CN111951245B - 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 - Google Patents
根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 Download PDFInfo
- Publication number
- CN111951245B CN111951245B CN202010802659.4A CN202010802659A CN111951245B CN 111951245 B CN111951245 B CN 111951245B CN 202010802659 A CN202010802659 A CN 202010802659A CN 111951245 B CN111951245 B CN 111951245B
- Authority
- CN
- China
- Prior art keywords
- tumor
- dose
- value
- patient
- radiotherapy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1031—Treatment planning systems using a specific method of dose optimization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30096—Tumor; Lesion
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Pathology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Computation (AREA)
- Animal Behavior & Ethology (AREA)
- Computational Linguistics (AREA)
- Veterinary Medicine (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
- Geometry (AREA)
- Quality & Reliability (AREA)
- Databases & Information Systems (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010802659.4A CN111951245B (zh) | 2020-08-11 | 2020-08-11 | 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010802659.4A CN111951245B (zh) | 2020-08-11 | 2020-08-11 | 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111951245A CN111951245A (zh) | 2020-11-17 |
CN111951245B true CN111951245B (zh) | 2021-04-06 |
Family
ID=73331698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010802659.4A Active CN111951245B (zh) | 2020-08-11 | 2020-08-11 | 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111951245B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112466432A (zh) * | 2020-12-09 | 2021-03-09 | 北京易康医疗科技有限公司 | 一种基于人工智能技术的肿瘤放疗线束种类筛选方法 |
CN114171157B (zh) * | 2021-12-01 | 2024-09-27 | 中国科学院近代物理研究所 | 一种脑肿瘤放疗方式智能选择方法、系统、设备和介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106139416A (zh) * | 2016-07-18 | 2016-11-23 | 韩大力 | 一种头颈部肿瘤放射治疗防护及功能锻炼装置 |
CN107441637A (zh) * | 2017-08-30 | 2017-12-08 | 南方医科大学 | 调强放疗计划中三维剂量分布的预测方法及其应用 |
WO2018048575A1 (en) * | 2016-09-07 | 2018-03-15 | Elekta, Inc. | System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions |
CN109966662A (zh) * | 2019-04-30 | 2019-07-05 | 四川省肿瘤医院 | 一种验证放射治疗剂量的方法及系统 |
CN110354406A (zh) * | 2019-07-30 | 2019-10-22 | 安徽大学 | 一种放射治疗的三维剂量预测方法和系统 |
CN111432879A (zh) * | 2017-12-08 | 2020-07-17 | 医科达有限公司 | 使用深度卷积神经网络确定束模型参数 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108339202A (zh) * | 2018-03-15 | 2018-07-31 | 上海市质子重离子医院有限公司 | 基于患者源性肿瘤组织异种移植模型的个体化相对生物学效应建立的碳离子放疗方法 |
-
2020
- 2020-08-11 CN CN202010802659.4A patent/CN111951245B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106139416A (zh) * | 2016-07-18 | 2016-11-23 | 韩大力 | 一种头颈部肿瘤放射治疗防护及功能锻炼装置 |
WO2018048575A1 (en) * | 2016-09-07 | 2018-03-15 | Elekta, Inc. | System and method for learning models of radiotherapy treatment plans to predict radiotherapy dose distributions |
CN107441637A (zh) * | 2017-08-30 | 2017-12-08 | 南方医科大学 | 调强放疗计划中三维剂量分布的预测方法及其应用 |
CN111432879A (zh) * | 2017-12-08 | 2020-07-17 | 医科达有限公司 | 使用深度卷积神经网络确定束模型参数 |
CN109966662A (zh) * | 2019-04-30 | 2019-07-05 | 四川省肿瘤医院 | 一种验证放射治疗剂量的方法及系统 |
CN110354406A (zh) * | 2019-07-30 | 2019-10-22 | 安徽大学 | 一种放射治疗的三维剂量预测方法和系统 |
Non-Patent Citations (5)
Title |
---|
