑性が低下し、ばねの成形にとって不利であり、製造されたばねの寿命に影響を与えると同時に、Si含有量が多いと、材料の製造や熱処理の際に脱炭の傾向が高まり、加工コストが高くなる;そして、当該材料のSi含有量を、1.2〜1.45%の範囲に制御する。 Si is a non-carbohydrate forming element, which mainly dissolves in the ferrite phase and plays a role of strengthening. Increasing the content of alloyed silicon contributes to the improvement of the elastic limit and anti-elasticity lowering property of the material, and the spring performance is improved. Optimized, but too high a Si content reduces the plasticity of the material, which is detrimental to the molding of the spring and affects the life of the manufactured spring, while at the same time a high Si content of the material The tendency of decarburization increases during manufacturing and heat treatment, and the processing cost increases; and the Si content of the material is controlled in the range of 1.2 to 1.45%.

Mnは鋼に一般的に添加される元素であり、焼き入れ性と強度を効果的に向上させることができ、かつ鋼の可塑性にはほとんど影響を与えない;合金の強度と焼き入れ性を確保するために、Mn含有量は0.25%以上にする必要がある。Mn含有量が高すぎると、深刻な偏析を引き起こすと同時に、結晶粒の成長を引き起こすため、鋼におけるMnを制御する必要があり、許容範囲は0.25〜0.75%である。 Mn is an element commonly added to steel that can effectively improve hardenability and strength and has little effect on the plasticity of steel; ensuring the strength and hardenability of the alloy. Therefore, the Mn content needs to be 0.25% or more. If the Mn content is too high, it causes serious segregation and at the same time causes the growth of crystal grains. Therefore, it is necessary to control Mn in the steel, and the allowable range is 0.25 to 0.75%.

Crは、ばね鋼の焼き入れ性を向上させると同時に、焼き戻し工程に合金セメンタイトを析出させて、材料強度を向上させることができる;Cr元素は組織を微細化する効果もあるため、この材料の設計において、Crが固液と析出を強化する役割を発揮させ、同時に、材料組織を改善するためには、その含有量を0.30〜0.80%に制御する必要がある。 Cr can improve the hardenability of spring steel and at the same time precipitate alloy cementite in the tempering process to improve the material strength; the Cr element also has the effect of refining the structure of this material. In the design of Cr, in order to exert the role of strengthening solid-liquid and precipitation, and at the same time to improve the material structure, it is necessary to control the content to 0.30 to 0.80%.

VとNb元素は、鋼に添加する微量合金元素として一般的に使用され、これら2種類の元素は、窒化物と炭化物を形成する傾向が強く、焼き戻し工程中の炭窒化物の析出と核形成速度を高め、組織を微細化することができる。VとNbの炭窒化物は、線材コイルの圧延工程中に析出し、これは、材料のオーステナイトの粒子サイズが小さくなり、材料の強度と可塑性が向上することに寄与する。ナノスケールの析出物は、材料の強度、可塑性、疲労寿命の改善に役立つが、合金中のVとNbの含有量が多すぎると、析出物のサイズが大きくなる;2つの元素間の相互影響を考慮して、複数回の検証のうえ、V添加量を0.01〜0.15%、Nb含有量を0.001〜0.05%に制御すると、より良い効果を得られる。N含有量を増やすと材料の脆性が増し、かつNが合金元素の析出に対する影響を考慮すると、鋼におけるNを0.001〜0.009%に制御する必要がある;同時に、析出物を微細化するために、鋼における(2Nb+V)/(20N+C)を0.02〜0.40、好ましくは0.045〜0.37の範囲に制御する;いくつかの実施形態では、鋼における(2Nb+V)/(20N+C)は、0.15〜0.37の範囲にある。製造されたばねの高強度、優れた可塑性、および高い疲労寿命を達成するために、テンパリング処理後の材料の元のオーステナイト粒子サイズは≦80um、鋼における沈析出のサイズは5〜60nmの範囲で制御される。 The V and Nb elements are generally used as trace alloy elements to be added to steel, and these two elements have a strong tendency to form nitrides and carbides, and the precipitation and nucleation of carbonitrides during the tempering process. The formation rate can be increased and the structure can be made finer. The carbonitrides of V and Nb precipitate during the rolling process of the wire coil, which contributes to a smaller particle size of austenite in the material and improved strength and plasticity of the material. Nanoscale precipitates help improve material strength, plasticity, and fatigue life, but too high a content of V and Nb in the alloy increases the size of the precipitate; the interaction between the two elements. In consideration of the above, if the V addition amount is controlled to 0.01 to 0.15% and the Nb content is controlled to 0.001 to 0.05% after a plurality of verifications, a better effect can be obtained. Increasing the N content increases the brittleness of the material, and considering the effect of N on the precipitation of alloying elements, it is necessary to control N in steel to 0.001 to 0.009%; at the same time, the precipitate is fine. (2Nb + V) / (20N + C) in steel is controlled in the range of 0.02 to 0.40, preferably 0.045 to 0.37; in some embodiments, (2Nb + V) in steel. / (20N + C) is in the range of 0.15 to 0.37. In order to achieve high strength, excellent plasticity and high fatigue life of the manufactured spring, the original austenite particle size of the material after tempering is controlled in the range of ≤80 um and the size of precipitation in steel is controlled in the range of 5-60 nm. Will be done.

鋼において、Alは主に脱酸効果を発揮するが、Alに脱酸されてなるアルミナは硬くて脆い相であり、ばねの疲労寿命に大きな影響を与え、大きな脆性介在物は、異常なばね破壊を引き起こす主な要因の1つである。鋼におけるアルミナ介在物を効果的に制御するために、鋼におけるAlは≦0.0045%であり、酸素含有量は0.0005〜0.0040%の範囲で制御される;高強度下でのばねの疲労寿命を改善するためには、鋼における単一粒子介在物の幅を≦30umに制御する必要がある。 In steel, Al mainly exerts a deoxidizing effect, but alumina deoxidized by Al is a hard and brittle phase, which has a great influence on the fatigue life of the spring, and a large brittle inclusion is an abnormal spring. It is one of the main factors that cause destruction. To effectively control the alumina inclusions in the steel, Al in the steel is ≤0.0045% and the oxygen content is controlled in the range 0.0005-0.0040%; under high strength. In order to improve the fatigue life of the spring, it is necessary to control the width of the single particle inclusions in the steel to ≦ 30um.

