JP2021524044A - 静電気放電から保護された電極コネクタを備えたナノポアアレイ - Google Patents

静電気放電から保護された電極コネクタを備えたナノポアアレイ Download PDF

Info

Publication number
JP2021524044A
JP2021524044A JP2021514490A JP2021514490A JP2021524044A JP 2021524044 A JP2021524044 A JP 2021524044A JP 2021514490 A JP2021514490 A JP 2021514490A JP 2021514490 A JP2021514490 A JP 2021514490A JP 2021524044 A JP2021524044 A JP 2021524044A
Authority
JP
Japan
Prior art keywords
array
electrodes
conductive structure
grid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021514490A
Other languages
English (en)
Other versions
JP7166441B2 (ja
Inventor
ウォーターマン,デイビッド
Original Assignee
オックスフォード ナノポール テクノロジーズ リミテッド
オックスフォード ナノポール テクノロジーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オックスフォード ナノポール テクノロジーズ リミテッド, オックスフォード ナノポール テクノロジーズ リミテッド filed Critical オックスフォード ナノポール テクノロジーズ リミテッド
Publication of JP2021524044A publication Critical patent/JP2021524044A/ja
Application granted granted Critical
Publication of JP7166441B2 publication Critical patent/JP7166441B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0022Protection against electrostatic discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/033Trenches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/07Interconnects

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

レシーバ(6)と係合するように適合された構成要素(8)は、レシーバ(6)上のコネクタ(18)の対応するアレイと取り外し可能に接続するための接触パッド(16)のアレイを有する。アレイの各接触パッド(16)は、センサの一部である対応する凹部またはウェル(28)の電極(26)に電気的に接続されており、膜は各凹部を横切って形成可能である。導電性グリッド(102)は、凹部またはウェルを横切って伝導する静電気放電(BSD)を抑制し、かつ/もしくはBSDを凹部またはウェルから遠ざけるように、アレイの接触パッド(16)間に構成されている。【選択図】図7

