JP2021516749A - Gas supply assembly - Google Patents

Gas supply assembly Download PDF

Info

Publication number
JP2021516749A
JP2021516749A JP2020550121A JP2020550121A JP2021516749A JP 2021516749 A JP2021516749 A JP 2021516749A JP 2020550121 A JP2020550121 A JP 2020550121A JP 2020550121 A JP2020550121 A JP 2020550121A JP 2021516749 A JP2021516749 A JP 2021516749A
Authority
JP
Japan
Prior art keywords
heat exchanger
gas
gas supply
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020550121A
Other languages
Japanese (ja)
Other versions
JP7189962B2 (en
Inventor
プリッティネン,トミ
ハット,ビヨルン
ビグマスター,ヨナタン
ノルゴード,マルクス
ニーボ,ラスムス
Original Assignee
ワルトシラ フィンランド オサケユキチュア
ワルトシラ フィンランド オサケユキチュア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワルトシラ フィンランド オサケユキチュア, ワルトシラ フィンランド オサケユキチュア filed Critical ワルトシラ フィンランド オサケユキチュア
Publication of JP2021516749A publication Critical patent/JP2021516749A/en
Application granted granted Critical
Publication of JP7189962B2 publication Critical patent/JP7189962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0323Heat exchange with the fluid by heating using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0327Heat exchange with the fluid by heating with recovery of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/036Treating the boil-off by recovery with heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

ガス供給アセンブリ(10)はタンクを含み、該タンクは気相区画(12.1)及び液相区画(12.2)を有するように該タンク(12)内に液化ガスを貯蔵するように構成され、当該アセンブリは第1のガス供給ライン(18)、第2のガス供給ライン(16)をさらに含み、第2のガス供給ライン(16)は、該第2のガス供給ライン(16)内のガスを加熱するように構成された第2の熱交換器(20)を含み、該第1のガス供給ライン(18)は、該第1のガス供給ライン(18)内の液化ガスを気化するように構成された第1の熱交換器(24)と、該第1のガス供給ライン内のガスの圧力を高めるように構成された圧縮機(22)をさらに含み、該圧縮機は第3の熱交換器(28)を備える。当該アセンブリ(10)は、前記第1の熱交換器(24)、前記第2の熱交換器(20)、前記第3の熱交換器(28)及び第4の熱交換器(32)が接続された伝熱回路(30)を含む。前記第2の熱交換器(20)及び前記第3の熱交換器(28)は互いに直列に配置され、前記第1の熱交換器(24)は、前記第2及び第3の熱交換器(20、28)と並列に配置されている。The gas supply assembly (10) includes a tank, which is configured to store liquefied gas in the tank (12) so as to have a gas phase compartment (12.1) and a liquid phase compartment (12.2). The assembly further comprises a first gas supply line (18), a second gas supply line (16), and a second gas supply line (16) is within the second gas supply line (16). A second heat exchanger (20) configured to heat the gas of the first gas supply line (18) vaporizes the liquefied gas in the first gas supply line (18). It further comprises a first heat exchanger (24) configured to do so and a compressor (22) configured to increase the pressure of the gas in the first gas supply line, the compressor being the first. The heat exchanger (28) of 3 is provided. The assembly (10) includes the first heat exchanger (24), the second heat exchanger (20), the third heat exchanger (28), and the fourth heat exchanger (32). Includes a connected heat transfer circuit (30). The second heat exchanger (20) and the third heat exchanger (28) are arranged in series with each other, and the first heat exchanger (24) is the second and third heat exchangers. It is arranged in parallel with (20, 28).

Description

本発明は、請求項1のプリアンブルに係るガス供給アセンブリに関する。 The present invention relates to the gas supply assembly according to the preamble of claim 1.

LNG(液化天然ガス)輸送船等の液化ガスの推進システムは、通常、積み荷のガスを利用して動かされる。タンカーへのガスの貯蔵は、アレージ空間区画及び液相区画が形成された断熱積荷タンクを用いて行われる。積荷タンク内の圧力は、略大気圧のレベルであり、液化ガスの温度は約−163℃である。積荷タンクの断熱性は非常に良好であるが、液化ガスの温度が徐々に上昇すると所謂天然のボイルオフガスが形成される。ボイルオフガスは、積荷タンク内の圧力の大幅な上昇を避けるために、タンクから除去しなければならない。その理由は、積荷タンクは圧力の変化に非常に敏感だからである。ボイルオフガスは、推進システム等の船舶のガス消費物(gas consumers)で利用され得る。しかしながら、天然のボイルオフガスの量は、あらゆる状況において必要となる推進エネルギーの全てを供給には不十分なため、船舶は、余分なガスである所謂強制ボイルオフガス(forced boil-off gas)を得るための追加の手段を備えていなければならない。 Liquefied gas propulsion systems, such as LNG (liquefied natural gas) transport vessels, are typically driven by the gas in the cargo. Gas storage in the tanker is carried out using an adiabatic cargo tank with an arranging space compartment and a liquid phase compartment. The pressure in the loading tank is at about atmospheric pressure, and the temperature of the liquefied gas is about -163 ° C. The heat insulating property of the cargo tank is very good, but when the temperature of the liquefied gas gradually rises, so-called natural boil-off gas is formed. Boil-off gas must be removed from the tank to avoid a significant increase in pressure in the cargo tank. The reason is that the cargo tank is very sensitive to changes in pressure. Boil-off gas can be used in ship gas consumers such as propulsion systems. However, because the amount of natural boil-off gas is insufficient to supply all of the propulsive energy required in all situations, ships obtain the so-called forced boil-off gas, which is an extra gas. Must have additional means for.

特許文献1はガス供給装置を示し、本装置では、天然のボイルオフガスが極低温圧縮機に導かれ、極低温圧縮機は、ガスを消費のために供給線を介して供給する前にガスの圧力を高める。加えて、本装置は、強制沸騰気化器を含み、この気化器では、予めより高圧に高められた液体ガスが気化される。この構成では、強制沸騰ガス部分は、天然のボイルオフガスの圧力が高められた後で天然のボイルオフガスと合体される。 Patent Document 1 shows a gas supply device, in which natural boil-off gas is guided to a cryogenic compressor, which is a gas before supplying the gas for consumption through a supply line. Increase pressure. In addition, the apparatus includes a forced boiling vaporizer, which vaporizes a liquid gas previously elevated to a higher pressure. In this configuration, the forced boiling gas moiety is combined with the natural boil-off gas after the pressure of the natural boil-off gas has been increased.

特許文献2には、LNGの輸送のための外航タンカーのボイラーを加熱するために天然ガス燃料を供給するための装置が開示されている。本装置は、前記タンクの液体貯蔵領域と連通する入口と、ボイラーに関連する燃料バーナーに通じる導管と連通する出口とを有する強制LNG気化器を含む。本装置は、少なくとも1つのLNG貯蔵タンクのアレージ空間と連通する入口及び圧縮機からボイラーに関連する燃料バーナーに通じる導管と連通する出口も含む。圧縮機の動作によりガスの圧力が高められる。圧縮機は、技術的に非常に厳しい極低温度を保つ必要がある。 Patent Document 2 discloses a device for supplying natural gas fuel for heating a boiler of an ocean-going tanker for transporting LNG. The apparatus includes a forced LNG vaporizer having an inlet communicating with the liquid storage area of the tank and an outlet communicating with a conduit leading to a fuel burner associated with the boiler. The device also includes an inlet that communicates with the arranging space of at least one LNG storage tank and an outlet that communicates with the conduit from the compressor to the fuel burner associated with the boiler. The pressure of the gas is increased by the operation of the compressor. Compressors need to maintain extremely low temperatures, which are technically very strict.

欧州特許出願公開1348620号European Patent Application Publication No. 1348620 欧州特許出願公開1291576号European Patent Application Publication No. 1291576

本発明の目的は、従来技術の解決方法と比べて性能が大幅に改善されたガス供給アセンブリの構成を提供することである。 An object of the present invention is to provide a configuration of a gas supply assembly with significantly improved performance as compared to prior art solutions.

本発明の目的は、独立クレーム及び本発明の異なる実施形態のより詳細を記載する他のクレームに開示されているような形で実質的に実現できる。 An object of the present invention can be substantially realized as disclosed in an independent claim and other claims describing more details of different embodiments of the present invention.

