JP2021195591A - Iron based alloy, method for manufacturing the same and iron base member - Google Patents

Iron based alloy, method for manufacturing the same and iron base member Download PDF

Info

Publication number
JP2021195591A
JP2021195591A JP2020102526A JP2020102526A JP2021195591A JP 2021195591 A JP2021195591 A JP 2021195591A JP 2020102526 A JP2020102526 A JP 2020102526A JP 2020102526 A JP2020102526 A JP 2020102526A JP 2021195591 A JP2021195591 A JP 2021195591A
Authority
JP
Japan
Prior art keywords
iron
based alloy
phase
cold
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020102526A
Other languages
Japanese (ja)
Inventor
忠彦 古田
Tadahiko Furuta
伊弦 宮嵜
Izuru Miyazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2020102526A priority Critical patent/JP2021195591A/en
Publication of JP2021195591A publication Critical patent/JP2021195591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a new iron based alloy high in specific resistance and excellent in workability and strength.SOLUTION: Iron based alloy satisfies Mn: 24-35%, Al: 13.5-20%, C: 0.55-1.5% and the remainder: Fe and impurities using the total as 100 mass% (referred to as %). The iron based alloy consists of two phase structures of an austenite phase (a γ-phase) and a compound phase; the compound phase consists of Fe, Mn, Al and C; the compound phase of 30-70 vol.% to the total disperses like a network in a matrix consisting of a γ-phase; the iron based alloy achieves both of high specific resistance and high strength at a high level by hot working, heating and cold working; and an eddy current loss can be reduced when using a member consisting of such an iron based alloy in an alternation magnetic field.SELECTED DRAWING: Figure 1A

Description

本発明は、高比抵抗な鉄基合金等に関する。 The present invention relates to an iron-based alloy having a high resistivity.

交番磁界中で使用される部材(電磁部材)に発生する渦電流損を低減して省エネルギー化を図るため、電磁部材は電気抵抗率(「比抵抗」という。)の高い材質からなるとよい。また、電磁部材は、高比抵抗のみならず、加工性や機械的特性(強度、剛性等)にも優れる材質からなるとより好ましい。このような材質は、磁性材の場合もあれば、非磁性材の場合もある。用途は異なるが、高比抵抗で加工性に優れる鉄合金に関連する記載が下記の特許文献にある。 In order to reduce the eddy current loss generated in the member (electromagnetic member) used in the alternating magnetic field and save energy, the electromagnetic member should be made of a material having a high electrical resistivity (referred to as "specific resistance"). Further, it is more preferable that the electromagnetic member is made of a material having excellent workability and mechanical properties (strength, rigidity, etc.) as well as high resistivity. Such a material may be a magnetic material or a non-magnetic material. The following patent documents describe iron alloys having high resistivity and excellent workability, although their uses are different.

特開2006−219728号公報Japanese Unexamined Patent Publication No. 2006-219728

特許文献1では、5元系(Fe−Mn−Al−C−Cr)からなる高抵抗器用鉄合金が提案されている。その鉄合金は、時効熱処理により制御された三相組織(α相、γ相およびCr炭化物)からなる(特許文献1の[0023]等)。 Patent Document 1 proposes an iron alloy for high resistors composed of a quintuple system (Fe-Mn-Al-C-Cr). The iron alloy has a three-phase structure (α phase, γ phase and Cr carbide) controlled by aging heat treatment (Patent Document 1 [0023], etc.).

また特許文献1には、Crを含まない鉄合金(表1の比較例12)として、Fe−33.5Mn−15.6Al−0.5C(質量%)が示されている。しかし、その鉄合金は、α相とγ相の二相組織からなり、冷間圧延率が高々8%に留まり、加工性が非常に悪い(特許文献1の[0022]等)。 Further, Patent Document 1 discloses Fe-33.5Mn-15.6Al-0.5C (mass%) as an iron alloy containing no Cr (Comparative Example 12 in Table 1). However, the iron alloy has a two-phase structure of α phase and γ phase, the cold rolling ratio is at most 8%, and the workability is very poor (Patent Document 1 [0022] etc.).

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる新たな成分組成からなり、高比抵抗な鉄基合金等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an iron-based alloy or the like having a new component composition different from the conventional one and having a high resistivity.

本発明者はこの課題を解決すべく鋭意研究した結果、Crを実質的に含まない所定組成からなる4元系(Fe−Mn−Al−C)からなる鉄基合金が、高比抵抗であることに加えて、強度や加工性にも優れることを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has found that an iron-based alloy composed of a quaternary system (Fe-Mn-Al-C) having a predetermined composition substantially free of Cr has a high resistivity. In addition, we have newly found that it is also excellent in strength and workability. By developing this result, the present invention described below was completed.

《鉄基合金》
(1)本発明は、
全体を100質量%(単に「%」という。)として下記の成分組成を満たし、
オーステナイト相(単に「γ相」という。)と化合物相との二相組織からなる鉄基合金である。
Mn:24〜35%、Al:13.5〜20%、
C :0.55〜1.5%、残部:Feおよび不純物
《Iron-based alloy》
(1) The present invention
Satisfy the following component composition with the whole as 100% by mass (simply referred to as "%").
It is an iron-based alloy consisting of a two-phase structure consisting of an austenite phase (simply referred to as "γ phase") and a compound phase.
Mn: 24-35%, Al: 13.5-20%,
C: 0.55-1.5%, balance: Fe and impurities

(2)本発明の鉄基合金は高比抵抗を発揮する。また、この鉄基合金は加工性にも優れ、高強度も発揮し得る。このような鉄基合金は、例えば、渦電流損失の低減等が求められる各種の電磁部材に利用され得る。 (2) The iron-based alloy of the present invention exhibits high resistivity. In addition, this iron-based alloy has excellent workability and can exhibit high strength. Such an iron-based alloy can be used, for example, in various electromagnetic members that are required to reduce eddy current loss.

《鉄基合金の製造方法》
本発明は、鉄基合金(または鉄基部材)の製造方法としても把握される。例えば、本発明は、上述した成分組成を有する鉄基材(原料)を冷間で塑性加工する冷間加工工程を備える鉄基合金の製造方法でもよい。また、その冷間加工工程前の鉄基材に、均質化処理および/または焼入処理を施す熱処理工程を備えてもよい。さらに、冷間加工工程前(さらには熱処理工程前)に、鉄基材を加熱状態で塑性加工する熱間加工工程を備えてもよい。熱処理工程または熱間加工工程は、例えば、鉄基材を950〜1250℃に加熱してなされるとよい。なお、冷間加工工程後に、熱処理工程がなされてもよい。このような工程を経て得られる鉄基合金は、高比抵抗である共に高強度を発揮する。
<< Manufacturing method of iron-based alloy >>
The present invention is also understood as a method for producing an iron-based alloy (or iron-based member). For example, the present invention may be a method for producing an iron-based alloy including a cold working step of cold plastic working an iron base material (raw material) having the above-mentioned composition. Further, the iron substrate before the cold working step may be provided with a heat treatment step of subjecting the iron base material to a homogenization treatment and / or a quenching treatment. Further, a hot working step of plastic working the iron substrate in a heated state may be provided before the cold working step (further, before the heat treatment step). The heat treatment step or the hot working step may be performed, for example, by heating the iron substrate to 950 to 1250 ° C. A heat treatment step may be performed after the cold working step. The iron-based alloy obtained through such a process has high resistivity and high strength.

《鉄基部材》
本発明は、上述した鉄基合金からなる部材(鉄基部材)としても把握される。例えば、交番磁界中で用いられる鉄基部材(電磁部材等)は、渦電流損失を低減させ得る。また本発明の鉄基部材は加工性や強度に優れるため、汎用性が高い。なお、鉄基合金は磁性材でも非磁性材でもよいため、鉄基部材も磁性体(コア、ヨーク等)でも、非磁性体でもよい。
《Iron base member》
The present invention is also understood as a member made of the above-mentioned iron-based alloy (iron-based member). For example, an iron-based member (electromagnetic member or the like) used in an alternating magnetic field can reduce eddy current loss. Further, the iron base member of the present invention is excellent in workability and strength, and therefore has high versatility. Since the iron-based alloy may be a magnetic material or a non-magnetic material, the iron-based member may be a magnetic material (core, yoke, etc.) or a non-magnetic material.

《その他》
(1)本明細書でいう鉄基合金は、所定の成分組成と二相組織を有する限り、加工や熱処理等がなされる前の原材(鉄基材)でも、中間製品でも、最終製品でもよい。
"others"
(1) The iron-based alloy referred to in the present specification may be a raw material (iron base material) before processing or heat treatment, an intermediate product, or a final product as long as it has a predetermined composition and a two-phase structure. good.

(2) 特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

試料11に係る鉄基材の金属組織写真である。It is a metal structure photograph of the iron base material which concerns on a sample 11. 試料C1に係る鉄基材の金属組織写真である。It is a metal structure photograph of the iron base material which concerns on a sample C1. 試料C4に係る鉄基材の金属組織写真である。It is a metal structure photograph of the iron base material which concerns on a sample C4. 試料12と試料13に係る鉄基合金の応力−ひずみ線図である。It is a stress-strain diagram of the iron-based alloy which concerns on a sample 12 and a sample 13. 試料C4に係る鉄基合金の応力−ひずみ線図である。It is a stress-strain diagram of the iron-based alloy which concerns on a sample C4. 試料1に係るXRDの回折パターンである。It is a diffraction pattern of XRD which concerns on a sample 1. 比抵抗の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of a specific resistance.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の鉄基合金(鉄基材を含む)のみならず、その製造方法や鉄基部材にも該当する。方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention described above. The contents described in the present specification apply not only to the iron-based alloy (including the iron base material) of the present invention, but also to the manufacturing method thereof and the iron-based member. Even a methodical component can be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.

《成分組成》
鉄基合金は、Fe以外に、Mn、AlおよびCを必須元素とする。各元素の好適な組成範囲は次の通りである。なお、特に断らない限り、本明細書では、合金全体に対する質量割合(単位「%」で示す)で各元素の組成範囲を示す。
<< Ingredient composition >>
In addition to Fe, the iron-based alloy contains Mn, Al and C as essential elements. The suitable composition range of each element is as follows. Unless otherwise specified, the composition range of each element is shown in the present specification by the mass ratio (indicated by the unit "%") to the entire alloy.

(1)Mn
Mnは、例えば、24〜35%、25〜32%、26〜30%さらには27〜29%含まれるとよい。Mnはオーステナイト(γ)形成元素であり、常温域においても、鉄基合金中にγ相を安定的に生成させる。Mnが過少になると、その効果が乏しくなり、比抵抗も低下し得る。Mnが過多になると、鉄基合金が冷間加工前に二相組織であっても、冷間加工性が低下し得る。
(1) Mn
Mn may be contained, for example, 24-35%, 25-32%, 26-30% and even 27-29%. Mn is an austenite (γ) forming element and stably forms a γ phase in an iron-based alloy even in a normal temperature range. If Mn is too small, the effect will be poor and the resistivity may decrease. If the amount of Mn is excessive, the cold workability can be deteriorated even if the iron-based alloy has a two-phase structure before the cold work.

(2)Al
Alは、例えば、13.5〜20%、14.5〜18%さらには15〜17%含まれるとよい。Alは、鉄基合金の比抵抗を増加させる。このためAlが過少になると、比抵抗が低下し得る。Alが過多になると、Mnと同様に、鉄基合金が冷間加工前に二相組織であっても、冷間加工性が低下し得る。
(2) Al
Al may be contained, for example, 13.5 to 20%, 14.5 to 18%, and further 15 to 17%. Al increases the specific resistance of the iron-based alloy. Therefore, if Al is too small, the resistivity may decrease. When Al is excessive, the cold workability can be deteriorated even if the iron-based alloy has a two-phase structure before cold working, as in Mn.

(3)C
Cは、例えば、0.55〜1.5%、0.65〜0.95%さらには0.7〜0.85%含まれるとよい。Cは、γ相の形成に寄与する。Cが過少になると、冷間加工性に優れる二相組織の形成が困難となる。Cが過多になると、炭化物が増加して、二相組織が形成されても冷間加工性が低下し得る。
(3) C
C may be contained, for example, 0.55 to 1.5%, 0.65 to 0.95%, and further 0.7 to 0.85%. C contributes to the formation of the γ phase. If C is too small, it becomes difficult to form a two-phase structure having excellent cold workability. If C is excessive, carbides may increase and cold workability may decrease even if a two-phase structure is formed.

なお、鉄基合金は、不純物(Fe、Mn、AlおよびC以外の元素)を含み得る。不純物の合計量は、例えば、1%未満、0.5%未満さらには0.3%未満であるとよい。不純物の混入要因は問わない。 The iron-based alloy may contain impurities (elements other than Fe, Mn, Al and C). The total amount of impurities may be, for example, less than 1%, less than 0.5%, and even less than 0.3%. The cause of impurities is not limited.

《二相組織》
(1)鉄基合金は、γ相と化合物相との二相組織からなるとよい。γ相も化合物相も比抵抗が高く、それらの相乗効果により鉄基合金も高い比抵抗を発揮し得る。また、鉄基合金は、γ相と化合物相が共存した二相組織からなることにより、割れを生じずに加工率を高めることができる。さらに鉄基合金は、二相組織により高い機械的特性(強度(耐力、破壊(引張)強さ等)、延性、剛性等)も発揮し得る。
《Two-phase organization》
(1) The iron-based alloy is preferably composed of a two-phase structure consisting of a γ phase and a compound phase. Both the γ phase and the compound phase have high resistivity, and the iron-based alloy can also exhibit high resistivity due to their synergistic effect. Further, since the iron-based alloy has a two-phase structure in which the γ phase and the compound phase coexist, the processing rate can be increased without causing cracking. Further, the iron-based alloy can exhibit high mechanical properties (strength (proof stress, fracture (tensile) strength, etc.), ductility, rigidity, etc.) due to the two-phase structure.

二相組織は、例えば、γ相からなるマトリックス相中に、化合物相が粒子状に分散してなる。化合物相は、例えば、ネットワーク状に分散していると好ましい。二相組織が加工前から形成されていると、加工性が高められる。二相組織中の化合物相は、塑性加工(単に「加工」という。)、加工時の加熱、別途なされる熱処理等により、形態(サイズ、形状、分散度等)、存在割合(体積率)等が変化してもよい。例えば、加工により二相組織は、層状組織となり得る。二相組織からなる鉄基合金は、そのような加工により高強度(比)化する。 In the two-phase structure, for example, the compound phase is dispersed in the form of particles in a matrix phase composed of a γ phase. The compound phase is preferably dispersed in a network, for example. If the two-phase structure is formed before processing, the workability is enhanced. The compound phase in the two-phase structure is formed by plastic working (simply referred to as "working"), heating during processing, heat treatment performed separately, etc., in terms of morphology (size, shape, dispersion, etc.), abundance ratio (volume fraction), etc. May change. For example, the two-phase structure can become a layered structure by processing. The iron-based alloy having a two-phase structure is increased in strength (ratio) by such processing.

このような鉄基合金は、例えば、電動機(発電機を含む。)のロータ等に用いれるとよい。これにより、渦電流損失の低減、高速回転化、軽量化等により、ユニットまたはシステムの消費電力低減、性能や効率の向上等が図られる。 Such an iron-based alloy may be used, for example, in a rotor of an electric motor (including a generator). As a result, the power consumption of the unit or system can be reduced, and the performance and efficiency can be improved by reducing the eddy current loss, increasing the rotation speed, and reducing the weight.

(2)化合物相は、通常、金属間化合物からなり、その組成は種々あり得る。化合物相は、例えば、Fe、Mn、AlおよびCからなる。化合物相は、合計で、全体に対して30〜70体積%さらには40〜60体積%含まれるとよい。なお、化合物相の体積割合は、測定試料をSEMで観察して得られた観察像(500倍)の200μm×200μmの範囲(視野)について、ImageJ(フリーソフト)を用いて、image → adjust → thresholdで、測定部分に濃淡を加える処理をして求めた。 (2) The compound phase is usually composed of an intermetallic compound and may have various compositions. The compound phase comprises, for example, Fe, Mn, Al and C. The compound phase may be contained in a total amount of 30 to 70% by volume, more preferably 40 to 60% by volume, based on the whole. For the volume ratio of the compound phase, use ImageJ (free software) for the range (field) of 200 μm × 200 μm of the observation image (500 times) obtained by observing the measurement sample with SEM, and then image → adjust → It was obtained by adding light and shade to the measured part at the threshold.

《製造方法》
(1)鉄基材
原料となる鉄基材は、溶製材でも焼結材でもよい。鉄基材は、上述した成分組成を有すると共に、熱処理や加工の前段階から二相組織が形成されているとよい。
"Production method"
(1) Iron base material The iron base material used as a raw material may be a molten material or a sintered material. It is preferable that the iron base material has the above-mentioned component composition and has a two-phase structure formed from the stage before heat treatment or processing.

(2)熱処理
加工前、加工中または加工後に、適宜、熱処理がなされてもよい。熱処理は、例えば、均質化処理、焼入れ等である。均質化処理は、例えば、1000〜1200°さらには1050〜1150℃で、0.5〜5時間さらには1〜3時間なされるとよい。加熱雰囲気は、不活性ガス雰囲気、窒素ガス雰囲気の他、大気雰囲気でなされてもよい。
(2) Heat treatment Heat treatment may be appropriately performed before, during, or after processing. The heat treatment is, for example, homogenization treatment, quenching, or the like. The homogenization treatment may be carried out, for example, at 1000 to 1200 ° C. and further to 105 to 1150 ° C. for 0.5 to 5 hours and further to 1 to 3 hours. The heating atmosphere may be an atmospheric atmosphere as well as an inert gas atmosphere and a nitrogen gas atmosphere.

焼入れは、1000〜1200°さらには1050〜1150℃に加熱した後、急冷されるとよい。急冷は、水冷、湯冷、油冷等のいずれでもよいが、通常、水焼入れ(W.Q.)で足る。なお、鉄基材(鉄基合金)は、Mn量が多いため、焼入れされてもマルテンサイト相の出現は殆どなく、二相組織が維持される。 Quenching may be performed by heating to 1000 to 1200 ° C., further to 1050-1150 ° C., and then quenching. The quenching may be water cooling, hot water cooling, oil cooling, etc., but water quenching (WQ) is usually sufficient. Since the iron base material (iron-based alloy) has a large amount of Mn, the martensite phase hardly appears even when quenched, and the two-phase structure is maintained.

(3)加工
鉄基材は、熱間加工や冷間加工が施されるとよい。熱間加工(工程)は、例えば、950〜1250℃さらには1100〜1200℃に加熱後または加熱した状態で、加工されるとよい(熱間加工工程)。これにより鉄基材を効率的に所望形態まで塑性変形させることができる。熱間加工は、例えば、熱間鍛造である。加熱と加工を繰り替えす多段階の熱間加工により、加工率が大幅に増加し得る。なお、熱間加工後の冷却は、例えば、大気中で空冷すればよい。
(3) Processing The iron base material may be hot-processed or cold-processed. The hot working (process) may be performed, for example, after heating to 950 to 1250 ° C., further to 1100 to 1200 ° C., or in a heated state (hot working step). As a result, the iron base material can be efficiently plastically deformed to a desired form. Hot working is, for example, hot forging. The processing rate can be significantly increased by the multi-step hot processing that repeats heating and processing. For cooling after hot working, for example, air cooling may be performed in the atmosphere.

冷間加工(工程)により、鉄基材を所望形態まで塑性変形させることができる。冷間加工工程は、例えば、スウェージング加工,冷間圧延加工等であり、種々の汎用加工が利用され得る。冷間は、室温域であればよく、敢えていうと、70℃以下である。冷間加工も、多段階でなされることにより、加工率が大幅に増加し得る。なお、冷間加工前に、前述した熱間加工や熱処理がなされていると、加工率がさらに向上し得る。 By cold working (process), the iron base material can be plastically deformed to a desired form. The cold working step is, for example, swaging, cold rolling, and the like, and various general-purpose machining can be used. The cold temperature may be in the room temperature range, and dare to say that it is 70 ° C. or lower. Cold working can also be performed in multiple stages, which can significantly increase the working rate. If the above-mentioned hot working or heat treatment is performed before the cold working, the working rate can be further improved.

《特性》
鉄基合金(鉄基部材)は、加工性に優れ、高比抵抗と高強度を発現し得る。比抵抗は、例えば、2.0μΩm以上、2.1μΩm以上、2.3μΩm以上さらには2.7μΩm以上となり得る。強度は、引張強度が900MPa以上、1200MPa以上、1500MPa以上、1700MPa以上さらには1950MPa以上となり得る。冷間加工率は、30%以上、50%以上さらには80%以上となり得る。本明細書でいう加工率は、加工前後の断面積比により定まる。
"Characteristic"
The iron-based alloy (iron-based member) is excellent in workability and can exhibit high resistivity and high strength. The specific resistance can be, for example, 2.0 μΩm or more, 2.1 μΩm or more, 2.3 μΩm or more, and 2.7 μΩm or more. The strength can be 900 MPa or more, 1200 MPa or more, 1500 MPa or more, 1700 MPa or more, and further 1950 MPa or more. The cold working rate can be 30% or more, 50% or more, and even 80% or more. The processing rate referred to in the present specification is determined by the cross-sectional area ratio before and after processing.

なお、本発明の鉄基合金が高比抵抗を示す理由として、キャリア(正孔、電子)の濃度低下によるゼーベック係数の減少が考えられる。 The reason why the iron-based alloy of the present invention exhibits a high specific resistance is considered to be a decrease in the Seebeck coefficient due to a decrease in the concentration of carriers (holes, electrons).

成分組成または加工率が異なる鉄基合金からなる複数の試料を製作した。各試料の電気的特性(比抵抗)と機械的特性(ヤング率、引張強度、伸び)を評価した。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。 Multiple samples made of iron-based alloys with different composition or processing rates were produced. The electrical properties (specific resistance) and mechanical properties (Young's modulus, tensile strength, elongation) of each sample were evaluated. The present invention will be described in more detail below with reference to such specific examples.

《試料の製造》
(1)鉄基材
原材となる鉄基材を、次のように溶製した。先ず、原料(母材)として、市販されている純鉄、純アルミニウム、純マンガン(電解Mn)、純ケイ素、および炭素鋼(Fe−C合金)を用意した。
《Manufacturing of samples》
(1) Iron base material The iron base material used as a raw material was melted as follows. First, commercially available pure iron, pure aluminum, pure manganese (electrolytic Mn), pure silicon, and carbon steel (Fe—C alloy) were prepared as raw materials (base materials).

表1に示す成分組成に配合した原料を、アルゴン雰囲気下で溶解し、それを金型に注湯して凝固させた(鋳造工程)。こうして鋳塊(溶製材)からなる鉄基材を得た。 The raw materials blended in the composition shown in Table 1 were dissolved in an argon atmosphere, and the raw materials were poured into a mold to solidify them (casting step). In this way, an iron base material made of ingot (molten material) was obtained.

(2)熱間加工
各鉄基材に次のような熱間鍛造を大気中で行った。ガス炉で1150℃に加熱した鉄基材を鍛造(タップ)した。この加熱と鍛造を12段階に分けて行い、鉄基材をφ50mmからφ15mmまで細径化した(熱間加工工程)。この熱間鍛造後、大気中で室温まで放冷した。
(2) Hot processing The following hot forging was performed on each iron base material in the atmosphere. An iron substrate heated to 1150 ° C. in a gas furnace was forged (tapped). This heating and forging were performed in 12 steps, and the diameter of the iron base material was reduced from φ50 mm to φ15 mm (hot working step). After this hot forging, it was allowed to cool to room temperature in the atmosphere.

(3)熱処理
熱間鍛造した鉄基材を、電気炉で1100℃×2時間加熱して均質化処理した。その後、1100℃の鉄基材を水焼入れ(W.Q.)した。
(3) Heat Treatment The hot forged iron substrate was heated in an electric furnace at 1100 ° C. for 2 hours for homogenization. Then, the iron substrate at 1100 ° C. was water-quenched (WQ).

(4)冷間加工
熱処理後の鉄基材を切削加工し、酸化層を除去して丸棒(φ12mm×130mm)とした。この丸棒をダイスを用いて室温でスウェージング加工した。この冷間加工は、ダイス径をφ12mmからφ6mmまで10段階に分けて順に小さくして行った。こうして得られた各試料の供試材を引張試験等に供した。
(4) Cold processing The iron base material after the heat treatment was machined to remove the oxide layer to obtain a round bar (φ12 mm × 130 mm). This round bar was swagged at room temperature using a die. This cold working was performed by dividing the die diameter from φ12 mm to φ6 mm into 10 steps and reducing the die diameter in order. The test material of each sample thus obtained was subjected to a tensile test or the like.

なお、試料C1〜C5については、冷間加工中に割れ等を生じた段階で冷間加工を中止した。そして、割れを生じない範囲の断面減少率(Aw/Ao)から加工率(1−Aw/Ao)を算出した。ここでAwは加工後の断面積、Aoは加工開始前の断面積である。 For the samples C1 to C5, the cold working was stopped at the stage where cracks and the like occurred during the cold working. Then, the processing rate (1-Aw / Ao) was calculated from the cross-sectional reduction rate (Aw / Ao) in the range where cracks did not occur. Here, Aw is the cross-sectional area after machining, and Ao is the cross-sectional area before the start of machining.

試料11は冷間加工を施さなかった場合である。試料12は意図的に冷間加工を途中で止めた場合である。試料13は、上述した冷間加工(φ11mm→φ4mm)を行った場合である。以下、試料11〜試料13をまとめて「試料1」という。 Sample 11 is a case where cold processing is not performed. Sample 12 is a case where the cold working is intentionally stopped in the middle. The sample 13 is a case where the above-mentioned cold working (φ11 mm → φ4 mm) is performed. Hereinafter, the samples 11 to 13 are collectively referred to as "sample 1".

《観察》
(1)金属組織
各試料の鉄基材について、熱処理後で冷間加工前の金属組織をOM(Optical Microscope)で観察した。試料11、C1、C4に係る観察像(組織写真)をそれぞれ図1A、1B、1C(これらを併せて単に「図1」という。)に例示した。
"observation"
(1) Metal structure For the iron substrate of each sample, the metal structure after heat treatment and before cold processing was observed with an OM (Optical Microscope). Observation images (tissue photographs) of Samples 11, C1 and C4 are illustrated in FIGS. 1A, 1B and 1C (collectively referred to simply as "FIG. 1"), respectively.

(2)金属組織中に分散している化合物相の体積割合を、上記の観察像をImageJで画像解析して求めた。こうして得られた各試料の化合物相の体積率を表1に示した。 (2) The volume ratio of the compound phase dispersed in the metal structure was obtained by image analysis of the above observation image with ImageJ. The volume fraction of the compound phase of each sample thus obtained is shown in Table 1.

(3)X線回折(yの特定)
各試料に係る供試材をX線回折解析(XRD/Cu-Kα)した。これにより、マトリックス相はγ相であることを確認した。また、試料1に係る化合物相はFe−Mn−Al−Cからなることも確認した。一例として、試料13に係るXRDの回折パターンを図3に示した。
(3) X-ray diffraction (specification of y)
The test material for each sample was subjected to X-ray diffraction analysis (XRD / Cu-Kα). This confirmed that the matrix phase was the γ phase. It was also confirmed that the compound phase according to sample 1 was composed of Fe-Mn-Al-C. As an example, the diffraction pattern of XRD according to the sample 13 is shown in FIG.

《測定》
(1)電気的特性(比抵抗)
各試料の比抵抗を直流四端子法により、システムソースメーター((KEITHLEY製2601) を用いて測定した。具体的にいうと、次のような試験片を用意して、図4に示すように測定した。
"measurement"
(1) Electrical characteristics (resistivity)
The resistivity of each sample was measured by the DC four-terminal method using a system source meter ((KEITHLEY 2601). Specifically, the following test pieces were prepared and shown in FIG. 4. It was measured.

上述した冷間加工後の各鉄基合金から製作した角柱体(3.mm(t)×3mm(w)×20mm)の中央部分(電圧電極間(L):10mm)をマスキングテープでマスクする。マスクした両端部分と、その両外側部分との4箇所(図4参照)に、端子線(銀線:φ0.20mm)を巻き付ける。各端子線を巻き付けた部分と、角柱体の両端面とに銀ペースト(藤倉化成株式会社製 ドータイト D−550)をそれぞれ塗布する。塗布後の角柱体を、大気中で100℃×12時間加熱して乾燥させる。こうして、電流電極と電圧電極を備えた試験片を用意した。 Mask the central part (between voltage electrodes (L): 10 mm) of the prism (3. mm (t) × 3 mm (w) × 20 mm) manufactured from each of the above-mentioned cold-worked iron-based alloys with masking tape. .. Wrap the terminal wire (silver wire: φ0.20 mm) around the masked both end portions and the two outer portions thereof (see FIG. 4). Silver paste (Dotite D-550 manufactured by Fujikura Kasei Co., Ltd.) is applied to the portion around which each terminal wire is wound and both end faces of the prism. The prism after application is heated in the air at 100 ° C. for 12 hours to dry. In this way, a test piece provided with a current electrode and a voltage electrode was prepared.

外側にある電流電極に1Aの電流(I)を30秒間流し、内側にある電圧電極の電圧(V)を測定した。図4の式(1)に示すように、それらの値(I、V)と試験片の形状(t、w、L)から比抵抗(r)を求めた。なお、浮遊起電力は、通電前に自然電位を測定し、計測器(システムソースメーター)のゼロ調整機能を用いて消去しておいた。こうして得られた各試料に係る比抵抗を表1に併せて示した。 A current (I) of 1 A was passed through the current electrode on the outside for 30 seconds, and the voltage (V) of the voltage electrode on the inside was measured. As shown in the formula (1) of FIG. 4, the resistivity (r) was obtained from those values (I, V) and the shape (t, w, L) of the test piece. The floating electromotive force was erased by measuring the natural potential before energization and using the zero adjustment function of the measuring instrument (system source meter). The resistivity of each sample thus obtained is also shown in Table 1.

(2)機械的特性
上述した供試材を機械加工して製作した試験片(平行部:φ2.4mm×14mm、全長:40mm)を用いて引張試験(ゲージ長さ:10mm)を行った。引張試験は、オートグラフ(株式会社島津製作所製 AUTOGRAPH AG−1 50kN)を用いて、室温大気中で、ひずみ速度:5×10-4/sで行った。引張試験により得られたヤング率、引張強度、伸びを表1に併せて示した。なお、引張強度は、破断時の荷重と試験片の初期形状とに基づいて算出した。伸びは、破断時における試験片のひずみである。
(2) Mechanical characteristics A tensile test (gauge length: 10 mm) was performed using a test piece (parallel portion: φ2.4 mm × 14 mm, total length: 40 mm) manufactured by machining the above-mentioned test material. The tensile test was carried out using an autograph (AUTOGRAPH AG-1 50 kN manufactured by Shimadzu Corporation) in a room temperature atmosphere at a strain rate of 5 × 10 -4 / s. The Young's modulus, tensile strength, and elongation obtained by the tensile test are also shown in Table 1. The tensile strength was calculated based on the load at break and the initial shape of the test piece. Elongation is the strain of the test piece at break.

試料12、13、C4について、引張試験で得られた応力−ひずみ線図を図2Aと図2B(これらを併せて単に「図2」という。)に示した。図2に示した応力−ひずみ線図はビデオ伸び計により得た。 The stress-strain diagrams obtained in the tensile test for Samples 12, 13 and C4 are shown in FIGS. 2A and 2B (collectively referred to as "FIG. 2"). The stress-strain diagram shown in FIG. 2 was obtained by a video extensometer.

《評価》
(1)電気的特性(比抵抗)
表1から明らかなように、Al量が過少な試料C4を除いて、いずれも高比抵抗であった。
"evaluation"
(1) Electrical characteristics (resistivity)
As is clear from Table 1, all of them had high resistivity except for sample C4 having an excessive amount of Al.

(2)加工性
表1に示したように、試料1は加工率75%まで冷間を行っても、割れ等を生じなかった。つまり、試料1は非常に加工性に優れていた。
(2) Workability As shown in Table 1, Sample 1 did not crack or the like even when cooled to a processing rate of 75%. That is, the sample 1 was very excellent in processability.

一方、試料C1等の加工率は高々9%であり、Al量が少ない試料C4でも加工率は55%に留まった。また試料C1、C2、C3、C5は、割れを生じたり、加工困難だったため、引張試験片の作製自体が困難であった。 On the other hand, the processing rate of sample C1 and the like was at most 9%, and the processing rate of sample C4 having a small amount of Al remained at 55%. Further, since the samples C1, C2, C3 and C5 were cracked or difficult to process, it was difficult to prepare the tensile test piece itself.

(3)機械的特性
表1および図2からわかるように、試料1は高強度であり、加工率の増加と共に引張強度も大幅に増加した。
(3) Mechanical properties As can be seen from Table 1 and FIG. 2, the sample 1 has a high strength, and the tensile strength also increases significantly with the increase in the processing rate.

(4)金属組織
表1および図1からわかるように、冷間加工前の試料11は、多くの化合物相がネットワーク状に分散した二相組織からなることがわかった。
(4) Metallic structure As can be seen from Table 1 and FIG. 1, it was found that the sample 11 before cold working had a two-phase structure in which many compound phases were dispersed in a network.

一方、試料C1は、線状の化合物相が僅か分散している程度であった。試料11と試料C1を比較すると、金属組織の相違が加工性に大きく影響したと推察される。 On the other hand, in the sample C1, the linear compound phase was slightly dispersed. Comparing Sample 11 and Sample C1, it is presumed that the difference in metallographic structure greatly affected the workability.

ちなみに、試料C4は、いわゆる変形双晶誘起鋼であり、ある程度まで冷間加工可能であるが、化合物相が析出しないため比抵抗が小さかった。 Incidentally, the sample C4 is a so-called deformed twin-induced steel and can be cold-worked to some extent, but the resistivity is small because the compound phase does not precipitate.

以上から、本発明の鉄基合金は、高比抵抗であると共に、加工性に優れ、高強度を発揮することが確認された。 From the above, it was confirmed that the iron-based alloy of the present invention has high resistivity, excellent workability, and high strength.

Figure 2021195591
Figure 2021195591

Claims (8)

全体を100質量%(単に「%」という。)として下記の成分組成を満たし、
オーステナイト相(単に「γ相」という。)と化合物相との二相組織からなる鉄基合金。
Mn:24〜35%、
Al:13.5〜20%、
C :0.55〜1.5%、
残部:Feおよび不純物
Satisfy the following component composition with the whole as 100% by mass (simply referred to as "%").
An iron-based alloy consisting of a two-phase structure consisting of an austenite phase (simply referred to as "γ phase") and a compound phase.
Mn: 24-35%,
Al: 13.5-20%,
C: 0.55-1.5%,
Remaining: Fe and impurities
前記化合物相は、Fe、Mn、AlおよびCからなる請求項1に記載の鉄基合金。 The iron-based alloy according to claim 1, wherein the compound phase is composed of Fe, Mn, Al and C. 前記化合物相は、全体に対して30〜70体積%含まれる請求項1または2に記載の鉄基合金。 The iron-based alloy according to claim 1 or 2, wherein the compound phase is contained in an amount of 30 to 70% by volume based on the whole. 冷間加工材からなる請求項1〜3のいずれかに記載の鉄基合金。 The iron-based alloy according to any one of claims 1 to 3, which is made of a cold-working material. 前記成分組成は、下記の範囲を満たす請求項1〜4のいずれかに記載の鉄基合金。
Mn:25〜32%、
Al:14.5〜18%、
C :0.65〜0.95%、
残部:Feおよび不純物
The iron-based alloy according to any one of claims 1 to 4, wherein the component composition satisfies the following range.
Mn: 25-32%,
Al: 14.5-18%,
C: 0.65 to 0.95%,
Remaining: Fe and impurities
請求項1に記載した成分組成を有する鉄基材を冷間で塑性加工する冷間加工工程を備える鉄基合金の製造方法。 A method for producing an iron-based alloy, comprising a cold working step of cold plastic working an iron base material having the component composition according to claim 1. さらに、前記冷間加工工程前の鉄基材に、均質化処理および/または焼入処理を施す熱処理工程を備える請求項6に記載の鉄基合金の製造方法。 The method for producing an iron-based alloy according to claim 6, further comprising a heat treatment step of subjecting the iron substrate before the cold working step to a homogenization treatment and / or a quenching treatment. 請求項1〜5のいずれかに記載の鉄基合金からなり、交番磁界中で用いられる鉄基部材。 An iron-based member made of the iron-based alloy according to any one of claims 1 to 5 and used in an alternating magnetic field.
JP2020102526A 2020-06-12 2020-06-12 Iron based alloy, method for manufacturing the same and iron base member Pending JP2021195591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102526A JP2021195591A (en) 2020-06-12 2020-06-12 Iron based alloy, method for manufacturing the same and iron base member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102526A JP2021195591A (en) 2020-06-12 2020-06-12 Iron based alloy, method for manufacturing the same and iron base member

Publications (1)

Publication Number Publication Date
JP2021195591A true JP2021195591A (en) 2021-12-27

Family

ID=79197398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102526A Pending JP2021195591A (en) 2020-06-12 2020-06-12 Iron based alloy, method for manufacturing the same and iron base member

Country Status (1)

Country Link
JP (1) JP2021195591A (en)

Similar Documents

Publication Publication Date Title
KR102540017B1 (en) Aluminum alloy materials and conductive members using the same, battery members, fastening components, spring components and structural components
JP3731600B2 (en) Copper alloy and manufacturing method thereof
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6678579B2 (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
JP2014185370A (en) Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREFOR AND ELECTRIC CONDUCTION PARTS
JP6147167B2 (en) Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness
JP2005298931A (en) Copper alloy and its production method
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JPWO2006085609A1 (en) Novel Fe-Al alloy and method for producing the same
JP2013044038A (en) Aluminum alloy conductor
JP2017179553A (en) Cu-Zr-BASED COPPER ALLOY SHEET GOOD IN PRESS PUNCHING PROPERTY AND MANUFACTURING METHOD
JPWO2013150627A1 (en) Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same
JPWO2019031612A1 (en) High-strength/high-conductivity copper alloy sheet and method for producing the same
JP2018070908A (en) Cu-Zr-Sn-Al-BASED COPPER ALLOY SHEET MATERIAL, MANUFACTURING METHOD AND CONDUCTIVE MEMBER
JP2005113259A (en) Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP2018145457A (en) Aluminum alloy conductor, insulation wire using the conductor, and manufacturing method of the insulation wire
JP2019178366A (en) Copper alloy sheet material and manufacturing method therefor
JP2004307905A (en) Cu ALLOY, AND ITS PRODUCTION METHOD
JP2005290543A (en) Copper alloy and its production method
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
JP2020026568A (en) Titanium alloy, method for producing the same and engine component including the same
RU2667271C1 (en) Heat-resistant conductive ultrafine-grained aluminum alloy and method for production thereof
JP2021195591A (en) Iron based alloy, method for manufacturing the same and iron base member
JP2017039959A (en) Cu-Ti-BASED COPPER ALLOY SHEET AND MANUFACTURING METHOD THEREFOR AND ELECTRIFICATION COMPONENT