JP2021197219A - Bipolar type all-solid battery - Google Patents

Bipolar type all-solid battery Download PDF

Info

Publication number
JP2021197219A
JP2021197219A JP2020100811A JP2020100811A JP2021197219A JP 2021197219 A JP2021197219 A JP 2021197219A JP 2020100811 A JP2020100811 A JP 2020100811A JP 2020100811 A JP2020100811 A JP 2020100811A JP 2021197219 A JP2021197219 A JP 2021197219A
Authority
JP
Japan
Prior art keywords
current collector
battery
negative electrode
active material
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020100811A
Other languages
Japanese (ja)
Inventor
悠基 由井
Yuki Yui
英行 山村
Hideyuki Yamamura
大地 佐藤
Daichi Sato
亮太 波留
Ryota Haru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020100811A priority Critical patent/JP2021197219A/en
Publication of JP2021197219A publication Critical patent/JP2021197219A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To mainly provide a bipolar type all-solid battery which can suppress an internal short circuit.SOLUTION: In the disclosure hereof, the above problem is solved by providing a bipolar type all-solid battery comprising a plurality of battery cells each having a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer containing lithium metal as a negative electrode active material, and a negative electrode current collector in this order. The plurality of battery cells are laminated along a thickness direction and they are electrically connected in series. The bipolar type all-solid battery further comprises a porous metal layer between the positive electrode current collector of one battery cell, and the negative electrode current collector of the other battery cell in a pair of the battery cells.SELECTED DRAWING: Figure 1

Description

本開示は、バイポーラ型全固体電池に関する。 The present disclosure relates to a bipolar all-solid-state battery.

全固体電池は、正極層および負極層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。また、全固体電池として、高エネルギー密度および高出力密度が達成できる直列積層型全固体電池が注目されており、特許文献1には、上部と下部とにそれぞれ活物質が塗布された集電体を有し、中央に全固体電解質が備えられたユニットセルを備え、各ユニットセルを接続時に集電体が面接触を介してバイポーラ構造を形成するバイポーラ全固体電池が開示されている。 The all-solid-state battery is a battery having a solid electrolyte layer between the positive electrode layer and the negative electrode layer, and has an advantage that the safety device can be easily simplified as compared with a liquid-based battery having an electrolytic solution containing a flammable organic solvent. Have. Further, as an all-solid-state battery, a series-stacked all-solid-state battery capable of achieving high energy density and high output density is attracting attention. Disclosed is a bipolar all-solid-state battery comprising a unit cell with an all-solid-state electrolyte in the center, and the collector forming a bipolar structure through surface contact when each unit cell is connected.

特開2018−186074号公報Japanese Unexamined Patent Publication No. 2018-186074

例えば、一対の電池セルを、一方の電池セルの正極集電体と、他方の電池セルの負極集電体とが接触するように積層すると、直列接続されたバイポーラ型全固体電池が得られる。この際、正極集電体および負極集電体の電気的接続が不均一であると、充電時に、局所的に電流密度が過大になる部分が生じ、負極活物質層にLiデンドライトが生じやすくなる。Liデンドライトが成長し、固体電解質層を貫通し、正極活物質層に到達すると、内部短絡が生じる。 For example, by stacking a pair of battery cells so that the positive electrode collector of one battery cell and the negative electrode current collector of the other battery cell are in contact with each other, a bipolar all-solid-state battery connected in series can be obtained. At this time, if the electrical connection between the positive electrode current collector and the negative electrode current collector is non-uniform, a portion where the current density becomes excessive locally occurs during charging, and lidendrite is likely to occur in the negative electrode active material layer. .. When the Lidendrite grows, penetrates the solid electrolyte layer and reaches the positive electrode active material layer, an internal short circuit occurs.

本開示は、上記実情に鑑みてなされものであり、内部短絡を抑制可能なバイポーラ型全固体電池を提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a bipolar all-solid-state battery capable of suppressing an internal short circuit.

