JP2021515968A - 無整合プラズマ源に対する周波数同調 - Google Patents

無整合プラズマ源に対する周波数同調 Download PDF

Info

Publication number
JP2021515968A
JP2021515968A JP2020546991A JP2020546991A JP2021515968A JP 2021515968 A JP2021515968 A JP 2021515968A JP 2020546991 A JP2020546991 A JP 2020546991A JP 2020546991 A JP2020546991 A JP 2020546991A JP 2021515968 A JP2021515968 A JP 2021515968A
Authority
JP
Japan
Prior art keywords
current
magnitude
operating frequency
output
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020546991A
Other languages
English (en)
Other versions
JPWO2019177866A5 (ja
JP7421487B2 (ja
Inventor
ロング・マオリン
ワン・ユホウ
ウー・イン
パターソン・アレックス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of JP2021515968A publication Critical patent/JP2021515968A/ja
Publication of JPWO2019177866A5 publication Critical patent/JPWO2019177866A5/ja
Application granted granted Critical
Publication of JP7421487B2 publication Critical patent/JP7421487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】【解決手段】無整合プラズマ源に対する周波数同調が説明される。周波数同調を実施するために、電流は、無整合プラズマ源の動作周波数の変更後、無整合プラズマ源の増幅回路の出力において測定される。動作周波数の変更に伴って電流が増加したと決定すると、動作周波数は、電流が減少するまでさらに変更される。電流が減少すると、変更された動作周波数は、動作周波数になるようにさらに修正される。無整合プラズマ源が動作周波数で動作するとき、増幅回路の出力における電流は最大化される。【選択図】図1

Description

本実施形態は、無整合プラズマ源に対する周波数同調に関する。
ここで提供される背景の説明は、本開示の内容を概ね提示することを目的とする。この背景技術のセクションで説明されている範囲内における、現時点で名前を挙げられている発明者らによる研究、ならびに他の理由で出願の時点で先行技術としてみなされ得ない説明の態様は、明示または暗示を問わず、本開示に対抗する先行技術として認められない。
従来のプラズマツールは、無線周波数(RF)発生器と、インピーダンス整合回路と、プラズマチャンバとを含む。RF発生器は、インピーダンス整合回路に接続され、インピーダンス整合回路は、プラズマチャンバにさらに接続される。RF発生器は、インピーダンス整合回路に供給されるRF電力を生成する。インピーダンス整合回路は、プラズマチャンバのインピーダンスをRF発生器のインピーダンスと整合させる。
ウエハの処理中、プラズマツールに関連する様々なパラメータが制御される。本開示で説明される実施形態は、このような状況で生じるものである。
本開示の実施形態は、無整合プラズマ源(MPS)の周波数同調のためのシステム、装置、方法およびコンピュータプログラムを提供する。本実施形態は、多数の形態(例えば、プロセス、または装置、またはシステム、またはハードウェアの一部、または方法、またはコンピュータ可読媒体)で実施することができることを理解されたい。以下、いくつかの実施形態を説明する。
無整合プラズマ源(MPS)の無線周波数(RF)発生器において、無整合プラズマ源は非常に低い出力抵抗を有し、かつ、無整合プラズマ源が同調されるときに純粋な抵抗性負荷が発生する。この無線周波数発生器では、プラズマチャンバのインピーダンスを従来のRF発生器の50オームの出力インピーダンスに整合させる従来のRF整合ネットワークは、無整合プラズマ源における周波数同調によって排除される。
一部のシステムでは、周波数同調は、電圧波形と電流波形との間の位相角の測定によって実施される。周波数同調は、位相角がゼロになるか、またはゼロから事前設定された範囲内になると停止する。しかし、位相角を正確に測定することは困難である。また、電圧波形が振動するため、位相角をゼロまたはゼロから事前設定された範囲内にすることは困難である。そのため、位相角に基づく周波数同調が困難になる。
いくつかの実施形態では、信号発生器を含む無整合プラズマ源の電力出力を最適化するための方法が説明される。この方法は、信号発生器が動作周波数で動作し、正弦波電流波形を発生させるために使用されるパルス信号を生成するように、信号発生器を制御することを含む。この方法は、正弦波電流波形の電流の大きさを測定することと、電流の大きさを測定し続けている間に動作周波数を調整することとをさらに含む。この方法は、調整中に、略最大の大きさの電流を生成する目標周波数を識別することを含む。
様々な実施形態において、無整合プラズマ源の電力出力を最適化するためのシステムが説明される。このシステムは、信号発生器と、信号発生器に結合されたゲートドライバ回路と、ゲートドライバ回路に結合された増幅回路と、信号発生器に結合されたコントローラとを含む。コントローラは、信号発生器が動作周波数で動作し、正弦波電流波形を発生するために使用されるパルス信号を生成するように信号発生器を制御するよう構成される。システムは、増幅回路の出力に結合された電流プローブをさらに含む。電流プローブは、正弦波電流波形の電流の大きさを測定するように構成される。コントローラは、電流の大きさの測定中に動作周波数を調整するように構成される。コントローラは、動作周波数の調整中に、略最大の大きさの電流を生成する目標周波数を識別するように構成される。
いくつかの実施形態では、信号発生器を含む無整合プラズマ源の電力出力を最適化するためのコントローラが説明される。このコントローラは、信号発生器が動作周波数で動作し、正弦波電流波形を発生させるために使用されるパルス信号を生成するように信号発生器を制御するよう構成されたプロセッサを含む。プロセッサは、正弦波電流波形の電流の大きさを受信するように構成される。プロセッサは、電流の大きさの測定中に動作周波数を調整するように構成される。プロセッサは、動作周波数の調整中に、略最大の大きさの電流を生成する目標周波数を識別するように構成される。コントローラは、プロセッサに結合されたメモリデバイスを含む。メモリデバイスは、目標周波数を格納するように構成される。
本明細書に記載の無整合プラズマ源の周波数同調のためのシステムおよび方法のいくつかの利点には、信号発生器の動作周波数を同調して、無整合プラズマ源の出力における複素電流の大きさを略最大にすることが含まれる。無整合プラズマ源の出力における複素電流と複素電圧の位相差を決定する必要はない。位相差の決定は、プラズマチャンバの様々な状態に依存する。プラズマチャンバの状態が変化するたびに、位相差を測定し、その位相差が実質的にゼロ(例えば、ゼロ)であるか、またはゼロから事前設定された範囲内にあるかどうかを決定する。いくつかの実施形態では、プラズマチャンバの状態が変化するたびに出力における複素電流の大きさを測定し、その大きさが略最大の大きさであるかどうかを決定する必要はない。
さらに、位相差に基づく動作周波数同調と比較すると、複素電流の大きさに基づく動作周波数同調のほうが信頼性が高い。無整合プラズマ源の出力における電圧波形は振動を有するので、位相差が実質的にゼロである動作周波数の値を決定することは困難である。それに比べて、コントローラのプロセッサは、無整合プラズマ源の出力における複素電流の大きさが略最大である動作周波数を決定することができる。無整合プラズマ源の出力における複素電流の出力電流波形には、振動が見られないか、または無視できる程度の振動しかない。
本明細書に記載の無整合プラズマ源の周波数同調のためのシステムおよび方法の他の利点には、使用するハードウェア設計が、位相差を決定するためのハードウェア設計と比較してより単純であることが含まれる。より単純なハードウェア設計は、無整合プラズマ源の出力における複素電流の大きさを測定する電流プローブを含んでいる。複素電圧/電流センサを使用して位相差を測定したり、または電圧センサを使用して位相差の測定を容易にしたりする必要はない。電圧センサは、無整合プラズマ源の出力における電圧波形の電圧値を測定する。電流プローブは、複素電流の電流値を測定する。電圧センサを使用すると、複素電流と電圧波形の位相差が決定される。電流プローブは、複素電圧/電流センサ、または電圧と電流との間の位相角を測定するように設計された複素電圧センサと比較すると、より単純であることに加えて大幅にコストがかからない。
他の態様は、添付の図面と併せて、以下の詳細な説明から明らかになるであろう。
実施形態は、添付の図面と併せて以下の説明を参照することによって理解される。
図1は、システムの一実施形態の図であり、信号発生器の動作周波数を制御するために電流(I)プローブを無整合プラズマ源と共に使用することを例示するための図である。
図2は、システムの一実施形態の図であり、電流プローブを無整合プラズマ源と共に使用することを例示するための図である。
図3は、図1の無整合プラズマ源または図2の無整合プラズマ源の出力における正弦波電流波形の複素電流の略最大の大きさを決定する方法を例示するグラフの一実施形態を示す図である。
図4は、図3を参照して例示された方法を詳細に説明する方法のフローチャートについての一実施形態を示す図である。
図5Aは、ハーフブリッジ回路の出力における電圧波形がハーフブリッジ回路の出力における電流信号の基本波形と同相であり、電極に供給される電力を最大化することを例示するグラフの一実施形態を示す図である。
図5Bは、電圧波形と基本波形との間の位相差が実質的にゼロであるかどうかの決定が困難であることを例示するグラフの一実施形態を示す図である。
以下の実施形態は、無整合プラズマ源(MPS)に対する周波数同調システムおよび方法を説明する。本実施形態は、これらの特定の詳細の一部またはすべてがなくても実施され得ることは明らかであろう。他の例では、本実施形態を不必要に不明瞭にしないために、周知のプロセス動作は詳細には説明されていない。
周波数同調システムおよび方法は、無整合プラズマ源の出力に結合された電流プローブを含む。電流プローブは、無整合プラズマ源の出力において複素電流の大きさを測定し、その大きさをコントローラに提供する。コントローラは、以下でさらに説明するように、その大きさが略最大であるかどうかを決定する。大きさが略最大ではない場合、コントローラは、信号発生器を制御し、信号発生器の動作周波数を変更する。動作周波数の変更により、出力における複素電流の大きさが変更される。電流プローブは、複素電流の変更後の大きさを再度測定し、変更後の大きさをコントローラに提供する。コントローラは、変更後の大きさが略最大であるかどうかを再度決定する。変更後の大きさが略最大ではないと決定すると、コントローラは、信号発生器を再度制御し、信号発生器の動作周波数を変更する。一方、無整合プラズマ源の出力における複素電流の変更後の大きさが略最大であると決定すると、コントローラは、複素電流の大きさが略最大である信号発生器の動作周波数を維持する。
図1は、システム100の一実施形態の図であり、信号発生器114の周波数を制御するために電流(I)プローブ110を無整合プラズマ源103と共に使用することを例示するための図である。本明細書で説明される無整合プラズマ源の様々な例は、2017年10月18日出願の「Matchless Plasma Source for Semiconductor Wafer Fabrication」と題する米国特許出願第15/787,660号に記載されており、上記出願の全体が参照により本明細書に組み込まれる。システム100は、信号発生器114と、ゲートドライバ回路104と、ハーフブリッジ回路108とを含む無整合プラズマ源103を含む。システム100は、さらに電流プローブ110とプラズマ負荷116を含む。
信号発生器114の一例は、無線周波数(RF)でクロック信号などのパルス信号102を生成するデジタルクロック信号発生器である。パルス信号102の別の例は、デジタル波形またはパルス列などの方形波信号である。パルス信号102は、第1の論理レベル(高または1など)と第2の論理レベル(低またはゼロなど)の間でパルスを発する。ゲートドライバ回路104は、ゲートドライバ118Aと、別のゲートドライバ118Bとを含む。ゲートドライバ118Aはオペアンプとして作用し、ゲートドライバ118BはNOTゲートとして作用する。ハーフブリッジ回路108は、トランジスタ112Aと、別のトランジスタ112Bとを含む。さらに、ハーフブリッジ回路108は、ダイオードD1と、ダイオードD2とを含む。ダイオードD1は、トランジスタ112AのドレインD端子とソースS端子との間に結合され、ダイオードD2は、トランジスタ112BのドレインD端子とソースS端子との間に結合される。電流プローブ110の一例は、大きさおよび位相を有する複素電流などの電流を測定する電流センサである。電流プローブ110は、複素電圧/電流センサではない。例えば、電流プローブ110は、ハーフブリッジ回路108の出力O11において複素電圧を測定することができず、さらに、出力O11において複素電圧/電流を測定することができない。電流は、ハーフブリッジ回路108の出力O11において測定される。
システム100は、さらにリアクタンス回路130とプラズマ負荷116を含む。リアクタンス回路130の一例は、可変コンデンサ120である。リアクタンス回路130の別の例は、固定コンデンサである。リアクタンス回路130のさらに別の例としては、互いに直列結合、並列結合、もしくはそれらを組み合わせて結合された複数のコンデンサおよび/または複数のインダクタが挙げられる。一部のコンデンサは可変であり、残りのコンデンサは固定である。別の例では、すべてのコンデンサが可変または固定である。同様に、一部のインダクタは可変であり、残りのインダクタは固定である。別の例では、すべてのインダクタが可変または固定である。
プラズマ負荷116の一例は、変圧器結合プラズマ(TCP)プラズマチャンバである。プラズマ負荷116は、変圧器TCPコイルなどの電極122と、点火時のプラズマとを含む。無整合プラズマ源103は、接続113、リアクタンス回路130、および接続126を介して電極122に結合される。接続113または接続126などの接続の一例は、導体、またはRFストラップ、またはシリンダ、またはブリッジ導体、またはそれらの組み合わせである。接続113は、出力O11をリアクタンス回路120に結合する。プラズマ負荷116は、抵抗(ここでは抵抗器によって表される)を有する。接続126は、リアクタンス回路130をプラズマ負荷116の電極122に結合する。
信号発生器114は、ゲートドライバ118Aの入力に結合され、ゲートドライバ118Bの入力にも結合される。さらに、ゲートドライバ118Aの出力は、トランジスタ112Aの入力ゲート端子に結合され、ゲートドライバ118Bの出力は、トランジスタ112Bの入力ゲート端子に結合される。トランジスタ112Aのドレイン端子Dは、直流(DC)電圧源Vdcに結合され、トランジスタ112Bのソース端子Sは、接地電位に結合される。出力O11は、トランジスタ112Aおよび112Bのソース端子に結合され、電流プローブ110の入力にも結合される。出力O11および電流プローブ110の入力は、リアクタンス回路130に結合される。電流プローブ110の出力は、信号発生器114の入力に結合される。
無整合プラズマ源103は、インピーダンス整合ネットワークまたはインピーダンス整合回路などのインピーダンス整合を除外する。さらに、いくつかの実施形態では、無整合プラズマ源103をインピーダンス整合回路に結合するRFケーブルがない。例えば、インピーダンス整合は、無整合プラズマ源103の(またはハーフブリッジ回路108の)出力O11とプラズマ負荷116の電極122との間に結合されない。インピーダンス整合は、複数の回路構成要素(インダクタおよびコンデンサなど)を含み、インピーダンス整合の出力に結合された負荷(プラズマチャンバなど)のインピーダンスを、インピーダンス整合の入力に結合されたソース(RF発生器およびRFケーブルなど)のインピーダンスと整合させる。
無整合プラズマ源103によって生成された電力の大部分は、電極122に与えられる。例えば、無整合プラズマ源103と電極122の間にインピーダンス整合およびRFケーブルがないので、電力は、無整合プラズマ源103から電極122に効率的に供給される。
集積回路が表面に形成される基板128(ウエハなど)は、プラズマ負荷116内で、プラズマ負荷116の基板支持体(下部電極またはウエハプラテンまたはチャックなど)の上面に載置される。信号発生器114は、動作周波数fRFで動作し、無線周波数である周波数fRFを有するパルス信号102を生成する。例えば、周波数fRFの範囲は、50キロヘルツ(kHz)〜100メガヘルツ(MHz)である。パルス信号102は、無線周波数において、低レベル(論理レベル0または低電力レベルなど)と高レベル(論理レベル1または高電力レベルなど)との間でパルスを発する。例示すると、パルス信号102は、無線周波数で低レベルから高レベルに遷移し、高レベルから低レベルに遷移する。
パルス信号102は、信号発生器114からゲートドライバ118A,118Bに供給される。ゲートドライバ118Aは、パルス信号102を増幅し、ゲート駆動信号106Aを生成する。また、ゲートドライバ118Bは、パルス信号102を増幅および反転し、ゲート駆動信号106Bを生成する。各ゲート駆動信号106A,106Bは、周波数fRFを有するパルス信号(例えば、方形波信号またはクロック信号またはデジタル波形)である。
ゲート駆動信号106Bは、ゲート駆動信号106Aと比較して逆パルスである。例えば、ゲート駆動信号106Aが高レベル(高電力レベルなど)である時間中またはその時間間隔中、ゲート駆動信号106Bは低レベル(低電力レベルなど)である。さらに、ゲート駆動信号106Aが低レベル(低電力レベルなど)である時間中またはその時間間隔中、ゲート駆動信号106Bは高レベル(高電力レベルなど)である。別の例として、ゲート駆動信号106Aが低レベルから高レベルに遷移する時に、またはその時間間隔中に、ゲート駆動信号106Bは高レベルから低レベルに遷移する。同様に、ゲート駆動信号106Aが高レベルから低レベルに遷移する時に、またはその時間間隔中に、ゲート駆動信号106Bは低レベルから高レベルに遷移する。
この逆同期により、トランジスタ112A,112Bは、連続的にオンになり、連続的にオフになるなど、継続的に連続動作することが可能となる。トランジスタ112Aおよび112Bは、トランジスタが同時にまたは同じ期間中にオンにならないように連続的に動作する。例えば、トランジスタ112Aがオンになると、トランジスタ112Bがオフになり、トランジスタ112Bがオンになると、トランジスタ112Aがオフになる。例示すると、トランジスタ112Aがオンである時間間隔中、またはオンになる時に、トランジスタ112Bはオフになる。さらに、トランジスタ112Bがオンである時間間隔中、またはオンになる時に、トランジスタ112Aはオフになる。
トランジスタ112Aがオンになり、トランジスタ112Bがオフになると、トランジスタ112Aの電圧は増加し、電圧がダイオードD1によって制限されるまで正になり続ける。同様に、トランジスタ112Aがオフになり、トランジスタ112Bがオンになると、トランジスタ112Bの電圧は増加し、電圧がダイオードD2によって制限されるまで負になり続ける。したがって、ダイオードD1は、トランジスタ112Aにおけるシュートスルーの可能性を低減または防止し、ダイオードD2は、トランジスタ112Bにおける電圧のシュートスルーの可能性を低減または防止する。
トランジスタ112Aがオンのとき、電流は、電圧源Vdcからトランジスタ112Aを介して出力O11に流れ、出力O11で電圧を生成する。このとき、トランジスタ112Bはオフである。トランジスタ112Bがオフのとき、出力O11からトランジスタ112Bに結合された接地電位に流れる電流はなく、電流は出力O11からリアクタンス回路130に流れる。電流は、トランジスタ112Aがオンのときに電圧源Vdcからリアクタンス回路130に押し込まれる。さらに、トランジスタ112Bがオンのとき、トランジスタ112Aはオフであり、トランジスタ112Aがオン状態の間に出力O11で生成された電圧が電流を生成する。生成された電流は、出力O11から、トランジスタ112Bに結合された接地電位に流れる。電流は、トランジスタ112Bがオンのときに出力O11から接地電位に引き込まれる。トランジスタ112Aがオフである時間間隔中、またはオフの時、電圧源Vdcからトランジスタ112Aを介して出力O11に流れる電流はない。
トランジスタ112Aおよび112Bの連続的なオンおよびオフは、出力O11において正弦波電流波形を生成するために実施される。正弦波電流波形は無線周波数(周波数fRFなど)を有する。
電流プローブ110は、出力O11で生成された正弦波電流波形の複素電流の大きさを測定してフィードバック信号124を生成し、このフィードバック信号124を信号発生器114に供給する。フィードバック信号124は、出力O11で生成された正弦波電流波形の複素電流の大きさを含む。信号発生器114は、出力O11で測定された複素電流の大きさが略最大であるかどうかを決定する。出力O11で測定された複素電流の大きさが略最大ではないと決定すると、信号発生器114はパルス信号102の周波数を変更する。周波数が変更されたパルス信号102は、ゲートドライバ118Aおよび118Bに供給される。ゲートドライバ118A,118Bは、変更後の周波数を有するパルス信号102に従ってゲート駆動信号106Aおよび106Bを修正する。例えば、ゲート駆動信号106A,106Bの無線周波数は、パルス信号102の変更後の周波数と一致するように修正される。出力O11で生成された正弦波電流波形は、修正後のゲート駆動信号106A,106Bに基づいて修正される。一例として、正弦波電流波形の無線周波数は、ゲート駆動信号106A,106Bの修正後の周波数と一致するように修正される。
電流プローブ110は、無線周波数修正後の正弦波電流波形の複素電流の大きさを測定し、その大きさを信号発生器114に提供する。無線周波数修正後の正弦波電流波形の複素電流の大きさが略最大であると信号発生器114が決定した場合、信号発生器114はパルス信号102の変更後の周波数を維持する。一方、無線周波数修正後の正弦波電流波形の複素電流の大きさが略最大ではないと決定すると、信号発生器114は、パルス信号102の変更後の周波数を変更する。出力O11での正弦波電流波形の複素電流の大きさが略最大であるとき、所定量の電力が出力O11からリアクタンス回路130を介して電極122に供給される。例えば、略最大量の電力が、出力O11からリアクタンス回路130を介して電極122に供給される。略最大量の電力は、出力O11において供給される正弦波電流波形の残りの電力量よりも大きい。ここで、残りの電力量とは、出力O11における正弦波電流波形の複素電流の大きさが略最大ではない電力量のことである。
出力O11で生成された正弦波電流波形は、無整合プラズマ源103からリアクタンス回路130に供給される。リアクタンス回路130は、正弦波電流波形の高次高調波を除去(例えば、フィルタ除去)し、基本周波数を有する整形された正弦波波形を生成する。整形された正弦波波形は整形された包絡線(エンベロープ)を有する。これについては以下でさらに説明する。
整形された正弦波波形は、基板128を処理するために、リアクタンス回路130から接続126を介して電極122に送られる。例えば、フッ素含有ガス、酸素含有ガス、窒素含有ガス、金属および誘電体堆積用の液体などの1つまたは複数のプロセス材料が、プラズマ負荷116に供給される。整形された正弦波波形およびプロセス材料を受け取ると、プラズマがプラズマ負荷116内で点火され、基板128を処理する。基板128の処理の例としては、基板128への材料の堆積、基板128のエッチング、基板128の洗浄、および基板128のスパッタリングが挙げられる。
各トランジスタ112Aおよび112Bは、金属酸化物半導体電界効果トランジスタ(MOSFET)などの電界効果トランジスタ(FET)であり、本明細書で説明されるFETはn型である。いくつかの実施形態では、n型FETの代わりに、p型FETが使用される。
様々な実施形態において、FETの代わりに、絶縁ゲートバイポーラトランジスタ(IGBT)、または金属半導体電界効果トランジスタ(MESFET)、または接合型電界効果トランジスタ(JFET)などの別のタイプのトランジスタを使用してもよい。
様々な実施形態において、電極122として使用されるTCPコイルの代わりに、チャック、または容量結合型上部電極プレート、または基板支持体、またはシャワーヘッドの上部電極が使用される。
プラズマ負荷116の他の例には、容量結合プラズマ(CCP)チャンバ、化学気相堆積(CVD)チャンバ、原子層堆積(ALD)チャンバ、プラズマ強化化学気相堆積(PECVD)チャンバ、プラズマエッチングチャンバ、プラズマ堆積チャンバ、またはプラズマ強化原子層堆積(PEALD)チャンバが挙げられる。CCPチャンバは、上部電極および下部電極を有する。上部電極は下部電極に面する容量性プレートであり、下部電極も容量性プレートである。上部電極と下部電極との間には、ギャップが存在する。
いくつかの実施形態では、信号発生器114に加えて、プロセッサが使用される。プロセッサは信号発生器114に結合される。フィードバック信号124はプロセッサに供給され、信号発生器114によって行われるものとして本明細書で説明されるあらゆる決定が信号発生器114のプロセッサによって行われる。本明細書で使用する場合、プロセッサは、本明細書ではマイクロプロセッサ、または中央処理装置(CPU)、または特定用途向け集積回路(ASIC)、またはプログラマブル論理デバイス(PLD)と呼ばれることもある。
様々な実施形態において、電流プローブ110は、出力O11とリアクタンス回路130との間の任意の点で結合される。例えば、電流プローブ110は、コンデンサ120の入力に結合される。コンデンサ120の入力は、出力O11から正弦波電流波形を受け取る。別の例として、電流プローブ110は、接続113上の点に結合される。
図2は、システム200の一実施形態の図であり、電流プローブ110を無整合プラズマ源215と共に使用することを例示するための図である。無整合プラズマ源215は、図1の無整合プラズマ源103の一例である。無整合プラズマ源215は、入力部201と出力部203とを含む。入力部201は、コントローラボード202と、ゲートドライバ211の一部とを含む。ゲートドライバ211は、図1のゲートドライバ回路104の一例である。ゲートドライバ211は、コントローラボード202に結合される。出力部204は、ゲートドライバ211の残りの部分と、ハーフブリッジFET回路218とを含む。ハーフブリッジFET回路218は、図1のハーフブリッジ回路108の一例である。ハーフブリッジFET回路218は、ゲートドライバ211に結合される。本明細書で説明されるハーフブリッジFET回路は、本明細書では増幅回路と呼ばれることもある。
コントローラボード202は、コントローラ204と、信号発生器114と、周波数入力208とを含む。周波数入力208の例としては、コントローラおよびデジタル信号プロセッサが挙げられる。例えば、周波数入力208は、コントローラ204に結合された別のコントローラである。周波数入力208またはコントローラ204のように本明細書で説明される任意のコントローラの例としては、プロセッサおよびメモリデバイスが挙げられる。本明細書で説明される周波数入力208またはコントローラ204などのコントローラの他の例としては、マイクロプロセッサ、デジタル信号プロセッサ、ASIC、CPU、プロセッサ、またはPLD、またはフィールドプログラマブルゲートアレイ(FPGA)が挙げられる。メモリデバイスの例としては、読み取り専用メモリ(ROM)およびランダムアクセスメモリ(RAM)が挙げられる。本明細書で使用されるメモリデバイスの例は、フラッシュメモリまたはハードディスクまたはダイナミックRAMまたはスタティックRAMである。信号発生器114は、400kHz、または2MHz、または13.56MHz、または27MHz、または60MHzなどの周波数fRFでパルス信号102を生成する。
ゲートドライバ211は、ゲートドライバの副部分210と、コンデンサ212と、抵抗器214と、変圧器216の一次巻線216Aとを含む。コンデンサ212は、一次巻線216Aのインダクタンスを減少させる(例えば、相殺する、または無しにする)静電容量を有する。一次巻線216Aのインダクタンスの減少により、ゲート駆動信号106A,106Bを方形状に生成することが容易になる。さらに、抵抗器214は、信号発生器114によって生成されたパルス信号102の振動を低減する。ハーフブリッジFET回路218の出力O31からは、抵抗220が見える。出力O31は、トランジスタ112Aのソース端子Sとトランジスタ112Bのドレイン端子Dとの間に存在する。出力O31は、接続113を介してリアクタンス回路130に結合される。抵抗220は、電極122における浮遊抵抗を含む。また、抵抗220は、プラズマチャンバ217内で点火されたときのプラズマにおける浮遊抵抗を含み、さらに接続126の浮遊抵抗を含む。プラズマチャンバ217は、図1のプラズマ負荷116の一例である。
ゲートドライバ211は、変圧器216の二次巻線216B,216Cを含む。ゲートドライバの副部分210は、複数のゲートドライバ210A,210Bを含む。ゲートドライバ210A,210Bの各々は、一端が正電圧源に結合され、他端が負電圧源に結合される。
ハーフブリッジFET回路218は、プッシュプル構成で互いに結合されたトランジスタ112A,トランジスタ112Bを含む。ハーフブリッジFET回路218は、点線で囲まれた部分に例示されるDCレール213をさらに含む。DCレール213は、電圧源Vdcと、各々が導体である複数の導電性要素219A,219B,219Cとを含む。導電性要素219Aは、トランジスタ112Aのドレイン端子Dおよび電圧源Vdcに結合される。さらに、導電性要素219Bは、トランジスタ112Aのソース端子Sおよびトランジスタ112Bのドレイン端子Dに結合される。また、導電性要素219Cは、トランジスタ112Bのソース端子Sおよび接地電位に結合される。
システム200は、ハーフブリッジFET回路218の出力O31に結合された電流プローブ110をさらに含む。出力O31は、図1の出力O11の一例である。出力O31は、トランジスタ112Aを介して電圧源Vdcに結合される。例えば、出力O31がトランジスタ112Aのソース端子Sに結合され、トランジスタ112Aのドレイン端子Dが電圧源Vdcに結合される。
電圧/電流(VI)プローブは、出力O31にも、出力O31とリアクタンス回路130との間の接続113上のいかなる点にも結合されないことに留意されたい。VIプローブは、出力O31における複素電流、出力O31における複素電圧、および複素電圧と複素電流の位相差を測定するセンサである。本明細書で説明される複素電圧は、大きさと位相を有する。同様に、本明細書で説明される複素電流は、大きさと位相を有する。さらに、電圧プローブは、出力O31にも、出力O31とリアクタンス回路130との間の接続113上のいかなる点にも結合されないことに留意されたい。電圧プローブは、出力O31における複素電圧を測定するセンサである。電圧プローブは、出力O31における複素電流を測定しない。電流プローブ110は、コントローラ204のプロセッサ205に結合され、フィードバック信号124を供給する。
コントローラ204のプロセッサ205は、周波数入力208を介して信号発生器114に結合される。周波数入力208は、動作周波数fRFの値を格納するメモリデバイスを有する。コントローラ204のプロセッサ205は、導体を介してDCレール213の電圧源Vdcにさらに結合される。さらに、信号発生器114の出力は、ゲートドライバ210Aおよび210Bに結合される。ゲートドライバ210Aはコンデンサ212に結合され、ゲートドライバ210Bは抵抗器214に結合される。コンデンサ212および抵抗器214は、変圧器216の一次巻線216Aに結合される。
さらに、変圧器216の二次巻線216Bはトランジスタ112Aの入力ゲート端子に結合され、変圧器216の二次巻線216Cはトランジスタ112Bの入力ゲート端子に結合される。ハーフブリッジFET回路218の出力O31はコンデンサ120に結合され、コンデンサ120は接続126を介して電極122のTCPコイルに結合される。
プロセッサ205は、制御信号を生成し、その制御信号を周波数入力208に送信する。制御信号を受信すると、周波数入力208のプロセッサは、周波数入力208のメモリデバイスから動作周波数fRFの値を得て、その値を信号発生器114に供給する。周波数入力208は、動作周波数fRFの値(2MHzまたは13.56MHzなど)を格納する。信号発生器114は、周波数入力208から動作周波数fRFの値を受信すると、動作周波数fRFを有するパルス信号102を生成する。ゲートドライバ210Aおよび210Bは、パルス信号102を増幅して増幅RF電力を生成し、その増幅RF電力を変圧器216の一次巻線216Aに供給する。
増幅RF電力の電流の流れの方向性に基づいて、二次巻線216Bまたは二次巻線216Cのいずれかが、閾値電圧を有するゲート駆動信号を生成する。例えば、増幅RF電力の電流が一次巻線216Aの正に帯電した端子(黒丸で示す)から一次巻線216Aの負に帯電した端子(黒丸なし)に流れるとき、二次巻線216Bはトランジスタ112Aをオンにする閾値電圧を有するゲート駆動信号106Aを生成し、二次巻線218Cは閾値電圧を生成せず、トランジスタ112Bはオフである。一方、増幅RF電力の電流が一次巻線216Aの負に帯電した端子から一次巻線216Aの正に帯電した端子に流れるとき、二次巻線216Cはトランジスタ112Bをオンにする閾値電圧を有するゲート駆動信号106Bを生成し、二次巻線218Bは閾値電圧を生成せず、トランジスタ112Aはオフである。
トランジスタ112Aがオンのとき、電流は、電圧源Vdcからトランジスタ112Aを介して出力O31に流れ、出力O31で電圧を生成する。このとき、トランジスタ112Bはオフである。トランジスタ112Aがオンで、トランジスタ112Bがオフのとき、出力O31における電圧は正弦波電流波形の複素電流を生成し、電流はリアクタンス回路130に流れる。出力O31における電圧は、以下でさらに説明される任意波形発生器209から受信された電圧値に従って生成される。例えば、電圧源Vdcの電圧値は、任意波形発生器209から電圧源Vdcに供給される。任意波形発生器209の一例は、コントローラである。任意波形発生器209の別の例は、デジタル信号プロセッサである。任意波形発生器209は、プロセッサ205の制御下で電圧値を電圧源Vdcに供給し、プロセッサ205に結合される。トランジスタ112Bがオフのとき、出力O31からトランジスタ112Bに結合された接地電位に流れる電流はない。トランジスタ112Bがオンのとき、トランジスタ112Aはオフであり、出力O31で生成された電圧は、出力O31からトランジスタ112Bを介してトランジスタ112Bに結合された接地電位に流れる電流を生成する。トランジスタ112Aがオフで、トランジスタ112Bがオンのとき、出力O31における電圧は正弦波電流波形の複素電流を生成し、電流はリアクタンス回路130に流れる。トランジスタ112Aがオフのとき、電圧源Vdcから出力O31に流れる電流はない。
さらに、任意波形発生器209は、電圧値を有する整形制御信号211を生成し、電圧源Vdcを任意波形発生器209に結合する導体を介して整形制御信号211を電圧源Vdcに供給する。電圧値は、例えば、0〜80ボルトの範囲であり、したがって俊敏なDCレール213がその範囲で動作する。電圧値は、電圧源のVdcによって生成された電圧信号の大きさであり、電圧信号の整形された包絡線を定義し、さらに、出力O31における正弦波電流波形の整形された包絡線を定義する。例えば、出力O31において連続波形を生成するために、電圧値は、連続波形のピークツーピークの大きさを提供する。ピークツーピークの大きさは、連続波形の整形された包絡線を定義する。別の例として、パルス形状の整形された包絡線を有する正弦波電流波形を出力O31において生成するために、電圧値は、実質的に瞬時に(例えば、一度に、または事前設定された期間中に)変更され、それにより正弦波電流波形のピークツーピークの大きさは、第1のパラメータレベル(高レベルなど)から第2のパラメータレベル(低レベルなど)に変化するか、または第2のパラメータレベルから第1のパラメータレベルに変化する。電圧値は、パルス形状の整形された包絡線を達成するために定期的に変更される。さらに別の例として、任意形状の整形された包絡線を有する正弦波電流波形を出力O31において生成するために、電圧値は、任意波形発生器209によって任意の方式で変更され、それにより正弦波電流波形のピークツーピークの大きさは、事前設定された方式で変化する。さらに別の例として、複数状態のパルス形状の整形された包絡線を有する正弦波電流波形を出力O31において生成するために、電圧値は、実質的に瞬時に(例えば、一度に)変更され、それにより正弦波電流波形のピークツーピークの大きさは、高パラメータレベルから1つまたは複数の中間レベルに変化し、その後、その1つまたは複数の中間レベルから別のレベル(低パラメータレベルまたは高パラメータレベルなど)に変化する。複数状態のパルス形状の整形された包絡線を有する正弦波電流波形は、任意の数(例えば、2〜1000の範囲)の状態を有することに留意されたい。
本明細書で使用されるパラメータレベルは、別のパラメータレベルの1つまたは複数のパラメータ値を含まない1つまたは複数のパラメータ値を含む。例えば、あるパラメータレベルにおける電力量は、異なるパラメータレベルにおける電力量よりも大きいか小さい。パラメータの例には、電流、電圧、および電力が含まれる。
ゲート駆動信号106Aおよび106Bに基づいてトランジスタ112Aおよび112Bを連続的に動作させ、電圧源Vdcを制御して電圧値を変更することによって、正弦波電流波形が出力O31において生成される。正弦波電流波形は、整形された包絡線を有する。TCPコイルのインダクタンスと組み合わせられたコンデンサ120は、正弦波電流波形を受け取り、正弦波電流波形の高次高調波を低減(例えば、除去またはフィルタリング)し、基本周波数を有する整形された正弦波波形を生成する。整形された正弦波波形も、整形された包絡線を有する。整形された正弦波波形は、コンデンサ120の出力から接続126を介して電極122のTCPコイルに供給され、プラズマチャンバ217内のプラズマを点火または維持する。プラズマは、基板128を処理するために使用される。
電流プローブ110は、出力O31における正弦波電流波形の複素電流を測定し、複素電流の大きさを含むフィードバック信号124をプロセッサ205に供給する。プロセッサ205は、出力O31において測定された複素電流の大きさが略最大であるかどうかを決定する。出力O31において測定された複素電流の大きさが略最大ではないと決定すると、プロセッサ205は、制御信号を周波数入力208に送信し、信号発生器114の動作周波数fRFの値を修正する。制御信号を受信すると、周波数入力208は、動作周波数fRFの値が修正された信号を生成して信号発生器114に送信する。周波数入力208から信号を受信すると、信号発生器は、動作周波数fRFの値が修正されたパルス信号102を生成する。したがって、出力O31において測定された複素電流の大きさが略最大になるまで、プロセッサ205は、制御信号を周波数入力208に送信し続けて、信号発生器114の動作周波数fRFを修正する。出力O31における複素電流の大きさが略最大であるとき、略最大量の電力が電極122に供給され、基板128の処理効率を改善する。
無整合プラズマ源103の構成要素(トランジスタなど)は電子的要素である。さらに、無整合プラズマ源103と電極122との間には、RF整合およびRFケーブルが存在しない。構成要素が電子的要素であること、およびRF整合とRFケーブルが存在しないことにより、再現性および一貫性を促進して、高速プラズマ点火およびプラズマ持続性を促進する。
様々な実施形態において、電流プローブ110は、出力O31とリアクタンス回路130の間の任意の点で結合される。例えば、電流プローブ110は、コンデンサ120の入力に結合される。コンデンサ120の入力は、出力O31から正弦波電流波形を受け取る。別の例として、電流プローブ110は、出力O31をリアクタンス回路130に結合する接続113上の点に結合される。
いくつかの実施形態では、プロセッサ205、任意波形発生器209、および周波数入力208によって実施されるものとして本明細書で説明される機能は、1つまたは複数のコントローラによって、または1つまたは複数のプロセッサによって実施される。
様々な実施形態において、プロセッサ205および任意波形発生器209によって実施されるものとして本明細書で説明される機能は、1つまたは複数のコントローラによって、または1つまたは複数のプロセッサによって実施される。例えば、任意波形発生器209は、プロセッサ205の一部である。例示すると、任意波形発生器209によって実施されるものとして本明細書で説明される機能は、プロセッサ205によって実施される。
いくつかの実施形態では、プロセッサ205および周波数入力208によって実施されるものとして本明細書で説明される機能は、1つまたは複数のコントローラによって、または1つまたは複数のプロセッサによって実施される。例えば、周波数入力208は、プロセッサ205の一部である。例示すると、周波数入力208によって実施されるものとして本明細書で説明される機能は、プロセッサ205によって実施される。
いくつかの実施形態では、任意波形発生器209および周波数入力208によって実施されるものとして本明細書で説明される機能は、1つまたは複数のコントローラによって、または1つまたは複数のプロセッサによって実施される。
いくつかの実施形態では、変圧器216をゲートドライバ211の一部として使用する代わりに、FETまたはIGBTまたはMESFETまたはJFETなどのトランジスタを互いに結合してゲートドライバ211の一部を形成する。
様々な実施形態において、無整合プラズマ源215は、抵抗器214、またはコンデンサ212、またはコンデンサ212と抵抗器214の両方を含まない。
いくつかの実施形態では、無整合プラズマ源215は、図1のダイオードD1およびD2を含む。
図3は、本明細書で説明される、ハーフブリッジ回路の出力(図1の出力O11または図2の出力O31など)における正弦波電流波形の複素電流の略最大の大きさを決定する方法を例示するグラフ300の一実施形態である。グラフ300は、ハーフブリッジ回路の出力における複素電流の大きさを周波数fRFに対してプロットしている。プロセッサ205(図2)は、周波数分解能Δfと、動作周波数fRFの所定の範囲とをメモリデバイス207(図2)内に格納する。所定の範囲の一例は、50kHz〜100MHzの範囲である。所定の範囲の別の例は、100kHz〜50MHzの範囲である。所定の範囲は、メモリデバイス207に格納される。ハーフブリッジ回路の出力において、動作周波数fRFが開始値fnであり、電流の大きさが|i|nである時に、またはそのような状態である所定の期間中に、プロセッサ205は、動作周波数fRFをfnからfn+1へ周波数増加方向302に向けてインクリメントし、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の対応する電流の大きさ|i|n+1を見つける。ここで、fn+1=fn+Δfである。同様に、ハーフブリッジ回路の出力において、動作周波数fRFが開始値fmであり、電流の大きさが|i|mである時に、またはそのような状態である所定の期間中に、プロセッサ205は、動作周波数fRFをfmからfm+1へ周波数増加方向302に向けてインクリメントし、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の対応する電流の大きさ|i|m+1を見つける。ここで、fm+1=fm+Δfである。
プロセッサ205は、大きさ|i|nと|i|n+1、または大きさ|i|m+1と|i|mを比較する。ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさが周波数探索方向に増加している場合(例えば、|i|nと|i|n+1を比較する場合)、プロセッサ205は、信号発生器114の動作周波数fRFの次の値fn+1まで周波数増加方向302に進み続ける。また、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさが周波数探索方向に減少している場合(例えば、|i|mと|i|m+1を比較する場合)、プロセッサ205は、周波数探索方向を逆にして、値fmをfm-1に減少させ、周波数増加方向302とは反対の周波数減少方向304に探索する。すなわち、グラフ300によって表される|i|−f曲線が、ある動作周波数fRFの値で正の勾配を有する場合、プロセッサ205はその値を増加させる。一方、グラフ300によって表される|i|−f曲線が、ある動作周波数fRFの値で負の勾配を有する場合、プロセッサ205はその値を減少させる。
動作周波数fRFが周波数増加方向302または周波数減少方向304から動作周波数fRFの値fcに達すると、ここでは、動作周波数fRFの値fc+1における|i|−f曲線の勾配が負であり、値fc-1における|i|−f曲線の勾配が正である。この時点で、プロセッサ205は探索プロセスを完了し、周波数fRFは、プロセッサ205によって、略最大の大きさ(電流の最大の大きさ|i|maxなど)を達成する値に同調される。
いくつかの実施形態では、値fcの精度および同調速度を高めるため、周波数分解能Δfはプロセッサ205によって調整可能である。周波数分解能Δfは、周波数探索方向が値fcに近づくほど(例えば、値fcから事前設定された範囲内にあるときに)小さくなる。周波数分解能Δfは、周波数探索方向が値fcから遠いほど大きくなる。
周波数探索方向は、周波数増加方向302または周波数減少方向304のいずれかであることに留意されたい。
図4は、図3を参照して例示された方法を詳細に説明する方法400のフローチャートについての一実施形態である。以下、このフローチャートについて一般的に説明する。周波数分解能をΔfと仮定する。
動作401において、電流の大きさ|i|nまたは|i|mと対応する開始周波数は、fnまたはfmである。動作402において、信号発生器114の動作周波数は、対応する電流の大きさ|i|n+1または|i|m+1を見つけるため、fn+1またはfm+1へ周波数増加方向に向けてインクリメントされる。ここで、fn+1=fn+Δfまたはfm+1=fm+Δfである。
動作404において、大きさ|i|nを|i|n+1と比較するか、または大きさ|i|mを|i|m+1と比較する。電流の大きさが周波数探索方向に増加している場合(例えば、|i|nと|i|n+1を比較する場合)、動作周波数は、動作406において周波数探索方向にfn+1まで増加する。しかし、電流の大きさが周波数探索方向に減少している場合(例えば、|i|mと|i|m+1の場合)、動作412において周波数探索方向が逆になり、動作414において周波数fmがfm-1に減少する。すなわち、図3のグラフ300によって表される|i|−f曲線が信号発生器113の現在の動作周波数で正の勾配を有する場合、動作周波数を増加させる。|i|−f曲線が信号発生器114の現在の動作周波数で負の勾配を有する場合、動作周波数を減少させる。