本発明の一実施形態によれば、ガス供給アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第1のガス供給ラインは、該第1のガス供給ライン内の液化ガスを気化するように構成された第1の熱交換器を含み、該第2のガス供給ラインは、該第1のガス供給ライン内のガスの圧力を高めるように構成された圧縮機をさらに含み、該圧縮機は第3の熱交換器を備える。当該アセンブリは、前記第1の熱交換器、前記第2の熱交換器及び前記第3の熱交換器が接続された伝熱回路を含み、該伝熱回路は、該伝熱回路内の伝熱媒体に熱を伝達するように構成された第4の熱交換器と、該伝熱回路内で伝熱媒体を循環させるように構成されたポンプ手段とを含み、前記第2の熱交換器及び前記第3の熱交換器は互いに直列に配置され、前記第1の熱交換器は、前記第2の熱交換器及び前記第3の熱交換器と並列に配置されている。 According to one embodiment of the invention, the gas supply assembly comprises a tank, the tank being configured to store liquefied gas in the tank so as to have a gas phase compartment and a liquid phase compartment. A first gas supply line configured to deliver gas from the liquid phase compartment of the tank to one or more gas consumables and to deliver gas to one or more gas consumables from the gas phase compartment of the tank. The second gas supply line further includes a second gas supply line configured in, and the second gas supply line includes a second heat exchanger configured to heat the gas in the second gas supply line. The first gas supply line includes a first heat exchanger configured to vaporize the liquefied gas in the first gas supply line, and the second gas supply line is the first. Further includes a compressor configured to increase the pressure of gas in the gas supply line of the compressor, the compressor comprising a third heat exchanger. The assembly includes a heat transfer circuit to which the first heat exchanger, the second heat exchanger and the third heat exchanger are connected, and the heat transfer circuit is a heat transfer circuit in the heat transfer circuit. The second heat exchanger includes a fourth heat exchanger configured to transfer heat to the heat medium and pump means configured to circulate the heat transfer medium in the heat transfer circuit. And the third heat exchanger are arranged in series with each other, and the first heat exchanger is arranged in parallel with the second heat exchanger and the third heat exchanger.

これにより、単一の熱源及び単純な共有された伝熱媒体回路を用いて第2のガス供給ライン内の天然のボイルオフガス及び第1のガス供給ライン内の強制ボイルオフガスの両方がガス消費物に供給するために準備される。 This allows both natural boil-off gas in the second gas supply line and forced boil-off gas in the first gas supply line to consume gas using a single heat source and a simple shared heat transfer medium circuit. Prepared to supply to.

本発明の一実施形態によれば、第3の熱交換器は圧縮機から熱を受け取り、圧縮機の温度を制御するように構成されている。 According to one embodiment of the present invention, the third heat exchanger is configured to receive heat from the compressor and control the temperature of the compressor.

本発明の一実施形態によれば、ガス供給アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第2のガス供給ラインは、該第1のガス供給ライン内のガスの圧力を高めるように構成された圧縮機を含み、該圧縮機は圧縮機冷却手段を備える。当該アセンブリは圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、圧縮機冷却手段のパワーは、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能である。 According to one embodiment of the invention, the gas supply assembly comprises a tank, the tank being configured to store liquefied gas in the tank so as to have a gas phase compartment and a liquid phase compartment. A first gas supply line configured to deliver gas from the liquid phase compartment of the tank to one or more gas consumables and to deliver gas to one or more gas consumables from the gas phase compartment of the tank. The second gas supply line further includes a second gas supply line configured in, and the second gas supply line includes a second heat exchanger configured to heat the gas in the second gas supply line. The second gas supply line includes a compressor configured to increase the pressure of gas in the first gas supply line, the compressor comprising compressor cooling means. The assembly includes a second temperature probe located on the second gas supply line downstream of the compressor, and the power of the compressor cooling means can be controlled based on the temperature of the boil-off gas at a location downstream of the compressor. Is.

本発明の一実施形態によれば、アセンブリは、圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、第3の熱交換器の伝熱パワーは、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能に構成されている。これは、第2のガス供給ラインを出るボイルオフガスの温度を制御するための効果的且つ直接的な方法を提供する。 According to one embodiment of the invention, the assembly comprises a second temperature probe located on the second gas supply line downstream of the compressor and the heat transfer power of the third heat exchanger is the compressor. It is configured to be controllable based on the temperature of the boil-off gas at a position downstream of. This provides an effective and direct way to control the temperature of the boil-off gas leaving the second gas supply line.

本発明の一実施形態によれば、伝熱回路は2つの分岐を含み、該回路は第1分岐点から第2の分岐点に延びる補助回路区画と、第1の分岐点から第2の分岐点に延びる主回路区画とを含み、第2の熱交換器及び第3の熱交換器は2つの分岐点の間で補助回路区画に配置され、第1の熱交換器は2つの分岐点の間で主回路区画に配置される。 According to one embodiment of the invention, the heat transfer circuit comprises two branches, the circuit having an auxiliary circuit compartment extending from the first branch point to the second branch point and a second branch from the first branch point. The second heat exchanger and the third heat exchanger are located in the auxiliary circuit compartment between the two branch points, including the main circuit compartment extending to the point, and the first heat exchanger is at the two branch points. It is placed in the main circuit section between them.

本発明の一実施形態によれば、補助回路部は、補助回路部を通る伝熱媒体の部分を制御するための第1の弁を含む。 According to one embodiment of the present invention, the auxiliary circuit section includes a first valve for controlling a portion of the heat transfer medium passing through the auxiliary circuit section.

本発明の一実施形態によれば、第1の分岐点は、第1の熱交換器の上流側にあり、第2の分岐点は第1の熱交換器の下流側にある。 According to one embodiment of the present invention, the first branch point is on the upstream side of the first heat exchanger and the second branch point is on the downstream side of the first heat exchanger.

これはアセンブリ内の全体的な伝熱を効率的に制御する効果を提供する。 This provides the effect of efficiently controlling the overall heat transfer within the assembly.

本発明の一実施形態によれば、アセンブリは、第2の熱交換器と第3の熱交換器との間で補助伝熱回路に配置される第1の温度プローブを含み、補助回路区画内の第1の弁は第1の温度プローブに基づいて制御される。 According to one embodiment of the invention, the assembly comprises a first temperature probe located in an auxiliary heat transfer circuit between the second heat exchanger and the third heat exchanger and within the auxiliary circuit compartment. The first valve of the is controlled based on the first temperature probe.

本発明の一実施形態によれば、圧縮機はオイル回路を含み、該オイル回路は、該オイル回路内のオイルを冷却するために第3の熱交換器を通るように構成されている。 According to one embodiment of the invention, the compressor comprises an oil circuit, which is configured to pass through a third heat exchanger to cool the oil in the oil circuit.

本発明の一実施形態によれば、圧縮機を冷却するための第3の熱交換器はバイパス導管及び弁を備え、第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れの比率を制御し、アセンブリは、圧縮機の下流で第2のガス供給ラインに配置される第2の温度プローブを含み、該弁は、圧縮機の下流の位置におけるボイルオフガスの温度に基づいて、第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れを制御するように構成されている。 According to one embodiment of the present invention, the third heat exchanger for cooling the compressor comprises a bypass conduit and a valve, the flow of the heat transfer medium through the third heat exchanger and the transfer through the bypass conduit. Controlling the ratio of heat transfer flow, the assembly includes a second temperature probe located on the second gas supply line downstream of the compressor, the valve of which is the boil-off gas in a position downstream of the compressor. It is configured to control the flow of the heat transfer medium through the third heat exchanger and the flow of the heat transfer medium through the bypass conduit based on the temperature.

本発明の一実施形態によれば、圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために第3の熱交換器を通るように構成され、回路内の第3の熱交換器はバイパス導管及び三方弁を備え、該三方弁は第3の熱交換器を通る伝熱媒体の流れ及びバイパス導管を通る伝熱媒体の流れの割合をオイル回路内のオイルの温度に基づいて制御する。 According to one embodiment of the invention, the compressor comprises an oil circuit, the oil circuit being configured to pass through a third heat exchanger to cool the oil in the circuit, the third in the circuit. The heat exchanger of 3 is provided with a bypass conduit and a three-way valve, and the three-way valve determines the ratio of the flow of the heat transfer medium through the third heat exchanger and the flow of the heat transfer medium through the bypass conduit to the oil in the oil circuit. Control based on temperature.

本発明の一実施形態によれば、伝熱回路の第2の分岐点は、第1の熱交換器及び第4の熱交換器の下流側にある。すなわち、第2の分岐点は、第4の熱交換器の出口と第1の熱交換器の入口との間にある。 According to one embodiment of the present invention, the second branch point of the heat transfer circuit is on the downstream side of the first heat exchanger and the fourth heat exchanger. That is, the second branch point is between the outlet of the fourth heat exchanger and the inlet of the first heat exchanger.

本発明の一実施形態によれば、伝熱回路の第2の分岐点は、第1の熱交換器の下流側且つ第4の熱交換器の上流側にある。すなわち、第2の分岐点は第1の熱交換器の出口と第4の熱交換器の入口との間にある。 According to one embodiment of the present invention, the second branch point of the heat transfer circuit is on the downstream side of the first heat exchanger and on the upstream side of the fourth heat exchanger. That is, the second branch point is between the outlet of the first heat exchanger and the inlet of the fourth heat exchanger.

本発明の一実施形態によれば、アセンブリは、第4の熱交換器及び第2の分岐点の下流で伝熱回路に配置される第3の温度プローブを含み、第4の熱交換器のパワーは第3の温度プローブを用いて制御されるように構成されている。 According to one embodiment of the invention, the assembly comprises a fourth heat exchanger and a third temperature probe located in the heat transfer circuit downstream of the second branch point of the fourth heat exchanger. The power is configured to be controlled using a third temperature probe.

本発明は、液化ガスを極低温で且つ実質的に大気圧、少なくとも貯蔵タンクの外でガスの圧力を上げることなくガス消費物でガスを用いるには低すぎる圧力で貯蔵するように適合された液化ガス貯蔵タンクに関連するガス利用構成に関する。 The present invention has been adapted to store liquefied gas at very low temperatures and at substantially atmospheric pressure, at least outside the storage tank at a pressure too low to use the gas in gas consumption without increasing the pressure of the gas. Regarding the gas utilization configuration related to the liquefied gas storage tank.

本発明により、アセンブリを単一のアセンブリに組み合わせることも可能であり、これにより、その組み立て及び海洋船舶への設置が有利になる。 The present invention also allows the assembly to be combined into a single assembly, which is advantageous for its assembly and installation on marine vessels.

本特許出願において提示されている本発明の例示的な実施形態は、添付の特許請求の範囲の適用可能性に制限を加えるものと解釈すべきでない。本特許出願において、「含む」という動詞は、記載されていない特徴の存在を除外しないオープンな限定として用いられる。従属クレームに記載されている特徴は、別段の明示がない限り、相互に自由に組み合わせることができる。本発明の特徴と考えられる新規な特徴は、とりわけ添付の特許請求の範囲に記載されている。 The exemplary embodiments of the invention presented in this patent application should not be construed as limiting the applicability of the appended claims. In this patent application, the verb "contains" is used as an open limitation that does not exclude the existence of features not described. The features described in the dependent claims may be freely combined with each other unless otherwise stated. The novel features considered to be the features of the present invention are described in particular in the appended claims.

以下では、添付の例示の概略図を参照しながら本発明を説明する。
図1は、本発明の一実施形態に係るガス供給アセンブリを示す。 図2は、本発明の別の実施形態に係るガス供給アセンブリを示す。
Hereinafter, the present invention will be described with reference to the accompanying schematic diagram.
FIG. 1 shows a gas supply assembly according to an embodiment of the present invention. FIG. 2 shows a gas supply assembly according to another embodiment of the present invention.

図1は、ガス供給アセンブリ10を概略的に示す。ガス供給アセンブリ10は、ガス供給アセンブリ10に接続された1つ以上のガス消費物14にガス燃料を供給するように構成されている。ガス供給アセンブリは、1つ以上のタンク12を含み、そのうちの1つのみが図示されている。タンク12は、タンク12内に気相区画12.1及び液相区画12.2を有するようにタンク12内で液化ガスを貯蔵するように構成されている。タンクは、実質的に大気圧と、約−163℃である液化ガスの極低温度とを維持できる構造であるため、ガスは主に液相で留まる。タンクは実質的に大気圧であるため、ガス供給システムには、接続されているガス消費物によって要求されるレベルまでガス圧を高める手段を備えなければならない。ガス供給アセンブリは、ガスが船舶内の内燃機関の燃料として用いられるように、海洋船舶で用いるのに特に有利である。タンクは積荷タンクであってもよいし、船舶内のガス消費物のための専用の燃料貯蔵庫であってもよい。ガス消費物がガス作動の内燃4ストロークピストンエンジン(以下ではガスエンジンという)である場合、燃料の絶対圧は、通常、エンジンへのガス供給において400〜800kPaである。当然のことながら、燃料の実際の圧力は、ガス消費物の需要に依存し、1400〜1600kPaの場合もある。 FIG. 1 schematically shows a gas supply assembly 10. The gas supply assembly 10 is configured to supply gas fuel to one or more gas consumables 14 connected to the gas supply assembly 10. The gas supply assembly includes one or more tanks 12, of which only one is shown. The tank 12 is configured to store the liquefied gas in the tank 12 so as to have a gas phase compartment 12.1 and a liquid phase compartment 12.2 in the tank 12. Since the tank has a structure capable of maintaining substantially atmospheric pressure and an extremely low temperature of liquefied gas, which is about -163 ° C., the gas stays mainly in the liquid phase. Since the tank is substantially atmospheric, the gas supply system must be equipped with means to increase the gas pressure to the level required by the connected gas consumables. Gas supply assemblies are particularly advantageous for use on marine vessels, as gas is used as fuel for internal combustion engines in vessels. The tank may be a cargo tank or a dedicated fuel storage for gas consumables on board the ship. When the gas consumable is a gas-operated internal combustion 4-stroke piston engine (hereinafter referred to as a gas engine), the absolute pressure of the fuel is usually 400 to 800 kPa in the gas supply to the engine. Of course, the actual pressure of the fuel depends on the demand for gas consumption and can be 1400 to 1600 kPa.

液化ガスは、ガス供給アセンブリ10に配置された第1のガス供給ライン18によりガスエンジン14において利用できる。第1のガス供給ライン18は、タンク12の液相区画12.2からガス消費物14にガスを届けるように構成されている。第1のガス供給ラインは、その第1の端部(入口端)において、タンク内の液化ガスの表面の下のタンク12の下部に対して開いている。液相区画は、実質的に−163℃の温度で且つ実質的に大気圧で液化ガスを含む。第1のガス供給ライン18は、第1のガス供給ライン18内で液化ガスを気体ガスに気化させるように構成された第1の熱交換器24を含む。したがって、第1の熱交換器24は、主ガス蒸発器と呼ぶこともできる。第1のガス供給ライン18は、ガス圧がガス消費物14の需要を満たすように液化ガスの圧力を高める極低温ポンプ26も含む。第1の熱交換器24は、極低温ポンプ26の下流に位置する。第1の熱交換器24は、伝熱媒体からガス中に熱を伝達して液化ガスを気化させ、ガスの温度を約−163℃からガス消費物にとって好適なガスの温度である+40℃〜+50℃、一般的には+45℃に上昇させる。第1の供給ライン18及び第2の供給ライン16は、エンジン14への接続の前に、即ち上流で互いに接続され得る。その場合、天然のボイルオフガス及び強制ボイルオフガスの混合温度は+40℃〜+70℃である。 The liquefied gas is available in the gas engine 14 by a first gas supply line 18 located in the gas supply assembly 10. The first gas supply line 18 is configured to deliver gas from the liquid phase compartment 12.2 of the tank 12 to the gas consumer 14. The first gas supply line is open to the lower part of the tank 12 below the surface of the liquefied gas in the tank at its first end (inlet end). The liquid phase compartment contains the liquefied gas at a temperature of substantially -163 ° C and at substantially atmospheric pressure. The first gas supply line 18 includes a first heat exchanger 24 configured to vaporize the liquefied gas into a gas gas in the first gas supply line 18. Therefore, the first heat exchanger 24 can also be called a main gas evaporator. The first gas supply line 18 also includes a cryogenic pump 26 that increases the pressure of the liquefied gas so that the gas pressure meets the demand of the gas consumer 14. The first heat exchanger 24 is located downstream of the cryogenic pump 26. The first heat exchanger 24 transfers heat from the heat transfer medium into the gas to vaporize the liquefied gas, and raises the temperature of the gas from about -163 ° C to + 40 ° C, which is a suitable gas temperature for gas consumers. Raise to + 50 ° C, generally + 45 ° C. The first supply line 18 and the second supply line 16 may be connected to each other prior to connection to the engine 14, i.e. upstream. In that case, the mixing temperature of the natural boil-off gas and the forced boil-off gas is + 40 ° C to + 70 ° C.

ボイルオフガスは、ガス供給アセンブリ10に配置される第2のガス供給ライン16によりガスエンジン14内で利用できる。第2のガス供給ライン16は、タンク12の気相区画12.1からガスエンジン14にガスを届けるように構成されている。第2のガス供給ライン16は、タンク12内の液化ガスの表面の上の気相区画12.1に常に接続されるように、その第1の端部(入口端)においてタンク14の上部に対して開いている。第2のガス供給ライン16は、第2のガス供給ライン16内のガスを所望の温度に加熱するように構成された第2の熱交換器20を含む。第2のガス供給ライン16は、ガス圧がガスエンジン14に適したものとなるようにガスの圧力を高める圧縮機28も含む。圧縮機22はスクリュー又は回転翼圧縮機であることが有利である。第2の熱交換器20は、ガス温度がスクリュー又は回転翼圧縮機に適したレベルまで高めることができるように、圧縮機22の上流に位置する。第2の熱交換器は、ガスの温度を約−163℃から圧縮機22に入るガスの入口温度範囲である−50℃〜−20℃に、一般的には−25℃に上げるために、伝熱媒体からガスに熱を伝達するように構成されている。ガスの温度は、エンジン14への導入に適したガスの温度に対応する+40〜+70℃に、一般的には60℃に圧縮機22内においても高められることが有利である。 The boil-off gas is available in the gas engine 14 by a second gas supply line 16 located in the gas supply assembly 10. The second gas supply line 16 is configured to deliver gas from the gas phase compartment 12.1 of the tank 12 to the gas engine 14. The second gas supply line 16 is located above the tank 14 at its first end (inlet end) so that it is always connected to the gas phase compartment 12.1 above the surface of the liquefied gas in the tank 12. On the other hand, it is open. The second gas supply line 16 includes a second heat exchanger 20 configured to heat the gas in the second gas supply line 16 to a desired temperature. The second gas supply line 16 also includes a compressor 28 that increases the gas pressure so that the gas pressure is suitable for the gas engine 14. It is advantageous that the compressor 22 is a screw or rotorcraft compressor. The second heat exchanger 20 is located upstream of the compressor 22 so that the gas temperature can be raised to a level suitable for a screw or rotorcraft compressor. The second heat exchanger raises the temperature of the gas from about -163 ° C to -50 ° C to -20 ° C, which is the inlet temperature range of the gas entering the compressor 22, and generally to -25 ° C. It is configured to transfer heat from the heat transfer medium to the gas. It is advantageous that the temperature of the gas is increased to + 40 to + 70 ° C., which corresponds to the temperature of the gas suitable for introduction into the engine 14, and generally to 60 ° C. even in the compressor 22.

第2の供給ライン16における圧縮機22は、圧縮機22の温度を所望の範囲内で維持するための圧縮機冷却手段28、29を備える。圧縮機は、例えば潤滑及び圧縮機22の温度の制御のためにオイルを使用する。圧縮機22はオイルフロー回路29を備え、オイルフロー回路29は第3の熱交換器に油が流れるように導くように構成され、第3の熱交換器28は、圧縮機オイルから伝熱媒体回路30内の伝熱媒体に熱を伝達するように構成され、それにより圧縮機22の温度だけでなく、第2のガス供給ライン16内のボイルオフガスの温度も制御する。必要に応じて、オイルフロー回路は循環ポンプを備えていてもよい。通常、圧縮機は、オイルに対して独自の差圧を発生させ、その場合、別個のポンプを用いずにオイルの流れが提供される。圧縮機が作動している間、オイルフロー回路から圧縮機にオイルが供給される。オイルは圧縮機の動作部を潤滑するとともに、圧縮機内を流れる間にオイルの温度が上昇するように熱を受け取る。圧縮機は、圧縮されたガスからオイルを分離する油分離器22’を備えていてもよい。圧縮機内で加熱されたオイルは第3の熱交換器28によって冷却され、圧縮機22に再度循環される。任意で、圧縮機22に、第3の熱交換器28が連結される間接冷却システムを設けることもできる。圧縮機は第3の熱交換器28を備え、第3の熱交換器28は圧縮機の一体部分として又は伝熱するためだけに圧縮機22と連通するように配置することで実現される。圧縮機22の温度は、圧縮ガスの温度に影響を与えるため、これは、ボイルオフガスの温度を制御する方法として有利に利用される。本方法は、ボイルオフガスの温度を所望の範囲内で維持するために圧縮機冷却手段28、29を利用する。圧縮機22が作動する間に、圧縮機22により圧縮されたボイルオフガスの温度が測定され、ボイルオフガスの温度に基づいて圧縮機冷却手段28、29が作動される。そのため、ボイルオフガスの温度が所定の設定値よりも高い場合、圧縮機の冷却力が高められ、ボイルオフガスの温度が所定の設定値よりも低い場合、圧縮機の冷却力が下げられる。 The compressor 22 in the second supply line 16 includes compressor cooling means 28, 29 for maintaining the temperature of the compressor 22 within a desired range. The compressor uses oil, for example for lubrication and temperature control of the compressor 22. The compressor 22 includes an oil flow circuit 29, the oil flow circuit 29 is configured to guide the oil to flow to the third heat exchanger, and the third heat exchanger 28 is a heat transfer medium from the compressor oil. It is configured to transfer heat to the heat transfer medium in the circuit 30, thereby controlling not only the temperature of the compressor 22 but also the temperature of the boil-off gas in the second gas supply line 16. If desired, the oil flow circuit may include a circulation pump. Compressors typically generate their own differential pressure on the oil, in which case the oil flow is provided without the use of a separate pump. Oil is supplied to the compressor from the oil flow circuit while the compressor is operating. The oil lubricates the moving parts of the compressor and receives heat so that the temperature of the oil rises while flowing through the compressor. The compressor may include an oil separator 22'that separates the oil from the compressed gas. The oil heated in the compressor is cooled by the third heat exchanger 28 and circulated again to the compressor 22. Optionally, the compressor 22 may be provided with an indirect cooling system to which the third heat exchanger 28 is connected. The compressor is provided with a third heat exchanger 28, which is realized by arranging the third heat exchanger 28 to communicate with the compressor 22 as an integral part of the compressor or only for heat transfer. Since the temperature of the compressor 22 affects the temperature of the compressed gas, this is advantageously used as a method of controlling the temperature of the boil-off gas. The method utilizes compressor cooling means 28, 29 to maintain the temperature of the boil-off gas within a desired range. While the compressor 22 is operating, the temperature of the boil-off gas compressed by the compressor 22 is measured, and the compressor cooling means 28 and 29 are operated based on the temperature of the boil-off gas. Therefore, when the temperature of the boil-off gas is higher than the predetermined set value, the cooling power of the compressor is increased, and when the temperature of the boil-off gas is lower than the predetermined set value, the cooling power of the compressor is lowered.

アセンブリは、第1及び第2のガス供給ラインを介してガスエンジン14に供給されるガスの温度を制御するとともに、第2のガス供給ライン16における圧縮機22の温度を制御するように構成された伝熱回路30を含む。伝熱回路30は、伝熱回路30内の伝熱媒体に熱を伝達するように構成された第4の熱交換器32を含む。伝熱媒体は、1つ以上の不凍剤を含有する水ベースの溶液であり得る。好適な熱媒油を使用することもできる。第2の熱交換器20、第1の熱交換器24、第3の熱交換器28及び第4の熱交換器32の全ては伝熱回路30に接続されている。伝熱回路はポンプ34も備え、このポンプにより、伝熱媒体が回路30に流れて循環する。 The assembly is configured to control the temperature of the gas supplied to the gas engine 14 via the first and second gas supply lines, as well as the temperature of the compressor 22 in the second gas supply line 16. The heat transfer circuit 30 is included. The heat transfer circuit 30 includes a fourth heat exchanger 32 configured to transfer heat to the heat transfer medium in the heat transfer circuit 30. The heat transfer medium can be a water-based solution containing one or more antifreeze agents. Suitable heat transfer oils can also be used. The second heat exchanger 20, the first heat exchanger 24, the third heat exchanger 28, and the fourth heat exchanger 32 are all connected to the heat transfer circuit 30. The heat transfer circuit also includes a pump 34, which allows the heat transfer medium to flow through the circuit 30 and circulate.

第4の熱交換器32は、回路30内の伝熱媒体に熱を伝え、第4の熱交換器32内の温度を上げるために、アセンブリ10に利用可能な蒸気システム等の熱源42に接続されている。回路30は主回路区画30’を含み、主回路区画30’では伝熱媒体がポンプ34、第4の熱交換器32及び第1の熱交換器24を流れる。これは、第4の熱交換器32内の伝熱媒体に伝えられる熱の大部分は第1の熱交換器24内の液化ガスを気化させるために用いられるからである。回路30は2つの分岐点38、40を含み、2つの分岐点38、40は、第1の分岐点38が第1の熱交換器24の上流側にあり、第2の分岐点40が第1の熱交換器24及び第4の熱交換器32の下流側にあるように配置される。上流及び下流という用語は、回路内のポンプ34に関連して回路区画30における伝熱媒体の流れ方向により定義され、その流れ方向は、回路線の矢印により示される。回路30は、第1の分岐点38及び第2の分岐点40の間の輸送導管(mail conduit)30’の部分と平行に第1の分岐点38から第2の分岐点40に延びる補助回路区画30’’を含む。第2の熱交換器20及び第3の熱交換器28は、第2の熱交換器20が第3の熱交換器28の上流に配置されるように補助回路区画30’’に直列に接続される。これにより、第2の熱交換器20及び第3の熱交換器28は、第1の熱交換器24と平行に配置され、第4の熱交換器32を介して共通の熱源42から得られた熱は、第2の熱交換器20内のガスを加熱するとともに、第1の熱交換器24内の液化ガスを気化させるための熱源として用いられる。補助回路区画30’’は、第1及び第3の熱交換器を流れる伝熱媒体の部分を制御するための第1の制御弁44を備える。 The fourth heat exchanger 32 is connected to a heat source 42 such as a steam system available in assembly 10 to transfer heat to the heat transfer medium in the circuit 30 and raise the temperature in the fourth heat exchanger 32. Has been done. The circuit 30 includes a main circuit section 30', in which the heat transfer medium flows through the pump 34, the fourth heat exchanger 32 and the first heat exchanger 24. This is because most of the heat transferred to the heat transfer medium in the fourth heat exchanger 32 is used to vaporize the liquefied gas in the first heat exchanger 24. The circuit 30 includes two branch points 38 and 40, in which the first branch point 38 is on the upstream side of the first heat exchanger 24 and the second branch point 40 is the second. It is arranged so as to be on the downstream side of the heat exchanger 24 of 1 and the heat exchanger 32 of 4th. The terms upstream and downstream are defined by the flow direction of the heat transfer medium in the circuit compartment 30 in relation to the pump 34 in the circuit, the flow direction of which is indicated by the arrow of the circuit line. The circuit 30 is an auxiliary circuit extending from the first branch point 38 to the second branch point 40 in parallel with the portion of the mail conduit 30'between the first branch point 38 and the second branch point 40. Includes compartment 30''. The second heat exchanger 20 and the third heat exchanger 28 are connected in series with the auxiliary circuit compartment 30'' so that the second heat exchanger 20 is located upstream of the third heat exchanger 28. Will be done. As a result, the second heat exchanger 20 and the third heat exchanger 28 are arranged in parallel with the first heat exchanger 24 and are obtained from a common heat source 42 via the fourth heat exchanger 32. The heat is used as a heat source for heating the gas in the second heat exchanger 20 and vaporizing the liquefied gas in the first heat exchanger 24. The auxiliary circuit section 30 ″ includes a first control valve 44 for controlling a portion of the heat transfer medium flowing through the first and third heat exchangers.

圧縮機22から熱を伝達するとともに、その温度を制御するように構成された第3の熱交換器28は、第2の熱交換器20の下流の補助回路区画30’’に配置されている。第3の熱交換器28はバイパス導管31及び三方弁33を備え、三方弁33は、第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの割合を、ひいては第3の熱交換器28の冷却力を制御する。 A third heat exchanger 28 configured to transfer heat from the compressor 22 and control its temperature is located in the auxiliary circuit compartment 30'' downstream of the second heat exchanger 20. .. The third heat exchanger 28 includes a bypass conduit 31 and a three-way valve 33, and the three-way valve 33 is a ratio of the flow of the heat transfer medium through the third heat exchanger 28 and the flow of the heat transfer medium through the bypass conduit 31. As a result, the cooling force of the third heat exchanger 28 is controlled.

ガス燃料供給アセンブリの特定の動作状態の一例として、アセンブリは以下の様に動作する。数値は、本発明の特定の実際の用途の例に過ぎず、値は本発明の異なる実用的な解決策において異なり得る。ポンプ34を作動させることによって伝熱媒体が回路30内を流れるようにされると、その温度は第4の熱交換器32内で27℃から47℃に上げられ、伝熱媒体はその温度で第2の熱交換器20及び第1の熱交換器24に入る。補助回路区画30’’に向けられる伝熱媒体の部分は、第2の熱交換器20の後で第3の熱交換器28の前の伝熱媒体の温度に基づいて第1の弁44により制御される。この温度は、補助回路区画30’’内で第2の熱交換器20と第3の熱交換器28との間に配置される第1の温度プローブ46によって測定される。一般に、第2の熱交換器20と第3の熱交換器28との間の伝熱媒体の温度は35℃である。次に、補助回路区画30’’内の伝熱媒体は第3の熱交換器28に流入し、伝熱媒体は、圧縮機22の冷却に用いられるため第3の熱交換器28内で温度が上げられる。第3の熱交換器28を通る伝熱媒体及びバイパス導管31を通る伝熱媒体の流れの比率を制御するための味方弁33は、圧縮機22の下流にある位置におけるボイルオフガスの温度に基づいて制御される。係る位置におけるボイルオフガスの温度は、圧縮機22の下流で第2のガス供給ライン16に配置される第2の温度プローブ48によって測定される。伝熱媒体は第3の熱交換器28内で熱を受け取るため、その温度は一般に50℃に上昇する。 As an example of a particular operating state of a gas fuel supply assembly, the assembly operates as follows: Numerical values are only examples of specific practical applications of the present invention, and values can vary in different practical solutions of the present invention. When the heat transfer medium is made to flow in the circuit 30 by operating the pump 34, the temperature is raised from 27 ° C. to 47 ° C. in the fourth heat exchanger 32, and the heat transfer medium is at that temperature. Enter the second heat exchanger 20 and the first heat exchanger 24. The portion of the heat transfer medium directed to the auxiliary circuit compartment 30'' is provided by the first valve 44 based on the temperature of the heat transfer medium after the second heat exchanger 20 and before the third heat exchanger 28. Be controlled. This temperature is measured by a first temperature probe 46 located between the second heat exchanger 20 and the third heat exchanger 28 in the auxiliary circuit compartment 30 ″. Generally, the temperature of the heat transfer medium between the second heat exchanger 20 and the third heat exchanger 28 is 35 ° C. Next, the heat transfer medium in the auxiliary circuit section 30'' flows into the third heat exchanger 28, and the heat transfer medium is used for cooling the compressor 22, so that the temperature in the third heat exchanger 28 is increased. Is raised. The ally valve 33 for controlling the ratio of the flow of the heat transfer medium through the third heat exchanger 28 and the heat transfer medium through the bypass conduit 31 is based on the temperature of the boil-off gas at a position downstream of the compressor 22. Is controlled. The temperature of the boil-off gas at such a position is measured by a second temperature probe 48 located on the second gas supply line 16 downstream of the compressor 22. Since the heat transfer medium receives heat in the third heat exchanger 28, its temperature generally rises to 50 ° C.

