JP2021505288A - ディープ畳み込みニューラルネットワークを用いたビームモデルパラメータの決定 - Google Patents

ディープ畳み込みニューラルネットワークを用いたビームモデルパラメータの決定 Download PDF

Info

Publication number
JP2021505288A
JP2021505288A JP2020531514A JP2020531514A JP2021505288A JP 2021505288 A JP2021505288 A JP 2021505288A JP 2020531514 A JP2020531514 A JP 2020531514A JP 2020531514 A JP2020531514 A JP 2020531514A JP 2021505288 A JP2021505288 A JP 2021505288A
Authority
JP
Japan
Prior art keywords
beam model
parameter values
model parameter
neural network
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020531514A
Other languages
English (en)
Other versions
JP6895019B2 (ja
Inventor
サミ ヒッソイニー
サミ ヒッソイニー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elekta Inc
Original Assignee
Elekta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elekta Inc filed Critical Elekta Inc
Publication of JP2021505288A publication Critical patent/JP2021505288A/ja
Application granted granted Critical
Publication of JP6895019B2 publication Critical patent/JP6895019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N2005/1041Treatment planning systems using a library of previously administered radiation treatment applied to other patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1036Leaf sequencing algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1039Treatment planning systems using functional images, e.g. PET or MRI
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • G06T2207/10096Dynamic contrast-enhanced magnetic resonance imaging [DCE-MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • G06T2207/10121Fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Abstract

システムおよび方法は、ディープ畳み込みニューラルネットワークモデルを訓練して、放射線治療線量を対象に照射するような、放射線装置にビームモデルを提供することを含む。方法は、放射線装置に対応するビームモデルの少なくとも1つのパラメータのパラメータ値の範囲を決定することと、複数のセットのビームモデルパラメータ値を生成することであって、ビームモデルパラメータ値の1つまたはそれ以上の個々のセットは、決定された範囲のパラメータ値から選択されたパラメータ値を含んでいることと、複数のセットのビームモデルパラメータ値内の個々のセットのビームモデルパラメータ値にそれぞれ対応する複数の対応線量プロファイルを提供することと、複数のビームモデルと対応線量プロファイルを用いてニューラルネットワークモデルを訓練することを含む。【選択図】図3

Description

(優先権の主張)
[0001]
本国際出願は、2017年12月8日に提出された米国出願番号第15/836,539号の優先権の利益を主張し、その全体が参照により本明細書に組み込まれる。技術分野
(技術分野)
[0002]
本発明の実施形態は、一般に、放射線装置のビームモデルのパラメータを決定することに関する。特に、本発明は、ディープラーニング技術を用いて放射線装置のビームモデルパラメータを決定することに関する。
[0003]
放射線療法は、哺乳動物(例えば、ヒトおよび動物)の組織における癌および他の病気を治療するために使用される。例示的な放射線療法は、線形加速器(LINAC)を用いて提供され、それにより、標的(例えば、腫瘍)が、高エネルギー粒子(例えば、電子、光子、イオンなど)により照射される。典型的なLINACベースの放射線治療では、複数の放射線ビームが異なる角度から標的に向けられる。
[0004]
周囲の正常組織は、しばしばリスク臓器(OAR)と呼ばれる。放射線ビームによって引き起こされる深刻な付帯的損傷からOARを守るためには、これらのOARが受け取る線量を特定のレベルに制限する必要がある。しばしば制約と呼ばれる、OARが受ける線量に対するそのような制限は、治療計画中に満たされる必要がある。
[0005]
治療計画は、その制約の下で治療目標を実施するための特定の放射線治療パラメータ(例えば、放射線ビーム角度、各角度での放射線強度レベルなど)の決定を含むプロセスである。
[0006]
治療計画演習の結果は、放射線治療計画であり、以下、治療計画または単に計画とも呼ばれる。典型的な治療計画プロセスには、患者の医用画像から1つまたはそれ以上の標的と1つまたはそれ以上のOARとを描写し、放射線ビーム角度、または円弧計画( arc plan)の場合は角度の範囲を指定し、開口部の形状と各ビーム角度での各形状の放射強度レベルを決定する。
[0007]
治療計画は、とりわけ、放射線装置(例えば、LINAC)から放出された放射線のエネルギー分布を記述するパラメータを含むビームモデルを含む。ビームモデルパラメータ値は、放射線装置間で変化し得るものであり、各放射線装置がその放射線装置により提供されるフルエンスまたはエネルギーのような小さな差が存在する同じモデルの放射線装置間でも変化し得るものである。装置の違い(例えば、機械的寸法や材料特性)またはコンポーネントの値の違い(例えば、電子回路コンポーネントの値)は、異なる放射線装置間のビームモデルパラメータ値の違いとなる。特定のアプローチでは、放射線装置が設置され、最終調整が行われた後、利用者は患者の組織をシミュレーションするファントムを用いて測定を実行できる。ファントムは、水槽内に可動式線量計を備えた水槽を含む。次に、ビームモデル設計者(beam modeler)は、測定値を用いてビームモデリングを実行し、測定値に対応する放射線装置のビームモデルパラメータ値を決定する。しかし、ビームモデル設計者(beam modeler)により実行されるビームモデリングには時間がかかる場合がある。ビームモデリングには、それぞれ約10分かかる可能性がある多数回の線量計算(例えば、約50−100回の線量計算)を含む反復プロセスが含まれ得る。
[0008]
本願発明者らは、とりわけ、ビームモデリングにかかる時間を短縮する等のために、機械学習(例えば、ニューラルネットワークモデル)を用いることによりビームモデリングプロセスを大幅に改善できることを認識した。しかし、線量プロファイルの測定中に導入されたエラー等により、既存の放射線装置に対応するデータセットを用いることは望ましくない場合がある。本願発明者らは、とりわけ、合成されたデータセットが、線量プロファイル(例えば、深部量百分率プロファイル(percent depth dose profile)または放射線量プロファイル(radial dose profile))の測定中に導入される等の測定エラーのない訓練データを提供できることを認識した。さらに、本願発明者らは、既存の放射線装置に対応するいくつかのデータセットは、所望の精度の生成されたビームモデルパラメータに対する機械学習には不十分である可能性があることを認識した。本願発明者らは、さらに、既知のビームモデルパラメータ値を有する限られた数の放射線装置によって引き起こされるものなど、データセットの不足を補償するためにデータセットが合成されて使用されることを認識した。機械学習による等のように、ビームモデリングにかかる時間を短縮することで、放射線装置をより高速で稼働させて、患者のワークフローを改善し、患者の転帰を改善することができる。
[0009]
上記の概要は、本特許出願の主題の概要を提供することを意図している。本発明の排他的または網羅的な説明を提供することは意図されていない。発明の詳細な説明は、本特許出願に関する更なる情報を提供するために含まれる。
[0010]
一態様では、本開示は、放射線装置が放射線治療線量を対象に送達するためのビームモデルを提供するなどのために、ディープ畳み込みニューラルネットワークモデルを訓練するためのコンピュータ実装方法を特徴とする。この方法は、放射線装置に対応するビームモデルの少なくとも1つのパラメータのパラメータ値の範囲を決定することを含み得る。この方法は、また、複数のセットのビームモデルパラメータ値を生成することを含み、ビームモデルパラメータ値の1つまたはそれ以上の個別のセットは、決定された範囲のパラメータ値から選択されたパラメータ値を含み得る。この方法は、また、複数のセットのビームモデルパラメータ値のそれぞれの個々のセットのビームモデルパラメータ値にそれぞれ対応する複数の対応する線量プロファイルを提供することを含み得る。この方法は、また、複数のビームモデルおよび対応する線量プロファイルを用いてニューラルネットワークモデルを訓練することを含み得る。この方法は、また、少なくとも1つのセットのビームモデルパラメータ値と、少なくとも1つの放射線装置から前に収集された対応する測定線量プロファイルとを用いて、ニューラルネットワークモデルを訓練することを含み得る。少なくとも1つのビームモデルパラメータのビームモデルパラメータ値の範囲を決定することは、複数の放射機械のそれぞれのビームモデルパラメータ値を決定することを含み得る。この方法は、また、複数の放射線機器のそれぞれについて少なくとも1つの線量プロファイルを測定することを含み得る。ニューラルネットワークモデルの訓練は、Nセットの生成されたビームモデルパラメータ値と、対応する線量プロファイルをニューラルネットワークモデルに提供することを含み得る。ニューラルネットワークモデルの訓練は、また、M台の放射線装置からの線量プロファイルと対応するビームモデルパラメータとをニューラルネットワークモデルに提供することを含み得る。この方法は、また、ビームモデルパラメータ値のセットのうちの少なくとも1つを生成するためなどに、決定されたビームモデルパラメータ値の範囲から、ビームモデルパラメータ値をランダムまたは擬似ランダムに選択することを含み得る。ビームモデルパラメータ値のそれぞれのセットは複数の線量プロファイルを用いて生成することができ、複数の対応する線量プロファイルの個々の線量プロファイルは、標的サンプルへの深さとともに変化する放射線の相対線量を含み得る。ビームモデルの少なくとも1つのパラメータについてのビームモデルパラメータ値の範囲を決定することは、放射線装置の放射源から放出された光子のエネルギー分布に関連する複数のビームモデルパラメータ値を決定することを含み得る。ビームモデルパラメータは、放射線源の大きさ、放射線源の位置、または放射線源のエネルギースペクトルのうちの少なくとも1つを含むことができる。ビームモデルの少なくとも1つのパラメータについてのビームモデルパラメータ値の範囲を決定することは、放射線装置の放射源から放出された電子のエネルギー分布に関連する複数のビームモデルパラメータ値を決定することを含み得る。
[0011]
一態様では、本開示は、例えば、放射線装置のビームモデルの少なくとも1つのパラメータ値を決定するために、ディープ畳み込みニューラルネットワークを用いるコンピュータ実装方法を特徴とする。この方法は、複数のセットのビームモデルパラメータ値と対応する線量プロファイルを用いて前もって訓練した、訓練されたニューラルネットワークモデルを受信し、訓練されたニューラルネットワークモデルは、1つまたはそれ以上の測定された放射線装置の線量プロファイルから少なくとも1つの放射線装置のビームモデルパラメータ値を予測するために訓練されていることを含むことを含み得る。この方法は、また、訓練されたニューラルネットワークモデルへの入力として提供されるような、放射線装置からの複数の線量プロファイルを測定することを含むことができる。この方法は、また、訓練されたニューラルネットワークモデルを用いて、放射線装置の1つのセットのビームモデルパラメータ値の少なくとも1つのビームモデルパラメータ値を決定することを含み得る。この方法は、また、決定された少なくとも1つのビームモデルパラメータ値を含むことができる1つのセットのビームモデルパラメータ値から線量プロファイルを計算し、計算された線量プロファイルを測定された線量プロファイルと比較することを含み得る。ビームモデルパラメータ値のセットは、訓練されたニューラルネットワークモデルを用いて決定されない少なくとも1つのビームモデルパラメータ値を含み得る。この方法は、また、放射線装置からの測定された線量プロファイルと決定された線量プロファイルとの間の差が指定された基準を満たす場合、ニューラルネットワークモデルによって決定された少なくとも1つのビームモデルパラメータ値を更新することを含み得る。この方法は、また、ニューラルネットワークモデルによって決定された少なくとも1つのビームモデルパラメータ値を含むことができるビームモデルパラメータ値のセットを用いて複数の線量プロファイルを決定し、複数の線量プロファイルの個々のものは、放射線装置の異なるフィールドサイズに対応することを含み得る。この方法は、また、複数の決定された線量プロファイルのそれぞれを、複数の測定された線量プロファイルのうちの対応するものと比較することを含み得る。複数のセットのビームモデルパラメータ値と対応する線量プロファイルとを用いて前もって訓練された、訓練されたニューラルネットワークモデルを受け取ることは、ある方法により前もって訓練された、訓練されたニューラルネットを受け取ることを含み、ある方法は、放射線装置に対応するビームモデルの少なくとも1つのパラメータのビームモデルパラメータ値の範囲を決定し、複数のセットのビームモデルパラメータ値を生成し、ビームモデルパラメータ値の1つまたはそれ以上の個々のセットは、決定された範囲のパラメータ値から選択されたパラメータ値を含んでおり、複数のセットのビームモデルパラメータ値内の個々のセットのビームモデルパラメータ値にそれぞれ対応する複数の対応線量プロファイルを提供し、複数のセットのビームモデルパラメータ値と対応する線量プロファイルとを用いてニューラルネットワークを訓練することを含み得る。この方法は、また、決定された少なくとも1つのビームモデルパラメータ値を有するビームモデルパラメータ値のセットを用いて、放射線装置から患者内の標的領域への放射線の線量を推定することを含み得る。
[0012]
一態様では、本開示は、放射機械の少なくとも1つの測定線量プロファイルから放射機械のビームモデルの少なくともビームモデルパラメータ値を生成するためのシステムを特徴とする。システムは、放射機械に対応する少なくとも1つの測定線量プロファイルを受け取り、放射線装置の少なくとも1つのビームモデルパラメータ値を推定するためのニューラルネットワークモデルを受け取るように構成されたインターフェースを含み得る。システムは、また、ニューラルネットワークモデルと少なくとも1つの測定された線量プロファイルとを記憶するためのメモリであって、ニューラルネットワークモデルは、ビームモデルパラメータ値と対応する複数のセットの線量プロファイルを用いて訓練され得る。システムは、また、少なくとも1つの測定された線量プロファイルをニューラルネットワークモデルへの入力として用いて、放射線装置の少なくとも1つのビームモデルパラメータ値を推定するように構成されたプロセッサを含み得る。記憶されたニューラルネットワークモデルは、放射線装置に対応するビームモデルの少なくとも1つのパラメータのビームモデルパラメータ値の範囲を決定し、複数のセットのビームモデルパラメータ値を生成することであって、ビームモデルパラメータ値の1つまたはそれ以上の個別のセットは、パラメータ値の決定された範囲から選択されたパラメータ値を含み、複数のセットのビームモデルパラメータ値におけるビームモデルパラメータ値のそれぞれの個々のセットにそれぞれ対応する複数の対応する線量プロファイルを提供し、複数セットのビームモデルパラメータ値と対応する線量プロファイルとをニューラルネットワークモデルに提供することにより訓練され得る。インターフェースは、放射線装置からの測定された線量プロファイルとビームモデルパラメータ値のセットから決定された線量プロファイルとの相違が指定された基準を満たす場合には、ニューラルネットワークモデルによって推定されたビームモデルパラメータ値と対応する線量プロファイルとを含むビームモデルパラメータ値のセットを、ユーザに送信するように構成されている。
[0013]
図面は、必ずしも一定の縮尺で描かれておらず、同様の数字は、いくつかの図において実質的に類似の構成要素を表す。異なる文字の接尾辞を持つ同様の数字は、実質的に同様の構成要素を表す。図面は、一般に、限定ではなく実施例として、本文書で説明される様々な実施形態を示す。
[0014]
図1は、本開示のいくつかの実施形態による例示的な放射線治療システムを示す。
[0015]
図2は、治療ビームを提供するように構成された放射線治療出力を含む例示的な放射線治療システムを示す。
[0016]
図3は、ディープラーニングの例示的な流れ図を示す。
[0017]
図4は、例示的な線量プロファイルを示す。
[0018]
図5Aは、ニューラルネットワークモデルを訓練するための例示的な方法を示す。
[0019]
図5Bは、ニューラルネットワークモデルを用いてビームモデルパラメータを生成するための例示的な方法を示す。
[0020]
図6は、1つのビームモデルパラメータを推定するための訓練されたニューラルネットワークモデルの使用例を示す。
[0021]
図7A−図7Cは、3つのビームモデルパラメータを推定するために訓練されたニューラルネットワークモデルの使用例を示す。
[0022]
図8は、本明細書で論じられた1つまたはそれ以上の方法を実施することができる装置の例示的なブロック図を示す。
[0023]
以下の詳細な説明では、本明細書の一部を形成し、本発明を実施することができる例示的な特定の実施形態として示される添付の図面を参照する。本明細書において「実施例」として参照される、これらの実施形態は、当業者が本発明を実施することを可能にするように十分詳細に記載されており、そして、実施形態が組み合わせ得ること、または、他の実施形態が利用され得ること、そして、構造的、論理的および電気的変更は、本発明の範囲から逸脱することなく行われ得ることを理解すべきである、したがって、以下の詳細な説明は、限定的な意味で解釈されるべきではなく、本発明の範囲は、添付の特許請求の範囲およびそれらの均等物によって定義される。
[0024]
放射線療法に使用される放射線装置は、患者の腫瘍を照射するような、放射線ビーム(例えば、光子ビーム、または電子ビーム)を患者に提供することができる。治療の前に、臨床医などによる治療計画を実施することができる。治療計画の際には、臨床医は、隣接するOARへの損傷を最小限に抑えながら、腫瘍に最も照射する方法を決定できる。放射線治療装置のビームモデルを治療計画プロセス中に用いて、放射線装置から出射して患者に照射される放射線をシミュレーションできる。ビームモデルパラメータに対する値の決定は、反復的で時間のかかるプロセスになる可能性がある。各線量計算には約数分かかる場合があり、多くの線量計算は完了するまでに長時間かかる場合がある。線量計算を完了するまでに比較的長い時間がかかるため、放射線装置を患者の治療に用いる際に遅延が生じる可能性がある。本願発明者らは、とりわけ、ビームモデリングプロセスが機械学習(例えば、ニューラルネットワークモデル)を使用することにより大幅に改善できることを認識した。しかし、線量プロファイルの測定中に導入されたエラーなどにより、既存の放射線装置に対応するデータセットを使用することは望ましくない場合がある。本願発明者らは、とりわけ、合成されたデータセットが、線量プロファイル(例えば、深部量百分率プロファイル(percent depth dose profile)または放射線量プロファイル(radial dose profile))の測定中に導入され得るような測定エラーのない訓練データを提供できることを認識した。本願発明者らは、また、ニューラルネットワークモデルは、通常、モデルの正確な訓練を提供するために多数のデータセット(例えば、少なくとも1000のデータセット)を必要とすること、そして、そのような多数のデータセットが、既知のビームモデルパラメータ値を有する限られた数の放射線装置などにより、利用できない場合があること、を認識した。本願発明者らは、新しいデータセットを合成して、既知のビームモデルパラメータ値を有する限られた数の放射線装置によって引き起こされるような、データセットの不足を補うために使用できることを認識した。合成されたデータセットは、ニューラルネットワークモデルの訓練に使用できる。ビームモデリングにかかる時間を短縮することで、放射線装置をより高速で稼働させることができ、患者のワークフローの改善と患者の予後の改善とすることができる。
[0025]
図1は、患者に放射線療法を提供するための例示的な放射線治療システム100を示す。放射線治療システム100は、画像処理装置112を含む。画像処理装置112は、ネットワーク120に接続され得る。ネットワーク120は、インターネット122に接続され得る。ネットワーク120は、画像処理装置112を、データベース124、病院データベース126、腫瘍学情報システム(OIS)128、放射線治療装置130、画像取得装置132、表示装置134、ユーザインターフェース136のうちの1つまたはそれ以上のものに接続することができる。画像処理装置112は、放射線治療装置130によって使用される放射線療法治療計画142を生成するように構成することができる。
[0026]
画像処理装置112は、メモリ装置116、プロセッサ114、および通信インターフェース118を含むことができる。メモリ装置116は、オペレーティングシステム143、放射線療法治療計画142(例えば、オリジナルの治療計画、適合された治療計画など)、ソフトウェアプログラム144(例えば、人工知能、ディープラーニング、ニューラルネットワーク、放射線治療計画ソフトウェア)、およびプロセッサ114によって実行される他の任意のコンピュータ実行可能命令のような、コンピュータ実行可能命令を格納することができる。一実施形態では、ソフトウェアプログラム144は、疑似CT画像のような合成画像を生成することによって、1つのフォーマット(例えば、MRI)の医用画像を別のフォーマット(例えば、CT)に変換することができる。例えば、ソフトウェアプログラム144は、あるモダリティ(例えば、MRI画像)の医用画像146を異なるモダリティの合成画像(例えば、疑似CT画像)に変換するための予測モデルを訓練する画像処理プログラムを含むことができ、あるいは、訓練された予測モデルは、CT画像をMRI画像に変換することができる。別の実施形態では、ソフトウェアプログラム144は、対応する画像ボクセルおよび線量ボクセルがネットワークによって適切に関連付けられるように、患者画像(例えば、CT画像またはMR画像)をその患者の線量分布(画像としても表される)に登録することができる。さらに別の実施形態では、ソフトウェアプログラム144は、画像情報のいくつかの態様を強調する画像の署名付き距離関数または処理されたバージョンのような患者画像の関数を代替してもよい。そのような関数は、ボクセルテクスチャのエッジや違い、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。別の実施形態では、ソフトウェアプログラム144は、線量情報のいくつかの側面を強調する線量分布の関数を代替してもよい。そのような関数は、標的の周りの急勾配、またはニューラルネットワークの学習に役立つその他の構造的側面を強調する。メモリ装置116は、医用画像146、患者データ145、および放射線療法治療計画142を作成および実施するために必要な他のデータを含むデータを格納することができる。
[0027]
ソフトウェアプログラム144を格納するメモリ116に加えて、ソフトウェアプログラム144は、ハードドライブ、コンピュータディスク、CD−ROM、DVD、HD、ブルーレイDVD、USBフラッシュドライブ、SDカード、メモリスティック、またはその他の適切なメディアのようなリムーバブルコンピュータ媒体に格納することができ、画像処理装置112にダウンロードされたときソフトウェアプログラム144は、画像プロセッサ114によって実行することができる。
[0028]
プロセッサ114は、メモリ装置116に通信可能に結合されることができ、プロセッサ114は、そこに格納されたコンピュータ実行可能命令を実行するように構成することができる。プロセッサ114は、医用画像146をメモリ116に送信または受信することができる。例えば、プロセッサ114は、通信インターフェース118およびネットワーク120を介して画像取得装置132から医用画像146を受信して、メモリ116に格納することができる。プロセッサ114は、また、メモリ116に格納された医用画像146を、通信インターフェース118を介して、ネットワーク120に送信し、データベース124または病院データベース126のいずれかに格納される。
[0029]
さらに、プロセッサ114は、医用画像146および患者データ145と共にソフトウェアプログラム144(例えば、治療計画ソフトウェア)を利用して、放射線療法治療計画42を作成することができる。医用画像146は、患者の解剖学的領域、器官、または関心セグメンテーションデータのボリュームに関連する画像データのような情報を含むことができる。患者データ145は、(1)機能臓器モデリングデータ(例えば、直列対並列臓器、適切な用量反応モデルなど)、(2)放射線量データ(例えば、線量−体積ヒストグラム(DVH)情報)、または(3)患者および治療コースに関する他の臨床情報(例えば、他の手術、化学療法、以前の放射線療法など)のような情報を含むことができる。
[0030]
さらに、プロセッサ114は、ソフトウェアプログラムを利用して、例えば、ニューラルネットワークモデルによって使用される更新されたパラメータなどの中間データを生成することができ、または、中間の2Dまたは3D画像を生成することができ、その後、それらはメモリ116に記憶される。その後、プロセッサ114は、実行可能な放射線療法治療計画142を、通信インターフェース118とネットワーク120を介して、放射線治療装置30に送信することができ、そこで放射線療法計画は、放射線で患者を治療するために使用される。さらに、プロセッサ114は、ソフトウェアプログラム144を実行して、画像変換、画像セグメンテーション、ディープラーニング、ニューラルネットワーク、および人工知能のような機能を実装することができる。例えば、プロセッサ114は、医用画像を訓練または輪郭化するソフトウェアプログラム144を実行することができ、そのようなソフトウェア144は、実行されると、境界検出器を訓練し、形状辞書を利用することができる。
[0031]
プロセッサ114は、例えば、マイクロプロセッサ、中央処理装置(CPU)、グラフィックス・プロセッシング・ユニット(GPU:Graphics Processing Unit)、および/またはアクセラレーテッド・プロセッシング・ユニット(APU:Accelerated Processing Unit)のような1つまたはそれ以上の汎用処理装置を含む処理装置であってもよい。詳細には、いくつかの実施形態では、プロセッサ114は、複合命令セットコンピューティング(CISC:complex instruction set computing)マイクロプロセッサ、縮小命令セットコンピューティング(RISC:reduced instruction set computing)マイクロプロセッサ、超長命令ワード(VLIW:very long instruction Word)マイクロプロセッサ、他の命令セットを実装するプロセッサ、または命令セットの組み合わせを実装するプロセッサであってもよい。プロセッサ114は、特定用途向け集積回路(ASIC:application specific integrated circuit)、フィールドプログラマブルゲートアレイ(FPGA:field programmable gate array)、デジタルシグナルプロセッサ(DSP:digital signal processor)、システムオンチップ(SoC:System on a Chip)、またはその他の適切なプロセッサのような1つまたはそれ以上の専用処理装置によって実装されることができる。当業者に理解されるように、いくつかの実施形態では、プロセッサ114は、汎用プロセッサではなく、専用プロセッサであってもよい。プロセッサ114は、Intel(登録商標)によって製造されたPentium(登録商標)、Core(登録商標)、Xeon(登録商標)、またはItanium(登録商標)ファミリー、AMD(登録商標)によって製造されたTurion(登録商標)、Athlon(登録商標)、Sempron(登録商標)、Opteron(登録商標)、FX(登録商標)、Phenon(登録商標)ファミリー、Sun Microsystemsによって製造された様々なプロセッサのいずれか、または他の適切なプロセッサのような、1つまたはそれ以上の既知の処理装置を含み得る。プロセッサ14は、また、Nvidia(登録商標)によって製造されたGeForce(登録商標)、Quadro(登録商標)、Tesla(登録商標)ファミリー、Intel(登録商標)によって製造されたGMA、Iris(登録商標)ファミリー、またはAMD(登録商標)によって製造されたRadeon(登録商標)ファミリーのような、グラフィック処理ユニットを含み得る。プロセッサ14は、また、Intel(登録商標)によって製造されたXeon Phi(登録商標)ファミリーのような、加速処理装置を含み得る。開示された実施形態は、いかなるタイプのプロセッサに限定されるものではなく、大量の撮像データを識別、分析、維持、生成、および/または提供するというコンピューティング命令を満たすように構成されている。さらに、「プロセッサ」という用語は、複数のプロセッサ、例えばマルチコア設計またはそれぞれがマルチコア設計を有する複数のプロセッサを含むことができる。プロセッサ114は、本開示の例示的な実施形態による様々な動作、プロセス、および方法を実行するために、例えば、メモリ116に格納されたコンピュータプログラム命令のシーケンスを実行するように構成され得る。
[0032]
メモリ装置116は、医用画像146を格納することができる。いくつかの実施形態では、医用画像146は、1つまたはそれ以上のMRI画像(例えば、2DMRI、3DMRI、2DストリーミングMRI、4DMRI、4D容積測定MRI、4DシネMRI、など)、機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI)、コンピュータ断層撮影(CT)画像(例えば、2DCT、コーンビームCT、3DCT、4DCT)、超音波画像(例えば、2D超音波、3D超音波、4D超音波)、陽電子放射断層撮影(PET)画像、X線画像、X線透視画像、放射線治療ポータル画像、単一光放出コンピュータ断層撮影(SPECT)画像、コンピュータ生成合成画像(例えば、疑似CT画像)など、を含み得る。さらに、医用画像146は、また、医用画像データ、例えば、トレーニング(訓練)画像、およびグラウンドトゥルース画像、等高線画像、および線量画像を含み得る。一実施形態では、医用画像146は、画像取得装置132から受け取ることができる。したがって、画像取得装置132は、MRI撮像装置、CT撮像装置、PET撮像装置、超音波撮像装置、蛍光透視装置、SPECT撮像装置、統合線形加速器およびMRI撮像装置、または、患者の医用画像を取得するための他の医療撮像装置を含み得る。医用画像146は、画像処理装置112が、開示された実施形態による動作を実行するために使用することができる任意のタイプのデータまたは任意のタイプのフォーマットで受け取られ、格納され得る。メモリ装置116は、読み取り専用メモリ(ROM)、相変化ランダムアクセスメモリ(PRAM)、スタティックランダムアクセスメモリ(SRAM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、シンクロナスDRAM(SDRAM)のようなダイナミックランダムアクセスメモリ(DRAM)、電気的に消去可能なプログラム可能な読み取り専用メモリ(EEPROM)、スタティックメモリ(例えば、フラッシュメモリ、フラッシュディスク、スタティックランダムアクセスメモリ)、および、キャッシュ、レジスタ、コンパクトディスク読み取り専用メモリ(CD−ROM)、デジタル多用途ディスク(DVD)、またはその他の光学式ストレージ、カセットテープ、その他の磁気記憶装置のようなその他のタイプのランダムアクセスメモリ、のような非一時的なコンピュータ可読媒体、または、画像、データ、または、プロセッサ14、または任意の他のタイプのコンピュータ装置によりアクセスすることができる(例えば、任意のフォーマットで格納される)コンピュータ実行可能命令を含む情報を格納するために使用できる他の任意の非一時的媒体であり得る。コンピュータプログラム命令は、プロセッサ114によってアクセスされ、ROMまたは他の任意の適切なメモリ位置から読み取られ、プロセッサ114による実行のためにRAMにロードされ得る。例えば、メモリ116は、1つまたはそれ以上のソフトウェアアプリケーションを格納することができる。メモリ116に格納されたソフトウェアアプリケーションは、例えば、一般的なコンピュータシステムのためのオペレーティングシステム143およびソフトウェア制御装置を含み得る。さらに、メモリ116は、プロセッサ114によって実行可能なソフトウェアアプリケーション全体またはソフトウェアアプリケーションの一部のみを格納することができる。例えば、メモリ装置116は、1つまたはそれ以上の放射線療法治療計画142を格納することができる。
[0033]
画像処理装置112は、プロセッサ114およびメモリ116に通信可能に結合された通信インターフェース118を介してネットワーク120と通信することができる。通信インターフェース118は、画像処理装置112と放射線治療システム100の構成要素との間の通信接続を提供する(例えば、外部装置とのデータの交換を可能にする)ことができる。例えば、通信インターフェース118は、いくつかの実施形態では、ユーザインターフェース136に接続するための適切なインターフェース回路を有することができ、それは、ユーザが放射線治療システム100に情報を入力することができる、ハードウェアキーボード、キーパッド、またはタッチスクリーンとすることができる。
[0034]
通信インターフェース118は、例えば、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、高速データ伝送アダプタ(例えば、ファイバ、USB3.0、サンダーボルト、など)、無線ネットワークアダプタ(例えば、WiFiアダプタのような)、電気通信アダプタ(例えば、3G、4G/LTE、など)などを含み得る。通信インターフェース118は、画像処理装置112が、ネットワーク120を介して遠隔配置された構成要素のような、他の機械および装置と通信することを可能にする1つまたはそれ以上のデジタルおよび/またはアナログ通信装置を含み得る。
[0035]
ネットワーク120は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ、など)、クライアントサーバー、広域ネットワーク(WAN)など機能を提供することができる。例えば、ネットワーク120は、他のシステムS1(138)、S2(140)、およびS3(141)を含むLANまたはWANとすることができる。システムS1、S2、およびS3は、画像処理装置112と同一であってもよく、または異なるシステムであってもよい。いくつかの実施形態では、ネットワーク120内の1つまたはそれ以上のシステムは、本明細書で説明される実施形態を協調的に実行する分散コンピューティング/シミュレーション環境を形成することができる。いくつかの実施形態では、1つまたはそれ以上のシステムS1、S2、およびS3は、CT画像(例えば、医用画像46)を取得するCTスキャナを含むことができる。さらに、ネットワーク20をインターネット22に接続して、インターネット上で遠隔地にあるサーバーおよびクライアントと通信することができる。
[0036]
したがって、ネットワーク120は、画像処理装置112と、OIS128、放射線治療装置130、および画像取得装置132のような多くの他の様々なシステムおよび装置との間のデータ伝送を可能にすることができる。さらに、OIS128および/または画像取得装置132によって生成されたデータは、メモリ116、データベース124、および/または病院データベース126に格納され得る。データは、必要に応じて、プロセッサ114によりアクセスされるために、ネットワーク120を介して通信インターフェース118を介して送信/受信することができる。
[0037]