上記課題を解決するために、本開示においては、正極集電体、正極活物質層、固体電解質層、負極活物質として金属リチウムを含有する負極活物質層および負極集電体をこの順に有する電池セルを複数備え、上記複数の電池セルは、厚さ方向に沿って積層され、かつ、電気的に直列に接続され、一対の上記電池セルにおいて、一方の上記電池セルの上記正極集電体と、他方の上記電池セルの上記負極集電体との間に、発泡金属層を有する、バイポーラ型全固体電池を提供する。 In order to solve the above problems, in the present disclosure, a battery having a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer containing metallic lithium as a negative electrode active material, and a negative electrode current collector in this order. A plurality of cells are provided, and the plurality of battery cells are stacked along the thickness direction and electrically connected in series, and in the pair of the battery cells, with the positive electrode current collector of one of the battery cells. Provided is a bipolar all-solid-state battery having a foamed metal layer between the negative electrode current collector and the negative electrode current collector of the other battery cell.

本開示によれば、一対の電池セルの間に発泡金属層を設けることで、内部短絡を抑制可能なバイポーラ型全固体電池とすることができる。 According to the present disclosure, by providing a foamed metal layer between a pair of battery cells, it is possible to obtain a bipolar all-solid-state battery capable of suppressing an internal short circuit.

本開示におけるバイポーラ型全固体電池は、内部短絡の発生を抑制することができるという効果を奏する。 The bipolar all-solid-state battery in the present disclosure has an effect that the occurrence of an internal short circuit can be suppressed.

本開示におけるバイポーラ型全固体電池を例示する概略平面図および概略断面図である。It is a schematic plan view and a schematic sectional view illustrating the bipolar type all-solid-state battery in the present disclosure.

以下、本開示におけるバイポーラ型全固体電池について、詳細に説明する。 Hereinafter, the bipolar type all-solid-state battery in the present disclosure will be described in detail.

図1(a)は、本開示におけるバイポーラ型全固体電池を例示する概略平面図であり、図1(b)は、図1(a)のA−A断面図である。図1(b)に示すように、バイポーラ型全固体電池10は、電池セルC1、C2を備える。電池セルC1、C2は、それぞれ、正極集電体1、正極活物質層2、固体電解質層3、負極活物質層4および負極集電体5を、厚さ方向に沿って、この順に有する。また、負極活物質層4は、負極活物質として金属リチウムを含有する。電池セルC1、C2は、厚さ方向に沿って積層され、かつ、電気的に直列に接続されている。また、一対の電池セルC1、C2において、電池セルC2の正極集電体1と、電池セルC1の負極集電体5との間に、発泡金属層6が配置されている。 1 (a) is a schematic plan view illustrating the bipolar type all-solid-state battery in the present disclosure, and FIG. 1 (b) is a sectional view taken along the line AA of FIG. 1 (a). As shown in FIG. 1 (b), the bipolar all-solid-state battery 10 includes battery cells C1 and C2. The battery cells C1 and C2 each have a positive electrode current collector 1, a positive electrode active material layer 2, a solid electrolyte layer 3, a negative electrode active material layer 4, and a negative electrode current collector 5 in this order along the thickness direction. Further, the negative electrode active material layer 4 contains metallic lithium as the negative electrode active material. The battery cells C1 and C2 are stacked along the thickness direction and electrically connected in series. Further, in the pair of battery cells C1 and C2, the foamed metal layer 6 is arranged between the positive electrode current collector 1 of the battery cell C2 and the negative electrode current collector 5 of the battery cell C1.

本開示によれば、一対の電池セルの間に発泡金属層を設けることで、内部短絡を抑制可能なバイポーラ型全固体電池とすることができる。ここで、上述したように、バイポーラ型全固体電池において、対向する正極集電体および負極集電体の電気的接続が不均一であると、充電時に、局所的に電流密度が過大になる部分が生じ、負極活物質層にLiデンドライトが生じやすくなる。 According to the present disclosure, by providing a foamed metal layer between a pair of battery cells, it is possible to obtain a bipolar all-solid-state battery capable of suppressing an internal short circuit. Here, as described above, in the bipolar type all-solid-state battery, if the electrical connection between the positive electrode current collector and the negative electrode current collector facing each other is non-uniform, the current density locally becomes excessive during charging. Is generated, and Lidendrite is likely to occur in the negative electrode active material layer.

特に、電池セルにおける正極活物質層が圧粉成形体である場合、正極活物質層および正極集電体の電気的接続が不均一になりやすく、それに付随して、対向する正極集電体および負極集電体の電気的接続も不均一になりやすい。その結果、Liデンドライトによる内部短絡が生じやすくなる。また、負極活物質として金属リチウムを用いた場合、金属リチウムは柔らかいため、Liデンドライトによる内部短絡が生じやすくなる。 In particular, when the positive electrode active material layer in the battery cell is a powder compact, the electrical connection between the positive electrode active material layer and the positive electrode current collector tends to be non-uniform, and accompanying this, the opposing positive electrode current collector and the positive electrode current collector and the positive electrode current collector and the positive electrode current collector are likely to be non-uniform. The electrical connection of the negative electrode current collector also tends to be non-uniform. As a result, an internal short circuit due to Lidendrite is likely to occur. Further, when metallic lithium is used as the negative electrode active material, since metallic lithium is soft, an internal short circuit due to Lidendrite is likely to occur.

これに対して、本開示においては、一対の電池セルの間に、伸縮性が良好であり、かつ、表面に凹凸構造を有する発泡金属層を設けることで、対向する正極集電体および負極集電体の電気的接続を面内方向(電池セルの積層方向に対して垂直方向)で均一化できる。その結果、Liデンドライトが生じにくくなり、内部短絡の発生を抑制できる。 On the other hand, in the present disclosure, by providing a foamed metal layer having good elasticity and a concavo-convex structure on the surface between the pair of battery cells, the positive electrode current collector and the negative electrode collector facing each other are provided. The electrical connection of the electric body can be made uniform in the in-plane direction (direction perpendicular to the stacking direction of the battery cells). As a result, Li dendrite is less likely to occur, and the occurrence of an internal short circuit can be suppressed.

1.電池セル
本開示における電池セルは、正極集電体、正極活物質層、固体電解質層、負極活物質層および負極集電体をこの順に有する。
1. 1. Battery cell The battery cell in the present disclosure has a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector in this order.

(1)負極集電体
負極集電体の材料としては、任意の集電体材料を用いることができ、例えば、SUS(ステンレス鋼)、銅、ニッケル、カーボンが挙げられる。また、負極集電体の形状としては、例えば箔状が挙げられる。負極集電体の厚さは、例えば0.1μm以上であり、1μm以上であってもよい。一方、負極集電体の厚さは、例えば1mm以下であり、100μm以下であってもよい。
(1) Negative electrode current collector As the material of the negative electrode current collector, any current collector material can be used, and examples thereof include SUS (stainless steel), copper, nickel, and carbon. Further, as the shape of the negative electrode current collector, for example, a foil shape can be mentioned. The thickness of the negative electrode current collector is, for example, 0.1 μm or more, and may be 1 μm or more. On the other hand, the thickness of the negative electrode current collector is, for example, 1 mm or less, and may be 100 μm or less.

(2)負極活物質層
本開示における負極活物質層は、金属リチウムを含む。金属リチウムの形状としては、例えば箔状が挙げられる。また、本開示における負極活物質層は、充電による析出型の層であってもよい。すなわち、電池セルの製造直後は、固体電解質層および負極集電体の間に負極活物質層が存在せず、充電により、固体電解質層および負極集電体の間に、金属リチウムが析出し、負極活物質層が形成されてもよい。
(2) Negative electrode active material layer The negative electrode active material layer in the present disclosure contains metallic lithium. Examples of the shape of metallic lithium include a foil shape. Further, the negative electrode active material layer in the present disclosure may be a precipitation type layer by charging. That is, immediately after the battery cell is manufactured, the negative electrode active material layer does not exist between the solid electrolyte layer and the negative electrode current collector, and charging causes precipitation of metallic lithium between the solid electrolyte layer and the negative electrode current collector. A negative electrode active material layer may be formed.

(3)固体電解質層
本開示における固体電解質層は、少なくとも固体電解質を含有する。固体電解質は、無機固体電解質であることが好ましい。無機固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質が挙げられる。
(3) Solid electrolyte layer The solid electrolyte layer in the present disclosure contains at least a solid electrolyte. The solid electrolyte is preferably an inorganic solid electrolyte. Examples of the inorganic solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, and a nitride solid electrolyte.

固体電解質の形状は、粒子状であることが好ましい。また、固体電解質の平均粒径(D50)は、例えば0.01μm以上である。一方、固体電解質の平均粒径(D50)は、例えば10μm以下であり、5μm以下であってもよい。固体電解質の25℃におけるLiイオン伝導度は、例えば1×10−4S/cm以上であり、1×10−3S/cm以上であることが好ましい。 The shape of the solid electrolyte is preferably particulate. The average particle size (D 50 ) of the solid electrolyte is, for example, 0.01 μm or more. On the other hand, the average particle size (D 50 ) of the solid electrolyte is, for example, 10 μm or less, and may be 5 μm or less. The Li ion conductivity of the solid electrolyte at 25 ° C. is, for example, 1 × 10 -4 S / cm or more, and preferably 1 × 10 -3 S / cm or more.

固体電解質層における固体電解質の含有量は、例えば70重量%以上であり、90重量%以上であってもよい。固体電解質層は、必要に応じて、バインダを含有していてもよい。また、固体電解質層の厚さは、例えば、0.1μm以上、300μm以下である。固体電解質層は圧粉成形体であってもよい。 The content of the solid electrolyte in the solid electrolyte layer is, for example, 70% by weight or more, and may be 90% by weight or more. The solid electrolyte layer may contain a binder, if necessary. The thickness of the solid electrolyte layer is, for example, 0.1 μm or more and 300 μm or less. The solid electrolyte layer may be a powder compact.

(4)正極活物質層
正極活物質層は、正極活物質を少なくとも含有する。正極活物質は、特に限定されないが、例えば、酸化物活物質、硫黄系活物質が挙げられる。酸化物活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、LiTi12、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCoPO等のオリビン型活物質が挙げられる。また、酸化物活物質として、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、Znの少なくとも一種、0<x+y<2)で表されるLiMnスピネル活物質、チタン酸リチウムを用いてもよい。また、硫黄系活物質は、少なくともS元素を含有する活物質である。硫黄系活物質は、Li元素を含有していてもよく、含有していなくてもよい。硫黄系活物質としては、例えば、単体硫黄、硫化リチウム(LiS)、多硫化リチウム(LiSx、2≦x≦8)が挙げられる。
(4) Positive Electrode Active Material Layer The positive electrode active material layer contains at least a positive electrode active material. The positive electrode active material is not particularly limited, and examples thereof include an oxide active material and a sulfur-based active material. Examples of the oxide active material include rock salt layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiMn 2 O 4 and Li 4 Examples thereof include spinel-type active materials such as Ti 5 O 12 and Li (Ni 0.5 Mn 1.5 ) O 4 , and olivine-type active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , and LiCoPO 4. Further, as the oxide active material, Li 1 + x Mn 2- xy My O 4 (M is at least one of Al, Mg, Co, Fe, Ni and Zn, 0 <x + y <2). A spinel active material, lithium titanate, may be used. Further, the sulfur-based active material is an active material containing at least S element. The sulfur-based active substance may or may not contain the Li element. Examples of the sulfur-based active material include elemental sulfur, lithium sulfide (Li 2 S), and lithium polysulfide (Li 2 Sx, 2 ≦ x ≦ 8).

正極活物質層は、必要に応じて、固体電解質、導電化材およびバインダの少なくとも一つを含有していてもよい。固体電解質としては、上記「(3)固体電解質層」に記載した固体電解質を例示することができる。正極活物質層の厚さは、例えば、0.1μm以上、300μm以下である。正極活物質層は圧粉成形体であってもよい。圧粉成形体である正極活物質層は、例えば塗工体(塗工法により製造した正極活物質層)に比べて、高容量化を図ることができる。 The positive electrode active material layer may contain at least one of a solid electrolyte, a conductive material and a binder, if necessary. As the solid electrolyte, the solid electrolyte described in the above "(3) Solid electrolyte layer" can be exemplified. The thickness of the positive electrode active material layer is, for example, 0.1 μm or more and 300 μm or less. The positive electrode active material layer may be a powder compact. The positive electrode active material layer, which is a powder compact, can have a higher capacity than, for example, a coated body (a positive electrode active material layer manufactured by a coating method).

(5)正極集電体
正極集電体の材料としては、任意の集電体材料を用いることができ、例えば、SUS、アルミニウム、ニッケル、鉄、チタン、カーボンが挙げられる。また、正極集電体の形状としては、例えば箔状が挙げられる。正極集電体の厚さは、例えば0.1μm以上であり、1μm以上であってもよい。一方、正極集電体の厚さは、例えば1mm以下であり、100μm以下であってもよい。
(5) Positive Electrode Collector As the material of the positive electrode current collector, any current collector material can be used, and examples thereof include SUS, aluminum, nickel, iron, titanium, and carbon. Further, as the shape of the positive electrode current collector, for example, a foil shape can be mentioned. The thickness of the positive electrode current collector is, for example, 0.1 μm or more, and may be 1 μm or more. On the other hand, the thickness of the positive electrode current collector is, for example, 1 mm or less, and may be 100 μm or less.

(6)電池セル
電池セルの平面視形状は、特に限定されないが、例えば、円および矩形が挙げられる。また、電池セルのサイズは、例えば、5mm以上30mm以下である。電池セルのサイズとは、平面視形状が円である場合は直径をいい、平面視形状が矩形である場合は長辺の長さをいう。また、電池セルの厚さは、例えば、30μm以上であり、50μm以上であってもよく、100μm以上であってもよく、500μm以上であってもよい。一方、電池セルの厚さは、例えば5mm以下である。
(6) Battery cell The plan view shape of the battery cell is not particularly limited, and examples thereof include a circle and a rectangle. The size of the battery cell is, for example, 5 mm or more and 30 mm or less. The size of the battery cell means the diameter when the plan view shape is a circle, and means the length of the long side when the plan view shape is a rectangle. The thickness of the battery cell may be, for example, 30 μm or more, 50 μm or more, 100 μm or more, or 500 μm or more. On the other hand, the thickness of the battery cell is, for example, 5 mm or less.

電池セルを構成する正極活物質層および固体電解質層は、それぞれの構成材料を圧粉成形(プレス成形)することによって、作製することができる。また、電池セルは、例えば、円筒状金型に、負極集電体、負極活物質層、固体電解質層、正極活物質層、正極集電体をこの順に積層し、加圧することによって、作製することができる。これにより、いわゆるペレット電池が得られる。また、電池セルは、焼結体であってもよく、焼結体でなくてもよい。 The positive electrode active material layer and the solid electrolyte layer constituting the battery cell can be produced by powder forming (press forming) the respective constituent materials. Further, the battery cell is manufactured, for example, by laminating a negative electrode current collector, a negative electrode active material layer, a solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector in this order on a cylindrical mold and pressurizing the battery cell. be able to. As a result, a so-called pellet battery is obtained. Further, the battery cell may be a sintered body and may not be a sintered body.

2.発泡金属層
本開示における発泡金属層は、一対の電池セルにおいて、一方の電池セルの正極集電体と、他方の電池セルの負極集電体との間に配置される層である。発泡金属層は、内部に空孔を有するため、プレス時に良好な伸縮性を有する。また、発泡金属層は、空孔に伴う凹凸構造を表面に有する。さらに、発泡金属層は、通常、電子伝導性を有する。
2. 2. Foamed Metal Layer The foamed metal layer in the present disclosure is a layer arranged between a positive electrode current collector of one battery cell and a negative electrode current collector of the other battery cell in a pair of battery cells. Since the foamed metal layer has pores inside, it has good elasticity during pressing. Further, the foamed metal layer has an uneven structure associated with pores on the surface. Furthermore, the foamed metal layer usually has electron conductivity.

発泡金属層を構成する発泡金属は、特に限定されないが、例えば、ニッケル、アルミニウム、銅、鉄等の単体、および、これらの少なくとも1種の金属を含有する合金が挙げられる。発泡金属は、連続空孔体(連続気泡体)であってもよく、単独空孔体(単独気泡体)であってもよい。また、発泡金属における空孔率は、例えば50%以上であり、70%以上であってもよい。 The foamed metal constituting the foamed metal layer is not particularly limited, and examples thereof include simple substances such as nickel, aluminum, copper, and iron, and alloys containing at least one of these metals. The foamed metal may be a continuous pore body (open cell body) or a single pore body (single bubble body). Further, the porosity of the foamed metal is, for example, 50% or more, and may be 70% or more.

発泡金属層の厚さは、特に限定されないが、例えば20μm以上であり、50μm以上であってもよい。発泡金属層が薄すぎると、対向する正極集電体および負極集電体の電気的接続を面内方向で均一化できない可能性がある。一方、発泡金属層の厚さは、例えば3000μm以下であり、1500μm以下であってもよい。発泡金属層が厚すぎると、バイポーラ型全固体電池のエネルギー密度が低下する可能性がある。 The thickness of the foamed metal layer is not particularly limited, but may be, for example, 20 μm or more, and may be 50 μm or more. If the metal foam layer is too thin, it may not be possible to make the electrical connections between the opposing positive and negative current collectors uniform in the in-plane direction. On the other hand, the thickness of the foamed metal layer is, for example, 3000 μm or less, and may be 1500 μm or less. If the metal foam layer is too thick, the energy density of the bipolar all-solid-state battery may decrease.

発泡金属層の平面視形状は、特に限定されないが、例えば、円および矩形が挙げられる。また、発泡金属層のサイズは、例えば、5mm以上30mm以下である。発泡金属層のサイズとは、平面視形状が円である場合は直径をいい、平面視形状が矩形である場合は長辺の長さをいう。発泡金属層の面積は、平面視上、正極集電体および負極集電体が重複する重複領域の面積に対して、例えば70%以上であり、80%以上であってもよく、90%以上であってもよい。 The plan view shape of the foamed metal layer is not particularly limited, and examples thereof include a circle and a rectangle. The size of the foamed metal layer is, for example, 5 mm or more and 30 mm or less. The size of the foamed metal layer means the diameter when the plan view shape is a circle, and means the length of the long side when the plan view shape is a rectangle. The area of the foamed metal layer is, for example, 70% or more, may be 80% or more, or 90% or more, with respect to the area of the overlapping region where the positive electrode current collector and the negative electrode current collector overlap in a plan view. It may be.

3.バイポーラ型全固体電池
本開示におけるバイポーラ型全固体電池は、複数の電池セルを備える。電池セルの数は、少なくとも2以上であり、3以上であってもよく、5以上であってもよく、10以上であってもよい。一方、電池セルの数は、例えば200以下である。また、バイポーラ型全固体電池は、通常、リチウムイオン電池である。また、バイポーラ型全固体電池は、通常、充放電可能な二次電池である。
3. 3. Bipolar all-solid-state battery The bipolar all-solid-state battery in the present disclosure includes a plurality of battery cells. The number of battery cells is at least 2 or more, and may be 3 or more, 5 or more, or 10 or more. On the other hand, the number of battery cells is, for example, 200 or less. The bipolar all-solid-state battery is usually a lithium-ion battery. Further, the bipolar type all-solid-state battery is usually a secondary battery that can be charged and discharged.

バイポーラ型全固体電池は、複数の電池セルを収納する電池ケースを有していてもよい。バイポーラ型全固体電池の形状としては、例えば、コイン型、ラミネート型、円柱型、角型が挙げられる。また、バイポーラ型全固体電池は、複数の電池セルに対して、厚さ方向に拘束圧を付与する拘束治具を有していてもよい。拘束圧は、例えば0.1MPa以上であり、1MPa以上であってもよく、5MPa以上であってもよい。一方、拘束圧は、例えば100MPa以下であり、50MPa以下であってもよく、20MPa以下であってもよい。 The bipolar all-solid-state battery may have a battery case for accommodating a plurality of battery cells. Examples of the shape of the bipolar all-solid-state battery include a coin type, a laminated type, a cylindrical type, and a square type. Further, the bipolar all-solid-state battery may have a restraining jig that applies a restraining pressure to a plurality of battery cells in the thickness direction. The confining pressure is, for example, 0.1 MPa or more, may be 1 MPa or more, or may be 5 MPa or more. On the other hand, the restraining pressure is, for example, 100 MPa or less, 50 MPa or less, or 20 MPa or less.

なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 The present disclosure is not limited to the above embodiment. The above embodiment is an example, and any object having substantially the same structure as the technical idea described in the claims of the present disclosure and having the same effect and effect is the present invention. Included in the technical scope of the disclosure.

(実施例1)
セラミックス製シリンダーに、負極集電体(Cu箔)、負極活物質層(金属Li)、固体電解質層(硫化物固体電解質およびバインダ)、正極活物質層(LiNi1/3Co1/3Mn1/3、硫化物固体電解質、導電材およびバインダ)および正極集電体(Al箔)を入れて、一軸プレスした。その後、SUSピンで打ち抜くことでペレット電池を作製した。同様の手順でペレット電池をもう一つ作製した。作製したペレット電池の正極集電体の上部に、発泡ニッケル(発泡金属層)を配置し、その上部に、もう一つのペレット電池の負極集電体が接するように重ねた。作製した積層体を円筒容器に入れて、20kgfの圧力でネジ拘束し、バイポーラ型全固体電池を得た。
(Example 1)
Negative electrode current collector (Cu foil), negative electrode active material layer (metal Li), solid electrolyte layer (sulfide solid electrolyte and binder), positive electrode active material layer (LiNi 1/3 Co 1/3 Mn 1) in a ceramic cylinder. / 3 O 2 , sulfide solid electrolyte, conductive material and binder) and a positive electrode current collector (Al foil) were put in and uniaxially pressed. Then, a pellet battery was manufactured by punching with a SUS pin. Another pellet battery was manufactured by the same procedure. Nickel foam (foamed metal layer) was placed on the upper part of the positive electrode current collector of the produced pellet battery, and the negative electrode current collector of another pellet battery was layered on the upper part so as to be in contact with the negative electrode collector. The prepared laminate was placed in a cylindrical container and screw-constrained at a pressure of 20 kgf to obtain a bipolar all-solid-state battery.

(比較例1)
発泡ニッケルの代わりに、SUS板を用いたこと以外は、実施例1と同様にして、バイポーラ型全固体電池を得た。
(Comparative Example 1)
A bipolar all-solid-state battery was obtained in the same manner as in Example 1 except that a SUS plate was used instead of nickel foam.

(比較例2)
発泡ニッケルを用いなかったこと以外は、実施例1と同様にして、バイポーラ型全固体電池を得た。
(Comparative Example 2)
A bipolar all-solid-state battery was obtained in the same manner as in Example 1 except that nickel foam was not used.

(評価)
実施例1および比較例1、2で得られたバイポーラ型全固体電池に対し、充放電試験を行った。充放電試験は60℃の恒温槽において、電流値0.5mA/cm、電圧範囲4.0V−8.74Vで、充放電装置(北斗電工社製 HJ1001SD8)を用いて充放電を行った。評価結果を表1に示す。
(evaluation)
Charge / discharge tests were performed on the bipolar all-solid-state batteries obtained in Example 1 and Comparative Examples 1 and 2. The charge / discharge test was performed in a constant temperature bath at 60 ° C. with a current value of 0.5 mA / cm 2 and a voltage range of 4.0 V-8.74 V using a charge / discharge device (HJ1001SD8 manufactured by Hokuto Denko Co., Ltd.). The evaluation results are shown in Table 1.

Figure 2021197219
Figure 2021197219

発泡ニッケルを用いて作製したバイポーラ型全固体電池(実施例1)では、正極活物質あたりの容量が125mAh/g、平均放電電圧7.6Vで充放電可能であった。一方、発泡ニッケルの代わりにSUS板を用いて作製したバイポーラ型全固体電池(比較例1)、および、発泡ニッケルを用いず、各ペレット電池間を直接結合したバイポーラ型全固体電池(比較例2)では、充電途中で短絡してしまい評価を行うことができなかった。比較例1、2では、正極集電体および負極集電体の電気的接続が不均一であり、Liデンドライトによる内部短絡が生じたためであると考えられる。 In the bipolar all-solid-state battery (Example 1) manufactured using nickel foam, the capacity per positive electrode active material was 125 mAh / g, and the battery could be charged and discharged at an average discharge voltage of 7.6 V. On the other hand, a bipolar all-solid-state battery manufactured by using a SUS plate instead of nickel foam (Comparative Example 1) and a bipolar all-solid-state battery in which each pellet battery is directly coupled without using nickel foam (Comparative Example 2). In), a short circuit occurred during charging and evaluation could not be performed. In Comparative Examples 1 and 2, it is considered that the electrical connection between the positive electrode current collector and the negative electrode current collector was non-uniform, and an internal short circuit due to the Lidendrite occurred.

1 …正極集電体
2 …正極活物質層
3 …固体電解質層
4 …負極活物質層
5 …負極集電体
6 …発泡金属層
C …電池セル
10 …バイポーラ型全固体電池
1 ... Positive electrode current collector 2 ... Positive electrode active material layer 3 ... Solid electrolyte layer 4 ... Negative electrode active material layer 5 ... Negative electrode current collector 6 ... Foamed metal layer C ... Battery cell 10 ... Bipolar all-solid-state battery

Claims (1)

正極集電体、正極活物質層、固体電解質層、負極活物質として金属リチウムを含有する負極活物質層および負極集電体をこの順に有する電池セルを複数備え、
前記複数の電池セルは、厚さ方向に沿って積層され、かつ、電気的に直列に接続され、
一対の前記電池セルにおいて、一方の前記電池セルの前記正極集電体と、他方の前記電池セルの前記負極集電体との間に、発泡金属層を有する、バイポーラ型全固体電池。
A plurality of battery cells having a positive electrode current collector, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer containing metallic lithium as a negative electrode active material, and a negative electrode current collector in this order are provided.
The plurality of battery cells are stacked along the thickness direction and electrically connected in series.
A bipolar all-solid-state battery having a foamed metal layer between the positive electrode current collector of one of the battery cells and the negative electrode current collector of the other battery cell in the pair of battery cells.
JP2020100811A 2020-06-10 2020-06-10 Bipolar type all-solid battery Pending JP2021197219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020100811A JP2021197219A (en) 2020-06-10 2020-06-10 Bipolar type all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100811A JP2021197219A (en) 2020-06-10 2020-06-10 Bipolar type all-solid battery

Publications (1)

Publication Number Publication Date
JP2021197219A true JP2021197219A (en) 2021-12-27

Family

ID=79195807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100811A Pending JP2021197219A (en) 2020-06-10 2020-06-10 Bipolar type all-solid battery

Country Status (1)

Country Link
JP (1) JP2021197219A (en)

Similar Documents

Publication Publication Date Title
CN110943248B (en) Lithium secondary battery
JP6394057B2 (en) Solid electrolyte structure and all solid state battery
JP6934727B2 (en) All-solid-state battery and its manufacturing method
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
KR102198115B1 (en) Electrode, method of producing the same, battery, and electronic device
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
EP3742536A1 (en) All-solid-state battery having high energy density and method of manufacturing same
CN110165300B (en) Method for manufacturing all-solid-state battery
CN111864276A (en) Method for manufacturing solid-state battery and solid-state battery
CA3220863A1 (en) Current collector and preparation method therefor, negative electrode, and electrochemical energy storage device
JP2014154446A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2019091571A (en) Lithium secondary battery
CN110544772A (en) Battery with a battery cell
JP2021197219A (en) Bipolar type all-solid battery
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
CN111886742B (en) Solid-state battery
JP7040331B2 (en) Manufacturing method of series-stacked all-solid-state battery
WO2020129775A1 (en) Lithium secondary battery
JP2019197728A (en) All-solid battery and manufacturing method thereof
CN114583245B (en) All-solid secondary battery
US20240047735A1 (en) Lithium sulfur battery
JP2021176129A (en) Manufacturing method of all-solid battery
KR20230160191A (en) All-solid battery and the method for manufacturing of the same
KR20220040179A (en) Negative electrode of all solid-state battery having polymer layer for preventing micro short and All solid-state battery having the same
JP2024013898A (en) Negative electrode for all-solid-state secondary battery, all-solid-state secondary battery, and manufacturing method thereof