Description

本発明は、第2の構成要素またはレシーバと係合および嵌合するように構成された構成要素に関する。構成要素およびレシーバが一緒になってデバイスを形成する。特に、本発明は、湿潤状態で検知するセンサを有する構成要素に関する。構成要素およびレシーバはマイクロ流体デバイスを形成する。
そのようなセンサは、W099/13101およびW088/08534から知られており、センサは乾燥状態で提供され、液体試験サンプルはデバイスに適用され、毛細管流によってデバイス内のセンサ領域に搬送され得る。センサは、極性媒体の体積のアレイを使用する両親媒性分子を備える膜のアレイを有する形成を含むことができる。センサは脂質二重層を含むことができる。イオン選択性膜を備えるイオン選択性センサなど、他のタイプのセンサが知られている。
最初の製造後、センサは乾燥しており、構成要素は、液体を受け取って、両親媒性分子を備える膜の形成を含む幅広い用途で使用できる極性媒体の体積のアレイなど、膜のアレイを形成することができる。
別の例は、両親媒性分子の層を作成するための装置を開示するWO2009/077734によって提供されている。両親媒性膜およびナノポアをセンサに提供する手段を組み込んだ分析装置もまた、WO2012/042226によって開示されている。
既知のセンサは高価な試験装置に組み込まれており、幅広い試験またはアプリケーションにわたってセンサの読み取り値の高性能分析を提供する。これらの精巧なデバイスは、感度が高く、組み込みおよびカプセル化によって保護されるセンサを有するが、センサから読み取られるデータは迅速かつ効率的に読み取られる必要がある。
装置の機能を1つ以上のサブ構成要素に分離するという概念は知られているが、そのようなセンサの敏感な性質は、装置の性能および/または信頼性の低下につながる可能性があるため、当業者が機能を分離することを思いとどまらせる。さらに、そのような感度が高く高価な装置は、実験室での使用、または他の制御された条件のために用意されていることが多く、現場での使用などの制御されていない環境での特殊なデバイスの使用は、変更をさらに思いとどまらせる。
したがって、本発明の目的は、例えば、静電気放電(ESD)によるセンサへの損傷を抑制するように構成されている、センサを有する改良された構成要素を提供することである。この構成要素はモジュール式であるため、レシーバに取り外し可能に接続してデバイスを形成できる。次に、デバイスを装置に取り外し可能に接続して、センサからのデータを読み取って分析できるようにすることができる。代替的に、構成要素は、装置に直接、および装置から直接取り外し可能に接続することができる。本発明は、概して、そのようなモジュール式構成要素内に存在する。代替的に、構成要素およびレシーバ、または構成要素、レシーバ、およびデバイスを有するキットとして提供することができる。
概して、本発明は、レシーバと取り外し可能に係合するように構成された構成要素に存在し、構成要素は、レシーバ上の対応するコネクタのアレイと係合するための電極のアレイを有する。アレイ上の該電極の大部分であり得るアレイの複数の電極は、ウェルであり得る対応する凹部に電気的に接続されている。ウェル内に構成されたセンサの性能を損なわないようにするために、電極のアレイは、静電気放電(ESD)などの制御されていない電圧または調整されていない電圧に対して、構造で保護されている。構造は、単独で、または全体として構成要素と組み合わせて、制御されていない電圧から、少なくとも部分的に、ウェルまたは凹部を電気的にカプセル化するように機能する。
一つの態様によれば、本発明は、レシーバと取り外し可能に係合するように構成された構成要素内に存在し、構成要素は、電極のアレイを有し、レシーバ上のコネクタの対応するアレイと取り外し可能に接続するように構成され、アレイの複数の電極は、対応する凹部またはウェルに電気的に接続され、各凹部内の流体を共通のチャンバ内の導電性流体から分離する、各凹部を分離する膜が各凹部を横切って形成可能であるように、各凹部は、その中に流体を受け入れるためのセンサの一部を形成する。
構成要素は、電極のアレイとレシーバのコネクタのアレイとの間の電気的接続を可能にするためにアレイにわたって構成されたマトリックスのように見える導電性構造またはグリッドを有し、導電性構造は凹部を横切って伝導する静電気放電(ESD)を抑制するように、および/またはESDを凹部から遠ざけるように構成される。言い換えれば、レシーバから電極に接続するために延在するレシーバのコネクタは、グリッドを通って延在する。すなわち、デバイス上の各コネクタは、グリッドの壁の間を通過することにより、構成要素上のパッドに到達する。
共通電極は、共通チャンバ内の流体と接触することができる。導電性構造は、共通電極に電気的に接続することができる。膜は両親媒性二重層である可能性がある。
構成要素に、共通のチャンバ内の導電性流体および複数の凹部内の流体を提供することができる。膜は、複数の凹部を横切って形成され、複数の凹部の各々内の流体から共通チャンバ内の流体を分離することができる。導電性構造は、静電気放電が、凹部を介して、センサもしくは膜を横切ってもしくは介して通過するのを抑制し、かつ/または静電気放電をセンサもしくは膜から遠ざけるように構成することができる。膜が複数の凹部にわたって形成される場合、凹部に含まれる流体は互いに分離される。
導電性構造は、共通チャンバ内の流体に接続することができ、凹部または膜にわたって発生する電位差を抑制する。
構成要素は、近位端から遠位端まで延在し、実質的に平面であり得る。電極のアレイは、構成要素の端部間に構成することができる。代替的に、コネクタのアレイは、構成要素の端部のうちの1つに配置することもできる。
共通電極は、共通サンプルチャンバ内に構成することができ、グリッドは、共通電極に接続することができる。
電極のアレイは、ウェルに使用される基材などの基材上に装着することができる。代替的に、電極および/またはウェルは、プリント回路基板(PCB)上に形成することができる。PCBは、より安価でより迅速に製造できる。
センサは、その中に組み込まれたナノポアを有することができる。ナノポアは生物学的である可能性がある。流体は液体であり得、それはウェルにわたって脂質二重層を形成し得る。センサは、構成要素内のシス領域およびトランス領域を接続するナノポアを有することができる。凹部は膜を支持することができる凹部は、固体膜内に実装することができ、該凹部内にナノポアを有することができる。ナノポアは、生物学的ナノポアまたは合成ナノポアであり得る。
構成要素は、凹部またはすべての凹部を横切って形成された膜を有することができる。膜は脂質二重層であり得る。グリッドはESDイベントを受信し、ESDからエネルギーを放散して、センサおよび/または膜への損傷を抑制することができる。
導電性構造は、レシーバのコネクタが電極に接触するために延在する開口部またはフレームを有する。構造は、電極が上に形成されるベースの少なくとも一部に装着されたウェブまたはネットであり得る。
導電性構造は、電極、特に指や手袋をはめた指などの体の一部との接触を抑制することができる。しかしながら、電極の接触が発生する可能性があり、指または手袋をはめた指が電極に接触した場合、電極の寸法は、導電性構造にも接触することになる。言い換えれば、電極のみとの接触が抑制される。
構成要素はまた、複数の凹部を横切って形成された膜を有することができる。導電性構造またはグリッドは、静電気放電が凹部を介してセンサもしくは膜を通過するのを抑制し、かつ/または静電気放電をセンサもしくは膜から遠ざけるように構成することができる。
構成要素は、凹部を取り囲むか、包含するか、または囲む本体を有することができ、導電性構造は、それらが同じ電位差を有するように本体に接続される。言い換えると、本体と導電性構造は、構成要素の接地面として機能できる。使用中、導電性構造は、凹部を保護するように機能し、凹部を横切って膜が形成されると、導電性構造の本体へのESDが凹部を通過するのが抑制される。
各凹部は、アレイのそれぞれの電極に対応する各凹部を横切って提供される膜と接触して各凹部の中に含まれる液体などの流体を有することができ、導電性構造またはグリッドは、凹部または膜にわたって発生する電位差を抑制するために凹部に流体を提供する流体リザーバに接続される。グリッドは、構成要素の本体に電気的に接続することができ、センサおよび/または膜にわたる電位差もしくは電圧を抑制する。
構成要素は、流体を用いて、または流体無しで供給することができる。流体無しで供給され、膜が事前に構成されている場合、構成要素は、膜および/またはセンサへの損傷を抑制されるように構成可能であると言うことができる。
共通サンプルチャンバは、共通電極と接触しているイオン流体を含むことができる。流体は、コネクタのアレイと、流体を含む上部サンプルチャンバ内に設けられた共通電極との間に直接電気接続を提供することができる。ESDはアレイ全体にわたって放散するため、その影響を最小限に抑えることができる。グリッドおよび流体は少なくとも共通の電極を介して接続され、同じ電位で存在するため、ウェルを通過する電圧を抑制するので、凹部またはウェル缶内の膜などのセンサ構成要素上のグリッドに印加される電荷の影響は、抑制されるか、または最小限に抑えられる。
電極のアレイはベース基材上に配設することができ、導電性構造は基材上に装着される。基材上に装着された電極のアレイは、平面を画定することができ、導電性構造は該平面に平行に延在することができる。導電性構造は、基材上および電極上で該平面に平行に延在することができ、その結果、それらの間に空隙が作成される。代替的に、グリッドは基材と同じ平面内にあってもよい。グリッド、またはより具体的には、グリッドの壁は、最小の材料コストまたは最小のプロセス時間で形成することができるため、基材からグリッドを形成することにより、コストを削減することができる。基材が非導電性である場合、導電層をグリッドの露出面の少なくとも一部を追加することができる。
導電性構造は、電極によって画定される平面から延在することができる。電極のアレイは、基材のベース上に配設することができる。基材の少なくとも一部は、電極間の領域から延在して壁を形成することができ、導電性構造は、壁の上部に構成することができる。導電性構造は、電極間の領域に導電性材料を堆積することによって形成することができる。
導電性構造は、各電極を部分的に囲むように構成することができる。これは、レシーバからのコネクタが電極に接触できるようにしながら、電極の各側に導電性電極が形成されることによって達成することができる。断面において、電極から遠位の領域内の導電性構造の形状は、尖った縁部または先端を有することができる。したがって、ESDからのいかなる電荷も、縁部の点に集中する可能性がある。
導電性構造は、グリッドとして構成することができ、電極間に、ベースまたは基材によって画定される平面方向に延在することができる。
電極は、直線的なパターンを有するアレイ状に配設することができる。各電極のフットプリントは四辺形にすることができる。代替的に、フットプリントは、円形、ひし形、または5つ以上の側面を持つ形状のうちの1つであってよい。
グリッドの壁の断面プロファイルは長方形にすることができる。壁の上部は、丸みを帯びた形状など、平らでないプロファイルを有することができる。
断面において壁は、電極との接触がさらに抑制されるように、グリッドまたはウェブまたはネットの開口を最小化するために外側に先細になることができる。このようにして、グリッドの表面積を増やして、指などの物体により大きな接触面積を提供することができる。
アレイの電極のピッチは、100μm〜1500μmであり得る。ピッチは、500μm〜1000μm、好ましくは700μm〜900μmであり得る。
断面において導電性構造の壁の厚さは、最小10μm〜最小200μmであり得る。壁の厚さは、25μm〜100μmであり得る。
コネクタが通って延在する導電性構造の窓または開口は、丸みを帯びた角を有することができる。丸みを帯びた角は、グリッドと共通電極との間に低減されたインダクタンス経路を提供することができる。
電極アレイおよび導電性構造は、帯電防止放電を抑制するために、取り外し可能な保護フィルムまたは保護層で少なくとも部分的に覆うことができる。フィルムは、構成要素をレシーバと嵌合し得る前に必要となる、フィルムの除去によって生成され得るいかなる摩擦電荷も最小限にするように構成することができる。フィルムは、導電性構造によって、電荷が凹部および/もしくはセンサを通って、またはその領域に伝導するのを抑制することができる。したがって、フィルムおよび導電性構造は相乗的に機能することができる。
別の態様では、本発明は、請求項に記載された構成要素およびレシーバを有するキットに存在し、レシーバ上のコネクタのアレイは、導電性構造に接触することなく導電性構造を通って延在し、構成要素上の電極と電気的接続を形成するように構成される。
導電性流体が、サンプルチャンバを占有すると、導電性構造によってESDは凹部および/もしくはセンサを通って、またはその領域に伝導することが抑制されるように、グリッドは、サンプルチャンバ内の導電性流体に接続され、サンプルチャンバ内の流体と凹部内の流体との間に形成される凹部または膜にわたって発生する電位差を抑制する。
構成要素の凹部またはウェルには、細孔を通過するヌクレオチドの特性を読み取るための細孔を設けることができる。細孔は、サンプルチャンバ内の流体と少なくとも1つのウェル内の流体との間の膜内のナノポアであり得る。
導電性構造は、複数の開口を有するグリッドとして形成することができる。グリッドは、各嵌合コネクタおよび電極に位置合わせされた開口を有することができる。
本発明は、例としてのみ、以下の図を参照して以下で説明される。
取り外し可能に分離可能な構成要素を有する装置の斜視図である。 図1の装置の断面概略図であり、装置から引き離されているが、それに接続する準備ができている構成要素を示す。 既知の接続構造を有するウェルの断面図である。 極性媒体の層を備えた装置のウェルの断面図である。 理想的な流体挙動を示す装置の別のウェルの断面図である。 構成要素の電極のアレイ上に配置された露出パッドに接続されたビアを有する構成要素のウェルの断面図である。 構成要素の5つのウェルを示す概略断面図であり、各々がパッドに接続され、レシーバのそれぞれのコネクタと位置合わせされている。 構成要素の5つのウェルを示す概略断面図であり、そのうちの2つは、構成要素の端部にある電極のアレイのパッドに接続されている。 グリッドを間にはさみ、かつパッドを取り囲んでいる電極のパッドのアレイの概略図であり、グリッドは、接地電極に接続されている。 図9のグリッドの概略端立面図である。 構成要素の電極のパッドに隣接して、かつウェルの領域に位置付けられたグリッドの一部の概略図である。 構成要素の電極のパッドに隣接して、かつウェルの領域に位置付けられたグリッドの一部の概略図である。 グリッドが電極のアレイを横切って位置付けられ、接地電極に接続されている本発明の実施形態の詳細図である。 図12に示す実施形態の一角の詳細図である。 構成要素の電極のアレイに接触するようにグリッド間に延在するように構成されたコネクタのアレイの斜視図である。 図15に示すコネクタの個々の接点の斜視図である。 電極のアレイのセクション上に配置されたグリッドのセクションの斜視図である。 代替配設の一部の2つの例をそれぞれ示す。 代替配設の一部の2つの例をそれぞれ示す。
図1は、レシーバ6および構成要素8を有する取り外し可能に引き離せるデバイス4を有する装置2を示す。デバイスは、装置2のベース10から取り外し可能に引き離すことができる。装置の様々な部品は、キットとして提供することができる。構成要素8は使い捨てにすることができる。デバイス4は、ベース10に挿入され、かつそこから取り外すことができる。構成要素8は、レシーバ6に挿入され、かつレシーバ6から取り外すことができる。
図2には、挿入前にレシーバ6の上に位置付けられた構成要素8が示されている。挿入されると、構成要素およびレシーバは、レシーバの端部に配置されたラッチ12および凹部14によって機械的に接続され、かつ固定される。電気的に、構成要素およびレシーバは、構成要素8上の電極16のアレイおよびレシーバ6の対応するコネクタ18のアレイを介して接続することができる。構成要素8の本体は、典型的には、ある程度の弾性を有するプラスチック材料からなる。プラスチック材料は、例えば、ポリカーボネートであり得る。
構成要素8は、使い捨てであり得、例として、その中に配置された使い捨てフローセルを有する。フローセルは、参照によりその全体が本明細書に組み込まれる、WO2014/064443で説明されているものと同等とすることができ、構成要素は、1回の使用後に廃棄することができる取り外し可能な低コストの構成要素であるように構成される。これは、レシーバ6内にデバイス4のより高価な構成要素を構成することによって実現される。低コストの構成要素により、異なるフローセルで複数の実験を比較的安価に実行できる。ベース構成要素10は、装置2全体の電子機器および冷却構成を収容することができる。レシーバ6は、ベース10に含まれていないさらなる電子機器を収容することができ、かつ構成要素8を受け取るためのアダプタとして機能する。
電気的接続は、参照によりその全体が本明細書に組み込まれ、両親媒性分子の層への電気的接続を提供する「はんだバンプ」アプローチの使用例を提供するWO2009/077734から知られている。図3は、WO2009/077734に開示されているような「はんだバンプ」20接続を示しており、基材24を通過してウェルまたは凹部28の底部に配置されるウェル電極26に達するビア22に接続している。はんだバンプ20は、マイクロプロセッサまたは同様のコントローラ(図示せず)に接続されたシート30との恒久的な接続を可能にする。
ウェル28は、非導電性材料の基材24内に形成され、かつ両親媒性分子の層を形成または支持するために使用することができる。使用中、水溶液を、ウェル28およびその周辺の領域に導入することができ、その結果、両親媒性分子の層がウェル28を横切って形成され、ウェル28内の水溶液を凹部の上の水溶液の残りの体積から分離する。ウェルまたは凹部28、ウェル電極26、および追加の回路(図示せず)の配設は、両親媒性分子の層を横切る電気信号の測定を可能にする。ウェル電極は、凹部28内の水溶液と電気的に接触することができる。
図4および図5は、WO2014/064443およびWO2013/121193にそれぞれ開示される、センサアレイの一部を形成する凹部またはウェル28の例であり、これらは参照によりその全体が本明細書に組み込まれ、ウェル28が、本体を形成するSU−8などの材料24内で形成され、かつ多くのウェル28が、材料内で近接して形成され、センサウェルのアレイを形成することができることを説明している。これらのウェル28は、電気回路26を接点22および25に接続することにより、両親媒性分子の層11を横切る電気信号の測定を可能にする。WO2014/064443から知られている図4は、極性媒体と接触するためにウェル28内に突出する膜34上にメニスカス界面34aを形成する極性媒体の層32を示す。材料24の上に配設された共通電極36は、一旦それが提供されると、極性媒体の層32と電気的に接触する。極性媒体32を形成する上の層内の流体の体積に対するウェル28内の流体の体積の比は、約1:100〜約1:10000であり得る。WO2013/121193から知られている図5は、センサアレイの別のマイクロキャビティまたはセンサウェル28を通る概略断面図を示す。実際には、本体に形成されたそのようなセンサウェル28のアレイは、装置の構成要素に提供され、さらに本体の表面を覆うカバーを備え、カバーと本体との間に空洞を画定する。電極(図5には図示せず)は、電気回路に接続するためにキャビティ内に配設され、かつアレイ内のウェルの共通電極として機能する。
凹部またはウェル28は、センサの一部を形成し、かつ検知構成要素はリーダまたはマイクロプロセッサと通信しなければならない。本発明では、これらのウェルは構成要素8内に存在し、レシーバ6および/またはベース10上のリーダと電気的に通信しなければならない。
取り外し可能な接続、または非永続的な電気接続は、例として、WO2016/059417から知られており、これは、参照によりその全体が本明細書に組み込まれ、接続または切断をトリガするための極端な条件(化学的でも環境的でも)を必要とせずに、構成要素部品を取り付け、取り外し、オプションでその後、再び取り付けることができるような方法での電気接続のアレイに適している。
取り外し可能に引き離せる電気接続が知られているが、本発明者は、構成要素8およびレシーバ6などの部品の従来の接続を改善できることに気付いた。特に、インターフェースは、ウェルまたは凹部28、およびそのような凹部28内に存在するかまたは形成される任意のセンサまたは検知構成要素に追加の保護層を提供するように改善することができる。構成要素上のウェルに接続されているインターフェースは、機械的および/または電気的衝撃に敏感である。
図6は、例として、電極16のアレイを有するセンサアレイの1つのウェル28を示す。各ウェル28は、アレイ16内の電気コネクタの1つを通って接続されている。パッド100は、ビア22を介してウェル電極26への接続を可能にするために提供される。パッド100は、例えば、金、銅、または白金などの任意の導電性材料から作製することができる。基材24は絶縁体として機能し、厚さ約500 μmである。絶縁体は、例えば、シリコンまたはガラスで作製することができる。本発明の代替例における基材は、導電性であり、パッド、ビア、および他のそのような構成要素を構成するために、絶縁材料または誘電体の追加の層を備えることができる。
図7および図8は、コネクタ18のアレイと位置合わせされた、電極アレイ16の一部(5つのウェル28)を備えた構成要素8に隣接するレシーバ6を示す。接続されて、構成要素が使用するように構成されている場合、ウェル28内のウェル電極26によって検出された信号を読み取ることができる。信号は、ウェル28からウェル電極26を介して、ビア22を通って電極アレイ16のそれぞれのパッド100に通過し、電極アレイ16は、コネクタのアレイ上のコネクタに接触し、プロセッサ、典型的にはASICデバイスに信号を提供するように構成される。プロセッサが多重化を通じて、どのウェルセンサを読み取るかまたは感知するかを制御できるようにするために、共通電極36は、極性媒体32を通って導電性拡散層40を介して各ウェル28に電気的に接続可能である。
図7は、図2に示す構成を表し、図8は、例えば、レシーバ6の凹部14に配置されたコネクタのアレイと係合するように、アレイが構成要素8の端部に構成される構成を表す。
本発明は、ウェルまたはセンサを通って流れる、ESDなどの制御されていない電圧によって損傷または破裂しやすいウェルまたは凹部上に形成された膜の保護に特に適している。膜は、親水性および親油性の両方の特性を有する、リン脂質などの両親媒性分子から形成された層であってもよい。両親媒性層は、単分子層または二重層であり得る。両親媒性層は、Gonzalez−Perez et al.,Langmuir,2009,25,10447−10450またはWO2014/064444に開示されているような共ブロックポリマーであってもよく、参照によりその全体が本明細書に組み込まれる。
膜は、固体層に形成された開口を備えることができ、これは、固体細孔と呼ばれ得る。開口は、分析物が通過することがある、またはそこに入ることができる固体層に提供されるウェル、ギャップ、チャネル、トレンチ、またはスリットであり得る。このような固体層は、生物学的起源のものではない。固体層は、Si3N4、A1203、およびSiOなどの絶縁材料、ポリアミドなどの有機および無機ポリマ、Teflon(登録商標)などのプラスチック、または二成分付加硬化シリコーンゴムなどのエラストマー、およびガラスを含むがこれらに限定されない有機および無機材料の両方から形成することができる。固体層はグラフェンから形成されてもよい。適切なグラフェン層は、WO−2009/035647、WO−2011/046706、またはWO−2012/138357に開示されている。固体細孔のアレイを準備するための適切な方法は、WO−2016/187519に開示されている。
生物学的ナノポアは、上部チャンバに提供された溶液を有するウェルアレイのウェルに提供された流体を流動的に接続するのに役立つ各膜を横切る導電経路を提供する1つ以上の膜に提供され得る。ナノポアは、アルファ溶血素、炭疽菌毒素およびロイコシジン、スメグマ菌ポリンおよびライセニンなどの細菌の外膜タンパク質/ポリンに由来するがこれらに限定されない膜貫通タンパク質細孔であり得る。細孔は、WO−2016/034591に開示されているように、CsgGに由来し得る。ナノポアは、固体膜の開口に提供され得る。このような細孔は、ハイブリッド細孔として知られている。ナノポアは、DNAオリガミから形成され得る。
本発明の装置は、ポリマ分析物の配列を推定するのに特に適している。分析物は、例えば、ポリヌクレオチド、ポリペプチド、または多糖であり得る。ポリマの測定は、ナノポアにわたって印加された電位差の下で、ナノポアを通るポリマの移動中に行い得る。測定は、移動中にナノポアを通るイオン流の測定であり得る。
イオン溶液は、アレイのそれぞれのウェルの各々に提供される各それぞれの膜および電極と接触しているウェルに提供され得る。
構成要素8に、ウェル28上にメニスカスまたは膜を形成する極性媒体を供給することができ、各ウェル28の膜にナノポアが配置される。メニスカスはウェルと協働してセンサの一部を形成する。代替的に、構成要素は、「乾燥」状態、かつ極性媒体なしで供給することができ、極性媒体は、デバイス6に設置される前、およびサンプルの試験または分析の前に構成要素に追加される。さらに、構成要素は、固体膜および/または固体状態で構成され得る。
ウェルのメニスカスおよび/またはセンサは、ESDなどの制御されていない電圧に敏感である。したがって、ウェルは、ウェルを横切るか、または通過する電圧放電を抑制することによって、保護される必要がある。使用中、電極16のアレイのパッド100は、デバイス上のコネクタ18のアレイと係合する準備中に露出される。構成要素8は、パッドに触れることなくデバイス6に接続することができるが、それらは、例えば、指先による偶発的な接触の影響を受けやすいままである。制御された実験室条件と対照的な現場では、ユーザは典型的には、そのパッケージから構成要素を取り出し、手動でレシーバに置く。本発明は、例えば、ユーザが指先で電極16のアレイに接触する有害な影響を軽減する。
図9は、説明の目的で、電極16のアレイのパッド100のアレイを示す。導電性構造102、またはグリッドは、電極16のアレイを横切って構成されている。導電性構造、またはグリッドは、共通電極36に接続された共通パッド104を含む。グリッド102は、共通電極に接続されたメッシュまたはウェブを形成することができる。グリッド102は、例として、グリッドをウェル上のチャンバ内の極性媒体32に電気的に接続するために共通電極36に接続されている。
追加的または代替的に、グリッドは、極性媒体32、または極性媒体が存在するチャンバに接続することができ、−この接続は、専用のビア、基材の一部への有線または結合接続、構成要素8の本体を介した電気接続、または、アレイ16のウェル28を取り囲む極性媒体32を保持するチャンバを形成する構造への電気接続のうちの少なくとも1つを使用して行うことができる。図10は、アレイ16上に位置付けられたグリッド102の断面の断面図を示し、図11aは、グリッド102と極性媒体32またはサンプル32との間の関係を示す。示す例では、グリッドは、パッド間の基材上の領域から延在するが、パッド100とは接触せず、基材の表面より上に延在する。示す例では、グリッドは表面を横切ってネットを形成する。しかしながら、グリッドは、1つ以上のパッド100を取り囲む壁から形成することができる。グリッド102は、図7に示す電極のアレイを横切って位置付けることができ、電極16のアレイは、構成要素8の端部の間の表面上に配設することができ、図8に示す電極16のアレイを横切って位置付けることができ、ここで、アレイ16は、構成要素の端部領域または面に配設されている。
図11bは、ウェル電極26、ビア22、およびパッド100を基材上に構成することができるように、基材24が導電性であり、絶縁層または誘電体が基材を取り囲む代替例を示す。グリッド102は、基材の一部または構成要素8の本体を取り囲むかまたは覆う導電性コーティングに接続することができる。このようにして、グリッドに渡された電荷が伝導され、グリッドと誘電体上に形成された導電性表面との間の誘電体に放散され、これにより、共通電極およびウェル電極の両方に影響を与える共通の場が生成され得る。
構成要素がデバイス6に設置されると、グリッドは、構成要素の接地面およびデバイスに接続することもできる。言い換えると、基材が導電性で、かつ誘電体または絶縁体で覆われている場合、グリッドは、電荷をこの静電容量に放散する可能性があり、その場は共通電極とウェル電極の両方に影響する。
パッドおよび取り囲むグリッドの寸法は、(i)グリッドがバリアとして機能するため、指などの物体がアレイ16に接触することを抑制するか、または(ii)アレイ16に物体が接触する場合、物体はグリッドに最初に接触するか、のいずれかである。したがって、ユーザの手またはユーザが保持しているツールに蓄積された電荷は、グリッド102を通って、または介して共通電極36に方向付けられるため、電極16のアレイの領域内の構成要素8に接近または接触した場合、ウェル28またはウェル電極26領域を通過することが抑制される。
グリッド102および極性媒体32は、電気的に接続されているので、ESDからグリッドおよび極性媒体に伝達されるエネルギーは、ウェル28にわたる電圧がわずかになるようにわずかになる作業を行う必要がある。使用中、分析されるサンプルを含むことができる極性媒体32の層は、導電性拡散層40を介して共通電極36に電気的に接続されている。したがって、グリッド102、共通パッド104、共通電極36、導電性拡散層40、および極性媒体32またはサンプルは、ESDがグリッドに印加された場合、それらの間の電位差はごくわずかである。これは、電荷がこれらの構成要素にわたって分散され、グリッドが接触したとき、またはグリッドとパッドの両方が接触したときに、電極パッド100とウェル28との間を極性溶液のサンプルに通過するいかなる電荷も抑制するためである。ウェル28の一部を形成した、または形成するセンサおよび/もしくは膜は、アレイ16へのESDから保護されている。グリッド102は、機械的におよび/または電気的にシールドとして機能し、これは、実質的に大きな体積の流体、すなわち極性媒体32に接続可能である。構成要素8のこれらの要素は、ウェル28のサイズまたはウェル内に保持される流体の体積よりも、少なくとも2桁大きく、著しく大きい。上述のように、ウェル28内の流体の体積と、極性媒体32を形成する上部の層内の流体の体積との比は、約1:100〜約1:10000であり得る。この例では、共通細胞チャンバ、または極性媒体32および関連する共通メディエータチャンバを保持するためのサンプルチャンバは、約135ulの容積を有する。130個の電極のアレイを有する例では、126個が各ウェルと上部のサンプルチャンバとの間に膜を形成するための流体によって占有され、ウェル内の流体の総量は約0.9ulである。この例の比率は約1:150である。このようにして、グリッドおよび/または極性媒体の体積(すべてのウェルを合わせたものよりも大幅に大きい)は、ESDまたは同様の制御されていない電荷からウェルの検知要素およびその中のセンサ要素を保護するバッファーまたは絶縁体として機能する。言い換えれば、(i)ESDなどの電荷は、極性媒体またはサンプルを通過して、パッド100とウェル28との間の電位差がわずかになるような低いエネルギー消費で電荷を分配するか、または(ii)アレイ16と接触した場合に、ウェル28領域とグリッドが同じ電位差を有し−電荷がすでに平衡になるように、グリッド102が接触しているため、ESD電荷がウェル28を横切って流れることが抑制されるかのいずれかになるように、制御されていない電荷またはESDは、グリッド102がパッドとの接触を抑制し、かつ/またはグリッドに接触することもなくパッドとの接触を抑制するため、パッド100からウェル28への伝導が抑制される。
使用中、構成要素は、電荷の蓄積を抑制する材料に入れられ、電極16のアレイのパッド100に触れた場合に起こり得るウェル28内のセンサまたは膜への損傷のリスクを最小限にする。現場での使用では、実験室などの制御された環境の外で、制御されていない電圧またはESDをパッドから逸らすためのアース点やアースストラップなどの装備はめったにない。
本発明の寸法を説明するために、例示的な図として、図11に、指106の先端をグリッド102に隣接して示す。使用者の指などの物体がパッド100に接近すると、パッドとの接触が抑制され、接触したとしても、パッド100との接触の前、最中、および後に指がグリッドに接触する。
構成要素8の最初の製造後、かつ極性媒体32などの導電性流体が充填される前に、グリッド102は、続いてウェル28内に形成される任意のセンサを保護するように構成される。
図12および図13は、パッド100の間に位置付けられ、共通パッド104に接続されたグリッド102の実施形態のCAD画像のスナップショットである。アレイ16のサイズは、約130パッドであり、約13パッド×約10パッドのアレイに相当する。パッド間のピッチは、例として、800μmとして示す。パッドはほぼ正方形で、側面の長さは約710μmである。パッド100とグリッドとの間のギャップは約30μmである。グリッドの壁の厚さは、約30μmである。グリッドの壁の厚さとパッドの幅の比率は、約1:25である。比率は、約1:10〜約1:100であり得る。グリッドの壁の間の距離、または開口の側面は、指時間がグリッドに接触せずにパッドに接触できることを抑制するようにサイズ設定することができる。ガイドとして、最大開口のサイズは、パッドの隅から隅まで約2mmにすることができる。
図13は、図12のアレイ16の右下側の拡大図である。個々のパッドを取り囲む領域のグリッド102の形状は、パッドの形状に対応するか、または一致することに留意されたい。パッドの角に隣接する領域のグリッドの形状は湾曲している。グリッドの形状は、共通パッド104とグリッド102上の任意の点との間のインダクタンスを最小化するように構成される。
パッド100とグリッド102との間にギャップが設けられている。グリッドは、好ましくは上にパッド100が形成される基材から伸びた基材の延長として他の図に示されていて、これは図12および図13の平面図からは理解できない。グリッドの最上面は、共通パッド104に接続された導電性表面を有する。
代替的に、グリッドは、パッドとの指の接触が抑制されないが、グリッドに触れないパッド100との指の接触が抑制されるように、アレイの表面と同一平面上にあることができる。
アレイ16は、レシーバ6への挿入および接続の前に、構成要素8上のアレイ16から取り外すことができる保護帯電防止テープ(図示せず)によって追加的に覆うことができる。グリッド102がないと、そのようなテープは、アレイ16から剥がされたときに摩擦電荷を生成し、かつウェル28内の検知機能を損傷する可能性がある。しかしながら、テープはグリッドに接続されているので、その除去から生成されたいかなる摩擦電荷もウェル内の検知に影響を及ぼさないので、テープは、グリッド102の機能を補完する。したがって、導電性構造は、少なくとも部分的に、取り外し可能な保護導電性フィルムまたは保護層で覆われている。
構成要素8上の電極と係合するためにレシーバ6上に配置されたばね板金属接点などの機械的接続を、提供することができる。図14および図15は、800μmのピッチを備えたコネクタ108の第1のアレイの例を示す。図15は、ばね荷重がかけられ、かつそれぞれの凹部110に設けられたコネクタ108の拡大図を示す。強度を高めるために、各コネクタはベースに向かって外側に向かって先細になっている。コネクタは、100μmの厚さで、かつ凹部の上に800μmの高さまで突出している。コネクタは、有利には、ばね荷重がかけられ、かつベースから突出して、印加された力の下で電極16のアレイへのそれらの接続を容易にする。
図16は、グリッド102のセクションの一部の斜視スケッチ図を示す。図10は、グリッド102が、基材から延在する脚または壁上に載っているネットのようなものであることを示す断面を示しているが、図16は、グリッドが電極のパッド100を取り囲む壁を有することができることを示す。本明細書に示される例は、アレイ16上のすべてのパッド100を取り囲むグリッドを有するが、グリッドは、代替的に、パッドのグループを取り囲むことができる。したがって、グリッドは、パッド100に接触することなく、パッド間の基材上の領域から延在し、壁を形成することができる。壁の上部は、金またはプラチナなどの導電性材料でコーティングされ、ESDをパッドから遠ざけて伝導することができる。代替的に、グリッドは、隆起していないプロファイルを有し、かつ電極アレイのほぼ平面内にあることができる。
基材上のグリッドの高さは、−ネット形式でも、図16に示すような壁形式でも、コネクタ108の高さによって決められる。図14および図15では、接点の高さは約800μmであり、典型的には、構成要素8およびデバイス6が篏合されたときに、パッドに対して圧縮されると減少する。たとえば、嵌合後、高さは圧縮によって25%減少して約600μmになり得る。したがって、表面上のグリッドの高さは、グリッドがデバイス上のコネクタ18のアレイに接触するのを抑制されたように、約500μmであり得る。嵌合中、コネクタ108は、グリッドおよびネット間または壁の間を通って延在して、パッド100に接触する。パッド100とグリッド102の壁との間のギャップは、電極のアレイをグリッド102から絶縁する。
上記のように、グリッドの形状および形成は、グリッド102、共通パッド104、および共通電極32の間のインダクタンスが最小化されるようなものである。
電極16および/またはグリッド102のアレイは、パッド100および、例えば、共通電極36への接続のための導電性表面を備えた基材24上に形成されたものとして説明されてきた。
構成要素の目的は、低コストの単回使用デバイスを提供することであり、本明細書の教示に照らして、様々な低コストの製造技術が実施例に適用可能である。図17aおよび図17bは、それぞれ、多層および単層基材を有するデバイス6に接続するための電極16のアレイの2つの例を示す。図13に示す例では、ウェルおよび電極の密度が高く、かつ電極およびビアなどにコーティングを有する基材上に作製されてきた。
代替的に、パッド100およびグリッド102またはトラックは、以下の上に、または以下を使用して形成することができる。
パッドとグリッドとの間のギャップが5μmで、5μmの小さい最小幅のグリッドを提供し得るシリコンウェハの製造。
パッドとグリッドとの間のギャップが10μmで、10μmの小さい最小幅のグリッドを提供し得るガラスウェハの製造。
パッドとグリッドとの間のギャップが50μmで、50μmの小さい最小幅のグリッドを提供し得るプリント回路基板。
パッドとグリッドとの間のギャップが5μmで、3μmの小さい最小幅のグリッドを提供し得る高解像度プリント回路基板。
パッドとグリッドとの間のギャップが50μmで、150μmの小さい最小幅のグリッドを提供し得るカードまたはポリマ上にインクジェット印刷された導電性インク。
パッドとグリッドとの間のギャップが20μmで、20μmの小さい最小幅のグリッドを提供し得るカードまたはポリマ上のスクリーン印刷導電性インク。および
パッドとグリッドとの間のギャップが10μmで、10μmの小さい最小幅のグリッドを提供し得るカードまたはポリマ上のスパッタリング導電性材料。
例として、安価で小型化された診断アッセイのための、インクジェット印刷され、ロールコーティングされたデジタルマイクロ流体デバイスは、Dixon et al[Lab Chip、2016,16,4560]の名前の論文から知られている。
図17aでは、電極16のアレイは、構成要素の側面に配設されている。この例では、構成要素は多層プリント回路基板上に形成されている。パッドは露出層に印刷され、かつ共通の電極(この図には示さず)に接続され得るグリッド102によって取り囲まれている。トラック112は、別の層に設けられ、パッド100に接続されたビア22からPCBの反対側に配置されたウェル28につなげられるので、破線として示されている。ウェル28の数を減らすことは、該ウェルを入れるために必要な構造の複雑さを低減し、かつアレイ16を介してウェルをデバイス6に接続するために必要な回路を単純化することができる。
図17bは、パッド100への接続が基材の単層上に配設されている、さらに単純化された配設を示す。グリッド102は、ESDによって引き起こされる損傷を抑制するために、パッドを実質的に取り囲み続けている。この特定の構成では、単層基材および印刷されたトラックにより、構成要素をデバイス上に形成することができる。
図中の同様の数字は、同様の機能を表す。本発明は、純粋に例として上に記載されており、本発明の主旨および範囲内で修正を行うことができ、これは、記載された機能の同等物および本明細書に記載された1つ以上の機能の組み合わせに及ぶ。本発明はまた、本明細書に記載されるか、または暗示された任意の個々の機能からなる。
Figure 2021524044

Claims (19)

  1. レシーバと取り外し可能に係合するように構成された構成要素であって、
    電極のアレイであって、レシーバ上のコネクタの対応するアレイと取り外し可能に接続するように構成され、共通のチャンバ内の導電性流体から凹部内の流体を分離する膜が各凹部を横切って形成可能であるように、前記アレイの複数の電極が、対応する凹部またはウェルに電気的に接続され、各凹部が、その中に流体を受け取るためのセンサの一部を形成する、電極のアレイと、
    前記電極のアレイとレシーバのコネクタのアレイとの間の電気的接続を可能にするように前記アレイを横切って構成された導電性構造であって、前記凹部を横切って伝導する静電気放電(ESD)を抑制し、かつ/またはESDを前記凹部から遠ざけるように構成されている、導電性構造と、を有する、構成要素。
  2. 前記共通チャンバ内の導電性流体および前記複数の凹部内の流体をさらに有し、前記複数の凹部の各々内の前記流体から前記共通チャンバ内の前記流体を分離する膜が複数の前記凹部を横切って形成され、前記導電性構造が、前記凹部を介して膜を通過する静電気放電を抑制し、かつ/または静電気放電を膜から遠ざけるように構成されている、請求項1に記載の構成要素。
  3. 前記導電性構造が、前記共通チャンバ内の流体に接続されて、前記凹部または膜にわたって発生する電位差を抑制する、請求項2に記載の構成要素。
  4. 前記共通チャンバ内の流体と接触する共通電極をさらに備える、請求項2に記載の構成要素。
  5. 前記導電性構造が、前記共通電極に電気的に接続されている、請求項4に記載の構成要素。
  6. 前記膜が、両親媒性二重層である、請求項2に記載の構成要素。
  7. 前記電極のアレイが、ベース基材上に配設され、前記導電性構造が、前記基材上に装着されている、請求項1〜6のいずれかに記載の構成要素。
  8. 前記導電性構造が、前記電極によって画定された平面から延在する、請求項1〜7のいずれかに記載の構成要素。
  9. 前記電極のアレイが、基材のベース上に配設され、前記基材の少なくとも一部が、前記電極間の領域から延在して壁を形成し、かつ前記導電性構造が、前記壁の上部に構成されている、請求項7に記載の構成要素。
  10. 前記導電性構造が、前記電極間の領域における導電性材料の堆積から形成されている、請求項7または8に記載の構成要素。
  11. 前記導電性構造が、グリッドとして構成され、かつ前記電極間で、前記ベースまたは基材によって画定される平面方向に延在する、請求項1〜10のいずれかに記載の構成要素。
  12. 前記電極が、直線パターンを有するアレイ状に配設されている、請求項1〜11のいずれかに記載の構成要素。
  13. 各電極のフットプリントが、四辺形である、請求項の1〜12のいずれかに記載の構成要素。
  14. 前記アレイの前記電極のピッチが、100μm〜1500μmである、請求項1〜13のいずれかに記載の構成要素。
  15. 前記導電性構造の前記壁の厚さが、断面において20μm〜200μmである、請求項1〜14のいずれかに記載の構成要素。
  16. 前記コネクタが通って延在する前記導電性構造の窓または開口が、丸みを帯びた角を有する、請求項1〜15のいずれかに記載の構成要素。
  17. 前記電極アレイおよび導電性構造が、取り外し可能な保護フィルムまたは保護層で少なくとも部分的に覆われている、請求項1〜16のいずれかに記載の構成要素。
  18. 請求項1〜17のいずれかに記載の構成要素とレシーバとを有するキットであって、前記レシーバ上の前記コネクタのアレイが、前記導電性構造に接触することなく前記導電性構造を通って延在し、前記構成要素上の前記電極との電気的接続を形成するように構成されている、キット。
  19. 導電性流体が、サンプルチャンバを占有すると、前記導電性構造によって、ESDが、前記凹部および/もしくはセンサを通って伝導するか、またはその領域に伝導することが抑制されるように、前記グリッドが、前記サンプルチャンバ内の前記導電性流体に接続され、前記サンプルチャンバ内の流体と凹部内の流体との間に形成される、前記凹部または膜にわたって発生する電位差を抑制する、請求項18に記載のキット。
JP2021514490A 2018-05-24 2019-05-08 静電気放電から保護された電極コネクタを備えたナノポアアレイ Active JP7166441B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1808566.2 2018-05-24
GB1808566.2A GB2574048B (en) 2018-05-24 2018-05-24 Nanopore sensor component with electrostatic discharge protection
PCT/GB2019/051262 WO2019224517A1 (en) 2018-05-24 2019-05-08 Nanopore array with electrode connectors protected from electrostatic discharge

Publications (2)

Publication Number Publication Date
JP2021524044A true JP2021524044A (ja) 2021-09-09
JP7166441B2 JP7166441B2 (ja) 2022-11-07

Family

ID=62812417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514490A Active JP7166441B2 (ja) 2018-05-24 2019-05-08 静電気放電から保護された電極コネクタを備えたナノポアアレイ

Country Status (11)

Country Link
US (1) US20210300750A1 (ja)
EP (1) EP3803386A1 (ja)
JP (1) JP7166441B2 (ja)
KR (1) KR20210014637A (ja)
CN (1) CN112154327A (ja)
AU (1) AU2019274927A1 (ja)
BR (1) BR112020023358A2 (ja)
CA (1) CA3097088A1 (ja)
GB (1) GB2574048B (ja)
SG (1) SG11202009741XA (ja)
WO (1) WO2019224517A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
GB201611770D0 (en) 2016-07-06 2016-08-17 Oxford Nanopore Tech Microfluidic device
WO2020183172A1 (en) 2019-03-12 2020-09-17 Oxford Nanopore Technologies Inc. Nanopore sensing device and methods of operation and of forming it
GB202016874D0 (en) * 2020-10-23 2020-12-09 Oxford Nanopore Tech Ltd Nanopore support structure and manufacture thereof
CN113061531B (zh) * 2021-06-03 2021-08-20 成都齐碳科技有限公司 芯片结构、芯片组件、成膜方法、纳米孔测序装置及应用
CN113426499B (zh) * 2021-07-08 2022-10-14 成都齐碳科技有限公司 微结构、生物芯片、成膜方法、基因测序装置及其应用
US11940404B2 (en) 2022-02-16 2024-03-26 Western Digital Technologies, Inc. Low noise amplifiers with shields for nanopore Applications
US11946894B2 (en) 2022-02-16 2024-04-02 Western Digital Technologies, Inc. Low noise amplifiers with feedback for nanopore applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005001018A1 (ja) * 2003-06-27 2005-01-06 Matsushita Electric Industrial Co., Ltd. 薬理測定装置およびシステム並びにそれに用いるウェル容器
US20060194331A1 (en) * 2002-09-24 2006-08-31 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
US20150027885A1 (en) * 2013-07-26 2015-01-29 Axion BioSystems Devices, systems and methods for high-throughput electrophysiology
US20170326550A1 (en) * 2014-10-17 2017-11-16 Oxford Nanopore Technologies Ltd. Electrical device with detachable components

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1248112A3 (en) 1987-04-27 2004-08-25 Inverness Medical Switzerland GmbH Immunochromatographic specific binding assay device
US6129823A (en) 1997-09-05 2000-10-10 Abbott Laboratories Low volume electrochemical sensor
EP2420824B1 (en) * 2001-06-29 2018-11-28 Meso Scale Technologies LLC Multi-well plate having an array of wells and kit for use in the conduct of an ECL assay
US7076089B2 (en) * 2002-05-17 2006-07-11 Authentec, Inc. Fingerprint sensor having enhanced ESD protection and associated methods
US7042028B1 (en) * 2005-03-14 2006-05-09 System General Corp. Electrostatic discharge device
WO2009035647A1 (en) 2007-09-12 2009-03-19 President And Fellows Of Harvard College High-resolution molecular graphene sensor comprising an aperture in the graphene layer
GB0724736D0 (en) 2007-12-19 2008-01-30 Oxford Nanolabs Ltd Formation of layers of amphiphilic molecules
CN102630304B (zh) 2009-09-18 2014-11-26 哈佛大学校长及研究员协会 可实现高灵敏度分子检测和分析的具有纳米孔的裸露的单层石墨烯膜
WO2012042226A2 (en) 2010-10-01 2012-04-05 Oxford Nanopore Technologies Limited Biochemical analysis apparatus and rotary valve
EP3825687A1 (en) 2011-04-04 2021-05-26 President and Fellows of Harvard College Multi-nanopore sensor system and transduction elements for measurement of local electrical potential at the nanopores
US10761043B2 (en) * 2011-07-22 2020-09-01 The Trustees Of The University Of Pennsylvania Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
GB201202519D0 (en) 2012-02-13 2012-03-28 Oxford Nanopore Tech Ltd Apparatus for supporting an array of layers of amphiphilic molecules and method of forming an array of layers of amphiphilic molecules
WO2014052616A2 (en) * 2012-09-27 2014-04-03 The Trustees Of The University Of Pennsylvania Insulated nanoelectrode-nanopore devices and related methods
GB201313121D0 (en) 2013-07-23 2013-09-04 Oxford Nanopore Tech Ltd Array of volumes of polar medium
AU2013336430B2 (en) 2012-10-26 2018-02-15 Oxford Nanopore Technologies Limited Droplet interfaces
EP2802009B1 (en) * 2013-05-08 2021-03-24 ams AG Integrated imaging device for infrared radiation and method of production
CN117164683A (zh) 2014-09-01 2023-12-05 弗拉芒区生物技术研究所 突变csgg孔
GB201508669D0 (en) 2015-05-20 2015-07-01 Oxford Nanopore Tech Ltd Methods and apparatus for forming apertures in a solid state membrane using dielectric breakdown

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194331A1 (en) * 2002-09-24 2006-08-31 Duke University Apparatuses and methods for manipulating droplets on a printed circuit board
WO2005001018A1 (ja) * 2003-06-27 2005-01-06 Matsushita Electric Industrial Co., Ltd. 薬理測定装置およびシステム並びにそれに用いるウェル容器
US20150027885A1 (en) * 2013-07-26 2015-01-29 Axion BioSystems Devices, systems and methods for high-throughput electrophysiology
US20170326550A1 (en) * 2014-10-17 2017-11-16 Oxford Nanopore Technologies Ltd. Electrical device with detachable components

Also Published As

Publication number Publication date
WO2019224517A1 (en) 2019-11-28
BR112020023358A2 (pt) 2021-02-09
CA3097088A1 (en) 2019-11-28
GB201808566D0 (en) 2018-07-11
US20210300750A1 (en) 2021-09-30
AU2019274927A1 (en) 2020-10-22
GB2574048A (en) 2019-11-27
CN112154327A (zh) 2020-12-29
JP7166441B2 (ja) 2022-11-07
GB2574048B (en) 2021-06-16
EP3803386A1 (en) 2021-04-14
KR20210014637A (ko) 2021-02-09
SG11202009741XA (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP7166441B2 (ja) 静電気放電から保護された電極コネクタを備えたナノポアアレイ
EP2237027B1 (en) Sensor device and a method of manufacturing the same
US11408882B2 (en) Sensor array
US20110286888A1 (en) Arrangement and method for electrochemically measuring biochemical reactions and method for producing the arrangement
JP6445131B2 (ja) センサアレイ
KR20100066449A (ko) 전기화학적 테스트 스트립
US20100089135A1 (en) Device and method for measuring sensor chips
KR20180098599A (ko) 전극 전압 감지 접속부를 갖는 전기화학-기반 분석 검사 스트립 및 이와 함께 사용하기 위한 핸드헬드 검사 측정기
US20160313283A1 (en) Sensor device, a method and a sensor to determine a relative concentration of a first kind of ions with respect to a second kind of ions solute in a drop of liquid
JP2015194357A (ja) 電気化学測定デバイス
JP4933657B1 (ja) 電気化学計測チップ用電極装置
JP2010527444A (ja) 液体中の検体の濃度を測定するためのプラグを持つ検査チップ、検査チップのための筺体、およびプラグのためのソケット
US11846598B2 (en) Reference electrode
WO2005053525A1 (en) Improvements relating to hand held analytical devices
US9895691B2 (en) Analysis package for detecting particles in a sample liquid
KR20180092563A (ko) 혈당 테스트 스트립
JP2013156268A (ja) 液体で満たされてシールされたチャネルを有する測定試料ハンドリング・デバイス
TW200827716A (en) Biosensing multi-layer microchip
JP2013137327A (ja) マイクロ流体的測定デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220316

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221025

R150 Certificate of patent or registration of utility model

Ref document number: 7166441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150