次に、動作408、416、410、および418を実施する。信号発生器114の動作周波数がfcに達すると、ここでは、fc+1におけるグラフ300の勾配が負であり、fc-1におけるグラフ300の勾配が正である。この時点で、信号発生器113の動作周波数探索プロセスが完了し、動作周波数は、ハーフブリッジ回路の出力における複素電流の略最大の大きさを達成する値に同調される。動作周波数がハーフブリッジ回路の出力における複素電流の略最大の大きさを達成する値に同調されると、動作420において動作周波数が最適化される。動作422に続いて、信号発生器113の動作周波数の同調の次のサイクルが行われる。例えば、方法400が繰り返される。
いくつかの実施形態では、fcの精度および同調速度を高めるため、周波数分解能Δfは調整可能である。周波数分解能Δfは、信号発生器114の動作周波数がfcに近づくほど、またはfcの少し近くにあるときほど小さくなる。周波数分解能Δfは、信号発生器114の動作周波数がfcから遠いほど大きくなる。
次に、方法400のフローチャートを詳細に説明する。動作401において、プロセッサ205は、信号発生器113を動作周波数fnまたはfmで動作させる。例えば、プロセッサ205は、信号発生器113を値fnまたはfmで動作させるため、制御信号を周波数入力208(図2)に送信する。周波数入力208は、制御信号を受信すると、値fnまたはfmを信号発生器114に提供する。信号発生器114は、値fnまたはfmを受信すると、周波数fnまたはfmを有するパルス信号102を生成する。
動作402において、プロセッサ205は、信号発生器114の動作周波数を周波数探索方向に増加させる。例えば、プロセッサ205は、値fnを別の値fn+1(=fn+Δf)に変更するため、制御信号を周波数入力208(図2)に送信する。この例では、周波数分解能Δfは増分であることに留意されたい。周波数入力208は、制御信号を受信すると、動作周波数fRFの値をfnからfn+1に変更し、値fn+1を信号発生器114に提供する。信号発生器114は、値fn+1を受信すると、周波数fn+1を有するパルス信号102を生成する。別の例として、プロセッサ205は、値fmを別の値fm+1(=fm+Δf)に変更するため、制御信号を周波数入力208(図2)に送信する。この例では、分解能Δfは増分である。周波数入力208は、制御信号を受信すると、信号発生器114の動作周波数の値をfmからfm+1に変更し、値fm+1を信号発生器114に提供する。信号発生器114は、値fm+1を受信すると、周波数fm+1を有するパルス信号102を生成する。
プロセッサ205は、動作404において、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の電流の大きさが周波数探索方向に増加しているか減少しているかを決定する。すなわち、プロセッサ205は、動作404において、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの間の勾配が正か負かを決定する。例えば、プロセッサ205は、グラフ300の勾配が大きさ|i|n+1と|i|nの間で正であるかどうかを決定する。この勾配は、大きさ|i|n+1と|i|nの差と、値fn+1とfnの差の比として、プロセッサ205により計算される。信号発生器114の動作周波数がfnであるとき、電流プローブ110は、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさ|i|nを測定し、その大きさ|i|nをプロセッサ205に送信する。電流プローブ110は、動作周波数fRFの値がfn+1であるハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさ|i|n+1を測定し、その大きさ|i|n+1をプロセッサ205に送信する。別の例として、プロセッサ205は、グラフ300の勾配が大きさ|i|m+1と|i|mの間で正であるかどうかを決定する。この勾配は、大きさ|i|m+1と|i|mの差と、値fm+1とfmの差の比として、プロセッサ205により計算される。周波数fRFがfmであるとき、電流プローブ110は、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさ|i|mを測定し、その大きさ|i|mをプロセッサ205に送信する。電流プローブ110は、動作周波数fRFの値がfm+1であるハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさ|i|m+1を測定し、その大きさ|i|m+1をプロセッサ205に送信する。さらに別の例として、プロセッサ205は、大きさ|i|n+1が大きさ|i|nよりも大きいかどうかを決定するか、または大きさ|i|m+1が大きさ|i|mよりも大きいかどうかを決定する。大きさ|i|n+1が大きさ|i|nよりも大きい、または大きさ|i|m+1が大きさ|i|mよりも大きいと決定すると、プロセッサ205は、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の電流の大きさが周波数探索方向に増加していると決定する。
ハーフブリッジ回路の出力における正弦波電流波形の複素電流の電流の大きさが周波数探索方向に増加していると決定すると、プロセッサ205は、動作406において、信号発生器114の動作周波数を周波数探索方向に増加し続ける。すなわち、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの勾配が正であると決定すると、プロセッサ205は、動作406において、信号発生器114の動作周波数を勾配が正である周波数探索方向に増加し続ける。
このようにして、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の電流の大きさが動作408において周波数探索方向に減少し始めるまで、プロセッサ205は、動作406において、信号発生器114の動作周波数をインクリメントし続ける。すなわち、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの勾配が動作408において負になるまで、プロセッサ205は、動作406において信号発生器114の動作周波数をインクリメントし続ける。例えば、プロセッサ205は、周波数をfn+1からfc-1に増加させ続け、さらに動作周波数fRFをfc-1からfcにインクリメントし、そしてさらに動作周波数fRFをfcからfc+1にインクリメントする。値fc-1とfcの差はΔfに等しく、値fc+1とfcの差はΔfに等しいことに留意されたい。この例において、プロセッサ205は、大きさ|i|cが大きさ|i|c-1よりも大きいこと、および大きさ|i|c+1が大きさ|i|cよりも小さいことを決定して、ハーフブリッジ回路の出力における複素電流の大きさが動作周波数fRFの増加に伴って増加していないことを決定する。例を続けると、値fc-1に対して、電流プローブ110によって測定されるハーフブリッジ回路の出力における複素電流の大きさは|i|c-1である。そして、値fcに対して、電流プローブ110によって測定されるハーフブリッジ回路の出力における複素電流の大きさは|i|cである。また、例を続けると、動作周波数fRFの値fc+1に対して、電流プローブ110によって測定されるハーフブリッジ回路の出力における複素電流の大きさは|i|c+1である。
別の例として、プロセッサ205は、ハーフブリッジ回路の出力におけるグラフ300の勾配が負になるまで、動作周波数fRFをfn+1からfc-1に、fc-1からfcに、そしてfcからfc+1にインクリメントし続ける。この例では、プロセッサ205は、大きさ|i|cおよび|i|c-1に対するグラフ300の勾配が正であり、かつ、大きさ|i|c+1および|i|cに対するグラフ300の勾配が負であるかどうかを決定する。大きさ|i|cおよび|i|c-1に対する勾配は、大きさ|i|cと|i|c-1の差と、値fcとfc-1の差の比として、プロセッサ205により計算される。大きさ|i|c+1および|i|cに対する勾配は、大きさ|i|c+1と|i|cの差と、値fc+1とfcの差の比として、プロセッサ205により計算される。プロセッサ205は、大きさ|i|cおよび|i|c-1に対するグラフ300の勾配が、動作周波数fRFのfc-1からfcへのインクリメントを伴う正の勾配であること、かつ、大きさ|i|c+1および|i|cに対するグラフ300の勾配が負であり、動作周波数fRFのfcからfc+1へのインクリメントを伴う負の勾配であることを決定して、ハーフブリッジ回路の出力における複素電流の大きさが信号発生器114の動作周波数の増加に伴って減少していることを決定する。
動作408において、ハーフブリッジ回路の出力における複素電流の大きさが信号発生器114の動作周波数の増加に伴って減少し始めたと決定すると、プロセッサ205は、ハーフブリッジ回路の出力における複素電流が略最大である値fcで信号発生器114を動作させるため、動作410において、周波数値fc+1をfcにデクリメントする制御信号を周波数入力208に送信する。すなわち、動作408において、ハーフブリッジ回路の出力における複素電流の勾配が信号発生器114の動作周波数の増加に伴って負になったと決定すると、プロセッサ205は、ハーフブリッジ回路の出力における複素電流が略最大である値fcで信号発生器114を動作させるため、動作410において、周波数値fc+1をfcにデクリメントする制御信号を周波数入力208に送信する。プロセッサ205から制御信号を受信すると、周波数入力208は信号発生器114に値fcを供給する。信号発生器114は、周波数入力208から値fcを受信すると、値fcを有するパルス信号102を生成する。
一方、動作404において、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の電流の大きさが周波数探索方向に減少していると決定すると、プロセッサ205は、動作412において、周波数探索方向を周波数探索方向と反対の方向に変更する。すなわち、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの勾配が負であると決定すると、プロセッサ205は、動作412において、周波数探索方向を反対方向に変更し、信号発生器114の動作周波数を減少させる。例えば、プロセッサ205は、値fmを別の値fm-1(=fm−Δf)に変更するため、動作412において、制御信号を周波数入力208(図2)に送信する。この例では、分解能Δfは減分である。周波数入力208は、制御信号を受信すると、信号発生器114の動作周波数の値をfmからfm-1に変更し、値fm-1を信号発生器114に提供する。信号発生器114は、値fm-1を受信すると、周波数fm-1を有するパルス信号102を生成する。
ハーフブリッジ回路の出力における複素電流の大きさが動作周波数の減少に伴って減少することが別の動作416において決定されるまで、プロセッサ205は、動作414において、信号発生器114の動作周波数を減少させ続ける。すなわち、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの勾配が正になることが動作416において決定されるまで、プロセッサ205は、動作414において動作周波数を減少させ続ける。例えば、プロセッサ205は、信号発生器114の動作周波数をfm-1からfc+1にデクリメントし続け、さらに動作周波数fRFをfc+1からfcにデクリメントし、そしてさらに動作周波数fRFをfcからfc-1にデクリメントする。この例において、プロセッサ205は、大きさ|i|cが大きさ|i|c+1よりも大きいこと、および大きさ|i|c-1が大きさ|i|cよりも小さいことを決定して、ハーフブリッジ回路の出力における複素電流の大きさが信号発生器114の動作周波数の減少に伴って減少することを決定する。別の例として、プロセッサ205は、ハーフブリッジ回路の出力におけるグラフ300の勾配が正になるまで、動作周波数fRFをfm-1からfc+1に減少させ続け、さらに動作周波数fRFをfc+1からfcにデクリメントし、そしてさらに動作周波数fRFをfcからfc-1にデクリメントする。この例では、プロセッサ205は、大きさ|i|c+1および|i|cに対するグラフ300の勾配が負であり、かつ、大きさ|i|cおよび|i|c-1に対するグラフ300の勾配が正であると決定する。
ハーフブリッジ回路の出力における複素電流の大きさが信号発生器113の動作周波数の減少に伴って減少していると決定すると、プロセッサ205は、ハーフブリッジ回路の出力における複素電流が略最大である値fcで信号発生器114を動作させるため、動作418において、周波数値fc-1をfcにインクリメントする制御信号を周波数入力208に送信する。すなわち、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさの勾配が正になったと決定すると、プロセッサ205は、ハーフブリッジ回路の出力における複素電流が略最大である値fcで信号発生器114を動作させるため、動作418において、周波数値fc-1をfcにインクリメントする制御信号を周波数入力208に送信する。動作420によって表されるように、動作周波数の値がfcであるとき、動作周波数が最適化される。
いくつかの実施形態では、本明細書で使用されるハーフブリッジ回路の出力は、出力O11(図1)であるか、または出力O11とリアクタンス回路130の間の任意の点である。例示すると、ハーフブリッジ回路の出力は、出力O11をリアクタンス回路130の入力に結合する接続113上の点である。
様々な実施形態において、本明細書で使用されるハーフブリッジ回路の出力は、出力O31(図2)であるか、または出力O31とリアクタンス回路130の間の任意の点である。例示すると、ハーフブリッジ回路の出力は、出力O31をリアクタンス回路130の入力に結合する接続113上の点である。
いくつかの実施形態では、プロセッサは、周波数探索方向が値fcに近づくにつれ(例えば、値fcから事前設定された範囲内にあるときに)周波数分解能Δfを増加させる。例えば、プロセッサ205は、値fnと値fn-1の差または値fn+1と値fnの差と比較して、値fcと値fc-1の差を小さくする。別の例として、プロセッサ205は、値fnと値fn-1の差または値fn+1と値fnの差と比較して、値fc+1と値fcの差を小さくする。別の例として、プロセッサ205は、値fm-1と値fmの差または値fm+1と値fmの差と比較して、値fcと値fc-1の差を小さくする。別の例として、プロセッサ205は、値fm-1と値fmの差または値fm+1と値fmの差と比較して値fc+1と値fcの差を小さくする。
これらの実施形態では、周波数探索方向が値fcに近づいていることを決定するために、プロセッサ205は、グラフ300の勾配がゼロから事前定義された範囲内にあるかどうかを決定する。例えば、動作周波数fRFが値fc-1にあるとき、プロセッサ205は、大きさ|i|cおよび|i|c-1に対する勾配がゼロから事前定義された範囲内にあると決定する。大きさ|i|cおよび|i|c-1に対する勾配がゼロから事前定義された範囲内にあると決定すると、プロセッサ205は、値fcと値fc-1の差Δfを、値fn+1と値fnまたは値fm-1と値fmの差Δfと比較して小さくする。別の例として、動作周波数fRFが値fc+1にあるとき、プロセッサ205は、大きさ|i|cおよび|i|c+1に対する勾配がゼロから事前定義された範囲内にあると計算する。大きさ|i|cおよび|i|c+1に対する勾配がゼロから事前定義された範囲内にあると決定すると、プロセッサ205は、値fcと値fc+1の差Δfを、値fm-1と値fmまたは値fm+1と値fmの差Δfと比較して小さくする。
いくつかの実施形態では、プロセッサ205は、メモリデバイス207内に、動作周波数fRFのすべての値およびハーフブリッジ回路の出力における正弦波電流波形の複素電流のすべての大きさを格納する。プロセッサ205は、メモリデバイス207からの動作周波数fRFの値にアクセスし、動作周波数fRFで動作するように信号発生器114を制御する。
いくつかの実施形態では、略最大の大きさの一例は、値fn-1、fn、fn+1、fc-1、fc、fc+1、fm-1、fm、およびfm+1のように動作周波数値に対して測定された複素電流のすべての大きさの中で最大の大きさ|i|maxである複素電流の大きさであることに留意されたい。略最大の大きさの別の例は、最大の大きさではないが、最大の大きさ|i|maxから事前定義された範囲内にある複素電流の大きさである。事前定義された範囲は、メモリデバイス207に格納され、プロセッサ205によってアクセスされる。例示すると、略最大の大きさは、グラフ300の勾配がゼロである最大の大きさ|i|maxから事前定義された範囲内にある複素電流の大きさである。様々な実施形態において、事前定義された範囲は、大きさ|i|c+1と|i|cの差または大きさ|i|cと|i|c-1の差よりも小さい。
図5Aは、ハーフブリッジ回路の出力における電圧波形502がハーフブリッジ回路の出力における電流信号の基本波形504と同相であり、電極122(図1)に供給される電力を最大化することを例示するグラフ500の一実施形態である。グラフ500は、電圧波形502および基本波形504を時間tに対してプロットしている。電圧波形502は、ハーフブリッジ回路の出力における正弦波電流波形の電圧値を表す。さらに、基本波形504は、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさを表す。電圧波形502が基本波形504と同相であるとき、略最大量の電力が電極122に供給されていることに留意されたい。
いくつかの実施形態では、VIプローブがハーフブリッジ回路の出力に結合され、電圧波形502の電圧値およびハーフブリッジ回路の出力における電流信号の値を測定する。VIプローブは、電圧波形502と基本波形504の位相差を測定し、その位相差をプロセッサ(図示せず)に送信する。プロセッサ(図示せず)は、電圧波形502が基本波形504と同相であるかどうかを決定する。例えば、プロセッサ(図示せず)は、位相差が実質的にゼロ(例えば、ゼロ)であるか、またはゼロから事前設定された範囲内にあるかどうかを決定する。プロセッサ(図示せず)は、位相差が実質的にゼロになるまで動作周波数fRFを変更する。図1のシステム100および図2のシステム200では、そのようなVIプローブは使用されない。例えば、VIプローブは、ハーフブリッジ回路の出力に、または出力とリアクタンス回路130との間に結合されていない。むしろ、電流プローブ110が、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさを測定するために使用されている。
図5Bは、位相差が実質的にゼロであるかどうかの決定が困難であることを例示するグラフ520の一実施形態である。グラフ520は、ハーフブリッジ回路の出力における電圧信号522および基本波形504を時間tに対してプロットしている。図5Bに例示されるように、電圧信号522は完全な方形ではない。むしろ、電圧信号522は、ある状態から別の状態への電圧信号522の各遷移中、リップルなどの振動を有する。電圧信号522の振動は、電圧信号522の立ち上がりエッジまたは立ち下がりエッジの直後に発生する。したがって、位相差が実質的にゼロである動作周波数fRFをプロセッサ(図示せず)が決定することは困難である。このような振動のため、位相差を実質的にゼロにすることが達成すべき移動目標となる。また、振動のピークの大きさまたは振動数は、プラズマチャンバの状態の変化に伴って変化する(例えば、増減する)。プラズマチャンバの状態の例には、プラズマチャンバの上部電極と下部電極との間のギャップ、プラズマチャンバ内の圧力、プラズマチャンバ内の温度、プラズマチャンバ内で使用されるプロセス材料のタイプ、またはそれらの2つ以上の組み合わせが挙げられる。プラズマチャンバの状態が変化するたびに、動作周波数fRFなどの設定値は、位相差を実質的にゼロとするよう手動で調整される。手動調整には、誤差が存在する。振動の変化により、位相差をゼロにすることがより困難になる。これに対し、プロセッサ205(図2)は、ハーフブリッジ回路の出力における正弦波電流波形の複素電流の大きさが略最大になる動作周波数fRFの値を決定する。位相差を実質的にゼロにするように動作周波数fRFを同調する代わりに、動作周波数fRFは、ハーフブリッジ回路の出力において複素電流の略最大の大きさを達成するように同調される。電圧源Vdcの電圧について略最大の大きさが達成されると、信号発生器114(図1)の動作周波数fRFが同調される。
いくつかの実施形態では、略最大の大きさが達成される動作周波数fRFは、プラズマチャンバ217(図1)の状態の変化に関係なく同じである。例えば、プラズマチャンバ217内の圧力が第1のレベルから別のレベルに変化すると、略最大の大きさが達成される動作周波数RFはfcである。別の例として、プラズマチャンバ217(図2)内の温度が第1のレベルから別のレベルに変化すると、略最大の大きさが達成される動作周波数RFはfcである。したがって、プラズマチャンバ217の状態に変化があるとき、ハーフブリッジ回路の出力における複素電流の大きさを測定する必要はない。さらに、プラズマチャンバ217の状態に変化があるとき、ハーフブリッジ回路の出力における複素電流の大きさが略最大であるかどうかを決定する必要はない。
いくつかの実施形態において、「〜よりも大きくない」という用語は、本明細書では「〜以下である」と呼ばれることもあり、これらの用語は本明細書では互換的に使用されることに留意されたい。
本明細書で説明される実施形態は、ハンドヘルドハードウェアユニット、マイクロプロセッサシステム、マイクロプロセッサを使用した家電またはプログラム可能な家電、ミニコンピュータ、メインフレームコンピュータなどを含む様々なコンピュータシステム構成で実施され得る。本明細書で説明される実施形態はまた、コンピュータネットワークを介してリンクされるリモート処理ハードウェアユニットによってタスクが実施される分散型コンピューティング環境で実施することもできる。
いくつかの実施形態では、コントローラ(例えば、ホストシステム)はシステムの一部であり、そのようなシステムは上述した例の一部であってもよい。システムは、1つまたは複数の処理ツール、1つまたは複数のチャンバ、1つまたは複数の処理用プラットフォーム、および/または特定の処理構成要素(ウエハ台座、ガス流システムなど)を含む半導体処理装置を含む。システムは、半導体ウエハまたは基板の処理前、処理中、および処理後のシステム動作を制御するための電子機器と一体化される。そのような電子機器は「コントローラ」と呼ばれ、システムの様々な構成要素または副部品を制御してもよい。コントローラは、処理要件および/またはシステムのタイプに応じて、本明細書に開示されるプロセスのいずれかを制御するようにプログラムされる。そのようなプロセスとしては、処理ガスの供給、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、RF発生器設定、RF整合回路設定、周波数設定、流量設定、流体供給設定、位置および動作設定、ツールに対するウエハの搬入と搬出、ならびに、システムに接続または連動する他の搬送ツールおよび/またはロードロックに対するウエハの搬入と搬出が含まれる。
広義には、多様な実施形態において、コントローラは、命令を受信し、命令を発行し、動作を制御し、洗浄動作を可能にし、エンドポイント測定を可能にするなどの様々な集積回路、論理、メモリ、および/またはソフトウェアを有する電子機器として定義される。集積回路は、プログラム命令を記憶するファームウェアの形式のチップ、デジタル信号プロセッサ(DSP)、ASICとして定義されたチップ、PLD、1つまたは複数のマイクロプロセッサ、またはプログラム命令(例えば、ソフトウェア)を実行するマイクロコントローラを含む。プログラム命令は、様々な個々の設定(またはプログラムファイル)の形式でコントローラに通信される命令であって、プロセスを半導体ウエハ上で、または半導体ウエハ用に実行するための動作パラメータを定義する。動作パラメータは、いくつかの実施形態では、1つまたは複数の層、材料、金属、酸化物、ケイ素、二酸化ケイ素、表面、回路、および/またはウエハダイの製作における1つまたは複数の処理ステップを実現するためプロセスエンジニアによって定義されるレシピの一部である。
コントローラは、いくつかの実施形態では、システムと統合または結合されるか、他の方法でシステムにネットワーク接続されるコンピュータの一部であるか、またはそのようなコンピュータに結合されるか、またはそれらの組み合わせである。例えば、コントローラは、「クラウド」内にあるか、ファブホストコンピュータシステムのすべてもしくは一部であり、これによりウエハ処理のリモートアクセスが可能となる。コントローラは、システムへのリモートアクセスを可能にして製作動作の現在の進捗状況を監視し、過去の製作動作の履歴を検討し、複数の製作動作から傾向または性能基準を検討し、現在の処理のパラメータを変更し、現在の処理に続く処理ステップを設定するか、または新しいプロセスを開始する。
いくつかの実施形態では、リモートコンピュータ(例えば、サーバ)は、コンピュータネットワークを通じてプロセスレシピをシステムに提供する。そのようなコンピュータネットワークは、ローカルネットワークまたはインターネットを含む。リモートコンピュータは、パラメータおよび/または設定のエントリまたはプログラミングを可能にするユーザインターフェースを含み、そのようなパラメータおよび/または設定は、その後リモートコンピュータからシステムに通信される。いくつかの例では、コントローラは、ウエハを処理するための設定の形式で命令を受信する。設定は、ウエハに対して実施されるプロセスのタイプ、およびコントローラが連動または制御するツールのタイプに特有のものであることを理解されたい。したがって、上述したように、コントローラは、例えば、互いにネットワーク接続され共通の目的(本明細書で説明されるプロセスの履行など)に向けて協働する1つまたは複数の個別のコントローラを含むことによって分散される。このような目的のための分散型コントローラの一例として、チャンバ上の1つまたは複数の集積回路であって、(例えば、プラットフォームレベルで、またはリモートコンピュータの一部として)遠隔配置されておりチャンバにおけるプロセスを制御するよう組み合わせられる1つまたは複数の集積回路と通信するものが挙げられる。
限定はしないが、様々な実施形態において、システムは、プラズマエッチングチャンバ、堆積チャンバ、スピンリンスチャンバ、金属めっきチャンバ、洗浄チャンバ、ベベルエッジエッチングチャンバ、物理気相堆積(PVD)チャンバ、化学気相堆積(CVD)チャンバ、原子層堆積(ALD)チャンバ、原子層エッチング(ALE)チャンバ、イオン注入チャンバ、ならびに半導体ウエハの製作および/または製造に関連するか使用される任意の他の半導体処理チャンバを含む。
さらに、上述の動作は、トランス結合プラズマ(TCP)リアクタを参照して説明されているが、いくつかの実施形態では、上述の動作は、他のタイプのプラズマチャンバ、例えば、導体ツールなどに適用されることに留意されたい。
上述のように、ツールによって実施されるプロセス動作に応じて、コントローラは、1つまたは複数の他のツール回路もしくはモジュール、他のツール構成要素、クラスタツール、他のツールインターフェース、隣接するツール、近接するツール、工場全体に位置するツール、メインコンピュータ、別のコントローラ、または半導体製造工場内のツール場所および/もしくはロードポートに対してウエハの容器を搬入および搬出する材料搬送に使用されるツールと通信する。
上記の実施形態を念頭に置いて、実施形態のいくつかは、コンピュータシステムに格納されたデータを伴う様々なコンピュータ実装動作を用いることを理解されたい。これらのコンピュータ実装動作は、物理量を操作する動作である。
実施形態のいくつかはまた、これらの動作を実施するためのハードウェアユニットまたは装置に関する。装置は、専用コンピュータ用に特別に構築されている。専用コンピュータとして定義されるとき、コンピュータは、その専用の目的のために動作可能でありつつ、専用の目的の一部ではない他の処理、プログラム実行、またはルーチンを実施する。
いくつかの実施形態では、本明細書に記載される動作は、選択的にアクティブ化されるコンピュータによって実施されるか、コンピュータメモリに格納された1つまたは複数のコンピュータプログラムによって構成されるか、またはコンピュータネットワークを介して取得される。コンピュータネットワークを介してデータが取得される場合、そのデータは、コンピュータネットワーク上の他のコンピュータ(例えば、計算資源のクラウド)によって処理されてもよい。
本明細書で説明される1つまたは複数の実施形態は、非一時的コンピュータ可読媒体上のコンピュータ可読コードとして製作することもできる。非一時的コンピュータ可読媒体は、データを格納する任意のデータストレージハードウェアユニット(例えば、メモリデバイスなど)であり、データはその後コンピュータシステムによって読み取られる。非一時的コンピュータ可読媒体の例は、ハードドライブ、ネットワーク接続ストレージ(NAS)、ROM、RAM、コンパクトディスクROM(CD−ROM)、CDレコーダブル(CD−R)、CDリライタブル(CD−RW)、磁気テープ、ならびに他の光学および非光学データストレージハードウェアユニットを含む。いくつかの実施形態では、非一時的コンピュータ可読媒体は、コンピュータ可読コードが分散方式で格納および実行されるように、ネットワーク結合コンピュータシステム上に分散されたコンピュータ可読有形媒体を含む。
上記のいくつかの方法動作は特定の順序で提示されたが、様々な実施形態において、各方法動作間に他のハウスキーピング動作が実施されるか、または各方法動作がわずかに異なる時間に発生するように調整されるか、または各方法動作を様々な間隔で発生可能にするシステムに分散されるか、または上述の順序とは異なる順序で実施されることを理解されたい。
さらに、一実施形態では、本開示で説明される様々な実施形態で説明される範囲から逸脱することなく、上述の任意の実施形態の1つまたは複数の特徴が他の任意の実施形態の1つまたは複数の特徴と組み合わされることに留意されたい。
前述の実施形態は、明確な理解のために多少詳しく説明されているが、一定の変更および修正を添付の特許請求の範囲の範囲内で実施できることは明らかであろう。したがって、本実施形態は、限定ではなく例示と見なされるべきであり、実施形態は本明細書に述べられる詳細に限定されるべきではなく、添付の特許請求の範囲の範囲および均等物内で修正することができる。

Claims (21)

  1. 信号発生器を含む無整合プラズマ源の電力出力を最適化するための方法であって、
    前記信号発生器が動作周波数で動作し、正弦波電流波形を発生させるために使用されるパルス信号を生成するように、前記信号発生器を制御することと、
    前記正弦波電流波形の電流の大きさを測定することと、
    前記電流の大きさを測定し続けている間に前記動作周波数を調整することと、
    前記調整中に、略最大の大きさの電流を生成する目標周波数を識別することと
    を含む、方法。
  2. 請求項1に記載の方法であって、
    前記目標周波数は、前記信号発生器の動作のためのものである、方法。
  3. 請求項1に記載の方法であって、
    前記動作周波数を調整することは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の増分量だけインクリメントすることを含む、方法。
  4. 請求項1に記載の方法であって、
    前記動作周波数を調整することは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の減分量だけデクリメントすることを含む、方法。
  5. 請求項1に記載の方法であって、
    前記電流の大きさが増幅回路の出力において測定され、前記増幅回路がゲートドライバ回路に結合され、前記ゲートドライバ回路が前記信号発生器に結合される、方法。
  6. 請求項1に記載の方法であって、
    前記電流の大きさを前記測定することは、電圧/電流センサまたは電圧センサによって実施されない、方法。
  7. 請求項1に記載の方法であって、
    前記略最大の大きさは、前記動作周波数が調整される電流のすべての値の中の最大値である、方法。
  8. 無整合プラズマ源の電力出力を最適化するためのシステムであって、
    信号発生器と、
    前記信号発生器に結合されたゲートドライバ回路と、
    前記ゲートドライバ回路に結合された増幅回路と、
    前記信号発生器に結合されたコントローラであって、前記信号発生器が動作周波数で動作し、正弦波電流波形を発生させるために使用されるパルス信号を生成するように前記信号発生器を制御するよう構成されるコントローラと、
    前記増幅回路の出力に結合された電流プローブであって、前記電流プローブは、前記正弦波電流波形の電流の大きさを測定するように構成される電流プローブと
    を備え、
    前記コントローラは、前記電流の大きさの測定中に前記動作周波数を調整するように構成され、
    前記コントローラは、前記動作周波数の前記調整中に、略最大の大きさの電流を生成する目標周波数を識別するように構成される、
    システム。
  9. 請求項8に記載のシステムであって、
    前記目標周波数は、前記信号発生器の動作のためのものである、システム。
  10. 請求項8に記載のシステムであって、
    前記コントローラは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の増分量だけインクリメントすることによって前記動作周波数を調整するように構成される、システム。
  11. 請求項8に記載のシステムであって、
    前記コントローラは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の減分量だけデクリメントすることによって前記動作周波数を調整するように構成される、システム。
  12. 請求項8に記載のシステムであって、
    前記電流の大きさが前記増幅回路の前記出力において測定される、システム。
  13. 請求項8に記載のシステムであって、
    前記電流の大きさは電圧/電流センサまたは電圧センサによって測定されない、システム。
  14. 請求項8に記載のシステムであって、
    前記略最大の大きさは、前記動作周波数が調整される電流のすべての値の中の最大値である、システム。
  15. 信号発生器を含む無整合プラズマ源の電力出力を最適化するためのコントローラであって、
    前記コントローラは、プロセッサと、前記プロセッサに結合されたメモリデバイスとを備えており、
    前記プロセッサは、前記信号発生器が動作周波数で動作し、正弦波電流波形を発生させるために使用されるパルス信号を生成するように前記信号発生器を制御するよう構成され、
    前記プロセッサは、前記正弦波電流波形の電流の大きさを受信するように構成され、
    前記プロセッサは、前記電流の大きさの測定中に前記動作周波数を調整するように構成され、
    前記プロセッサは、前記動作周波数の前記調整中に、略最大の大きさの電流を生成する目標周波数を識別するように構成されており、
    前記メモリデバイスは、前記目標周波数を格納するように構成されている、コントローラ。
  16. 請求項15に記載のコントローラであって、
    前記目標周波数は、前記信号発生器の動作のためのものである、コントローラ。
  17. 請求項15に記載のコントローラであって、
    前記動作周波数を調整するために、前記プロセッサは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の増分量だけインクリメントするように構成される、コントローラ。
  18. 請求項15に記載のコントローラであって、
    前記動作周波数を調整するために、前記プロセッサは、前記電流の大きさが減少し始めるまで、前記動作周波数を所定の減分量だけデクリメントするように構成される、コントローラ。
  19. 請求項15に記載のコントローラであって、
    前記電流の大きさは増幅回路の出力において測定される、コントローラ。
  20. 請求項15に記載のコントローラであって、
    前記電流は、電流プローブによって測定され、電圧/電流センサまたは電圧センサによって測定されない、コントローラ。
  21. 請求項15に記載のコントローラであって、
    前記略最大値は、前記動作周波数が調整される電流のすべての値の中の最大値である、コントローラ。
JP2020546991A 2018-03-14 2019-03-07 無整合プラズマ源に対する周波数同調 Active JP7421487B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/921,266 2018-03-14
US15/921,266 US10672590B2 (en) 2018-03-14 2018-03-14 Frequency tuning for a matchless plasma source
PCT/US2019/021172 WO2019177866A1 (en) 2018-03-14 2019-03-07 Frequency tuning for a matchless plasma source

Publications (3)

Publication Number Publication Date
JP2021515968A true JP2021515968A (ja) 2021-06-24
JPWO2019177866A5 JPWO2019177866A5 (ja) 2022-05-20
JP7421487B2 JP7421487B2 (ja) 2024-01-24

Family

ID=67906091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020546991A Active JP7421487B2 (ja) 2018-03-14 2019-03-07 無整合プラズマ源に対する周波数同調

Country Status (6)

Country Link
US (2) US10672590B2 (ja)
JP (1) JP7421487B2 (ja)
KR (1) KR20200121909A (ja)
CN (1) CN111868875B (ja)
TW (1) TWI816759B (ja)
WO (1) WO2019177866A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431428B2 (en) * 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
KR20240009544A (ko) 2017-12-07 2024-01-22 램 리써치 코포레이션 반도체 rf 플라즈마 프로세싱을 위한 펄싱 내 rf 펄싱
CN110648888B (zh) * 2018-06-27 2020-10-13 北京北方华创微电子装备有限公司 射频脉冲匹配方法及其装置、脉冲等离子体产生系统
WO2020068107A1 (en) * 2018-09-28 2020-04-02 Lam Research Corporation Systems and methods for optimizing power delivery to an electrode of a plasma chamber
US11515123B2 (en) * 2018-12-21 2022-11-29 Advanced Energy Industries, Inc. Apparatus and system for modulated plasma systems
US11804362B2 (en) * 2018-12-21 2023-10-31 Advanced Energy Industries, Inc. Frequency tuning for modulated plasma systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474648A (en) * 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
US5556549A (en) * 1994-05-02 1996-09-17 Lsi Logic Corporation Power control and delivery in plasma processing equipment
JPH10241894A (ja) * 1996-11-04 1998-09-11 Applied Materials Inc 周波数サーボ及び電力、電圧、電流又はdI/dtのコントロールを用いた高周波プラズマリアクタのための高周波同調方法
JP2009514176A (ja) * 2005-10-31 2009-04-02 エム ケー エス インストルメンツ インコーポレーテッド 無線周波数電力搬送システム
JP2017079127A (ja) * 2015-10-20 2017-04-27 国立研究開発法人産業技術総合研究所 誘導性結合プラズマ発生装置、セルフバイアス印加装置、プラズマ処理装置、プラズマ生成方法、およびセルフバイアス印加方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6472822B1 (en) * 2000-04-28 2002-10-29 Applied Materials, Inc. Pulsed RF power delivery for plasma processing
US6887339B1 (en) 2000-09-20 2005-05-03 Applied Science And Technology, Inc. RF power supply with integrated matching network
CA2529794A1 (en) * 2003-06-19 2004-12-29 Plasma Control Systems Llc Plasma production device and method and rf driver circuit with adjustable duty cycle
GB0330019D0 (en) * 2003-12-24 2004-01-28 Powell David J Apparatus and method for controlling discharge lights
US8012887B2 (en) * 2008-12-18 2011-09-06 Applied Materials, Inc. Precursor addition to silicon oxide CVD for improved low temperature gapfill
KR101767697B1 (ko) 2009-10-20 2017-08-11 램 리써치 코포레이션 플라즈마 프로세싱 시스템에서의 전류 제어
DE102010055889B4 (de) * 2010-12-21 2014-04-30 Ushio Denki Kabushiki Kaisha Verfahren und Vorrichtung zur Erzeugung kurzwelliger Strahlung mittels einer gasentladungsbasierten Hochfrequenzhochstromentladung
US9368329B2 (en) * 2012-02-22 2016-06-14 Lam Research Corporation Methods and apparatus for synchronizing RF pulses in a plasma processing system
KR102085496B1 (ko) * 2012-08-28 2020-03-05 에이이에스 글로벌 홀딩스 피티이 리미티드 넓은 다이내믹 레인지 이온 에너지 바이어스 제어; 고속 이온 에너지 스위칭; 이온 에너지 제어와 펄스동작 바이어스 서플라이; 및 가상 전면 패널
CA2913769A1 (en) * 2013-06-14 2014-12-18 University Of Virginia Patent Foundation Apparatus and techniques for fourier transform millimeter-wave spectroscopy
US20140367043A1 (en) * 2013-06-17 2014-12-18 Applied Materials, Inc. Method for fast and repeatable plasma ignition and tuning in plasma chambers
JP6365026B2 (ja) 2014-07-03 2018-08-01 日本精工株式会社 直動案内装置
JP5797313B1 (ja) * 2014-08-25 2015-10-21 株式会社京三製作所 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法
CN112787536A (zh) * 2014-12-12 2021-05-11 株式会社达谊恒 高频电源
KR20180116225A (ko) * 2016-01-22 2018-10-24 에스피피 테크놀로지스 컴퍼니 리미티드 플라즈마 제어 장치
US9966231B2 (en) 2016-02-29 2018-05-08 Lam Research Corporation Direct current pulsing plasma systems
US10296076B2 (en) * 2016-05-16 2019-05-21 Qualcomm Incorporated Supply voltage droop management circuits for reducing or avoiding supply voltage droops
US10264663B1 (en) * 2017-10-18 2019-04-16 Lam Research Corporation Matchless plasma source for semiconductor wafer fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556549A (en) * 1994-05-02 1996-09-17 Lsi Logic Corporation Power control and delivery in plasma processing equipment
US5474648A (en) * 1994-07-29 1995-12-12 Lsi Logic Corporation Uniform and repeatable plasma processing
JPH10241894A (ja) * 1996-11-04 1998-09-11 Applied Materials Inc 周波数サーボ及び電力、電圧、電流又はdI/dtのコントロールを用いた高周波プラズマリアクタのための高周波同調方法
JP2009514176A (ja) * 2005-10-31 2009-04-02 エム ケー エス インストルメンツ インコーポレーテッド 無線周波数電力搬送システム
JP2017079127A (ja) * 2015-10-20 2017-04-27 国立研究開発法人産業技術総合研究所 誘導性結合プラズマ発生装置、セルフバイアス印加装置、プラズマ処理装置、プラズマ生成方法、およびセルフバイアス印加方法

Also Published As

Publication number Publication date
CN111868875A (zh) 2020-10-30
TW201946092A (zh) 2019-12-01
US20190287764A1 (en) 2019-09-19
US11437219B2 (en) 2022-09-06
TWI816759B (zh) 2023-10-01
US10672590B2 (en) 2020-06-02
WO2019177866A1 (en) 2019-09-19
CN111868875B (zh) 2024-01-12
US20200286713A1 (en) 2020-09-10
JP7421487B2 (ja) 2024-01-24
KR20200121909A (ko) 2020-10-26

Similar Documents

Publication Publication Date Title
JP7421487B2 (ja) 無整合プラズマ源に対する周波数同調
US11716805B2 (en) Matchless plasma source for semiconductor wafer fabrication
KR102663153B1 (ko) 일 상태에서의 주파수 및 매칭 튜닝과 다른 상태에서의 주파수 튜닝
US11398369B2 (en) Method and apparatus for actively tuning a plasma power source
US10256078B2 (en) Systems and methods for increasing efficiency of delivered power of a megahertz radio frequency generator in the presence of a kilohertz radio frequency generator
US11929235B2 (en) Systems and methods for tuning a MHz RF generator within a cycle of operation of a kHZ RF generator
US11908660B2 (en) Systems and methods for optimizing power delivery to an electrode of a plasma chamber
KR20210034059A (ko) 기판 프로세싱 시스템들에서 매치리스 플라즈마 소스를 위한 직접 주파수 튜닝

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R150 Certificate of patent or registration of utility model

Ref document number: 7421487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150