画像処理装置112は、ネットワーク120を介してデータベース124と通信して、データベース124に格納された複数の様々なタイプのデータを送受信することができる。例えば、データベース124は、放射線治療装置130、画像取得装置132、または放射線療法に関連する他の機械に関連する情報である機械データを含み得る。マシンデータ情報は、放射線ビームサイズ、アーク配置、ビームオン/オフ時間、マシンパラメータ、セグメント、マルチリーフコリメータ(MLC)構成、ガントリ速度、MRIパルスシーケンスなどが含まれ得る。データベース124は、記憶装置であり得、適切なデータベース管理ソフトウェアプログラムを備え得る。当業者は、データベース124が、中央にまたは分散して配置された複数の装置を含み得ることを理解するであろう。
[0038]
いくつかの実施形態では、データベース24は、プロセッサ可読記憶媒体(図示せず)を含み得る。一実施形態におけるプロセッサ可読記憶媒体は単一の媒体であり得るが、用語「プロセッサ可読記憶媒体」は、1つまたはそれ以上のコンピュータ実行可能命令またはデータのセットを格納する単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)と解釈されるべきである。用語「プロセッサ可読記憶媒体」は、プロセッサによる実行のための命令のセットを格納または符号化することができ、かつ、プロセッサに本開示の1つまたはそれ以上の方法論のいずれかを実行させる任意の媒体を含むと解釈されるものとする。したがって、用語「プロセッサ可読記憶媒体」は、固体メモリ、光学および磁気媒体を含むがこれらに限定されないものと解釈されるべきである。例えば、プロセッサ可読記憶媒体は、1つまたはそれ以上の揮発性、非一時的、または不揮発性の有形のコンピュータ可読媒体とすることができる。
[0039]
画像プロセッサ114は、データベース124と通信して、画像をメモリ116に読み込むか、または画像をメモリ116からデータベース124に格納することができる。例えば、データベース124は、データベース124が画像取得装置132から受信した複数の画像(例えば、3DMRI、4DMRI、2DMRIスライス画像、CT画像、2D透視画像、X線画像、MRスキャンまたはCTスキャンからの生データ、医学におけるデジタル画像および通信(DIMCOM)データ等)を格納するように構成されている。データベース124は、ソフトウェアプログラム44を実行するとき、または放射線療法治療計画42を作成するときに、画像プロセッサ14によって使用されるデータを格納することができる。データベース124は、ネットワークによって学習されたモデルを構成するネットワークパラメータおよび結果として生じる予測データを含む、訓練されたニューラルネットワークによって生成されたデータを格納することができる。画像処理装置112は、データベース124、放射線治療装置130(例えば、MRI−リニアック)、および/または画像取得装置132のいずれかからの画像データ146(例えば、2DMRIスライス画像、CT画像、2D蛍光透視画像、X線画像、3DMRI画像、4DMRI画像、など)を受け取り、治療計画142を生成することができる。
[0040]
一実施形態では、放射線治療システム100は、患者の医用画像(例えば、磁気共鳴画像法(MRI)画像、3DMRI、2DストリーミングMRI、4D容積測定MRI、コンピュータ断層撮影(CT)画像、コーンビームCT、陽電子放射断層撮影(PET)画像、機能的MRI画像(例えば、fMRI、DCE−MRIおよび拡散MRI)、X線画像、透視画像、超音波画像、放射線治療ポータル画像、シングルフォトエミッションコンピュータ断層撮影(SPECT)画像など)を取得できる画像取得装置132を含むことができる。画像取得装置132は、例えば、MRI撮像装置、CT撮像装置、PET撮像装置、超音波装置、蛍光透視装置、SPECT撮像装置、または、患者の1つまたはそれ以上の医用画像を取得するための他の任意の適切な医療撮像装置であり得る。画像取得装置132によって取得された画像は、撮像データおよび/または試験データのいいずれかとしてデータベース124内に格納することができる。例として、画像取得装置132によって取得された画像は、また、画像処理装置112によって、医用画像データ146としてメモリ116に格納することができる。
[0041]
一実施形態では、例えば、画像取得装置132は、単一装置として放射線治療装置130と一体化してもよい(例えば、「MRI−Linac」とも呼ばれる線形加速器と組み合わせたMRI装置)。このようなMRI−Linacを使用して、例えば、放射線療法治療計画142に従って放射線治療を正確に所定の標的に向けるように、患者の標的器官または標的腫瘍の位置を決定することができる。
[0042]
画像取得装置132は、関心領域(例えば、標的臓器、標的腫瘍、またはその両方)についての患者の解剖学的構造の1つまたはそれ以上の画像を取得するように構成されている。各画像、典型的には2D画像またはスライスは、1つまたはそれ以上のパラメータ(例えば、2Dスライスの厚さ、向き、および場所、など)を含むことができる。一実施形態では、画像取得装置132は、任意の向きで2Dスライスを取得することができる。例えば、2Dスライスの方向には、矢状方向、冠状方向、または軸方向が含まれる。プロセッサ114は、2Dスライスの厚さおよび/または向きなどの1つまたはそれ以上のパラメータを調整して、標的器官および/または標的腫瘍を含めることができる。一実施形態では、2Dスライスは、3DMRIボリュームなどの情報から決定することができる。そのような2Dスライスは、例えば、放射線治療装置130を使用するとき、患者が放射線治療を受けているあいだ、「ほぼリアルタイム」で画像取得装置132によって取得することができる。「ほぼリアルタイム」とは、少なくとも数ミリ秒以内にデータを取得することを意味する。
[0043]
画像処理装置112は、1人またはそれ以上の患者のための放射線療法治療計画142を生成および保存することができる。放射線療法治療計画142は、各患者に適用される特定の放射線量に関する情報を提供することができる。放射線療法治療計画142は、また、ビーム角、線量ヒストグラム、ボリューム情報、治療中に使用される放射線ビームの数、ビーム当たりの線量のような他の放射線療法情報を含み得る。
[0044]
画像プロセッサ114は、スウェーデンのストックホルムにあるエレクタAB社によって製造されたMonaco(登録商標)のような治療計画ソフトウェアのようなソフトウェアプログラム44を使用することにより、放射線療法治療計画142を生成することができる。放射線療法治療計画142を生成するために、画像プロセッサ114は、画像取得装置132(例えば、CT装置、MRI装置、PET装置、X線装置、超音波装置、など)と通信して、患者の画像にアクセスし、かつ、腫瘍のような標的の輪郭を描くことができる。いくつかの実施形態において、腫瘍の周囲にある、または腫瘍のすぐ近くにある健康な組織のような1つまたはそれ以上のリスク臓器(OAR)の描写が必要になる場合がある。したがって、OARが標的腫瘍に近いときに、OARのセグメンテーションが行われる。さらに、標的腫瘍がOAR(例えば、膀胱および直腸に近い前立腺)に近い場合には、OARを腫瘍からセグメンテーションすることにより、放射線治療システム100は、標的内だけでなくOAR内の線量分布を調べることができる。
[0045]
OARと区別して標的臓器または標的腫瘍の輪郭を描くためには、放射線治療を受けている患者のMRI画像、CT画像、PET画像、fMRI画像、X線画像、超音波画像、放射線治療ポータル画像、SPECT画像のような医用画像が、画像取得装置132によって非侵襲的に取得され、身体の部分の内部構造を明らかにすることができる。医用画像からの情報に基づいて、関連する解剖学的部分の3D構造を取得することができる。さらに、治療計画プロセス中に、標的腫瘍の効率的な治療(例えば、標的腫瘍が効果的な治療のために十分な放射線量を受けるという)とOARへの低線量(例えば、OARが可能な限り低い放射線量を受けるという)との間のバランスを達成するために、多くのパラメータが考慮される。考慮され得る他のパラメータには、標的臓器および標的腫瘍の位置、OARの位置、OARに対する標的の動きが含まれる。例えば、三次元構造は、MRI又はCT画像の各二次元レイヤまたはスライス内の標的の輪郭を描くまたはOARの輪郭を描くこと、および各二次元レイヤまたはスライスの輪郭を結合することにより取得することができる。輪郭は、手動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたMONACO(登録商標)のようなプログラムを用いて医師、線量測定士、または医療従事者によって)または自動で(例えば、スウェーデンのストックホルムのエレクタAB社によって製造されたアトラスベースの自動セグメンテーションソフトウェアであるABAS(登録商標)を用いて)生成することができる。特定の実施形態では、標的腫瘍またはOARの3D構造は、治療計画ソフトウェアによって自動的に生成される。
[0046]
標的腫瘍とOARの位置を特定して輪郭を描いた後、線量測定士、医師、または医療従事者は、標的腫瘍に照射される放射線の線量と共に、腫瘍に近接したOAR(例えば、左右の耳下腺、視神経、目、水晶体、内耳、脊髄、脳幹、または他の解剖学的構造)が受ける可能性のある最大線量とを決定することができる。関連する解剖学的構造(例、標的腫瘍、OAR)の放射線量を決定した後、逆計画法(inverse planning)として知られるプロセスを実行して、望ましい放射線量分布を達成する1つまたはそれ以上の治療計画パラメータを決定することができる。治療計画パラメータの例には、(例えば、標的ボリュームの輪郭を定める、機密構造の輪郭を描く、などの)ボリューム描写パラメータ、標的腫瘍およびOARの周囲のマージン、ビーム角選択、コリメータ設定、および/またはビームオン時間が含まれる。逆計画プロセス中、医師は、OARが受ける可能性のある放射線量の境界を設定する線量制約パラメータを定めること(例えば、腫瘍標的への全線量と任意のOARへのゼロ線量を定めること;脊髄、脳幹、および視覚構造が、それぞれ、45Gy以下の線量、55Gy以下の線量、および54Gyより低い線量を受けると定めること)ができる。逆計画の結果は、メモリ116またはデータベース124に保存される放射線療法治療計画142を構成することができる。これらの治療パラメータのいくつかは相関している可能性がある。例えば、治療計画を変更しようとして1つのパラメータ(例えば、標的腫瘍への線量を増やすなどのさまざまな目的の重み)を調整すると、少なくとも1つの他のパラメータに影響を与え、その結果、異なる治療計画が開発される可能性がある。したがって、画像処理装置112は、放射線治療装置130が患者に放射線療法治療を提供するために、これらのパラメータを有する調整された放射線療法治療計画42を生成する。
[0047]
さらに、放射線治療システム100は、表示装置134およびユーザインターフェース136を含むことができる。表示装置134は、医用画像、インターフェース情報、治療計画パラメータ(例えば、輪郭、線量、ビーム角、など)、治療計画、標的、標的の位置特定、および/または標的の追跡、または、ユーザへの適切な情報、を表示するように構成された1つまたはそれ以上の表示画面を含むことができる。ユーザインターフェース136は、キーボード、キーパッド、タッチスクリーン、または、ユーザが放射線治療システム100に情報を入力することができる任意のタイプのデバイスであり得る。または、表示装置134およびユーザインターフェース136は、タブレットコンピュータ、例えば、アップル社製のiPad(登録商標)、Lenovo社製のThinkpad(登録商標)、サムソン社製のGalaxy(登録商標)のようなデバイスに組み込むことができる。
[0048]
さらに、放射線治療システム100のありとあらゆる構成要素は、仮想マシン(例えば、VMWare、Hyper−Vなど)として実装されてもよい。例えば、仮想マシンはハードウェアとして機能するソフトウェアであってもよい。したがって、仮想マシンは、ハードウェアとして一緒に機能する少なくとも1つまたはそれ以上の仮想プロセッサ、1つまたはそれ以上の仮想メモリ、および/または1つまたはそれ以上の仮想通信インターフェースを含むことができる。例えば、画像処理装置112、OIS128、画像取得装置132は、仮想マシンとして実装されてもよい。利用可能な処理能力、メモリ、および計算能力が与えられるならば、放射線治療システム100全体を仮想マシンとして実装することができる。
[0049]
図2Aは、X線源または線形加速器のような放射線源、カウチ216、撮像検出器214、および放射線治療出力204を含む、例示的な放射線治療装置150を示す。放射線治療装置202は、放射線ビーム208を出射して患者に治療を提供するように構成されている。放射線治療出力204は、マルチリーフコリメータ(MLC)のような1つまたはそれ以上の減衰器またはコリメータを含むことができる。
[0050]
図2に戻ると、患者は、治療台216により支持されて領域212に配置され、放射線療法治療計画に従って放射線療法線量を受け取ることができる。放射線治療出力204は、ガントリ206または他の機械的支持体に載せられまたは取り付けられることができる。1つまたはそれ以上のシャーシモーター(図示せず)は、カウチ216が治療領域に挿入されるとき、ガントリ206と放射線治療出力204をカウチ216の周りで回転させることができる。一実施形態では、ガントリ206は、カウチ216が治療領域に挿入されるとき、カウチ216の周りで連続的に回転されてもよい。別の実施形態では、カウチ216が治療領域に挿入されるとき、ガントリ206は所定の位置まで回転されてもよい。例えば、ガントリ206は、軸(「A」)を中心に治療出力204を回転させるように構成することができる。カウチ216と放射線治療出力204の両方は、横方向(「T」)に移動可能、横方向(「L」)に移動可能、または、横軸(「R」と表示)を中心とした回転のように1つまたは複数の周りの回転のように、患者の周りの他の位置に独立して移動可能である。1つまたは複数のアクチュエータ(図示せず)に通信可能に接続されたコントローラは、放射線療法治療計画に従って患者を放射線ビーム208の位置に、または外に適切に配置するために、カウチ216の動きまたは回転を制御することができる。カウチ216とガントリ206の両方が複数の自由度で互いに独立して移動可能であるので、放射線ビーム208が腫瘍を正確に標的とすることができるように患者を配置することができる。
[0051]
図2に示す座標系(軸A、T、Lを含む)は、アイソセンタ210に位置する原点を有する。アイソセンタは、放射線治療ビーム208が、処方された放射線量を患者の上または内部の場所に送達するような、座標軸の原点と交差する場所として定義することができる。または、アイソセンタ210は、ガントリ206によって軸Aの周りに位置決めされた放射線治療出力204の様々な回転位置について、放射線治療ビーム208が患者と交差する場所として定義することができる。
[0052]
ガントリ206は、また、取り付けられた撮像検出器214を有し得る。撮像検出器214は、好ましくは放射線源204の反対側に配置され、一実施例では、撮像検出器214は、治療ビーム208のフィールド内に配置することができる。
[0053]
撮像検出器214は、ガントリ206上に、好ましくは、治療ビーム208との位置合わせを維持するような、放射線治療出力204の反対側に取り付けることができる。ガントリ206が回転すると、撮像検出器214が回転軸の周りを回転する。一実施形態では、撮像検出器214は、フラットパネル検出器(例えば、直接検出器またはシンチレータ検出器)とすることができる。このようにして、撮像検出器214を使用して、治療ビーム208を監視することができ、または、撮像検出器214を使用して、ポータルイメージングなどの患者の解剖学的構造を撮像することができる。放射線治療装置202の制御回路は、システム100内に統合されてもよいし、システムとは別個であってもよい。
[0054]
図示された実施形態では、カウチ216、治療出力204、またはガントリ206のうちの1つまたは複数を自動的に配置することができ、治療出力204は、特定の治療送出インスタンスの指定線量に従って治療ビーム208を確立することができる。ガントリ206、カウチ216、または治療出力204の1つまたはそれ以上の異なる向きまたは場所を使用するような放射線治療処置計画に従って、一連の治療送達を指定することができる。治療の提供は連続して行うことができるが、アイソセンタ210のような患者の上または患者の内部の所望の治療軌跡で交差することができる。それにより、処方された累積線量の放射線療法を、治療部位の近くの組織への損傷が低減または回避しながら、治療部位に送達することができる。
[0055]
図2は、放射線治療出力を中心軸(例えば、軸「A」)の周りに回転させることができる構成を含む、患者に放射線治療を提供するように構成された放射線治療装置の一実施形態の概略を示す。他の放射線療法の出力構成を使用することができる。例えば、放射線治療出力は、複数の自由度を持つロボットアームまたはマニピュレータに取り付けることができる。更に別の実施形態では、治療出力を、患者から横方向に離れた領域に位置するように固定することができ、患者を支持するプラットフォームを使用して、放射線治療アイソセンタを患者内の指定された標的位置に整列させることができる。別の実施形態では、放射線治療装置を、線形加速器と画像取得装置との組み合わせとすることができる。いくつかの実施形態では、画像取得装置は、当業者によって認識されるように、MRI、X線、CT、CBCT、スパイラルCT、PET、SPECT、光断層撮影、蛍光イメージング、超音波イメージング、または放射線治療ポータルイメージング装置等、のような装置とすることができる。
[0056]
図3は、ディープラーニングの例示的な流れ図を示し、放射線装置のビームモデルパラメータ値を決定するために、ディープ畳み込みニューラルネットワークのようなディープラーニングが訓練されて使用される。入力304は、値の初期セットと訓練データを有する定義されたディープラーニングモデルを含むことができる。訓練データは、線量プロファイルと期待される結果を含むことができる。ディープラーニングモデルは、ディープ畳み込みニューラルネットワークのようなニューラルネットワークを含むことができる。ディープラーニングネットワークは、深部量百分率曲線や対応するビームパラメータのような線量プロファイルで訓練される。訓練されると、ディープラーニングネットワークは、その放射線装置の深部量百分率曲線のみを用いて、そのような放射線装置のビームモデルパラメータ値の推定値を生成することができる。予想される結果は、治療計画中の線量計算に使用される深部量百分率曲線を含むことができる。ビームモデルのパラメータは、放射線装置内の1つまたはそれ以上の光子源のサイズと位置、放射線装置から放出される光子の光子スペクトルの最大エネルギー、放射線装置から放出される光子スペクトルの形状を説明するいくつかのファクタを含むことができる。ビームモデルパラメータは、また、放射線装置内の1つまたはそれ以上の電子源のサイズおよび位置、放射線装置から放出される電子スペクトルの平均エネルギーを含むことができる。ビームモデルパラメータは、また、放射線装置によって放出された放射線(例えば、電子または光子)が軸外(off-axis)でどのように変化するかを説明する1つまたはそれ以上の数を含むことができる。ディープラーニングモデル308の訓練中に、訓練データのバッチは、線量プロファイルおよび期待される結果(例えば、対応するビームモデルパラメータ値)から選択されることができる。選択された訓練データは、少なくとも1つの線量プロファイルと、対応するグラウンドトゥルースビームモデルパラメータ値を含めることができる。ディープラーニングモデルが選択された線量プロファイルに適用されて推定された結果(例えば、推定されたビームモデルパラメータ)を提供し、その推定された結果は、期待された結果(例えば、選択された線量プロファイルに対応するグラウンドトゥルースビームモデルパラメータ値)と比較され、訓練エラーの指標を提供する差異を計算することができる。エラーは、バックプロパゲーションと呼ばれる手順で使用され、ディープラーニングネットワークのパラメータ(例えば、レイヤーノードの重みおよびバイアス)のエラーを修正し、例えば、後続の試行中におけるビームモデルパラメータ値の推定値のエラーを削減または最小化する。エラーは、指定数の訓練反復に対する持続的な最小値で進むように、所定の基準と比較することができる。エラーが所定の基準を満たさない場合、ディープラーニングモデルのモデルパラメータがバックプロパゲーションを用いて更新され、そして、訓練データの別のバッチが、線量プロファイルとディープラーニングモデル訓練の別の反復の予想結果から選択されることができる。エラーが所定の基準を満たす場合、訓練を終了し、訓練されたモデルは、ディープラーニングテストまたはインターフェース段階312で使用して、訓練データとは異なる線量プロファイルに基づいてビームモデルパラメータ値を予測することができる。訓練されたモデルは、新しい線量プロファイルを受け取り、予測された結果(例えば、ビームモデルパラメータ値)を提供することできる。
[0057]
図4は、深部量百分率曲線の例を示す。深部量百分率曲線は、人体組織をシミュレーションする媒体(例えば、ファントム)に放射線装置から放射線を照射することで測定できる。一実施例において、ファントムは水を含むことができる。媒体の深さの関数として堆積される放射線の量は、例えば、図4に示される深部量百分率曲線を提供するために、測定および記録される。媒体に設置されるセンサは、堆積された放射線の測定値を提供することができる。
[0058]
図5Aは、放射線装置からの少なくとも1つの測定された線量プロファイルに基づいて放射線装置のビームモデルパラメータ値を決定するためのディープ畳み込みニューラルネットワーク(DCNN)モデルのようなニューラルネットワークモデルを訓練する方法の一実施例を示す。ビームモデルパラメータ値のセットを受け取り、ビームモデルパラメータ値の各セットは放射線装置に対応する(ステップ510)。ビームモデルパラメータ値のセットは、式X={φ,...φ}で表すことができ、ここで、Xは、ビームモデルパラメータ値のセットを表し、φは、j番目のビームモデルパラメータのビームモデルパラメータ値を表す。次に、個々のビームモデルパラメータ値の範囲(例えば、最小値および最大値)を、ビームモデルパラメータ値の異なるセットからのビームパラメータ値の分析によって決定する(ステップ512)。ビームモデルパラメータの値が、ビームモデルパラメータの第1のセット、第2のセット、第3のセットでそれぞれ0.1、0.5、0.9である実施例では、ビームモデルパラメータ値の範囲は0.1から0.9である。次に、決定された範囲内にあるビームパラメータ値のランダムまたは擬似ランダムのサンプリング等により、ビームモデルパラメータ値のセットを生成する(ステップ514)。例えば、Nセットのビームモデルパラメータ値を生成する。一実施例では、サンプリングは、決定された範囲を超えて、ある量(例えば、10%)拡張することができる。特定のビームモデルパラメータ値は、異なる放射線装置の間で大幅に変化しない。このようなビームモデルパラメータ値は、1つまたはそれ以上のセットのビームモデルパラメータ値に対して同じにすることができる。例えば、ビームモデルパラメータの値φは、1つまたはそれ以上のビームモデルパラメータ値のセットで同じ値にすることができる。生成されたビームモデルパラメータ値のセットの数Nは、ニューラルネットワークモデルの訓練を容易にするのに十分な大きさに選択できる。例えば、Nは1000より大きい場合があり得る。そのような大きな数Nは、存在する放射線装置の数(例えば、約4000)よりはるかに大きくなる可能性がある。一実施例では、生成されたビームモデルパラメータのセットの数は、生成されたビームパラメータのセットの数の減少をもたらすような、全ての放射線装置に対して可能なパラメータ値の範囲をカバーするように選択することができる。1つのビームモデルパラメータの可能なパラメータ値の範囲をカバーすることは、可能なパラメータ値の範囲内でいくつかの値を生成することを含む。値の数は、規則的に、ランダムに、または疑似ランダムに間隔を空けることができる。ビームモデル放射線パラメータは、複数の放射線装置のビームモデル設計者(beam modeler)により決定されたビームモデルパラメータ値に基づく等により、決定され得る最小値および最大値を有することができる。一実施例では、ビームモデル放射線パラメータの最小値は1、ビームモデル放射パラメータの最大値は2であり、可能なパラメータの範囲をカバーする値の数には1.0、1.2、1.4、1.6、1.8、2.0を含み得る。生成されたビームモデルパラメータのセットの数が選択され、すべての放射線装置の可能なパラメータ値の範囲をカバーし得る実施例では、セットの数は、存在する放射線装置の数より少なくすることができる。次に、生成されたビームパラメータのセットのそれぞれについて線量プロファイルを計算する(ステップ516)。線量プロファイルは、コンピュータに実装されたアルゴリズムにより決定できる。線量プロファイルがコンピュータアルゴリズムによって決定される実施形態では、アルゴリズムは分析アルゴリズムであり、計算は数時間を必要とする。生成されたビームパラメータ値の各セットに対して、1つまたはそれ以上のフィールドサイズの線量プロファイルを決定することができる。線量プロファイルは、軸上と軸外との両方で計算できる。線量深度プロファイル(深部量プロファイル:dose depth profile)は、中心軸に沿って(例えば、放射線ビームの方向に沿って)計算することができ、放射線量プロファイル(radial dose profile)は、中心軸に直交する方向に沿って(例えば、放射線ビームに交差する方向に沿って)指定の深さで計算することができる。また、線量プロファイルはフィールドサイズ(例えば、1×1、2×2、等)の範囲について計算することができる。ネットワーク訓練を開始するために、反復インデックスをゼロの初期値に設定する(ステップ518)。訓練データのバッチは、ビームモデルパラメータ値のM個のセットおよび対応する線量プロファイルから形成され、ここで、MはN未満である(ステップ522)。訓練データのバッチは、ニューラルネットワークモデルに提供され、ニューラルネットワークパラメータは、それに基づいて更新される(ステップ526)。ニューラルネットワークモデルは、訓練データのバッチ内の1つまたはそれ以上の線量プロファイルおよびニューラルネットワークモデルの現在のパラメータに基づいて、ビームモデルパラメータ値の出力セットを提供する(ステップ530)。訓練データのバッチにおいて受信された線量プロファイルに対応するビームモデルパラメータ値の出力セットと、グラウンドトゥルースビームモデルパラメータ値とを比較する。各エラー値が推定されたビームモデルパラメータ値と対応するグラウンドトゥルースビームモデルパラメータとの差を含む、対応するエラーセットをこの比較から決定する(ステップ534)。次に、ニューラルネットワークモデルのパラメータを、逆伝播を使用することなどによって、対応するエラーに基づいて更新する(ステップ538)。一実施形態において、ニューラルネットワークモデルのパラメータを、ある関数を最小化または低減するように更新する。その関数は、例えば、次の数1である。
Figure 2021505288
ここで、Yは、ニューラルネットワークモデルにより決定されるビームモデルパラメータ値を表し、Yは、訓練データのバッチに対応する既知のビームモデルパラメータ値を表し、Θは、YとY間の最小化された二乗誤差に対応するニューラルネットワークモデルのパラメータ(例えば、レイヤーノードの重さとバイアス)を表す。ニューラルネットワークモデルのパラメータを更新した後、反復インデックスを1の値だけ増やす(ステップ542)。反復インデックスは、ニューラルネットワークモデルのパラメータが更新された回数に対応する。停止基準を計算し(ステップ546)、停止基準が満たされる場合、ニューラルネットワークモデルを画像処理装置112のメモリ装置116のようなメモリに保存し、訓練を停止する(ステップ550)。停止基準が満たされない場合、訓練はステップ522に戻り継続する。一実施形態では、ステップ522から訓練を継続する前に、ステップ514及びステップ516に関連して上述したように追加の訓練データを生成する。一実施形態では、停止基準は、反復インデックスの値を含むことができる(例えば、停止基準は、反復インデックスが所定の最大反復回数以上であるかどうかを含むことができる)。一実施形態では、停止基準は、ビームモデルパラメータ値の出力セットの精度を含むことができる(例えば、停止基準は、ビームモデルパラメータ値の出力セットと、訓練データのバッチにおいて医用画像の受け取ったセットに対応するビームモデルパラメータ値との差が、しきい値よりも小さいかどうかを含むことができる)。一実施形態では、しきい値は、ステップ534で決定されたすべてのエラーの漸近的最小値に対応させることができる。一実施形態では、ビームモデルパラメータを、固定のフォーマットの画像の形でニューラルネットワークモデルに提示することができる。一実施形態では、線量プロファイルは、ビームモデルパラメータ値と共にプールされ、実際のアレイとして提示されることができる。
[0059]
図5Bは、図5Aに関して上記で説明した方法により訓練されるディープ畳み込みニューラルネットワーク(DCNN)のような、訓練されたニューラルネットワークモデルを用いてビームモデルパラメータを生成する方法の一実施例を示す。線量プロファイルを、測定装置から受け取る(ステップ560)。訓練されたニューラルネットワークモデルを、ネットワーク120のようなネットワークから、または、画像処理装置112のメモリ装置116のようなメモリから受け取る(ステップ564)。訓練されたニューラルネットワークモデルを、放射線治療計画または再計画などのために、ビームモデルパラメータ値を決定するために用いる(ステップ568)。決定されたビームモデルパラメータ値を、自動的に、または、ビームモデル設計者(beam modeler)などにより用いて、1つまたはそれ以上の線量プロファイルを計算する(ステップ572)。次に、1つまたはそれ以上の計算された線量プロファイルを、ステップ560で受け取ったもののように、1つまたはそれ以上の線量プロファイルと比較する。ステップ560で受け取った1つまたはそれ以上の線量プロフィールと、ステップ572で計算された1つまたはそれ以上の線量プロファイルとの相違が特定の基準を満たす場合、少なくとも1つのビームモデルパラメータ値を更新する(ステップ576)。例えば、少なくとも1つのビームモデルパラメータ値は、ビームモデル設計者(beam modeler)により更新され得る。
[0060]
図6は、訓練されたニューラルネットワークモデルを用いて1つのビームモデルパラメータを推定した結果の一実施例を示す。図6に示す実施例では、セット間で変化する単一のビームモデルパラメータと共に、ビームモデルパラメータ値の多数のセットが提供される。更に、5×5のフィールドサイズを有する1つまたはそれ以上の対応する線量プロファイルも提供される。図6に示す実施例では、推定されたビームモデルパラメータと実際のグラウンドトゥルースビームモデルパラメータが一緒にプロットされている。図6に示す実施例では、約3000の訓練セットが、ニューラルネットワークモデルを訓練するために使用された。
[0061]
図7A−図7Cは、訓練されたニューラルネットワークを用いて3つのビームモデルパラメータ値を推定した結果の実施例を示す。図7A−図7Cに示された実施例では、多くのセットのビームモデルパラメータ値が提供される。6つのビームモデルパラメータ値は、セット間で異なり得る。5つの異なるフィールドサイズに対応する5つの線量プロファイルも提供される。図7A−図7Cに示された実施例では、推定されたビームモデルパラメータ値および実際のグラウンドトゥルースビームモデルパラメータ値が一緒にプロットされている。図7A−図7Cに示された実施例では、約10000の訓練セットがニューラルネットワークモデルのトレーニングに使用された。訓練セットのそれぞれが、異なるフィールドサイズ(例えば、1×1、2×2など)の1つに対応するそれぞれの線量プロファイルと6つの異なる線量計算(例えば、軸上の深部量百分率プロファイル(percent depth dose profile)、軸外の深部量百分率プロファイル(percent depth dose profile)、または放射線量プロファイル(radial dose profile)のひとつを有する線量プロファイルを含む。
[0062]
図6は、本明細書で説明される方法の1つまたはそれ以上を実施することができるマシン800の実施形態のブロック図を示す。1つまたはそれ以上の実施形態では、画像処理装置112の1つまたはそれ以上のアイテムは、マシン800によって実装される。代替の実施形態では、マシン800は、スタンドアロンデバイスとして動作することができ、または他のマシンに接続されても(例えば、ネットワーク化されても)よい。1つまたはそれ以上の実施形態では、画像処理装置112は、マシン800の1つまたはそれ以上のアイテムを含むことができる。ネットワーク化された配置では、マシン800は、サーバー、またはサーバークライアントネットワーク環境のサーバーのクライアントマシンの容量で、またはピアツーピア(または分散)ネットワーク環境のピアマシンとして動作する。マシンは、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、携帯情報端末(PDA)、携帯電話、ウェブアプライアンス、ネットワークルーター、スイッチまたはブリッジ、またはそのマシンが実行するアクションを指定する命令(シーケンシャルまたはそれ以外)を実行できるマシンであることができる。さらに、単一のマシンのみが示されているが、「マシン」という用語は、本明細書で説明する方法論の1つまたは複数を実行する命令のセット(または複数のセット)を個別または共同で実行するマシンの集合も含むものとする。
[0063]
例示的なマシン800は、バス808を介して互いに接続されているプロセッシング回路802(例えば、中央処理装置(CPU)、グラフィック処理装置(GPU)、特定用途向け集積回路、1つまたはそれ以上のトランジスタ、抵抗器、コンデンサ、インダクタ、ダイオード、論理ゲート、マルチプレクサ、バッファ、変調器、復調器、無線装置(例えば、送信または受信無線装置またはトランシーバのような回路)、センサ821(例えば、エネルギー(光、熱、電気、機械、またはその他のエネルギー)のあるフォームを他のフォームに変換するトランスデューサーなど、またはそれらの組み合わせ)、メインメモリ804、およびスタティックメモリを含む。マシン800(例えば、コンピュータシステム)は、ビデオディスプレイユニット810(例えば、液晶ディスプレイ(LCD)または陰極線管(CRT))をさらに含み得る。マシン800は、英数字入力装置812(例えば、キーボード)、ユーザインターフェース(UI)ナビゲーション装置814(例えば、マウス)、ディスクドライブまたは大容量記憶装置816、信号生成装置818(例えば、スピーカー)およびネットワークインターフェース装置820も含む。
[0064]
ディスクドライブユニット816は、本明細書で説明される方法または機能のうちのいずれか1つまたはそれ以上によって具現化または利用される命令およびデータ構造(例えば、ソフトウェア)824の1つまたはそれ以上のセットが記憶される機械可読媒体822を含む。命令824は、また、マシン800、メインメモリ804およびプロセッサ802による実行中に、完全にまたは少なくとも部分的に、メインメモリ804および/またはプロセッサ802内に常駐し、機械可読媒体を構成することができる。
[0065]
図示されたマシン800は、出力コントローラ828を含み得る。出力コントローラ828は、マシン800への、またはマシン800からのデータフローを管理する。出力コントローラ828はデバイスコントローラと呼ばれ、出力コントローラ828と直接相互に作用するソフトウェアはデバイスドライバと呼ばれる。
[0066]
機械可読媒体1022は、例示的な実施形態では単一の媒体であるように示されているが、用語「機械可読媒体」は、1つまたはそれ以上の命令またはデータ構造を格納する、単一の媒体または複数の媒体(例えば、集中型または分散型データベース、および/または関連するキャッシュおよびサーバー)を含み得る。「機械可読媒体」という用語は、機械による実行のための命令を格納、符号化、または搬送することができ、機械に本発明の方法論の1つまたはそれ以上を実行させることができ、またはそのような命令によって利用される、または関連するデータ構造を保存、エンコード、または実行することができる、いかなる有形媒体も含むものとする。したがって、「機械可読媒体」という用語は、ソリッドステートメモリ、光学および磁気媒体を含むと解されるが、これらに限定されない。機械可読媒体の特定の例は、半導体メモリデバイスを含む不揮発性メモリ、たとえば、消去可能プログラマブル読み取り専用メモリ(EPROM)、電気的消去可能プログラマブル読み取り専用メモリ(EEPROM)、およびフラッシュメモリデバイス、内蔵ハードディスクやリムーバブルディスクなどの磁気ディスク。光磁気ディスク、およびCD−ROMおよびDVD−ROMディスクを含む。
[0067]
命令1024は、さらに、伝送媒体を使用して通信ネットワーク1026を介して送信または受信され得る。命令1024は、ネットワークインターフェース装置1020や、いくつかの周知の転送プロトコル(例えば、HTTP)のうちのいずれか1つを使用して送信され得る。通信ネットワークの例には、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、インターネット、携帯電話ネットワーク、プレインオールドテレフォン(POTS)ネットワーク、および無線データネットワーク(例えば、WiFi、WiMaxネットワークなど)が含まれる。「伝送媒体」という用語は、機械による実行のための命令を保存、エンコード、または実行できる無形媒体を含み、そのようなソフトウェアの通信を促進するためのデジタルまたはアナログ通信信号または他の無形媒体を含むものとする。
[0068]
本明細書で使用する「通信可能に結合」とは、いずれかの結合上のエンティティがその間のアイテムを介して通信する必要があり、それらのエンティティがアイテムを介して通信せずに互いに通信できないことを意味する。
追加の注意事項
[0069]
上記の詳細な説明は、詳細な説明の一部を形成する添付の図面への参照を含む。図面は、本発明を実施することができる特定の実施形態を、限定ではなく例示として示すものである。これらの実施形態は、本明細書では「例」とも呼ばれる。そのような例は、図示または記載されたものに追加した要素を含むことができる。しかし、本願発明者らは、また、図示または記載されている要素のみが提供されている例を考慮している。さらに、本願発明者らは、また、特定の例(またはその1つまたは複数の態様)に関して、あるいは他の例(またはその1つまたは複数の態様)に関して示された、または説明された要素の任意の組合せまたは置換を用いる例を考慮している。
[0070]
このドキュメントで参照される、すべての出版物、特許、および特許文書は、個々が参照により組み込まれているが、参照によりその全体が本明細書に組み込まれる。このドキュメントと、参照により組み込まれたドキュメントとの間に一貫性のない用法がある場合、参照により組み込まれたドキュメントでの用法は、このドキュメントの用法を補足するものと見なされ、矛盾する用法については、このドキュメントの用法が支配する。
[0071]
この文書では、「a」、「an」、「the」、「言われた」という用語は、特許文書で一般的であるように、本発明の態様の要素を導入するときに使用され、1つ以上の「少なくとも1つの」または「1つまたは複数の」の他のインスタンスまたは使用法とは無関係に、1つまたは複数の要素よりも、このドキュメントでは、「または」という用語は、「AまたはBは、”含む”AではなくB、””BではなくA、”および”、AとBを「しない限り、他に示さ。このドキュメントでは、用語「a」、「an」、「the」「said」は、本発明の態様または本発明の実施形態に要素を導入するときに、特許文書において一般的であるように使用され、「少なくともひとつ」または「1つまたは複数」の他の例または用法とは独立に1つまたは複数を含む。本明細書では、用語「または(or)」は、「AまたはB(A or B)」が、そうでないと示されない限り、「Aを含むがBを含まない(A but not B)」、「Bを含むがAを含まない(B but not A)」、「AおよびB(A and B)」を含むように、非排他的であることを指すために使用される。
[0072]
添付の特許請求の範囲において、用語「including(含む)」および「in which(その中で)」は、それぞれの用語「comprising(含む)」および「wherein(ここで)」の平易な英語の等価物として使用される。また、以下の特許請求の範囲において、用語「含む(comprising)」、「含む(including)」、「含む(having)」、は、オープンエンドであることを意図し、請求項のそのような用語(例えば、「含む(comprising)」、「含む(including)」、「含む(having)」)の後に列挙されている要素に追加した要素を含むものが、依然としてその請求項の範囲内にあるとみなされる。さらに、以下の特許請求の範囲では、「第1の」、「第2の」、および「第3の」などの用語は、単なるラベルとして使用されており、それらの対象に数値要件を課すことを意図していない。
[0073]
本発明の実施形態は、コンピュータ実行可能命令で実装されてもよい。コンピュータ実行可能命令(例えば、ソフトウェアコード)は、1つまたはそれ以上のコンピュータ実行可能コンポーネントまたはモジュールに編成され得る。本発明の態様は、そのようなコンポーネントまたはモジュールの任意の数および編成で実装することができる。例えば、本発明の態様は、図に示され、本明細書で説明される特定のコンピュータ実行可能命令または特定のコンポーネントまたはモジュールに限定されない。本発明の他の実施形態は、本明細書に図示および記載されているよりも多いまたは少ない機能を有する、異なるコンピュータ実行可能命令またはコンポーネントを含むことができる。
[0074]
本明細書で説明される方法の例(例えば、操作および機能)は、少なくとも部分的に(例えば、ソフトウェアコードまたは命令として実装される)機械またはコンピュータで実装することができる。いくつかの例は、上記の例で説明した方法を実行するように電子デバイスを構成するように動作可能な命令でエンコードされたコンピュータ可読媒体または機械可読媒体を含むことができる。そのような方法の実装は、マイクロコード、アセンブリ言語コード、高水準言語コードなどのソフトウェアコード(例えば、「ソースコード」)を含むことができる。そのようなソフトウェアコードは、様々な方法(例えば、「オブジェクト」または「実行可能コード」)を実行するためのコンピュータ可読命令を含むことができる。ソフトウェアコードは、コンピュータプログラム製品の一部を形成する場合がある。本明細書に記載の実施形態のソフトウェア実装は、コードまたは命令が格納された製品を介して、または、通信インターフェース(例えば、無線で、インターネットで、衛星通信を介して、など)を介してデータを送信するために通信インターフェースを操作する方法を介して提供することができる。
[0075]
さらに、ソフトウェアコードは、実行中または他の時間のときに、1つまたはそれ以上の揮発性または不揮発性のコンピュータ可読記憶媒体に有形に格納することができる。これらのコンピュータ可読記憶媒体は、機械(例えば、コンピューティングデバイス、電子システムなど)によってアクセス可能な形式で情報を格納する任意のメカニズムを含むことができ、それらは、例えば、フロッピーディスク、ハードディスク、リムーバブルディスク、磁気ディスク、あらゆる形式の磁気ディスク記憶媒体、CDROM、光磁気ディスク、リムーバブル光ディスク(例えば、コンパクトディスクおよびデジタルビデオディスク)、フラッシュメモリデバイス、磁気カセット、メモリカードまたはスティック(例えば、セキュアデジタルカード)、ランダムアクセスメモリ(RAM)(例えば、CMOS RAMなど)、記録可能/記録不能メディア(例えば、読み取り専用メモリ(ROM))、EPROM、EEPROM、または電子命令の保存に適した任意のタイプのメディアなどを含むが、それには限定されない。そのようなコンピュータ可読記憶媒体は、コンピュータシステムバスに結合され、プロセッサおよびOISの他の部分によってアクセス可能である。
[0076]
一実施形態では、コンピュータ可読記憶媒体は、治療計画が適応可能であり得る治療計画のデータ構造を符号化することができる。コンピュータ可読記憶媒体のデータ構造は、Digital Imaging and Communications in Medicine (DICOM)フォーマット、拡張DICOMフォーマット、XMLフォーマットなどのうちの少なくとも1つであり得る。DICOMは、さまざまなタイプの医療機器間で医用画像関連データを転送するために使用されるフォーマットを定義する国際通信規格である。DICOM RTは、放射線療法に固有の通信規格を指し示す。
[0077]
本発明の様々な実施形態では、コンポーネントまたはモジュールを作成する方法は、ソフトウェア、ハードウェア、またはそれらの組み合わせで実装することができる。本発明の様々な実施形態によって提供される方法は、例えば、C、C++、Java(登録商標)、Pythonなど、および、それらの組み合わせのような、標準プログラミング言語を使用することによって、ソフトウェアで実装することができる。本明細書で使用される場合、「ソフトウェア」および「ファームウェア」という用語は交換可能であり、コンピュータによる実行のためにメモリに格納された任意のコンピュータプログラムを含む。
[0078]
通信インターフェースには、メモリバスインターフェース、プロセッサバスインターフェース、インターネット接続、ディスクコントローラーなどのような、ハードワイヤード、ワイヤレス、光などの媒体にインターフェースして、他のデバイスに通信するメカニズムが含まれる。通信インターフェースは、ソフトウェアコンテンツを説明するデータ信号を提供するための通信インターフェースを準備するための構成パラメータおよび/または信号を送信することによって構成することができる。通信インターフェースには、通信インターフェースに送信される1つまたはそれ以上のコマンドまたは信号を介してアクセスすることができる。
[0079]
本発明はまた、本明細書の操作を実行するためのシステムに関する。このシステムは、必要な目的のために特別に構築することも、コンピュータに格納されたコンピュータプログラムによって選択的にアクティブ化または再構成された汎用コンピュータを含むこともできる。本明細書において図示および説明される本発明の実施形態における動作の実行または実行の順序は、特に指定されない限り、必須ではない。すなわち、特に明記しない限り、操作は任意の順序で実行でき、本発明の実施形態は、本明細書に開示されているものよりも多いまたは少ない操作を含むことができる。例えば、別の操作の前、同時、または後に特定の操作を実行または実行することは、本発明の態様の範囲内であると考えられる。
[0080]
上記記載を考慮すれば、本発明のいくつかの目的が達成され、他の有利な結果が得られることが分かるであろう。本発明の態様を詳細に説明したが、添付の特許請求の範囲で定義される本発明の態様の範囲から逸脱することなく、修正および変更が可能であることは明らかであろう。本発明の態様の範囲から逸脱することなく、上記の構造、製品、および方法に様々な変更を加えることができるので、上記の説明に含まれ、添付の図面に示されるすべての事項は、例示として、かつ、限定的ないみではないと、解釈されるべきである。
[0081]
上記の説明は、例示を意図したものであり、限定を意図したものではない。例えば、上述の実施例(または1つまたはそれ以上の態様)は、互いに組み合わせて使用することができる。さらに、本発明の範囲から逸脱することなく、特定の状況または材料を本発明の教示に適合させるために、多くの修正を行うことができる。本明細書に記載されている寸法、材料のタイプ、およびコーティングは、本発明のパラメータを定義することを意図しているが、それらは決して限定的ではなく、例示的な実施形態である。上記の説明を検討すれば、他の多くの実施形態が当業者には明らかであろう。したがって、本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる等価物の全範囲とともに決定されるべきである。
[0082]
また、上記の詳細な説明では、開示を簡素化するために、さまざまな機能をグループ化することがある。これは、クレームされていない開示された機能がクレームに不可欠であることを意図するものとして解釈されるべきではない。むしろ、発明の主題は、特定の開示された実施形態のすべての特徴より少ない場合がある。したがって、以下の請求項は、これにより詳細な説明に組み込まれ、各請求項は別個の実施形態としてそれ自体で成立する。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる均等物の全範囲とともに決定されるべきである。さらに、以下のクレームの制限はミーンズプラスファンクション形式で書かれておらず、「means for」という語句を明示的に使用し、その後に構造のない関数のステートメントを続けない限り、35USCd第112条第6パラグラフに基づいて解釈されることを意図していない。
[0083]
要約書は、37CFR1.72(b)に準拠して提供され、読者が技術的開示の性質をすばやく確認できるようにする。それは、クレームの範囲または意味を解釈または制限するために使用されないことを理解して提出されている。
[0049]
2は、X線源または線形加速器のような放射線源、カウチ216、撮像検出器214、および放射線治療出力204を含む、例示的な放射線治療装置150を示す。放射線治療装置202は、放射線ビーム208を出射して患者に治療を提供するように構成されている。放射線治療出力204は、マルチリーフコリメータ(MLC)のような1つまたはそれ以上の減衰器またはコリメータを含むことができる。

Claims (20)

  1. ディープ畳み込みニューラルネットワークモデルを訓練して、放射線装置が対象に放射線治療線量を送達するためのビームモデルを提供するコンピュータに実装された方法であって、
    前記方法は、
    前記放射線装置に対応するビームモデルの少なくとも1つのパラメータのパラメータ値の範囲を決定するステップと、
    複数のセットのビームモデルパラメータ値を生成するステップであって、ビームモデルパラメータ値の1つまたはそれ以上の個々のセットは、前記決定された範囲のパラメータ値から選択されたパラメータ値を含んでいるステップと、
    前記複数のセットのビームモデルパラメータ値内の個々のセットのビームモデルパラメータ値にそれぞれ対応する複数の対応線量プロファイルを提供するステップと、
    前記複数のビームモデルと前記対応線量プロファイルを用いて前記ニューラルネットワークモデルを訓練するステップと
    を有する
    ことを特徴とする方法。
  2. 請求項1記載の方法において、
    少なくとも1つのセットのビームモデルパラメータ値と、少なくとも1つの放射線装置から以前に収集された対応する測定線量プロファイルとを用いて、前記ニューラルネットワークモデルを訓練するステップを有する
    ことを特徴とする方法。
  3. 請求項1記載の方法において、
    前記少なくとも1つのビームモデルパラメータのビームモデルパラメータ値の範囲を決定するステップは、複数の放射線装置のそれぞれのビームモデルパラメータ値を決定することを含む
    ことを特徴とする方法。
  4. 請求項1記載の方法において、
    複数の放射線装置のそれぞれについて少なくとも1つの線量プロファイルを測定するステップを有する
    ことを特徴とする方法。
  5. 請求項4記載の方法において、
    前記ニューラルネットワークモデルを訓練するステップは、
    N個のセットの生成されたビームモデルパラメータ値と、対応する線量プロファイルを前記ニューラルネットワークモデルに提供することと、
    M個の放射線装置からの線量プロファイルと対応するビームモデルパラメータを前記ニューラルネットワークモデルに提供することと
    を含む
    ことを特徴とする方法。
  6. 請求項1記載の方法において、
    少なくとも1つのセットのビームモデルパラメータ値を生成するために、前記ビームモデルパラメータ値の決定された範囲からランダムにまたは擬似ランダムに前記ビームモデルパラメータ値を選択するステップを有する
    ことを特徴とする方法。
  7. 請求項1記載の方法において、
    ビームモデルパラメータ値のそれぞれのセットは、複数の線量プロファイルを用いて生成され、
    前記複数の対応する線量プロファイルの個々の線量プロファイルは、標的サンプルへの深さとともに変化する放射線の相対線量を含む
    ことを特徴とする方法。
  8. 請求項1記載の方法において、
    ビームモデルの少なくとも1つのパラメータに対するビームモデルパラメータ値の範囲を決定するステップは、前記放射線装置の放射線源から放出された光子のエネルギー分布に関連する複数のビームモデルパラメータ値を決定することを含む
    ことを特徴とする方法。
  9. 請求項8記載の方法において、
    前記ビームモデルパラメータは、放射線源の大きさと、放射線源の位置、または放射線源のエネルギースペクトルの少なくとも1つである
    ことを特徴とする方法。
  10. 請求項1記載の方法において、
    ビームモデルの少なくとも1つのパラメータに対するビームモデルパラメータ値の範囲を決定するステップは、前記放射線装置の放射線源から放出された電子のエネルギー分布に関連する複数のビームモデルパラメータ値を決定することを含む
    ことを特徴とする方法。
  11. ディープ畳み込みニューラルネットワークモデルを用いて、放射線装置のビームモデルの少なくとも1つのパラメータ値を決定するコンピュータに実装された方法であって、
    前記方法は、
    複数のセットのビームモデルパラメータ値と対応する線量プロファイルとを用いて前もって訓練された、訓練されたニューラルネットワークモデルを受け取るステップであって、前記訓練されたニューラルネットワークモデルは、1つまたはそれ以上の測定された放射線装置の線量プロファイルから少なくとも1つの放射線装置のビームモデルパラメータ値を予測するために訓練されているステップと、
    前記訓練されたニューラルネットワークモデルへの入力として提供される前記放射線装置からの複数の線量プロファイルを測定するステップと、
    前記訓練されたニューラルネットワークモデルを用いて、前記放射線装置の1つのセットのビームモデルパラメータ値の少なくとも1つのビームモデルパラメータ値を決定するステップと
    を有する
    ことを特徴とする方法。
  12. 請求項11記載の方法において、
    前記決定された少なくとも1つのビームモデルパラメータ値を含むビームモデルパラメータ値のセットから線量プロファイルを計算し、前記計算された線量プロファイルを測定された線量プロファイルと比較するステップを含む
    ことを特徴とする方法。
  13. 請求項12記載の方法において、
    前記ビームモデルパラメータ値のセットは、前記訓練されたニューラルネットワークモデルを用いて決定されない少なくとも1つのビームモデルパラメータ値を含む
    ことを特徴とする方法。
  14. 請求項12記載の方法において、
    前記放射線装置からの前記測定された線量プロファイルと、前記決定された線量プロファイルとの間の差が指定された基準を満たす場合、前記ニューラルネットワークモデルによって決定された前記少なくとも1つのビームモデルパラメータ値を更新するステップを有する
    ことを特徴とする方法。
  15. 請求項12記載の方法において、
    前記ニューラルネットワークモデルによって決定された前記少なくとも1つのビームモデルパラメータ値を含むビームモデルパラメータ値のセットを用いて複数の線量プロファイルを決定するステップであって、前記複数の線量プロファイルの個々のものは、前記放射線装置の異なるフィールドサイズに対応しているステップと、
    前記複数の決定された線量プロファイルのそれぞれを、複数の測定された線量プロファイルの対応するものと比較するステップと
    を有する
    ことを特徴とする方法。
  16. 請求項11記載の方法において、
    複数のセットのビームモデルパラメータ値と対応する線量プロファイルとを用いて前もって訓練された、訓練されたニューラルネットワークモデルを受け取るステップは、ある方法により前もって訓練された、訓練されたニューラルネットを受け取ることを含み、
    前記ある方法は、
    前記放射線装置に対応するビームモデルの少なくとも1つのパラメータのビームモデルパラメータ値の範囲を決定するステップと、
    複数のセットのビームモデルパラメータ値を生成するステップであって、ビームモデルパラメータ値の1つまたはそれ以上の個々のセットは、前記決定された範囲のパラメータ値から選択されたパラメータ値を含んでいるステップと、
    前記複数のセットのビームモデルパラメータ値内の個々のセットのビームモデルパラメータ値にそれぞれ対応する複数の対応線量プロファイルを提供するステップと、
    前記複数のセットのビームモデルパラメータ値と前記対応する線量プロファイルとを用いて前記ニューラルネットワークを訓練するステップと
    を有する
    ことを特徴とする方法。
  17. 請求項11記載の方法において、
    前記決定された少なくとも1つのビームモデルパラメータ値を有する前記ビームモデルパラメータ値のセットを用いて、前記放射線装置から患者内の標的領域への放射線の線量を推定するステップを有する
    ことを特徴とする方法。
  18. 放射線装置の少なくとも1つの測定された線量プロファイルから前記放射線装置のビームモデルの少なくともビームモデルパラメータ値を生成するシステムであって、
    前記システムは、
    前記放射線装置に対応する少なくとも1つの測定線量プロファイルを受け取り、前記放射線装置の少なくとも1つのビームモデルパラメータ値を推定するためのニューラルネットワークモデルを受け取るように構成されたインターフェースと、
    前記ニューラルネットワークモデルと前記少なくとも1つの測定された線量プロファイルとを記憶するためのメモリであって、前記ニューラルネットワークモデルは、複数のセットのビームモデルパラメータ値と対応する線量プロファイルとを用いて訓練されるメモリと、
    前記少なくとも1つの測定された線量プロファイルを前記ニューラルネットワークモデルへの入力として用いて、前記放射線装置の少なくとも1つのビームモデルパラメータ値を推定するように構成されたプロセッサと
    を有する
    ことを特徴とするシステム。
  19. 請求項19記載のシステムにおいて、
    前記記憶されたニューラルネットワークモデルは、
    前記放射線装置に対応するビームモデルの少なくとも1つのパラメータのビームモデルパラメータ値の範囲を決定し、
    複数のセットのビームモデルパラメータ値を生成することであって、ビームモデルパラメータ値の1つまたはそれ以上の個別のセットは、前記パラメータ値の決定された範囲から選択されたパラメータ値を含み、
    前記複数のセットのビームモデルパラメータ値におけるビームモデルパラメータ値のそれぞれの個々のセットにそれぞれ対応する複数の対応する線量プロファイルを提供し、
    前記複数セットのビームモデルパラメータ値と前記対応する線量プロファイルとを前記ニューラルネットワークモデルに提供する
    ことにより訓練される
    ことを特徴とするシステム。
  20. 請求項18記載のシステムにおいて、
    前記インターフェースは、前記放射線装置からの前記測定された線量プロファイルと前記ビームモデルパラメータ値のセットから決定された線量プロファイルとの相違が指定された基準を満たす場合には、前記ニューラルネットワークモデルによって推定された前記ビームモデルパラメータ値と対応する線量プロファイルとを含むビームモデルパラメータ値のセットを、ユーザに送信するように構成されている
    ことを特徴とするシステム。
JP2020531514A 2017-12-08 2018-12-05 ディープ畳み込みニューラルネットワークを用いたビームモデルパラメータの決定 Active JP6895019B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/836,539 US10493299B2 (en) 2017-12-08 2017-12-08 Determining parameters for a beam model of a radiation machine using deep convolutional neural networks
US15/836,539 2017-12-08
PCT/US2018/064102 WO2019113234A1 (en) 2017-12-08 2018-12-05 Determining beam model parameters using deep convolutional neural networks

Publications (2)

Publication Number Publication Date
JP2021505288A true JP2021505288A (ja) 2021-02-18
JP6895019B2 JP6895019B2 (ja) 2021-06-30

Family

ID=64734283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531514A Active JP6895019B2 (ja) 2017-12-08 2018-12-05 ディープ畳み込みニューラルネットワークを用いたビームモデルパラメータの決定

Country Status (6)

Country Link
US (1) US10493299B2 (ja)
EP (1) EP3720555B1 (ja)
JP (1) JP6895019B2 (ja)
CN (1) CN111432879B (ja)
AU (1) AU2018380124B2 (ja)
WO (1) WO2019113234A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888296B2 (en) * 2018-06-29 2021-01-12 Shanghai United Imaging Healthcare Co., Ltd. Methods and systems for modulating radiation dose
US11173323B2 (en) * 2018-07-27 2021-11-16 Reshma Munbodh Computer-implemented method of evaluating a protocol for radiation therapy including a pre-treatment physics chart review (TPCR)
US11823800B2 (en) * 2018-10-12 2023-11-21 The Medical College Of Wisconsin, Inc. Medical image segmentation using deep learning models trained with random dropout and/or standardized inputs
US11358003B2 (en) * 2019-03-13 2022-06-14 Elekta Ab Generation of realizable radiotherapy plans
US11097128B2 (en) * 2019-07-16 2021-08-24 Elekta Ab (Publ) Radiotherapy treatment plans using differentiable dose functions
JP7387459B2 (ja) * 2020-01-22 2023-11-28 キヤノンメディカルシステムズ株式会社 放射線治療装置、医用画像処理装置、及び医用画像処理方法
CN111569279B (zh) * 2020-05-26 2021-08-17 杭州珞珈质子科技有限公司 质子治疗的参数监测装置及系统
CN111951245B (zh) * 2020-08-11 2021-04-06 山东省肿瘤防治研究院(山东省肿瘤医院) 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法
WO2022047637A1 (en) * 2020-09-02 2022-03-10 Elekta (Shanghai) Technology Co., Ltd. Automatic beam modeling based on deep learning
US11478661B2 (en) * 2020-09-29 2022-10-25 Varian Medical Systems International Ag Trajectory optimization using dose estimation and conflict detection
CN112263787B (zh) * 2020-10-30 2021-08-10 福建自贸试验区厦门片区Manteia数据科技有限公司 放疗的控制方法及装置
EP4019084A1 (en) * 2020-12-22 2022-06-29 Koninklijke Philips N.V. Planning apparatus for planning a radiation therapy
CN114681813B (zh) * 2020-12-28 2023-07-14 北京医智影科技有限公司 放射治疗自动计划系统、自动计划方法及存储介质
DE102021111086A1 (de) 2021-04-29 2022-11-03 PTW - Freiburg Physikalisch-Technische Werkstätten Dr. Pychlau GmbH Verfahren zum Überführen eines Ergebnisses eines ersten strahlungsphysikalischen Prozess einer Strahlenquelle in ein Ergebnis eines zweiten strahlungsphysikalischen Prozesses der Strahlenquelle
US20220409929A1 (en) * 2021-06-29 2022-12-29 Varian Medical Systems International Ag Method and apparatus to facilitate generating a leaf sequence for a multi-leaf collimator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205128A1 (en) * 2013-06-18 2014-12-24 Duke University Systems and methods for specifying treatment criteria and treatment parameters for patient specific radiation therapy planning
WO2016081916A1 (en) * 2014-11-21 2016-05-26 The Regents Of The University Of California Three-dimensional radiotherapy dose distribution prediction

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986745A4 (en) * 2006-02-21 2013-10-30 Univ Toledo RADIOTHERAPY WITHOUT FILTERS
EP1917999A1 (en) 2006-11-03 2008-05-07 Ion Beam Applications S.A. Method and device for IMRT verification
WO2011041500A2 (en) * 2009-09-30 2011-04-07 Stc. Unm System and methods photon-based radiotherapy and radiosurgery delivery
US8976929B2 (en) * 2010-07-16 2015-03-10 Duke University Automatic generation of patient-specific radiation therapy planning parameters
JP6138804B2 (ja) * 2011-09-29 2017-05-31 ザ・ジョンズ・ホプキンス・ユニバーシティ 放射線療法のための不均質性を補償した重ね合わせを用いた線量計算
US9289626B2 (en) * 2013-03-13 2016-03-22 Viewray Incorporated Systems and methods for improved radioisotopic dose calculation and delivery
US9409039B2 (en) 2013-05-21 2016-08-09 Varian Medical Systems International Ag Systems and methods for automatic creation of dose prediction models and therapy treatment plans as a cloud service
CN105473182B (zh) * 2013-07-31 2018-11-13 皇家飞利浦有限公司 治疗规划的自动化
US10603511B2 (en) * 2014-12-04 2020-03-31 Koninklijke Philips N.V. Shape based initialization and QA of progressive auto-planning
WO2016100739A1 (en) * 2014-12-19 2016-06-23 Sun Nuclear Corporation Radiation therapy dose calculation
AU2017324627B2 (en) * 2016-09-07 2019-12-05 Elekta, Inc. System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions
JP6951922B2 (ja) * 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー 荷電粒子ビーム装置及び荷電粒子ビームの位置ずれ補正方法
CN106778682B (zh) * 2017-01-11 2019-07-09 厦门中控智慧信息技术有限公司 一种卷积神经网络模型的训练方法及其设备
CN106934456A (zh) * 2017-03-16 2017-07-07 山东理工大学 一种深度卷积神经网络模型构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205128A1 (en) * 2013-06-18 2014-12-24 Duke University Systems and methods for specifying treatment criteria and treatment parameters for patient specific radiation therapy planning
WO2016081916A1 (en) * 2014-11-21 2016-05-26 The Regents Of The University Of California Three-dimensional radiotherapy dose distribution prediction

Also Published As

Publication number Publication date
JP6895019B2 (ja) 2021-06-30
CN111432879A (zh) 2020-07-17
AU2018380124A1 (en) 2020-07-23
US20190175952A1 (en) 2019-06-13
US10493299B2 (en) 2019-12-03
AU2018380124B2 (en) 2020-09-10
EP3720555B1 (en) 2023-06-28
WO2019113234A1 (en) 2019-06-13
EP3720555A1 (en) 2020-10-14
CN111432879B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
JP6895019B2 (ja) ディープ畳み込みニューラルネットワークを用いたビームモデルパラメータの決定
JP6934559B2 (ja) ディープ畳み込みニューラルネットワークを使用する放射線治療計画
JP6887030B2 (ja) ディープ畳み込みニューラルネットワークを使用してコーンビームコンピュータ断層撮影画像を改善する方法
EP3787745B1 (en) Phantom for adaptive radiotherapy
CN114206438B (zh) 使用投影图像预测放射治疗控制点
JP6951037B2 (ja) 放射線治療の計画または管理の電子モデリング
AU2018266458B2 (en) Systems and methods of accounting for shape change during radiotherapy
US20230302297A1 (en) Patient imaging for dynamic online adaptive radiotherapy
WO2023041167A1 (en) Generative model of phase space
US20230218926A1 (en) Bed calculation with isotoxic planning
US20220245757A1 (en) Deformable image registration using deep learning
US20230402151A1 (en) Parallel processing for multi-pass optimization of radiotherapy plans
US20230377721A1 (en) Jointly trained machine learning models for automatic contouring in radiotherapy applications
EP4101502A1 (en) Feature-space clustering for physiological cycle classification
WO2022261742A1 (en) Image quality relative to machine learning data
WO2023151816A1 (en) Parallel generation of pareto optimal radiotherapy plans

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200811

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210604

R150 Certificate of patent or registration of utility model

Ref document number: 6895019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150