第1の分岐点38で、補助回路区画30’’に導かれない伝熱媒体の部分は、第1の熱交換器24を介して主回路区画30’にさらに流れるように導かれる。伝熱媒体は約47℃の温度で第1の熱交換器24に入り、第1のガス供給ライン18内の液化ガスを気化及び加熱するために熱を放出する。一般に、第1の熱交換器24の後の伝熱媒体の温度は25℃である。第1の熱交換器24の後、伝熱媒体が第4の熱交換器32に戻るように構成され、第4の熱交換器32では、伝熱媒体は共通の熱源42から熱を受け取る。第2の分岐点40では、補助回路区画30’’及び主回路区画30’からの伝熱媒体が合流する。第4の熱交換器のパワーは、第4の熱交換器32及び第2の分岐点40の下流の位置における伝熱媒体の温度に基づいて制御される。第4の熱交換器32及び第2の分岐点40の下流で第3の温度プローブ50が主回路区画30’に配置され、それにより、主回路区画30’及び補助回路区画30’’から合流した伝熱媒体の温度が測定される。このようにして、第2の分岐点40で合流した戻り流の混合温度が考慮され、第4の熱交換器のパワーを制御するための変数として用いられる。伝熱媒体が第3の熱交換器28を出るときの温度は通常非常に高く、第1又は第2の熱交換器に供給される前に加熱を必要としないために有利である。図1の実施形態では、熱源42は、第4の熱交換器に熱をもたらすように配置された蒸気システムを含む。第4の熱交換器32はバイパス導管35を備え、バイパス導管35は、第4の熱交換器32を通る伝熱媒体の流れ及びバイパス導管35を通る伝熱媒体の流れの比率を制御するための三方弁52を備える。三方制御弁52は、第4の熱交換器で伝熱媒体に伝達される熱パワーを制御する。制御弁52の動作は、第3の温度プローブ50の測定データに基づいて制御される。熱源42は任意の好適且つ利用可能な熱源であり、熱がガス供給アセンブリでの使用に利用可能な、蒸気、水ベースの溶液又は伝熱油等の好適な伝熱媒体に熱が伝達され得るシリンダ、ブロック、油、燃焼空気又は他の冷却システム、排ガスボイラ又はエンジン内の他の熱源のうちの1つ又は複数から発生する熱を使用するエンジン14であることが有利である。 At the first branch point 38, the portion of the heat transfer medium that is not guided to the auxiliary circuit section 30 ″ is guided to further flow to the main circuit section 30 ′ via the first heat exchanger 24. The heat transfer medium enters the first heat exchanger 24 at a temperature of about 47 ° C. and releases heat to vaporize and heat the liquefied gas in the first gas supply line 18. Generally, the temperature of the heat transfer medium after the first heat exchanger 24 is 25 ° C. After the first heat exchanger 24, the heat transfer medium is configured to return to the fourth heat exchanger 32, where in the fourth heat exchanger 32 the heat transfer medium receives heat from the common heat source 42. At the second branch point 40, the heat transfer media from the auxiliary circuit section 30 ″ and the main circuit section 30 ″ merge. The power of the fourth heat exchanger is controlled based on the temperature of the heat transfer medium at positions downstream of the fourth heat exchanger 32 and the second branch point 40. A third temperature probe 50 is located in the main circuit compartment 30'downstream of the fourth heat exchanger 32 and the second branch point 40, thereby merging from the main circuit compartment 30'and the auxiliary circuit compartment 30'. The temperature of the heat transfer medium is measured. In this way, the mixing temperature of the return flow merged at the second branch point 40 is taken into consideration and used as a variable for controlling the power of the fourth heat exchanger. The temperature at which the heat transfer medium exits the third heat exchanger 28 is usually very high, which is advantageous because it does not require heating before being supplied to the first or second heat exchanger. In the embodiment of FIG. 1, the heat source 42 includes a steam system arranged to bring heat to the fourth heat exchanger. The fourth heat exchanger 32 includes a bypass conduit 35 for controlling the ratio of the flow of the heat transfer medium through the fourth heat exchanger 32 to the flow of the heat transfer medium through the bypass conduit 35. The three-way valve 52 is provided. The three-way control valve 52 controls the heat power transferred to the heat transfer medium by the fourth heat exchanger. The operation of the control valve 52 is controlled based on the measurement data of the third temperature probe 50. The heat source 42 is any suitable and available heat source, and the heat can be transferred to a suitable heat transfer medium such as steam, water-based solution or heat transfer oil, which is available for use in the gas supply assembly. It is advantageous to have an engine 14 that uses heat generated from one or more of cylinders, blocks, oil, combustion air or other cooling systems, exhaust boilers or other heat sources in the engine.

図2は、本発明の別の実施形態に係るガス供給アセンブリ10を概略的に示す。ガス供給アセンブリ10は、ガス供給アセンブリ10に接続された1つ以上のガス消費物14に気体燃料を供給するように構成されている。図2に示すガス供給アセンブリは実質的に同一の要素で実質的に同一の動作を提供するが、以下の特徴は図1に示すものと異なる。 FIG. 2 schematically shows a gas supply assembly 10 according to another embodiment of the present invention. The gas supply assembly 10 is configured to supply gaseous fuel to one or more gas consumables 14 connected to the gas supply assembly 10. The gas supply assembly shown in FIG. 2 provides substantially the same operation with substantially the same elements, but the following features are different from those shown in FIG.

第4の熱交換器32は、熱源42としてエンジン14の冷却システムを用い、回路30内の伝熱媒体に熱を伝え、第4の熱交換器32内でその温度を上昇させる。回路30は2つの分岐点38、40を含み、2つの分岐点38、40は第1の分岐点38が第1の熱交換器24の上流側にあり、第2の分岐点40が第1の熱交換器24の下流側にあるが、第4の熱交換器32の上流側にあるように配置される。上流及び下流という用語は、回路区画30における伝熱媒体の流れの方向によって定義され、回路線の矢印で示す。 The fourth heat exchanger 32 uses the cooling system of the engine 14 as the heat source 42, transfers heat to the heat transfer medium in the circuit 30, and raises the temperature in the fourth heat exchanger 32. The circuit 30 includes two branch points 38 and 40, in which the first branch point 38 is on the upstream side of the first heat exchanger 24 and the second branch point 40 is the first. Although it is located on the downstream side of the heat exchanger 24 of the above, it is arranged so as to be on the upstream side of the fourth heat exchanger 32. The terms upstream and downstream are defined by the direction of flow of the heat transfer medium in the circuit compartment 30 and are indicated by the arrows on the circuit line.

第3の熱交換器28はバイパス導管31及び三方弁33を備え、三方弁33は、第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの割合を、ひいては第3の熱交換器28の冷却力を制御する。第3の熱交換器28を通る伝熱媒体の流れ及びバイパス導管31を通る伝熱媒体の流れの比率を制御するための三方弁33は、第3の熱交換器28の下流の位置における圧縮機冷却オイルの温度に基づいて制御される。係る温度は、第3の熱交換器28の下流の圧縮機22の冷却オイルラインに配置される第2の温度プローブ48によって測定される。伝熱媒体は、第3の熱交換器28内で熱を受け取るため、その温度は一般に50℃に上げられる。 The third heat exchanger 28 includes a bypass conduit 31 and a three-way valve 33, and the three-way valve 33 is a ratio of the flow of the heat transfer medium through the third heat exchanger 28 and the flow of the heat transfer medium through the bypass conduit 31. As a result, the cooling force of the third heat exchanger 28 is controlled. The three-way valve 33 for controlling the ratio of the flow of the heat transfer medium through the third heat exchanger 28 and the flow of the heat transfer medium through the bypass conduit 31 is compressed at a position downstream of the third heat exchanger 28. It is controlled based on the temperature of the machine cooling oil. The temperature is measured by a second temperature probe 48 located in the cooling oil line of the compressor 22 downstream of the third heat exchanger 28. Since the heat transfer medium receives heat in the third heat exchanger 28, its temperature is generally raised to 50 ° C.

図2も本発明の実施形態を示し、補助回路区画30’内の弁44が連続的な制御に使用されないが、補助回路区画30’を通る流れを一度セットする手動バランス弁である。この特徴は図1の実施形態にも適用可能である。 FIG. 2 also shows an embodiment of the present invention, which is a manual balance valve in which the valve 44 in the auxiliary circuit compartment 30'is not used for continuous control, but once sets the flow through the auxiliary circuit compartment 30'. This feature is also applicable to the embodiment of FIG.

第1の分岐点38では、補助回路区画30’’に導かれない伝熱媒体の部分は、第1の熱交換器24を介して主回路区画30’に更に流れるように導かれる。伝熱媒体は約47℃の温度で第1の熱交換器24に入り、第1の熱交換器24では、第1のガス供給ライン18内の液化ガスを気化及び加熱するために熱を放出する。一般に、第1の熱交換器24の後の伝熱媒体の温度は25℃である。第2の分岐点40では、補助回路区画30’’及び主回路区画30’からの伝熱媒体が合流して、第4の熱交換器32に戻る。第4の熱交換器のパワーは、第4の熱交換器32の下流の位置における伝熱媒体の温度に基づいて制御される。第4の熱交換器32の下流で第3の温度プローブ50が主回路区画30’に配置され、温度プローブ50により伝熱媒体の温度が測定される。図2の実施形態では、熱源42は、第3の熱交換器32のパワー出力を制御するための制御弁52を含む。 At the first branch point 38, the portion of the heat transfer medium that is not guided to the auxiliary circuit section 30 ″ is guided to further flow to the main circuit section 30 ′ via the first heat exchanger 24. The heat transfer medium enters the first heat exchanger 24 at a temperature of about 47 ° C., and the first heat exchanger 24 releases heat to vaporize and heat the liquefied gas in the first gas supply line 18. To do. Generally, the temperature of the heat transfer medium after the first heat exchanger 24 is 25 ° C. At the second branch point 40, the heat transfer media from the auxiliary circuit section 30 ″ and the main circuit section 30 ″ merge and return to the fourth heat exchanger 32. The power of the fourth heat exchanger is controlled based on the temperature of the heat transfer medium at a position downstream of the fourth heat exchanger 32. A third temperature probe 50 is arranged in the main circuit section 30'downstream of the fourth heat exchanger 32, and the temperature of the heat transfer medium is measured by the temperature probe 50. In the embodiment of FIG. 2, the heat source 42 includes a control valve 52 for controlling the power output of the third heat exchanger 32.

本明細書では、本発明を、現在最も好ましい実施形態と考えられるものに関連して例示してきたが、本発明は、開示した実施形態に限定されず、その特徴の様々な組み合わせ又は変更に加えて、添付の特許請求の範囲で定義される本発明の範囲内に含まれる他の用途もカバーすることを意図する。上記のいずれかの実施形態に関連して言及した詳細は、組み合わせが技術的に可能である場合は、別の実施形態と関連して使用され得る。 Although the present invention has been illustrated herein in the context of what is currently considered the most preferred embodiment, the invention is not limited to the disclosed embodiments, in addition to various combinations or modifications of its features. It is intended to cover other uses within the scope of the invention as defined in the appended claims. The details mentioned in connection with any of the above embodiments may be used in connection with another embodiment where the combination is technically possible.

Claims (11)

ガス供給アセンブリであって、当該アセンブリはタンクを含み、該タンクは気相区画及び液相区画を有するように該タンク内に液化ガスを貯蔵するように構成され、当該アセンブリは、前記タンクの液相区画から1つ以上のガス消費物にガスを届けるように構成された第1のガス供給ラインと、前記タンクの気相区画から1つ以上のガス消費物にガスを届けるように構成された第2のガス供給ラインとをさらに含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスを加熱するように構成された第2の熱交換器を含み、該第1のガス供給ラインは、該第1のガス供給ライン内の液化ガスを気化するように構成された第1の熱交換器を含み、該第2のガス供給ラインは、該第2のガス供給ライン内のガスの圧力を高めるように構成された圧縮機をさらに含み、該圧縮機は第3の熱交換器を備え、
当該アセンブリは、前記第1の熱交換器、前記第2の熱交換器及び前記第3の熱交換器が接続された伝熱回路を含み、該伝熱回路は、該伝熱回路内の伝熱媒体に熱を伝達するように構成された第4の熱交換器と、該伝熱回路内で伝熱媒体を循環させるように構成されたポンプ手段とを含み、前記第2の熱交換器及び前記第3の熱交換器は互いに直列に配置され、前記第1の熱交換器は、前記第2の熱交換器及び前記第3の熱交換器と並列に配置されている、ガス供給アセンブリ。
A gas supply assembly, the assembly comprising a tank, the tank being configured to store liquefied gas in the tank so as to have a gas phase compartment and a liquid phase compartment, the assembly being the liquid in the tank. A first gas supply line configured to deliver gas from the phase compartment to one or more gas consumables and a gas supply line configured to deliver gas from the gas phase compartment of the tank to one or more gas consumables. Further including a second gas supply line, the second gas supply line includes a second heat exchanger configured to heat the gas in the second gas supply line, said first. The gas supply line includes a first heat exchanger configured to vaporize the liquefied gas in the first gas supply line, and the second gas supply line is the second gas supply line. It further comprises a compressor configured to increase the pressure of the gas in the compressor, the compressor comprising a third heat exchanger.
The assembly includes a heat transfer circuit to which the first heat exchanger, the second heat exchanger and the third heat exchanger are connected, and the heat transfer circuit is a heat transfer circuit in the heat transfer circuit. The second heat exchanger includes a fourth heat exchanger configured to transfer heat to the heat medium and pump means configured to circulate the heat transfer medium in the heat transfer circuit. And the third heat exchanger are arranged in series with each other, and the first heat exchanger is arranged in parallel with the second heat exchanger and the third heat exchanger, a gas supply assembly. ..
前記アセンブリは、前記圧縮機の下流で前記第2のガス供給ラインに配置される第2の温度プローブを含み、前記第3の熱交換器の伝熱パワーは、前記圧縮機の下流の位置におけるボイルオフガスの温度に基づいて制御可能に構成されている、請求項1に記載のガス供給アセンブリ。 The assembly includes a second temperature probe located on the second gas supply line downstream of the compressor, and the heat transfer power of the third heat exchanger is at a position downstream of the compressor. The gas supply assembly according to claim 1, which is configured to be controllable based on the temperature of the boil-off gas. 前記伝熱回路は2つの分岐点を含み、前記回路は、第1の分岐点から第2の分岐点に延びる補助回路区画を含み、前記回路は、前記第1の分岐点から前記第2の分岐点に延びる主回路区画を含み、前記第2の熱交換器及び前記第3の熱交換器は、前記第1の分岐点及び前記第2の分岐点の間で前記補助回路区画に配置され、前記第1の熱交換器は、前記第1の分岐点及び前記第2の分岐点の間で前記主回路区画に配置されている、請求項1に記載のガス供給アセンブリ。 The heat transfer circuit includes two branch points, the circuit includes an auxiliary circuit section extending from the first branch point to the second branch point, and the circuit includes the first branch point to the second branch point. The second heat exchanger and the third heat exchanger are arranged in the auxiliary circuit section between the first branch point and the second branch point, including a main circuit section extending to the branch point. The gas supply assembly according to claim 1, wherein the first heat exchanger is arranged in the main circuit section between the first branch point and the second branch point. 前記補助回路区画は、前記補助回路区画を通る伝熱媒体の部分を制御するために第1の弁を含む、請求項3に記載のガス供給アセンブリ。 The gas supply assembly of claim 3, wherein the auxiliary circuit compartment comprises a first valve to control a portion of the heat transfer medium that passes through the auxiliary circuit compartment. 前記アセンブリは、前記第2の熱交換器と前記第3の熱交換器との間で前記伝熱回路に配置される第1の温度プローブを含み、前記第1の弁は該第1の温度プローブに基づいて制御される、請求項3に記載のガス供給アセンブリ。 The assembly includes a first temperature probe that is placed in the heat transfer circuit between the second heat exchanger and the third heat exchanger, and the first valve is at the first temperature. The gas supply assembly according to claim 3, which is controlled based on a probe. 前記圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために前記第3の熱交換器を通るように構成されている、、請求項1に記載のガス供給アセンブリ。 The gas supply assembly of claim 1, wherein the compressor comprises an oil circuit, the oil circuit being configured to pass through the third heat exchanger to cool the oil in the circuit. .. 前記圧縮機を冷却するための前記第3の熱交換器はバイパス導管及び弁を備え、該弁は、前記第3の熱交換器を通る伝熱媒体の流れ及び該バイパス導管を通る伝熱媒体の流れの割合を制御し、前記アセンブリは、前記圧縮機の下流で前記第2のガス供給ラインに配置される第2の温度プローブを含み、前記弁は、前記圧縮機の下流の位置におけるボイルオフガスの温度に基づいて、前記第3の熱交換器を通る伝熱媒体の流れ及び前記バイパス導管を通る伝熱媒体の流れを制御するように構成されている、請求項1に記載のガス供給アセンブリ。 The third heat exchanger for cooling the compressor includes a bypass conduit and a valve, which is a flow of heat transfer medium through the third heat exchanger and a heat transfer medium through the bypass conduit. The assembly includes a second temperature probe located downstream of the compressor on the second gas supply line, the valve boil-off at a position downstream of the compressor. The gas supply according to claim 1, wherein the flow of the heat transfer medium through the third heat exchanger and the flow of the heat transfer medium through the bypass conduit are controlled based on the temperature of the gas. assembly. 前記圧縮機はオイル回路を含み、該オイル回路は、該回路内のオイルを冷却するために、前記第3の熱交換器を通るように配置され、前記伝熱回路内の前記第3の熱交換器はバイパス導管及び三方弁を備え、該三方弁は、前記第3の熱交換器を通る伝熱媒体の流れ及び該バイパス導管を通る伝熱媒体の流れの割合を制御し、前記第3の熱交換器を通る伝熱媒体の流れの部分及び前記バイパス導管を通る伝熱媒体の流れの部分は、前記オイル回路内のオイルの温度に基づいて制御される、請求項1に記載のガス供給アセンブリ。 The compressor includes an oil circuit, which is arranged to pass through the third heat exchanger to cool the oil in the circuit and the third heat in the heat transfer circuit. The exchanger comprises a bypass conduit and a three-way valve, which controls the ratio of the flow of heat transfer medium through the third heat exchanger and the flow of heat transfer medium through the bypass conduit, said third. The gas according to claim 1, wherein the portion of the heat transfer medium flow through the heat exchanger and the portion of the heat transfer medium flow through the bypass conduit are controlled based on the temperature of the oil in the oil circuit. Feed assembly. 前記伝熱回路内の前記第2の分岐点は、前記第1の熱交換器及び前記第4の熱交換器の下流側にある、請求項3に記載のガス供給アセンブリ。 The gas supply assembly according to claim 3, wherein the second branch point in the heat transfer circuit is on the downstream side of the first heat exchanger and the fourth heat exchanger. 前記伝熱回路内の前記第2の分岐点は、前記第1の熱交換器の下流側且つ前記第4の熱交換器の上流側にある、請求項3に記載のガス供給アセンブリ。 The gas supply assembly according to claim 3, wherein the second branch point in the heat transfer circuit is on the downstream side of the first heat exchanger and on the upstream side of the fourth heat exchanger. 前記アセンブリは、前記第4の熱交換器及び前記第2の分岐点の下流で前記伝熱回路に配置される第3の温度プローブを含み、前記第4の熱交換器のパワーは該第3の温度プローブを用いて制御されるように構成されている、請求項9又は10に記載のガス供給アセンブリ。 The assembly includes the fourth heat exchanger and a third temperature probe located in the heat transfer circuit downstream of the second branch point, and the power of the fourth heat exchanger is the third. The gas supply assembly according to claim 9 or 10, which is configured to be controlled using the temperature probe of the above.
JP2020550121A 2018-03-19 2018-03-19 gas supply assembly Active JP7189962B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/056858 WO2019179594A1 (en) 2018-03-19 2018-03-19 A gas supply assembly

Publications (2)

Publication Number Publication Date
JP2021516749A true JP2021516749A (en) 2021-07-08
JP7189962B2 JP7189962B2 (en) 2022-12-14

Family

ID=61692008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550121A Active JP7189962B2 (en) 2018-03-19 2018-03-19 gas supply assembly

Country Status (5)

Country Link
EP (1) EP3769004B1 (en)
JP (1) JP7189962B2 (en)
KR (1) KR102269975B1 (en)
CN (1) CN111819390B (en)
WO (1) WO2019179594A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432001A (en) * 1987-07-28 1989-02-02 Maekawa Seisakusho Kk Air compressor driven by expander
JP2003175891A (en) * 2001-08-24 2003-06-24 Cryostar-France Sa Natural gas fuel supply system
WO2005087586A1 (en) * 2004-03-17 2005-09-22 Wärtsilä Finland Oy Gas supply arrangement of a marine vessel and method of providing gas in a marine vessel
JP2008064213A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Compressor with bog warmer and power generation system having the same
KR20150096456A (en) * 2012-12-14 2015-08-24 바르실라 핀랜드 오이 Method of starting gas delivery from a liquefied gas fuel system to a gas operated engine and a liquefied gas fuel system for a gas operated engine
JP2017137978A (en) * 2016-02-05 2017-08-10 川崎重工業株式会社 Bog warming system for low-temperature liquefied gas

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325894A (en) * 1992-12-07 1994-07-05 Chicago Bridge & Iron Technical Services Company Method and apparatus for fueling vehicles with liquefied natural gas
FR2837783B1 (en) * 2002-03-26 2004-05-28 Alstom PLANT FOR THE SUPPLY OF GAS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
KR20120024743A (en) * 2009-05-21 2012-03-14 다이요 닛산 가부시키가이샤 Method for supplying refined liquefied gas
CN103562536A (en) * 2011-03-22 2014-02-05 大宇造船海洋株式会社 Method and system for supplying fuel to high-pressure natural gas injection engine
CN105333309A (en) * 2014-08-16 2016-02-17 西安格瑞德化工新材料有限公司 Urban gas supply device
KR101751339B1 (en) * 2015-10-07 2017-06-27 삼성중공업 주식회사 Fuel gas supplying system in ships
WO2017192136A1 (en) * 2016-05-04 2017-11-09 Innovative Cryogenic Systems, Inc. Istallation for feeding a gas-consuming member with combustible gas and for liquefying said combustible gas
CN105840983B (en) * 2016-06-01 2018-06-26 乐山市山鹰模具有限责任公司 A kind of LNG skid-mounted gas feeder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432001A (en) * 1987-07-28 1989-02-02 Maekawa Seisakusho Kk Air compressor driven by expander
JP2003175891A (en) * 2001-08-24 2003-06-24 Cryostar-France Sa Natural gas fuel supply system
WO2005087586A1 (en) * 2004-03-17 2005-09-22 Wärtsilä Finland Oy Gas supply arrangement of a marine vessel and method of providing gas in a marine vessel
JP2008064213A (en) * 2006-09-08 2008-03-21 Chugoku Electric Power Co Inc:The Compressor with bog warmer and power generation system having the same
KR20150096456A (en) * 2012-12-14 2015-08-24 바르실라 핀랜드 오이 Method of starting gas delivery from a liquefied gas fuel system to a gas operated engine and a liquefied gas fuel system for a gas operated engine
JP2017137978A (en) * 2016-02-05 2017-08-10 川崎重工業株式会社 Bog warming system for low-temperature liquefied gas

Also Published As

Publication number Publication date
KR102269975B1 (en) 2021-06-28
WO2019179594A1 (en) 2019-09-26
JP7189962B2 (en) 2022-12-14
KR20200135783A (en) 2020-12-03
CN111819390A (en) 2020-10-23
CN111819390B (en) 2022-04-19
EP3769004A1 (en) 2021-01-27
EP3769004B1 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
JP5242412B2 (en) Structure and method for providing cooling energy to a refrigerant circuit of a ship
JP6678077B2 (en) Ship
KR101319364B1 (en) Apparatus for controlling pressure of liquefied gas tank using fuel LNG and liquefied gas carrier having the same
KR20170041406A (en) Fuel gas supplying system in ships
KR101751331B1 (en) Fuel gas supplying system in ships
KR20170041411A (en) Fuel gas supplying system in ships
JP2016061141A (en) Gas supply system and vessel mounted with the same
KR102324448B1 (en) Method and apparatus for treating boil-off gas for the purpose of supplying at least one engine
KR20120123783A (en) Lng fuel supply system for vessel engine
EP2037115A1 (en) System for fuelling a combustion engine
JP2018103954A (en) Ship
JP2021516749A (en) Gas supply assembly
JP6796976B2 (en) Ship
KR102160838B1 (en) A Treatment System and Method of Liquefied Gas
KR102327400B1 (en) Heat Supply System and Method For Ship
KR20150076484A (en) System for supplying fuel gas in ships
CN113227565B (en) Gas engine power plant and method of operating a gas engine power plant
JP2018103955A (en) Ship
KR20170041429A (en) Fuel gas supplying system in ships
KR20210090842A (en) Energy saving fuel gas heating system and method
JP6722072B2 (en) Ship
KR101751337B1 (en) Fuel gas supplying system in ships
JP2018048608A (en) Vessel
KR102562100B1 (en) Fuel gas treating system in ships
KR20130084535A (en) System for natural gas fuel supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220809

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150