材料の強靭性を確保し、製造工程での高温脆性や低温脆性などの欠陥を防ぐために、鋼における有害なPおよびS元素の含有量をそれぞれ0.015%および0.015%以下に制御し、鋼の純度を向上させる。 In order to ensure the toughness of the material and prevent defects such as high temperature brittleness and low temperature brittleness in the manufacturing process, the content of harmful P and S elements in steel is controlled to 0.015% and 0.015% or less, respectively. , Improve the purity of steel.

本発明にかかる優れた疲労寿命を有するばね鋼を製造方法は、製錬、連続鋳造、粗圧延、高速ワイヤーローリング、ステルモア冷却、線材コイル伸線、テンパリング処理を含む。 The method for producing a spring steel having an excellent fatigue life according to the present invention includes smelting, continuous casting, rough rolling, high-speed wire rolling, stealmore cooling, wire coil wire drawing, and tempering treatment.

上記の製錬は電気炉または転炉を採用し、製錬後に炉外で、LF炉とVDまたはRH脱気処理を採用する精製を行う;LF精製工程中に、合成スラグの組成とアルカリ度を調整し、鋼におけるPおよびS元素の含有量を0.015%未満および0.015%に制御し、精製スラグを溶融鋼の介在物と完全に反応させるようにアルゴン攪拌を行い、介在物の変性と除去を実現する;十分なガス除去を確保するには、VDまたはRHの真空脱気時間を30分以上にする必要があり、最終に、O含有量は0.0005〜0.0040%、N含有量は0.0010〜0.0090%、H含有量は2ppm未満に制御する;精製が完了した後、大きな粒子の介在物の浮き上がりを促進するために、取鍋の鎮静時間は15分より長くなることで、溶融鋼における介在物のサイズを≦30umに制御できる。 The above smelting employs an electric furnace or converter, and after smelting, refinement is carried out outside the furnace using an LF furnace and VD or RH degassing treatment; during the LF refining process, the composition and alkalinity of the synthetic slag. The content of P and S elements in the steel was controlled to less than 0.015% and 0.015%, and argon stirring was performed so that the refined slag completely reacted with the inclusions in the molten steel. The vacuum degassing time of VD or RH must be at least 30 minutes to ensure sufficient degassing, and finally the O content is 0.0005 to 0.0040. %, N content is controlled to 0.0010 to 0.0090%, H content is controlled to less than 2 ppm; after purification is complete, the smelting time of the ladle is to promote the uplift of large particle inclusions. By making it longer than 15 minutes, the size of inclusions in the molten steel can be controlled to ≦ 30 um.

高速ワイヤーローリングでは、加熱炉の加熱は920〜1150℃に制御され、保持時間は1.0〜3.0hである;線材コイル高速ワイヤーローリング工程では、圧延速度は15〜115m/sに制御される;オンライン温度制御の好ましいスキームは、仕上げ圧延機ユニットの入口温度を880−1050℃、絞り圧延機・矯正機ユニットの入口温度を840−970℃、スピニング温度を800−950℃にする。 In high speed wire rolling, the heating of the heating furnace is controlled to 920 to 1150 ° C. and the holding time is 1.0 to 3.0 h; in the wire coil high speed wire rolling process, the rolling speed is controlled to 15 to 115 m / s. A preferred scheme for online temperature control is to set the inlet temperature of the finish rolling mill unit to 880-1050 ° C, the inlet temperature of the drawroller / straightening machine unit to 840-970 ° C, and the spinning temperature to 800-950 ° C.

好ましくに、320−500mmの丸型または角型のビレットを鋳造するには、連続鋳造機を使用し、連続鋳造工程での引張速度を0.5〜0.8m/minの範囲に調整し、末期軽圧下の量を10mmより大きくすることにより、ビレットのコアでの炭素偏析を1.08未満に制御する;これにより、溶融鋼の鋳造工程での二次酸化が防止され、同時に30umを超える介在物の浮き上がりと除去が容易になる。 Preferably, to cast a 320-500 mm round or square billet, a continuous casting machine is used and the tensile speed in the continuous casting process is adjusted to the range of 0.5-0.8 m / min. By increasing the amount under light pressure at the end of the period to less than 1.08, the carbon segregation in the core of the billet is controlled to less than 1.08; this prevents secondary oxidation in the casting process of molten steel and at the same time exceeds 30 um. Floating and removing inclusions are facilitated.

好ましくに、上記の粗圧延には、二火成材プロセス(twice-heating production process)を採用し、鋳造ビレットを1050〜1270℃の温度で115〜170 mmの丸型または角型のビレットにブルーミング・分塊圧延され、圧延の総圧下率は40%を超える。 Preferably, the above rough rolling employs a twice-heating production process and blooms the cast billets into 115-170 mm round or square billets at a temperature of 1050-1270 ° C. It is lump-rolled and the total rolling reduction rate exceeds 40%.

好ましくに、上記の線材コイル伸線際に、伸線速度は、3.5m/minを超えない。
好ましくに、上記のテンパリング処理では、テンパリング処理前に、伸線される鋼線の加熱温度を850〜1100℃の範囲に制御し、焼入れ媒体を油または水とし、焼入れ媒体の温度を15〜40℃に制御し、焼戻温度を370〜550℃に制御し、そして製造された鋼線の窒素と炭素の析出物のサイズを5〜60nmの範囲で制御する。
Preferably, the wire drawing speed does not exceed 3.5 m / min when the wire rod coil is drawn.
Preferably, in the above tempering treatment, before the tempering treatment, the heating temperature of the drawn steel wire is controlled in the range of 850 to 1100 ° C., the quenching medium is oil or water, and the temperature of the quenching medium is 15 to 40. The temperature is controlled to ℃, the tempering temperature is controlled to 370 to 550 ° C, and the size of nitrogen and carbon precipitates of the produced steel wire is controlled in the range of 5 to 60 nm.

好ましくに、上記のステルモア冷却では、ステルモアラインの14個の送風機の風量を、次のとおり調整する:F1−F7送風機風量を10−100%にし、F8−F12送風機風量を0−50%にし、F13−F14送風機風量を0〜50%にする。 Preferably, in the above Stealmore cooling, the airflow of the 14 blowers in the Stealmore line is adjusted as follows: F1-F7 blower airflow is 10-100%, F8-F12 blower airflow is 0-50%. , F13-F14 Blower Air volume is set to 0 to 50%.

本発明にかかるばね鋼の製造方法において:
上記の製錬は電気炉または転炉を採用し、製錬後に炉外で(電気炉または転炉がタップされたときにスラグが取鍋に入るのを防く)、LF炉とVDまたはRH脱気処理を採用する精製を行う;LF精製工程中に、合成スラグの組成とアルカリ度を調整し、鋼におけるPおよびS元素の含有量を0.015%未満および0.015%に制御し、精製スラグを溶融鋼の介在物と完全に反応させるようにアルゴン攪拌を行い、介在物の変性と除去を実現する;十分なガス除去を確保するには、VDまたはRHの真空脱気時間を30分以上にする必要があり、最終に、O含有量は0.0005〜0.0040%、N含有量は0.0010〜0.0090%、H含有量は2ppm未満に制御する。精製が完了した後、大きな粒子の介在物の浮き上がりを促進するために、取鍋の鎮静時間は15分を超え、溶融鋼における介在物のサイズを≦30umに制御する。
In the method for producing spring steel according to the present invention:
The above smelting employs an electric furnace or converter, and after smelting outside the furnace (preventing slag from entering the ladle when the electric furnace or converter is tapped), the LF furnace and VD or RH. Purification using degassing is performed; during the LF purification process, the composition and alkalinity of the synthetic slag is adjusted to control the content of P and S elements in the steel to less than 0.015% and 0.015%. Agitate the refined slag with argon to completely react with the inclusions in the molten steel to achieve modification and removal of the inclusions; to ensure sufficient gas removal, allow a vacuum degassing time of VD or RH. It needs to be 30 minutes or more, and finally, the O content is controlled to 0.0005 to 0.0040%, the N content is controlled to 0.0010 to 0.0090%, and the H content is controlled to less than 2 ppm. After the purification is complete, the sedation time of the ladle exceeds 15 minutes and the size of the inclusions in the molten steel is controlled to ≤30 um in order to promote the lifting of large particle inclusions.

連続鋳造機を使用し、320−500mmの丸型または角型のビレットを鋳造し、連続鋳造工程での引張速度と末期軽圧下の量をパラメーターとして調整することで、ビレットのコアでの炭素偏析を1.08未満に制御する。溶融鋼の鋳造工程での二次酸化が防止され、同時に30umを超える介在物の浮き上がりと除去が容易になる。二火成材プロセスを採用し、連続鋳造ビレットを1050〜1270℃の温度で115〜170 mmの丸型または角型のビレットにブルーミング・分塊圧延され、圧延の総圧下率は40%を超え、組織を微細化する。 Carbon segregation at the core of the billet by casting a 320-500 mm round or square billet using a continuous casting machine and adjusting the tensile speed and the amount of final light reduction as parameters in the continuous casting process. Is controlled to less than 1.08. Secondary oxidation in the casting process of molten steel is prevented, and at the same time, inclusions exceeding 30 um can be easily lifted and removed. Using a bi-igneous material process, continuously cast billets are bloomed and lump-rolled into round or square billets of 115-170 mm at a temperature of 1050 to 1270 ° C., and the total rolling reduction ratio exceeds 40%. Miniaturize the structure.

加熱炉で加熱し、920〜1150℃に制御し、保持時間は1.0〜3.0時間である。線材コイル高速ワイヤーローリングの過程で、圧延速度は15−115m/sに制御される。オンライン温度制御の好ましいスキームは、仕上げ圧延機ユニットの入口温度を880−1050℃、絞り圧延機・矯正機ユニットの入口温度を840−970℃、スピニング温度を800−950℃にする。圧延工程の温度とスピニング温度を調整することにより、材料の元のオーステナイト結晶粒は≦80umに微細化され、析出物のサイズは5〜60nmに制御される。 It is heated in a heating furnace and controlled at 920 to 1150 ° C., and the holding time is 1.0 to 3.0 hours. In the process of wire coil high-speed wire rolling, the rolling speed is controlled to 15-115 m / s. A preferred scheme for online temperature control is to set the inlet temperature of the finish rolling mill unit to 880-1050 ° C, the inlet temperature of the drawroller / straightening machine unit to 840-970 ° C, and the spinning temperature to 800-950 ° C. By adjusting the temperature of the rolling process and the spinning temperature, the original austenite grains of the material are refined to ≦ 80 um and the size of the precipitate is controlled to 5 to 60 nm.

圧延後の線材コイルの寸法は、Ф5−28 mmで、線材コイルを圧延した後に、ステルモアラインの送風機の風量の調整で、線材コイル組織の変換を制御する。ステルモアラインの14個の送風機の風量を、次のとおり調整する:F1−F7送風機風量を10−100%にし、F8−F12送風機風量を0−50%にし、F13−F14送風機風量を0〜50%にする。 The size of the wire coil after rolling is Ф5-28 mm, and after rolling the wire coil, the conversion of the wire coil structure is controlled by adjusting the air volume of the blower of the Stelmore line. Adjust the air volume of the 14 blowers of the Stelmore line as follows: F1-F7 blower air volume to 10-100%, F8-F12 blower air volume to 0-50%, F13-F14 blower air volume to 0- Set to 50%.

熱処理前に、線材コイルの伸線処理を行う必要があり、伸線の際に、伸線速度を3.5m/minを超えないように制御する。テンパリング処理前に、伸線される鋼線の加熱温度を850〜1100℃の範囲に制御し、焼入れ媒体を油または水とし、焼入れ媒体の温度を15〜40℃に制御し、焼戻温度を370〜550℃に制御し、そして製造された鋼線の析出物のサイズを5〜60nmの範囲で制御する。 Before the heat treatment, it is necessary to perform the wire drawing process of the wire rod coil, and at the time of wire drawing, the wire drawing speed is controlled so as not to exceed 3.5 m / min. Before the tempering process, the heating temperature of the drawn steel wire is controlled in the range of 850 to 1100 ° C., the quenching medium is oil or water, the temperature of the quenching medium is controlled to 15 to 40 ° C., and the tempering temperature is adjusted. The temperature is controlled from 370 to 550 ° C., and the size of the precipitate of the produced steel wire is controlled in the range of 5 to 60 nm.

本発明の有利な効果は:
本発明の鋼組成および製造方法で製造されたばね鋼の強度は、2020MPa以上に達することができ、当該合金は低コストで、ナノスケールの析出物によって材料を強化しつつ優れた塑性靭性を持ち、優れたばね形成特性を有し、加工クラックを防き、同時に、組織の微細化及び介在物の組成とサイズの控制で、製造されたばねの疲労寿命が長くなり、自動車の軽量化と機械業界での高強度で長寿命の要求を満たすことができ、業界の技術レベルの向上に寄与し、優れた経済的利益をもたらす。
The advantageous effects of the present invention are:
The strength of the spring steel produced by the steel composition and production method of the present invention can reach 2020 MPa or more, and the alloy has excellent plastic toughness while strengthening the material by nanoscale deposits at low cost. It has excellent spring forming properties, prevents machining cracks, and at the same time, the finer structure and control of the composition and size of inclusions increase the fatigue life of manufactured springs, reduce the weight of automobiles and in the mechanical industry. It can meet the demands of high strength and long life, contribute to the improvement of the technical level of the industry, and bring excellent economic benefits.

本発明の実施例A1〜10#および3つの比較鋼タイプB1〜3#の化学組成を以下の表1に示し、具体的な製造方法は以下の通りである:
本発明の実施例A1〜5#および比較鋼タイプB1およびB2合金は、電気炉によって製錬され、実施例A6〜10#および比較鋼グレードB3合金は、転炉によって製錬され、その後、炉外で精製された;ただし、実施例A1〜3#、A6〜8#、およびB1合金は、LF炉とVDによって精製され、実施例A4〜5#、A9〜10#、B2、およびB3合金は、LFとRHによって処理され、合成スラグの組織とアルカリ度を最適化した;A1〜6#、B1の真空脱気時間は30分間で、A7〜10#、B2、B3の真空脱気時間は35分間であり、最終に、O含有量を0.0005−0.0040%、N含有量をN:0.001−0.009%、H含有量は2ppm未満に制御した。
The chemical compositions of Examples A1-10 # and the three comparative steel types B1-3 # of the present invention are shown in Table 1 below, and the specific production methods are as follows:
Examples A1-5 # and the comparative steel types B1 and B2 alloys of the present invention are smelted by an electric furnace, and Examples A6 to 10 # and the comparative steel grade B3 alloy are smelted by a converter, and then the furnace. Purified outside; however, Examples A1-3 #, A6-8 #, and B1 alloys were purified by LF converter and VD and Examples A4-5 #, A9-10 #, B2, and B3 alloys. Was treated with LF and RH to optimize the texture and alkalinity of the synthetic slag; vacuum degassing time for A1-6 #, B1 was 30 minutes and vacuum degassing time for A7-10 #, B2, B3. Finally, the O content was controlled to 0.0005-0.0040%, the N content was controlled to N: 0.001-0.009%, and the H content was controlled to less than 2 ppm.

製錬完了したあと、A1−4#、B1は300mmの丸ビレットに鋳造され、A5−6#は、450mmの丸ビレットに鋳造され、A7−9#、B2は、320*420mmの角ビレットに鋳造され、A10#、B3は、500mmの角ビレットに鋳造され、鋳造工程には、優れたシーリングを有するタンディッシュカバー剤とモールドフラックスを使用した。A1−5#およびB1連続鋳造ビレットのブルーミング・分塊圧延温度は1050℃で、圧延された角ビレットの端面サイズは115mmである。A6〜7#およびB2の角ビレットの加熱温度は1270℃で、圧延されたビレットのサイズは125mmである。A8〜107#およびB3の角ビレットの加熱温度は1100℃で、圧延されたビレットのサイズは170mmである。 After the smelting is completed, A1-4 # and B1 are cast into a 300 mm round billet, A5-6 # is cast into a 450 mm round billet, and A7-9 # and B2 are cast into a 320 * 420 mm square billet. Casted, A10 # and B3 were cast into 500 mm square billets, and the casting process used a tundish cover and mold flux with excellent sealing. The blooming / slabbing rolling temperature of the A1-5 # and B1 continuously cast billets is 1050 ° C., and the end face size of the rolled square billets is 115 mm. The heating temperature of the square billets of A6 to 7 # and B2 is 1270 ° C., and the size of the rolled billet is 125 mm. The heating temperature of the square billets A8 to 107 # and B3 is 1100 ° C., and the size of the rolled billet is 170 mm.

A1〜4#およびB1加熱炉の炉温を920℃に制御し、保持時間は1.0時間であり、A5〜10#、B2、B3加熱炉の炉温を1150℃に制御し、保持時間は3.0時間である。線材コイル高速ワイヤーローリングの過程で、圧延速度は15−115m/sに制御された。オンライン温度制御スキーム:A1〜6#、B1合金の仕上げ圧延機ユニットの入口温度を880〜1050℃、絞り圧延機・矯正機ユニットの入口温度を840〜950℃、スピニング温度を800〜950℃にした。A7〜10#、B2、B3合金の仕上げ圧延機ユニットの入口温度を950〜1050℃、絞り圧延機・矯正機ユニットの入口温度を940〜970℃、スピニング温度を870〜950℃にした。 The furnace temperature of the A1-4 # and B1 heating furnaces is controlled to 920 ° C. and the holding time is 1.0 hour, and the furnace temperature of the A5-10 #, B2 and B3 heating furnaces is controlled to 1150 ° C. and the holding time. Is 3.0 hours. In the process of wire coil high-speed wire rolling, the rolling speed was controlled to 15-115 m / s. Online temperature control scheme: A1-6 #, B1 alloy finish rolling mill unit inlet temperature 880-1050 ° C, drawing rolling mill / straightening machine unit inlet temperature 840-950 ° C, spinning temperature 800-950 ° C bottom. The inlet temperature of the finish rolling mill unit of A7 to 10 #, B2, and B3 alloy was set to 950 to 1050 ° C, the inlet temperature of the drawing rolling mill / straightening machine unit was set to 940 to 970 ° C, and the spinning temperature was set to 870 to 950 ° C.

ただし、A1〜5#、B1、B2合金の圧延後の線材コイルの寸法は、それぞれにФ5〜15mmであり、A6〜10#、B3合金の圧延後の線材コイルの寸法は、Ф16〜28mmである。A1〜5#、B1合金の圧延後のステルモア冷却プロセスは:F1〜F7送風機風量を40%にし、F8〜F12送風機風量を5%にし、F13〜F14送風機風量を40%にした。A6〜10#、B2、B3合金の圧延後のステルモア冷却プロセスは:F1〜F4送風機風量を50%にし、F5〜F7送風機風量を20%にし、F8〜F12送風機風量を15%にし、F13〜F14送風機風量を35%にした。ステルモア冷却された後の線材コイル組織は、ソルバイトとごく少量のフェライトである。 However, the dimensions of the wire coil after rolling the A1 to 5 #, B1 and B2 alloys are Ф5 to 15 mm, respectively, and the dimensions of the wire coil after rolling the A6 to 10 # and B3 alloys are Ф16 to 28 mm. be. The Stealmore cooling process after rolling the A1-5 #, B1 alloys was: F1-F7 blower air volume was 40%, F8-F12 blower air volume was 5%, F13-F14 blower air volume was 40%. The Stelmore cooling process after rolling of A6-10 #, B2, B3 alloys is: F1-F4 blower air volume 50%, F5-F7 blower air volume 20%, F8-F12 blower air volume 15%, F13- The air volume of the F14 blower was set to 35%. The wire coil structure after Stelmore cooling is sorbite and a very small amount of ferrite.

熱処理の前、線材コイルは伸線処理され、テンパリング処理温度によって、伸線された鋼線は三つの組に分かれ、ただし、A1〜2#、B1加熱温度は850℃で、焼戻温度は550℃で、A3〜7#、B2加熱温度は980℃で、焼戻温度は470℃で、A8〜10#、B3加熱温度は1100℃で、焼戻温度は370℃である。 Before the heat treatment, the wire coil is wire drawn, and the drawn steel wire is divided into three sets depending on the tempering treatment temperature, except that the A1 to 2 # and B1 heating temperatures are 850 ° C and the tempering temperature is 550. At ° C, the A3-7 #, B2 heating temperature is 980 ° C, the tempering temperature is 470 ° C, the A8-10 #, B3 heating temperature is 1100 ° C, and the tempering temperature is 370 ° C.

実施例A1〜A10の高強度ばねおよび比較鋼タイプB1〜B3の機械的特性を以下の表2に示す。表によって、合金の強度はいずれも2020 MPa以上に達して、比較例のB1〜B3サンプルよりも高いことがわかりつつ、材料減面率は40%以上に達することができ、良好な塑性靭性を備える。本発明の高強度ばねと比較合金を、同じ型番のコイルスプリングとし、ばね疲労試験機を使用し、GBT16947−2009コイルスプリング疲労試験標準に従って、コイルスプリングの疲労寿命を試験した。結果は表3に示しめされたように、同じ条件下で、本発明の高強度ばね鋼の疲労寿命は、比較鋼よりも優れた。 The mechanical properties of the high-strength springs of Examples A1 to A10 and the comparative steel types B1 to B3 are shown in Table 2 below. From the table, it can be seen that the strength of each alloy reaches 2020 MPa or more, which is higher than that of the B1 to B3 samples of the comparative examples, and the material reduction rate can reach 40% or more, and good plastic toughness is obtained. Be prepared. The high-strength spring and the comparative alloy of the present invention were used as coil springs of the same model number, and a spring fatigue tester was used to test the fatigue life of the coil springs according to the GBT16947-2009 coil spring fatigue test standard. As the results are shown in Table 3, under the same conditions, the fatigue life of the high-strength spring steel of the present invention was superior to that of the comparative steel.

Figure 2021530623
Figure 2021530623

Figure 2021530623
Figure 2021530623

Figure 2021530623
Figure 2021530623

Claims (9)

優れた疲労寿命を有するばね鋼であって、その化学組成の重量百分率は
C:0.52−0.62%;
Si:1.20−1.45%;
Mn:0.25−0.75%;
Cr:0.30−0.80%;
V:0.01−0.15%;
Nb:0.001−0.05%;
N:0.001−0.009%;
O:0.0005−0.0040%;
P:≦0.015%;
S:≦0.015%;
Al:≦0.0045%;
残部はFeおよび不可避不純物であり、かつ0.02≦(2Nb+V)/(20N+C)≦0.40を満たす。
A spring steel with excellent fatigue life, the weight percentage of its chemical composition is C: 0.52-0.62%;
Si: 1.20-1.45%;
Mn: 0.25-0.75%;
Cr: 0.30-0.80%;
V: 0.01-0.15%;
Nb: 0.001-0.05%;
N: 0.001-0.009%;
O: 0.0005-0.0040%;
P: ≤0.015%;
S: ≤0.015%;
Al: ≤0.0045%;
The balance is Fe and unavoidable impurities, and satisfies 0.02 ≦ (2Nb + V) / (20N + C) ≦ 0.40.
上記ばね鋼の微細組織は、焼戻トルースタイト+ソルバイト組織であり、元のオーステナイト結晶粒サイズ≦80umで、合金窒素・炭素析出物サイズは5−60nmで、単一粒子介在物最大幅≦30umであることを特徴とする請求項1に記載の優れた疲労寿命を有するばね鋼。 The fine structure of the spring steel is tempered troostite + sorbite structure, the original austenite crystal grain size is ≤80 um, the alloy nitrogen / carbon precipitate size is 5-60 nm, and the maximum width of single particle inclusions is ≤30 um. The spring steel having an excellent fatigue life according to claim 1, wherein the spring steel is characterized by being. 上記ばね鋼の加工強度は≧2020MPaで、減面率は≧40%で、疲労寿命は≧80万回であることを特徴とする請求項1又は2に記載の優れた疲労寿命を有するばね鋼。 The spring steel having an excellent fatigue life according to claim 1 or 2, wherein the processing strength of the spring steel is ≧ 2020 MPa, the surface reduction rate is ≧ 40%, and the fatigue life is ≧ 800,000 times. .. 請求項1又は2又は3に記載の優れた疲労寿命を有するばね鋼を製造する方法であって、製錬、連続鋳造、粗圧延、高速ワイヤーローリング、ステルモア冷却、線材コイル伸線、テンパリング処理を含む。
上記の製錬は電気炉または転炉を採用し、製錬後に炉外で、LF炉とVDまたはRH脱気処理を採用する精製を行う;LF精製工程中に、合成スラグの組成とアルカリ度を調整し、鋼におけるPおよびS元素の含有量を0.015%未満および0.015%に制御し、精製スラグを溶融鋼の介在物と完全に反応させるようにアルゴン攪拌を行い、介在物の変性と除去を実現する;VDまたはRHの真空脱気時間を30分以上にし、最終に、O含有量は0.0005〜0.0040%、N含有量は0.0010〜0.0090%、H含有量は2ppm未満に制御する;精製が完了した後、大きな粒子の介在物の浮き上がりを促進するために、取鍋の鎮静時間は15分より長くなり、溶融鋼における介在物のサイズを≦30umに制御する。
高速ワイヤーローリングでは、加熱炉の加熱は920〜1150℃に制御され、保持時間は1.0〜3.0hである;線材コイル高速ワイヤーローリング工程では、圧延速度は15〜115m/sに制御される;オンライン温度制御のスキームは、仕上げ圧延機ユニットの入口温度を880−1050℃、絞り圧延機・矯正機ユニットの入口温度を840−970℃、スピニング温度を800−950℃にする。
The method for producing a spring steel having an excellent fatigue life according to claim 1 or 2 or 3, wherein smelting, continuous casting, rough rolling, high-speed wire rolling, stealmore cooling, wire coil wire drawing, and tempering treatment are performed. include.
The above smelting employs an electric furnace or converter, and after smelting, refinement is carried out outside the furnace using an LF furnace and VD or RH degassing treatment; during the LF refining process, the composition and alkalinity of the synthetic slag. The content of P and S elements in the steel was controlled to less than 0.015% and 0.015%, and argon stirring was performed so that the refined slag completely reacted with the inclusions in the molten steel. Smelting and removal of the , H content is controlled to less than 2 ppm; after the purification is completed, the stagnation time of the ladle is longer than 15 minutes to promote the uplifting of large particle inclusions and the size of the inclusions in the molten steel. Control to ≦ 30um.
In high speed wire rolling, the heating of the heating furnace is controlled to 920 to 1150 ° C. and the holding time is 1.0 to 3.0 h; in the wire coil high speed wire rolling process, the rolling speed is controlled to 15 to 115 m / s. The online temperature control scheme sets the inlet temperature of the finish rolling mill unit to 880-1050 ° C, the inlet temperature of the drawroller / straightening machine unit to 840-970 ° C, and the spinning temperature to 800-950 ° C.
320−500mmの丸型または角型のビレットの鋳造するには、連続鋳造機を使用し、連続鋳造工程での引張速度を0.5〜0.8m/minの範囲に調整し、末期軽圧下の量を10mmより大きくすることにより、ビレットのコアでの炭素偏析を1.08未満に制御することを特徴とする請求項4に記載の優れた疲労寿命を有するばね鋼を製造する方法。 To cast 320-500 mm round or square billets, use a continuous casting machine, adjust the tensile speed in the continuous casting process to the range of 0.5-0.8 m / min, and under light pressure at the end of the period. The method for producing a spring steel having an excellent fatigue life according to claim 4, wherein the carbon segregation in the core of the billet is controlled to less than 1.08 by increasing the amount of the amount to less than 10 mm. 上記の粗圧延には、二火成材プロセスを採用し、鋳造ビレットを1050〜1270°Cの温度で115〜170mmの丸型または角型のビレットにブルーミング・分塊圧延され、圧延の総圧下率は40%を超えることを特徴とする請求項4に記載の優れた疲労寿命を有するばね鋼を製造する方法。 For the above rough rolling, a dithermal material process is adopted, and the cast billet is bloomed and lump-rolled into a round or square billet of 115 to 170 mm at a temperature of 1050 to 1270 ° C. The method for producing a spring steel having an excellent fatigue life according to claim 4, wherein is more than 40%. 上記の線材コイルを伸線する際に、伸線速度は、3.5m/minを超えないことを特徴とする請求項4に記載の優れた疲労寿命を有するばね鋼を製造する方法。 The method for producing a spring steel having an excellent fatigue life according to claim 4, wherein the wire drawing speed does not exceed 3.5 m / min when the wire wire coil is drawn. 上記のテンパリング処理では、テンパリング処理前に、伸線される鋼線の加熱温度を850〜1100℃の範囲に制御し、焼入れ媒体を油または水とし、焼入れ媒体の温度を15〜40℃に制御し、焼戻温度を370〜550℃に制御し、そして製造された鋼線の窒素・炭素の析出物のサイズを5〜60nmの範囲で制御することを特徴とする請求項4に記載の優れた疲労寿命を有するばね鋼を製造する方法。 In the above tempering treatment, before the tempering treatment, the heating temperature of the drawn steel wire is controlled in the range of 850 to 1100 ° C., the quenching medium is oil or water, and the temperature of the quenching medium is controlled to 15 to 40 ° C. The superiority according to claim 4, wherein the tempering temperature is controlled to 370 to 550 ° C., and the size of the nitrogen / carbon precipitate of the produced steel wire is controlled in the range of 5 to 60 nm. A method for producing spring steel having a fatigue life. 上記のステルモア冷却では、ステルモアラインの14個のファンの風量を、次のとおり調整する:F1−F7ファン風量を10−100%にし、F8−F12ファン風量を0−50%にし、F13−F14ファン風量を0〜50%にすることを特徴とする請求項4に記載の優れた疲労寿命を有するばね鋼を製造する方法。 In the above Stealmore cooling, the airflow of the 14 fans of the Stealmore line is adjusted as follows: F1-F7 fan airflow is 10-100%, F8-F12 fan airflow is 0-50%, F13- The method for producing a spring steel having an excellent fatigue life according to claim 4, wherein the F14 fan air volume is set to 0 to 50%.
JP2021503062A 2018-07-27 2019-07-19 Spring steel with excellent fatigue life and its manufacturing method Active JP7110480B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810842312.5A CN110760748B (en) 2018-07-27 2018-07-27 Spring steel with excellent fatigue life and manufacturing method thereof
CN201810842312.5 2018-07-27
PCT/CN2019/096726 WO2020020066A1 (en) 2018-07-27 2019-07-19 Spring steel having superior fatigue life, and manufacturing method for same

Publications (2)

Publication Number Publication Date
JP2021530623A true JP2021530623A (en) 2021-11-11
JP7110480B2 JP7110480B2 (en) 2022-08-01

Family

ID=69182026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021503062A Active JP7110480B2 (en) 2018-07-27 2019-07-19 Spring steel with excellent fatigue life and its manufacturing method

Country Status (6)

Country Link
US (1) US20210164078A1 (en)
EP (1) EP3831970B1 (en)
JP (1) JP7110480B2 (en)
KR (1) KR20210036916A (en)
CN (1) CN110760748B (en)
WO (1) WO2020020066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921709A (en) * 2022-03-24 2022-08-19 南京钢铁股份有限公司 Preparation method of high-strength and high-toughness spring steel wire rod

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416811B1 (en) * 2012-12-28 2014-08-06 비나텍주식회사 Apparatus for attaching electrode and method for manufacturing super capacitor using the same
CN113322410B (en) * 2020-02-28 2022-06-28 宝山钢铁股份有限公司 High-strength bolt steel with excellent delayed fracture resistance and preparation method thereof
CN111763892A (en) * 2020-07-31 2020-10-13 南京钢铁股份有限公司 High-strength and high-toughness spring steel wire rod and preparation method thereof
CN112792122A (en) * 2020-11-23 2021-05-14 邯郸钢铁集团有限责任公司 Production method of direct cold-drawing spring steel wire with low cost and excellent comprehensive performance
KR102531464B1 (en) * 2020-12-18 2023-05-12 주식회사 포스코 Steel wire rod, steel wire, and manufacturing method thereof for ultra-high strength springs
KR20220163153A (en) * 2021-06-02 2022-12-09 주식회사 포스코 Wire rod and steel wire for spring, spring with improved strength and fatigue limit, and the method for manufacturing the same
CN115433871B (en) * 2021-06-02 2023-07-07 宝山钢铁股份有限公司 High-strength steel resistant to hydrogen embrittlement delayed fracture and manufacturing method thereof
CN113881897A (en) * 2021-09-29 2022-01-04 东莞市锦中秀寝具用品有限公司 High-strength alloy material for spring and high-strength spring
CN113969375B (en) * 2021-10-29 2022-04-26 建龙北满特殊钢有限责任公司 Preparation method of sulfur-containing and aluminum-containing steel
CN114150107A (en) * 2021-11-26 2022-03-08 南京钢铁股份有限公司 Smelting method of spring steel for ultrahigh-strength engineering machinery
CN114622126A (en) * 2022-03-11 2022-06-14 江阴兴澄合金材料有限公司 Spring steel wire rod for ultrahigh-strength steel wire and manufacturing method thereof
CN114807552B (en) * 2022-03-21 2023-09-15 江阴兴澄合金材料有限公司 Production method of spring steel hot-rolled wire rod
CN114769351A (en) * 2022-03-30 2022-07-22 厦门立洲五金弹簧有限公司 Manufacturing process of high-stress spring
CN115125446A (en) * 2022-06-28 2022-09-30 浙江伊思灵双第弹簧有限公司 High-fatigue-performance spring for automobile and preparation method thereof
CN114807728B (en) * 2022-06-30 2022-11-18 江苏省沙钢钢铁研究院有限公司 2100MPa grade spring steel wire and production method thereof
CN115141978A (en) * 2022-07-26 2022-10-04 常熟市龙腾特种钢有限公司 Steel ingot for marine diesel engine connecting rod forging and production method thereof
CN115386680B (en) * 2022-08-15 2023-09-12 马鞍山钢铁股份有限公司 Method for precisely controlling content of molten steel [ Al ] at end point of LF furnace
CN116121661A (en) * 2023-02-01 2023-05-16 山东钢铁股份有限公司 Fine grain spring steel strip for coil springs and preparation method thereof
CN116516267B (en) * 2023-03-21 2024-03-29 王平 Solid solution and nano-reinforced sorbite high-strength stainless structural steel and preparation method thereof
CN117230376B (en) * 2023-11-10 2024-03-05 钢铁研究总院有限公司 Electrode for producing 300M steel and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169937A (en) * 1998-10-01 2000-06-20 Suzuki Kinzoku Kogyo Kk High strength steel wire for spring and its production
JP2002180198A (en) * 2000-12-20 2002-06-26 Nippon Steel Corp High strength steel wire for spring
JP2002194496A (en) * 2000-12-28 2002-07-10 Sumitomo Electric Ind Ltd Steel wire for spring, spring and its production method
US20030201036A1 (en) * 2000-12-20 2003-10-30 Masayuki Hashimura High-strength spring steel and spring steel wire
WO2012118093A1 (en) * 2011-03-01 2012-09-07 新日本製鐵株式会社 High-carbon steel wire having excellent drawability and fatigue properties after drawing
JP2016056438A (en) * 2014-09-12 2016-04-21 新日鐵住金株式会社 Steel wire rod and method of producing steel wire rod
CN105886930A (en) * 2016-04-26 2016-08-24 宝山钢铁股份有限公司 High-strength corrosion-resistant spring steel and manufacturing method thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711675A (en) * 1981-08-11 1987-12-08 Aichi Steel Works, Ltd. Process for improving the sag-resistance and hardenability of a spring steel
JPS60116720A (en) * 1983-11-28 1985-06-24 Sumitomo Metal Ind Ltd Manufacture of spring having superior sag resistance
KR960005230B1 (en) * 1993-12-29 1996-04-23 포항종합제철주식회사 Making method of high strength high tension spring steel
JP3601388B2 (en) * 1999-12-17 2004-12-15 住友金属工業株式会社 Method of manufacturing steel wire and steel for steel wire
JP3763573B2 (en) * 2002-11-21 2006-04-05 三菱製鋼株式会社 Spring steel with improved hardenability and pitting corrosion resistance
US7615186B2 (en) * 2003-03-28 2009-11-10 Kobe Steel, Ltd. Spring steel excellent in sag resistance and fatigue property
CN1279204C (en) 2003-08-27 2006-10-11 宝山钢铁股份有限公司 High utilization stress spring steel for automobile
JP4423254B2 (en) 2005-12-02 2010-03-03 株式会社神戸製鋼所 High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP4027956B2 (en) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
JP4310359B2 (en) * 2006-10-31 2009-08-05 株式会社神戸製鋼所 Steel wire for hard springs with excellent fatigue characteristics and wire drawability
JP4163239B1 (en) * 2007-05-25 2008-10-08 株式会社神戸製鋼所 High cleanliness spring steel and high cleanliness spring with excellent fatigue characteristics
CN101397629B (en) * 2007-09-26 2010-09-08 南京依维柯汽车有限公司 High intensity variable section spring piece under high stress and method for producing the same
CN101717893B (en) * 2009-12-15 2012-08-22 南京钢铁股份有限公司 55Si2MnVNbN spring steel and production process thereof
CN101717894A (en) * 2009-12-15 2010-06-02 南京钢铁股份有限公司 40Si2MnCrNiMoVNbN spring steel and production process thereof
CN101787493B (en) 2010-01-25 2011-07-20 广州市奥赛钢线科技有限公司 Novel high-strength, fatigue-resistant and non-decarburized alloy spring steel and preparation method of steel wire thereof
JP5476597B2 (en) * 2010-03-04 2014-04-23 株式会社神戸製鋼所 Seamless steel pipe for high-strength hollow springs
WO2013024876A1 (en) * 2011-08-18 2013-02-21 新日鐵住金株式会社 Spring steel and spring
CN102634730B (en) * 2012-04-28 2014-10-29 宝山钢铁股份有限公司 Steel wire rod for 1860MPa-level bridge cable galvanized steel wire and manufacturing method thereof
KR101449111B1 (en) * 2012-08-09 2014-10-08 주식회사 포스코 Steel wire rod having excellent strength and ductility and method for manufacturing the same
AT512399B1 (en) * 2012-09-10 2013-08-15 Siemens Vai Metals Tech Gmbh Method for producing a microalloyed tubular steel in a cast-rolled composite plant and microalloyed tubular steel
CN103045935B (en) * 2012-12-14 2014-12-03 天津钢铁集团有限公司 Control method for surface decarburization and ferrite distribution of steel disc bar of spring
US10350676B2 (en) * 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same
CN103484781B (en) * 2013-09-26 2016-06-01 宝山钢铁股份有限公司 A kind of high-strength and high-ductility spring steel and manufacture method thereof
CN104046903B (en) * 2014-06-30 2017-01-11 宝山钢铁股份有限公司 Coil rod for Grade 13.9/Grade 14.9 delayed-fracture-resistant high-strength fasteners and manufacturing method thereof
KR101745191B1 (en) * 2015-12-04 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
KR101745196B1 (en) * 2015-12-07 2017-06-09 현대자동차주식회사 Ultra high strength spring steel
CN105648338A (en) * 2016-01-27 2016-06-08 太仓捷公精密金属材料有限公司 Automotive high-performance spring steel
KR20180074008A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Steel wire rod having excellent hydrogen embrittlement resistance for high strength spring, and method for manufacturing the same
CN107747060A (en) * 2017-11-12 2018-03-02 湖南华菱湘潭钢铁有限公司 The production method of high intensity high fatigue life spring steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169937A (en) * 1998-10-01 2000-06-20 Suzuki Kinzoku Kogyo Kk High strength steel wire for spring and its production
US6338763B1 (en) * 1998-10-01 2002-01-15 Nippon Steel Corporation Steel wire for high-strength springs and method of producing the same
JP2002180198A (en) * 2000-12-20 2002-06-26 Nippon Steel Corp High strength steel wire for spring
US20030201036A1 (en) * 2000-12-20 2003-10-30 Masayuki Hashimura High-strength spring steel and spring steel wire
JP2002194496A (en) * 2000-12-28 2002-07-10 Sumitomo Electric Ind Ltd Steel wire for spring, spring and its production method
WO2012118093A1 (en) * 2011-03-01 2012-09-07 新日本製鐵株式会社 High-carbon steel wire having excellent drawability and fatigue properties after drawing
US20130302204A1 (en) * 2011-03-01 2013-11-14 Nippon Steel & Sumitomo Metal Corporation High carbon steel wire rod excellent in drawability and fatigue characteristics after wire drawing
JP2016056438A (en) * 2014-09-12 2016-04-21 新日鐵住金株式会社 Steel wire rod and method of producing steel wire rod
CN105886930A (en) * 2016-04-26 2016-08-24 宝山钢铁股份有限公司 High-strength corrosion-resistant spring steel and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921709A (en) * 2022-03-24 2022-08-19 南京钢铁股份有限公司 Preparation method of high-strength and high-toughness spring steel wire rod

Also Published As

Publication number Publication date
CN110760748B (en) 2021-05-14
WO2020020066A1 (en) 2020-01-30
JP7110480B2 (en) 2022-08-01
KR20210036916A (en) 2021-04-05
EP3831970A1 (en) 2021-06-09
EP3831970B1 (en) 2023-05-10
US20210164078A1 (en) 2021-06-03
CN110760748A (en) 2020-02-07
EP3831970A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP7110480B2 (en) Spring steel with excellent fatigue life and its manufacturing method
JP7457843B2 (en) Steel plate for polar marine construction and its manufacturing method
CN103510020B (en) Spring steel wire rod and inclusion control method thereof
CN101768698B (en) Low cost yield strength 700MPA level non-tempering processing high strength steel plate and manufacturing method thereof
CN107130172B (en) 400HBW grades of Brinell hardness whole constrictive type high tenacity easily weld special thick wear-resisting steel plate and its manufacturing method
CN115652209B (en) 650MPa grade sulfuric acid dew point corrosion resistant rare earth steel and manufacturing method thereof
CN112143970B (en) High-strength high-toughness non-quenched and tempered front axle steel and production method thereof
CN110592480A (en) Thick Q345R steel plate with excellent low-temperature impact toughness at core and manufacturing method thereof
CN114411043A (en) Preparation method of large hot forging hot work die steel
CN113930681A (en) High-hardenability high-fatigue-life low-temperature-resistant spring flat steel and production method thereof
CN114892094B (en) Pre-hardened mirror plastic die steel and production method thereof
CN114934231A (en) High-manganese low-magnetism high-strength austenitic steel and manufacturing method thereof
CN111979393A (en) Hot-rolled high-strength steel plate with excellent low-temperature toughness and preparation method thereof
CN113373380B (en) Zirconium-treated economical plastic die steel and production method thereof
CN111876679B (en) Chromium-vanadium hot-rolled steel wire rod and preparation method thereof, and preparation method of steel wire and hand tool
CN115198172A (en) Steel for automobile tool sleeve and preparation method thereof
CN113136525A (en) Fatigue-resistant spring steel
CN112143980A (en) Steel 27SiMn2 for industrial forks and preparation method thereof
CN115261732B (en) 350 MPa-grade low-cost high-magnetic-induction cold-rolled magnetic pole steel and manufacturing method thereof
CN115652208B (en) 450MPa grade sulfuric acid dew point corrosion resistant rare earth steel and manufacturing method thereof
CN115572911B (en) 350MPa grade sulfuric acid dew point corrosion resistant rare earth steel and manufacturing method thereof
CN116145017B (en) Production method of high-toughness wear-resistant steel plate with uniform hardness in thickness direction
TWI833286B (en) High strength stainless steel wire and spring
JP7274062B1 (en) High strength stainless steel wire and spring
CN111534747B (en) Weather-resistant steel for wide 550 MPa-grade hot-rolled container and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150