A deep learning method for prediction of three‐dimensional dose distribution of helical tomotherapy;Liu, Z.,et.al;《Medical physics》;20190331;全文 * |
Barragán‐Montero, A. M., et.al.Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations.《 Medical physics》.2019, * |
基于神经网络学习方法的放疗计划三维剂量分布预测;孔繁图,等;《南方医科大学学报》;20180627;全文 * |
自动计划与人工计划在宫颈癌术后VMAT放疗中的剂量学比较;吴建篪; 等;《中国医学物理学杂志》;20200803;全文 * |
鼻咽癌调强和常规放疗计划的剂量学对比;马秀梅; 等;《上海交通大学学报(医学版)》;20071215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111951245A (zh) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krafft et al. | The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis | |
CN111951245B (zh) | 根据肿瘤分子图像的特征参数确定放射治疗剂量的方法 | |
US11291856B2 (en) | Method, a computer program product and a computer system for radiotherapy | |
CN110841205A (zh) | 一种肿瘤患者精准剂量验证方法、装置及设备 | |
CN113610845A (zh) | 肿瘤局部控制预测模型的构建方法、预测方法及电子设备 | |
US11224762B2 (en) | System and method for automatic radiotherapy treatment planning | |
US20230112205A1 (en) | Method and apparatus for identifying and quantifying abnormality | |
Du et al. | A novel nomogram model based on cone-beam CT radiomics analysis technology for predicting radiation pneumonitis in esophageal cancer patients undergoing radiotherapy | |
CN112837782B (zh) | 一种基于深度学习的放疗三维剂量预测方法 | |
CN113628761A (zh) | 抗血管生成药物联合免疫检查点抑制剂治疗疗效预测方法 | |
WO2023285993A1 (en) | System and method for predicting the risk of future lung cancer | |
CN117116421B (zh) | 放疗计划的确定方法和装置 | |
KR101968671B1 (ko) | 지능형 자동 방사선 치료계획 수립방법 및 시스템 | |
Ma et al. | A prediction model for dosimetric‐based lung adaptive radiotherapy | |
CN113631223A (zh) | 确定放射疗法后的血液学毒性风险 | |
WO2020253510A1 (zh) | 一种基于大数血管图像识别的疾病预测系统及方法 | |
Al-Barzinji | Diagnosis lung cancer disease using machine learning techniques | |
Zhao et al. | A Training Strategy for Enhancing the Accuracy of Real-Time Tumor Tracking Based on Deep Bi-LSTM Learning | |
CN118505682B (zh) | 一种用于放射性粒子植入tps的肿瘤边界勾画系统 | |
CN118416354B (zh) | 一种半导体激光氧疗仪及呼吸状态检测方法 | |
Mangayarkarasi et al. | Lung Cancer Diagnosis from Computer Tomography Images Using Region Based Segmentation and Fuzzy Logic | |
Firasari et al. | Performance Evaluation of ResNet50 and MobileNetV2 in Skin Cancer Image Classification with Various Optimizers | |
Merchan et al. | Deep Learning-Based Pulmonary Arterial Segmentation in Computed Tomography Images | |
Bellotti et al. | GAMBAS--Fast Beam Arrangement Selection for Proton Therapy using a Nearest Neighbour Model | |
Dhamercherla et al. | Lung Cancer Prediction Using an Improved Support Vector Machine and Gradient Self-Adaptive Sea Lion Optimization Technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210222 Address after: No. 440, Yankuang Road, Ji'nan, Shandong Province Applicant after: SHANDONG CANCER HOSPITAL & INSTITUTE (SHANDONG CANCER Hospital) Applicant after: SHANDONG University Applicant after: Jinan Bishan Network Technology Co.,Ltd. Address before: 100025 906, West District, 9th floor, No. 100, Sili, Balizhuang, Chaoyang District, Beijing Applicant before: Beijing Yikang Medical Technology Co.,Ltd. Applicant before: SHANDONG CANCER HOSPITAL & INSTITUTE (SHANDONG CANCER Hospital) Applicant before: SHANDONG University Applicant before: Jinan Bishan Network Technology Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |