JP2021195590A - 銀ナノ粒子及びその製造方法 - Google Patents

銀ナノ粒子及びその製造方法 Download PDF

Info

Publication number
JP2021195590A
JP2021195590A JP2020102477A JP2020102477A JP2021195590A JP 2021195590 A JP2021195590 A JP 2021195590A JP 2020102477 A JP2020102477 A JP 2020102477A JP 2020102477 A JP2020102477 A JP 2020102477A JP 2021195590 A JP2021195590 A JP 2021195590A
Authority
JP
Japan
Prior art keywords
silver
aliphatic hydrocarbon
silver nanoparticles
complex compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020102477A
Other languages
English (en)
Other versions
JP7474122B2 (ja
Inventor
泰弘 清田
Yasuhiro Kiyota
良行 村井
Yoshiyuki Murai
進 渡邉
Susumu Watanabe
善博 穐田
Yoshihiro Akita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2020102477A priority Critical patent/JP7474122B2/ja
Publication of JP2021195590A publication Critical patent/JP2021195590A/ja
Application granted granted Critical
Publication of JP7474122B2 publication Critical patent/JP7474122B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】銀−アミン錯化合物の熱分解により銀ナノ粒子を生成させるいわゆる熱分解法について、スケールアップされた工業的な製造においても、小さい平均粒子径を有する均質な銀ナノ粒子が得られる銀ナノ粒子及びその製造方法を提供する。【解決手段】脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる(10)、錯化合物の生成工程(I)と; 生成した前記錯化合物を60〜90℃の予備加熱温度に予備加熱する(22)、予備加熱工程(II)と; 予備加熱された前記錯化合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽(30)に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程(III)と; を含む銀ナノ粒子の製造方法。【選択図】図1

Description

本発明は、銀ナノ粒子及びその製造方法に関する。また、本発明は、銀以外の金属を含む金属ナノ粒子及びその製造方法にも適用される。
銀ナノ粒子は、低温でも焼結させることができる。この性質を利用して、種々の電子素子の製造において、基板上に電極や導電回路パターンを形成するために、銀ナノ粒子を含む銀塗料組成物が用いられている。銀ナノ粒子は、通常、有機溶剤中に分散されている。銀ナノ粒子は、数nm〜数十nm程度の平均一次粒子径を有しており、通常、その表面は有機安定剤(保護剤)で被覆されている。基板がプラスチックフィルム又はシートの場合には、プラスチック基板の耐熱温度未満の低温(例えば、200℃以下)で銀ナノ粒子を焼結させることが必要である。
特に最近では、フレキシブルプリント配線基板として、すでに使用されている耐熱性のポリイミドのみならず、ポリイミドよりも耐熱性は低いが加工が容易で且つ安価なPET(ポリエチレンテレフタレート)やポリプロピレンなどの各種プラスチック製の基板に対しても、微細な金属配線(例えば、銀配線)を形成する試みがなされている。耐熱性の低いプラスチック製の基板を用いた場合には、金属ナノ粒子(例えば、銀ナノ粒子)をさらに低温で焼結させることが必要である。
例えば、特開2008−214695号公報には、シュウ酸銀とオレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを含む銀超微粒子の製造方法が開示されている(請求項1)。また、前記方法において、前記シュウ酸銀と前記オレイルアミンに加えて総炭素数1〜18の飽和脂肪族アミンを反応させる(請求項2、3)と、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮でき、しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができることが開示されている(段落[0011])。錯化合物の加熱分解は100℃〜180℃程度の温度で行うことが好ましく、特に120℃〜160℃程度の温度で行うことが好ましいことが開示されている(段落[0018])。
特開2010−265543号公報には、加熱により分解して金属銀を生成する銀化合物と、沸点100℃〜250℃の中短鎖アルキルアミン及び沸点100℃〜250℃の中短鎖アルキルジアミンとを混合して、銀化合物と前記アルキルアミン及び前記アルキルジアミンを含む錯化合物を調製する第1工程と、前記錯化合物を加熱分解させる第2工程とを含む被覆銀超微粒子の製造方法が開示されている(請求項3、段落[0061]、[0062])。錯化合物の加熱分解は80℃〜120℃程度の温度で行うことが開示されている(段落[0043])。
特開2012−162767号公報には、炭素数6以上のアルキルアミンと、炭素数5以下のアルキルアミンとを含むアミン混合液と、金属原子を含む金属化合物を混合して、前記金属化合物とアミンを含む錯化合物を生成する第1工程と、前記錯化合物を加熱分解して金属微粒子を生成する第2工程とを含む被覆金属微粒子の製造方法が開示されている(請求項1)。また、被覆銀微粒子をブタノール等のアルコール溶剤、オクタン等の非極性溶剤、又はそれらの混合溶剤等の有機溶剤に分散可能であることが開示されている(段落[0079])。錯化合物の加熱分解は100℃〜110℃の温度で行ったことが開示されている(段落[0094])。
特開2013−142172号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)と、脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)とを含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n−ブタノール、n−ペンタノール、n−ヘキサノール、n−ヘプタノール、n−オクタノール、n−ノナノール、n−デカノール等のようなアルコール溶剤が開示されている(段落[0085])。シュウ酸銀の錯化合物の加熱分解は80℃〜120℃程度の温度で行うことが開示されている(段落[0080])。
特開2013−142173号公報には、銀ナノ粒子の製造方法であって、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを特定の割合で含むアミン混合液を調製し、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、ことを含む銀ナノ粒子の製造方法が開示されている(請求項1)。また、上記の特開2013−142172号公報と同様に、得られた銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができことが開示され、同様の有機溶剤が開示されている(段落[0076])。シュウ酸銀の錯化合物の加熱分解は80℃〜120℃程度の温度で行うことが開示されている(段落[0071])。
特開2014−034690号公報には、銀化合物とアルコール系溶剤とを混合して、銀化合物−アルコールスラリーを得て; 得られた銀化合物−アルコールスラリーに、脂肪族炭化水素アミンを添加して、前記銀化合物及び前記アミンを含む錯化合物を生成させ; 前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する; ことを含む銀ナノ粒子の製造方法が開示されている。
特開2015−131991号公報には、脂肪族炭化水素アミンと、銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と; 前記錯化合物を、2℃/minよりも大きい昇温速度で80〜120℃の熱分解温度に加熱昇温して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と; を含む銀ナノ粒子の製造方法が開示されている。
特開2008−214695号公報 特開2010−265543号公報 特開2012−162767号公報 特開2013−142172号公報 特開2013−142173号公報 特開2014−034690号公報 特開2015−131991号公報
銀ナノ粒子は、数nm〜数十nm程度の平均一次粒子径を有しており、ミクロン(μm)サイズの粒子に比べ、凝集しやすい。そのため、得られる銀ナノ粒子の表面が有機安定剤(脂肪族アミンや脂肪族カルボン酸などの保護剤)で被覆されるように、銀化合物の還元反応(上記特許文献における熱分解反応)は有機安定剤の存在下で行われる。
一方、銀ナノ粒子は、該粒子を有機溶剤中に含む銀塗料組成物(銀インク、銀ペースト)とされる。導電性発現のためには、基板上への塗布後の焼成時において、銀ナノ粒子を被覆している有機安定剤は除去されて銀粒子が焼結することが必要である。焼成の温度が低ければ、有機安定剤は除去されにくくなる。銀粒子の焼結度合いが十分でなければ、低い抵抗値は得られない。すなわち、銀ナノ粒子の表面に存在する有機安定剤は、銀ナノ粒子の安定化に寄与するが、一方、銀ナノ粒子の焼結(特に、低温焼成での焼結)を妨げる。
有機安定剤として比較的長鎖(例えば、炭素数8以上)の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物を用いると、個々の銀ナノ粒子同士の互いの間隔が確保されやすいため、銀ナノ粒子が安定化されやすい。一方、長鎖の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物は、焼成の温度が低ければ、除去されにくい。
このように、銀ナノ粒子の安定化と、低温焼成での低抵抗値の発現とは、トレードオフの関係にある。
ところで、上記各特許文献においては、銀の錯化合物の生成反応工程と該錯化合物の熱分解反応工程とが同一の反応槽中で行われている。すなわち、生成反応工程で得られた銀の錯化合物を含む反応混合物全てをそのまま昇温して、同一の反応槽中で該錯化合物が熱分解反応工程に付されている。上記の熱分解反応は発熱反応であり、銀の錯化合物を含む反応混合物全てをそのまま昇温すると、熱分解反応が一気に進行して、発熱コントロールが困難になるという欠点がある。特にスケールアップされた工業的製造においては、安全面に大きなリスクがある。
銀ナノ粒子を含有する分散液は、その分散液が各種基材上に塗布されるに際して、フィルターを用いた濾過工程に付される。この濾過工程において、フィルターの目詰まりが起こることのないように、分散液中の銀ナノ粒子は、小さい平均粒子径、例えば100nm以下の平均粒子径を有することは重要である。また、焼成後の銀塗膜の均質性の観点からも、分散液中の銀ナノ粒子は小さい平均粒子径、例えば100nm以下の平均粒子径を有することは重要である。
さらに、インクジェット印刷を考慮すると、銀ナノ粒子含有分散液(銀ナノ粒子含有インク)はインクジェットヘッドの目詰まりを起こさないものである必要がある。
そこで、本発明の目的は、銀−アミン錯化合物の熱分解により銀ナノ粒子を生成させるいわゆる熱分解法について、小さい平均粒子径を有する銀ナノ粒子が得られる銀ナノ粒子の製造方法を提供することにある。さらに、本発明の目的は、銀−アミン錯化合物の熱分解により銀ナノ粒子を生成させるいわゆる熱分解法について、低温での焼結が可能な且つ小さい平均粒子径を有する銀ナノ粒子が得られる銀ナノ粒子の製造方法を提供することにある。さらに、本発明の目的は、スケールアップされた工業的な製造においても、前記小さい平均粒子径を有する銀ナノ粒子が得られる銀ナノ粒子の製造方法を提供することにある。
さらに、本発明の目的は、小さい平均粒子径を有する銀ナノ粒子を提供することにある。さらに、本発明の目的は、低温での焼結が可能な且つ小さい平均粒子径を有する均質な銀ナノ粒子を提供することにある。これら銀ナノ粒子は、上記の製造方法により得られ得る。
本発明者らは、検討した結果、銀の錯化合物の生成反応工程で得られた錯化合物を含む反応混合物を熱分解反応工程に逐次的に導入して、逐次的に錯化合物を熱分解反応させることにより、反応熱の発生をコントロールでき、スケールアップが容易となることを見出した。
しかしながら、生成反応工程で得られた銀錯化合物を含む室温付近の反応混合物を熱分解槽に逐次添加すると、生成反応工程で得られた銀の錯化合物を含む反応混合物全てをそのまま昇温して、同一の反応槽中で該錯化合物を熱分解反応に付す従来法の場合と比べて、銀ナノ粒子の平均粒子径が大きくなることが判った。
本発明者らは、生成した前記錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、熱分解槽に逐次添加して熱分解させると、結晶核の存在により銀ナノ粒子の形成が効率よく進行する可能性があると考えた。
そこで、本発明者らは、さらに鋭意検討した結果、銀の錯化合物の生成反応工程で得られた錯化合物を含む反応混合物を予備加熱して、予備加熱された反応混合物を熱分解反応工程に逐次的に導入して、逐次的に錯化合物を熱分解反応させることにより、生成する銀ナノ粒子の平均粒子径が、予備加熱しない場合よりもより小さくなることを見出した。またこの際に得られる銀ナノ粒子は、粒子径分布において2つ以上のピークを有することを見出した。
本発明者らは、さらに鋭意検討した結果、熱分解反応槽に予め調製した銀ナノ粒子を存在させておき、銀の錯化合物の生成反応工程で得られた錯化合物を含む反応混合物を、予め調製した銀ナノ粒子が存在している熱分解反応槽に逐次的に導入して、逐次的に錯化合物を熱分解反応させることにより、生成する銀ナノ粒子の平均粒子径が、熱分解反応槽に銀ナノ粒子が存在していない場合よりもより小さくなることを見出した。またこの際に得られる銀ナノ粒子は、粒子径分布において2つ以上のピークを有することを見出した。
本発明には、以下の発明が含まれる。
(1) 脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有する銀ナノ粒子。
(2) 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、上記(1) に記載の銀ナノ粒子。
(3) 前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下の直鎖状アルキル基を有する直鎖状アルキルモノアミン、及び炭素数6以上16以下の分枝状アルキル基を有する分枝状アルキルモノアミンからなる群から選ばれる少なくとも1つである、上記(2) に記載の銀ナノ粒子。
(4) 前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、上記(2) 又は(3) に記載の銀ナノ粒子。
(5) 前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、上記(2) 〜(4) のうちのいずれかに記載の銀ナノ粒子。
(6) 前記銀ナノ粒子の銀原子1モルに対して、前記脂肪族炭化水素アミンはその合計として1〜50モル用いられている、上記(1) 〜(5) のうちのいずれかに記載の銀ナノ粒子。
(7) 100nm以下の平均粒子径を有する、上記(1) 〜(6) のうちのいずれかに記載の銀ナノ粒子。
(8) 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
生成した前記錯化合物を60〜90℃の予備加熱温度に予備加熱する、予備加熱工程と、
予備加熱された前記錯化合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
を含む銀ナノ粒子の製造方法。
(9) 前記銀化合物は、シュウ酸銀である、上記(8) に記載の銀ナノ粒子の製造方法。
(10) 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、
脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、上記(8) 又は(9) に記載の銀ナノ粒子の製造方法。
(11) 前記錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを、炭素数3以上のアルコール溶剤下で混合する、上記(8) 〜(10) のうちのいずれかに記載の銀ナノ粒子の製造方法。
(12) 前記錯化合物の予備加熱工程において、前記錯化合物を管状加熱装置によって加熱する、上記(8) 〜(11)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(13) 前記錯化合物の熱分解工程において、前記錯化合物の添加終了後に熱分解温度にて10〜120分間維持する、上記(8) 〜(12)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(14) 前記銀化合物の銀原子1モルに対して、前記脂肪族炭化水素アミンをその合計として1〜50モル用いる、上記(8) 〜(13)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(15) 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
生成した前記錯化合物を熱分解させるための熱分解槽に、予め調製された銀ナノ粒子を存在させておく、熱分解槽の準備工程と、
生成した前記錯化合物を80〜120℃の熱分解温度とされた前記熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
を含む銀ナノ粒子の製造方法。
(16) 熱分解槽の準備工程において、前記予め調製された銀ナノ粒子は、脂肪族炭化水素アミンを含む保護剤で表面が被覆されたものである、上記(15)に記載の銀ナノ粒子の製造方法。
(17) 前記銀化合物は、シュウ酸銀である、上記(15)又は(16)に記載の銀ナノ粒子の製造方法。
(18) 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、上記(15)〜(17)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(19) 前記錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを、炭素数3以上のアルコール溶剤下で混合する、上記(15)〜(18)うちのいずれかに記載の銀ナノ粒子の製造方法。
(20) 前記錯化合物の熱分解工程において、前記錯化合物の添加終了後に熱分解温度にて10〜120分間維持する、上記(15)〜(19)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(21) 前記銀化合物の銀原子1モルに対して、前記脂肪族炭化水素アミンをその合計として1〜50モル用いる、上記(15)〜(20)のうちのいずれかに記載の銀ナノ粒子の製造方法。
(22) 上記(1) 〜(7) のうちのいずれかに記載の銀ナノ粒子又は上記(8) 〜(21)のうちのいずれかに記載の方法により製造される銀ナノ粒子と、有機溶剤とを含む銀粒子塗料組成物。
・ 凹版オフセット印刷、スクリーン印刷、スピンコート、又はインクジェット印刷に用いられる、上記(22)に記載の銀粒子塗料組成物。前記凹版オフセット印刷には、グラビアオフセット印刷などが含まれる。
(23) 基板と、
前記基板上に、上記(1) 〜(7) のうちのいずれかに記載の銀ナノ粒子又は上記(8) 〜(21)のうちのいずれかに記載の方法により製造される銀ナノ粒子と、有機溶剤とを含む銀粒子塗料組成物が塗布され、焼成されてなる銀導電層と、
を有する電子デバイス。
電子デバイスとしては、各種の配線基板、モジュール等が含まれる。
・ 基板上に、上記(1) 〜(7) のうちのいずれかに記載の銀ナノ粒子又は上記(8) 〜(21)のうちのいずれかに記載の方法により製造される銀ナノ粒子と、有機溶剤とを含む銀粒子塗料組成物を塗布し、銀粒子含有塗布層を形成し、その後、前記塗布層を焼成して銀導電層を形成することを含む電子デバイスの製造方法。
焼成は、200℃以下、例えば150℃以下、好ましくは120℃以下の温度で、2時間以下、例えば1時間以下、好ましくは30分間以下、より好ましくは15分間以下の時間で行われ得る。より具体的には、90℃〜120℃程度、10分〜15分間程度の条件、例えば、120℃、15分間の条件で行われ得る。
基板は、プラスチック製基板、セラミック製基板、ガラス製基板、及び金属製基板から選ばれ得る。
(24) 銀ナノ粒子の製造装置であって、
脂肪族炭化水素アミンと銀化合物とを混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させるための錯化合物の生成反応槽と、
前記錯化合物を熱分解させて、銀ナノ粒子を形成するための錯化合物の熱分解反応槽と、
前記生成反応槽で生成した前記錯化合物を含む反応混合物を前記熱分解反応槽へと逐次的に移送する管状路とを含む、銀ナノ粒子の製造装置。
(25) 前記管状路の一部に、予備加熱装置が設けられている、上記(24)に記載の製造装置。
(26) 前記熱分解反応槽は、脂肪族炭化水素アミンと銀化合物とを混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる機能をも備えている、上記(24)に記載の製造装置。
(27) 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
生成した前記錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
を含む銀ナノ粒子の製造方法。
(28) 脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有する銀ナノ粒子を製造する、上記(27)に記載の方法。
(29) 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
生成した前記錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
を含み、
脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有する銀ナノ粒子を調整する、銀ナノ粒子の粒子径制御方法。
本明細書において、逐次添加(consecutive addition)とは、連続添加(continuous addition)及び間欠添加(intermittent addition)の両方の場合を含んでいる。
本発明の銀ナノ粒子は、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有している。本発明の銀ナノ粒子は、小さい平均粒子径、例えば100nm以下の平均粒子径を有するものである。小さい平均粒子径を有する銀ナノ粒子を含有する分散液(銀ナノ粒子含有インク)は、フィルターを用いた濾過工程においてフィルターの目詰まりを起こすことがない。そのため、銀ナノ粒子含有分散液の各種基材上への塗布工程を、工業的な製造においても問題なく行うことができる。さらに、インクジェット印刷を考慮すると、小さい平均粒子径を有する銀ナノ粒子を含有する分散液(銀ナノ粒子含有インク)はインクジェットヘッドの目詰まりを起こすことがない。また、分散液中の銀ナノ粒子が小さい平均粒子径を有するものであると、その銀ナノ粒子含有分散液から、均質性に優れる銀焼成膜が得られる。
本発明の銀ナノ粒子は、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有していることにより、より大きな粒子径(20nm以上100nm以下)の粒子の間に、より小さな粒子径(1nm以上20nm未満)の粒子が移動しやすい状態で入り込みやすい。より小さな粒子径(1nm以上20nm未満)の粒子が、より大きな粒子径(20nm以上100nm以下)の粒子の流動状態をよくして、銀ナノ粒子を含有する分散液(銀粒子塗料組成物)の良好な流動状態が保たれ易いと考えられる。そのため、銀粒子塗料組成物の塗布適性が向上する。さらに、銀粒子塗料組成物を焼成した時に、より大きな粒子径(20nm以上100nm以下)の粒子の間に、より小さな粒子径(1nm以上20nm未満)の粒子が入り込み、緻密な銀焼結膜が得られることが期待される。そのため、銀焼結膜の導電性が向上する。
さらに、異なる粒子径の金属ナノ粒子を別々に製造すると、一般的にそれらの表面被覆剤の組成は異なるものとなってしまう。被覆剤が異なると金属ナノ粒子の溶剤への分散性も変わってしまう。そのため、異なる2種の粒子径の粒子を同じ溶剤に均一に分散させることは容易ではない。本発明の銀ナノ粒子は、本明細書に示される方法により同一反応系から製造され得るので、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有しているにも係わらず、それらの表面被覆剤の組成が異なることなく、溶剤への均一分散性に優れている。
本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物として、炭素総数6以上の脂肪族炭化水素モノアミン(A)と、炭素総数5以下の脂肪族炭化水素モノアミン(B)及び炭素総数8以下の脂肪族炭化水素ジアミン(C)の少なくとも一方とを用いると、形成された銀ナノ粒子の表面は、これらの脂肪族アミン化合物によって被覆されている。
前記脂肪族炭化水素モノアミン(B)、及び前記脂肪族炭化水素ジアミン(C)は、炭素鎖長が短いため、200℃以下、例えば150℃以下、好ましくは120℃以下の低温での焼成の場合にも、2時間以下、例えば1時間以下、好ましくは30分間以下の短い時間で、銀粒子表面から除去されやすい。また、前記モノアミン(B)及び/又は前記ジアミン(C)の存在により、前記脂肪族炭化水素モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温での焼成の場合にも前記短い時間で、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
本発明の製造方法において、錯化合物の生成工程で生成した銀化合物及び脂肪族炭化水素アミンを含む錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、熱分解槽に逐次添加して熱分解させて銀ナノ粒子を形成する。この製造方法により、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有しており、且つ小さい平均粒子径、例えば100nm以下の平均粒子径を有する銀ナノ粒子を得ることができる。また、生成した前記錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、熱分解槽に逐次添加して熱分解させると、結晶核の存在により、結晶核の成長が進み、銀ナノ粒子のより小さな粒子径(1nm以上20nm以下)の粒子が生成する。
さらに、本発明の製造方法によれば、得られたより大きな粒子径(20nm以上100nm以下)の粒子と、より小さな粒子径(1nm以上20nm未満)の粒子とは、いずれも、同じ脂肪族炭化水素アミンを含む保護剤で表面が被覆されているので、これら粒子相互間の親和性にも優れ、前記より小さな粒子径(1nm以上20nm未満)の粒子が、前記より大きな粒子径(20nm以上100nm以下)の粒子の流動状態をよくして、銀ナノ粒子を含有する分散液の良好な流動状態が保たれ易いと考えられる。
本発明の製造方法によれば、錯化合物の生成工程で生成した前記錯化合物を、熱分解槽に逐次添加して熱分解させて銀ナノ粒子を形成するので、熱分解反応の発熱をコントロールすることができ、スケールアップされた工業的製造においても安全性を確保できる。
さらに、本発明の製造方法において、銀化合物及び脂肪族炭化水素アミンを含む錯化合物の生成工程において、粉末状の銀化合物と脂肪族炭化水素アミンとを炭素数3以上のアルコール溶剤存在下で混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させると、錯化合物の生成工程において、十分な攪拌操作を行うことができ、錯化合物の形成に伴う反応熱を系外に逃すことができる。従って、スケールアップされた工業的な製造においても、安全且つ簡便な銀ナノ粒子の製造方法が提供される。
このようにして、本発明によれば、低温且つ短い時間での焼成によって、優れた導電性(低い抵抗値)が発現する銀ナノ粒子、及びその製造方法が提供される。また、本発明によれば、前記銀ナノ粒子を有機溶剤中に安定な分散状態で含む銀ナノ粒含有塗料組成物(銀インク、銀ペースト)が提供される。本発明の銀ナノ粒子含有インクは、インクジェット用途に好適である。
さらに、本発明によれば、銀以外の金属を含む金属ナノ粒子の製造方法及び該金属ナノ粒子にも適用される。
本発明によれば、PET及びポリプロピレンなどの耐熱性の低い各種プラスチック基板上にも、導電膜、導電配線を形成することができる。本発明の銀ナノ粒子含有塗料組成物は、最近の種々の電子機器の素子用途に好適である。
本発明において用い得る銀ナノ粒子製造装置の一例の概略構成を示す図である。 実施例1における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。横軸は粒子径(nm)を表し、縦軸は強度(%)を表す。以下の粒子径分布グラフにおいて同じである。 実施例2における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。 比較例1における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。 比較例2における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。 実施例3における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。 比較例3における銀ナノ粒子の粒子径分布の測定結果を示すグラフである。
[銀ナノ粒子]
本発明において、銀ナノ粒子は、脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有している。本発明の銀ナノ粒子は、小さい平均粒子径、例えば100nm以下の平均粒子径を有するものである。
本明細書において、ナノ粒子の平均粒子径は、動的光散乱法(DLS;Dynamic light scattering)による粒子径分布から求められた一次粒子の大きさ(平均一次粒子径)である。また、粒子の大きさは、表面に存在(被覆)している保護剤(安定剤)を除外した大きさ(すなわち、銀自体の大きさ)を意図している。本発明において、銀ナノ粒子は、例えば0.5nm〜100nm、好ましくは0.5nm〜70nm、より好ましくは0.5nm〜60nm、さらに好ましくは0.5nm〜40nm又は0.5nm〜26nmの平均一次粒子径を有している。
小さい平均粒子径を有する銀ナノ粒子を含有する分散液(銀ナノ粒子含有インク)は、フィルターを用いた濾過工程においてフィルターの目詰まりを起こすことがない。そのため、銀ナノ粒子含有分散液の各種基材上への塗布工程を、工業的な製造においても問題なく行うことができる。さらに、インクジェット印刷を考慮すると、小さい平均粒子径を有する均質な銀ナノ粒子を含有する分散液(銀ナノ粒子含有インク)はインクジェットヘッドの目詰まりを起こすことがない。また、分散液中の銀ナノ粒子が小さい平均粒子径を有するものであると、その銀ナノ粒子含有分散液から、均質性に優れる銀焼成膜が得られる。
本発明の銀ナノ粒子は、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有していることにより、より大きな粒子径(20nm以上100nm以下)の粒子の間に、より小さな粒子径(1nm以上20nm未満)の粒子が移動しやすい状態で入り込みやすい。より小さな粒子径(1nm以上20nm未満)の粒子が、より大きな粒子径(20nm以上100nm以下)の粒子の流動状態をよくして、銀ナノ粒子を含有する分散液(銀粒子塗料組成物)の良好な流動状態が保たれ易いと考えられる。そのため、銀粒子塗料組成物の塗布適性が向上する。さらに、銀粒子塗料組成物を焼成した時に、より大きな粒子径(20nm以上100nm以下)の粒子の間に、より小さな粒子径(1nm以上20nm未満)の粒子が入り込み、緻密な銀焼結膜が得られることが期待される。そのため、銀焼結膜の導電性が向上する。
このような観点から、より小さな粒子径(1nm以上20nm未満)の粒子と、より大きな粒子径(20nm以上100nm以下)の粒子との比率については、特に限定されないが、例えば、1nm以上20nm未満の領域のピークの強度が5〜25%であり、20nm以上100nm以下の領域のピークの強度が75〜95%であってもよい。
本発明において、銀ナノ粒子は、1nm以上20nm未満の領域に2つ以上のピークを有していてもよいし、また、20nm以上100nm以下の領域に2つ以上のピークを有していてもよい。
本発明の銀ナノ粒子において、前記脂肪族炭化水素アミンは、例えば、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含むことができる。
以下に、本発明の銀ナノ粒子の製造方法を、錯形成剤及び/又は保護剤として機能する前記脂肪族炭化水素アミンの説明と共に述べる。
[銀ナノ粒子の製造方法]
本発明の銀ナノ粒子の製造方法は、脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
生成した前記錯化合物を、目的とする銀ナノ粒子の結晶核が存在した状態で、80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、を含んでいる。
図1は、本発明において用い得る銀ナノ粒子製造装置の一例の概略構成を示す図である。
図1を参照すると、銀ナノ粒子製造装置は、錯化合物の生成工程(I) における、脂肪族炭化水素アミンと銀化合物とを混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させるための錯化合物の生成反応槽(10)と、
錯化合物の熱分解工程(III) における、前記錯化合物を熱分解させて、銀ナノ粒子を形成するための錯化合物の熱分解反応槽(30)と、
錯化合物含有反応混合物の移送工程(II)における、前記生成反応槽(10)で生成した前記錯化合物を含む反応混合物を前記熱分解反応槽(30)へと逐次的に移送する管状路(20)とを含んでいる。
本発明において、銀化合物としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀などのカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀などのハロゲン化銀;硫酸銀、硝酸銀、炭酸銀等を用いることができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じにくいという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留しにくい点で有利である。
銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、加熱により容易に分解して、目的とする金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いることができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。
また、銀との複合物を得るために、上記の銀化合物と、上記の銀以外の他の金属化合物を併用してもよい。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。銀複合物は、銀と1又は2以上の他の金属からなるものであり、Au−Ag、Ag−Cu、Au−Ag−Cu、Au−Ag−Pd等が例示される。金属全体を基準として、銀が少なくとも20重量%、通常は少なくとも50重量%、例えば少なくとも80重量%を占める。
本発明において、錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを無溶剤で混合してもよいが、炭素数3以上のアルコール溶剤存在下で混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させることが好ましい。
前記アルコール溶剤としては、炭素数3〜10のアルコール、好ましくは炭素数4〜6のアルコールを用いることができる。例えば、n−プロパノール(沸点bp:97℃)、イソプロパノール(bp:82℃)、n−ブタノール(bp:117℃)、イソブタノール(bp:107.89℃)、 sec−ブタノール(bp:99.5℃)、tert−ブタノール(bp:82.45℃)、n−ペンタノール(bp:136℃)、n−ヘキサノール(bp:156℃)、n−オクタノール(bp:194℃)、2−オクタノール(bp:174℃)等が挙げられる。これらの内でも、後に行われる錯化合物の熱分解工程の温度を高くできること、銀ナノ粒子の形成後の後処理での利便性等を考慮して、n−ブタノール、イソブタノール、 sec−ブタノール、tert−ブタノールから選ばれるブタノール類、ヘキサノール類が好ましい。特に、n−ブタノール、n−ヘキサノールが好ましい。
また、前記アルコール溶剤は、銀化合物−アルコールスラリーの十分な攪拌操作のために、前記銀化合物100重量部に対して、例えば120重量部以上、好ましくは130重量部以上、より好ましくは150重量部以上用いることがよい。前記アルコール系溶剤量の上限については、特に制限されることなく、前記銀化合物100重量部に対して、例えば1000重量部以下、好ましくは800重量部以下、より好ましくは500重量部以下とするとよい。
本発明において、脂肪族炭化水素アミンと銀化合物とを炭素数3以上のアルコール溶剤存在下で混合するには、いくつかの形態をとり得る。
例えば、まず、固体の銀化合物とアルコール溶剤とを混合して、銀化合物−アルコールスラリーを得て[スラリー形成工程]、次に、得られた銀化合物−アルコールスラリーに、脂肪族炭化水素アミンを添加してもよい。スラリーとは、固体の銀化合物が、アルコール溶剤中に分散されている混合物を表している。反応容器に、固体の銀化合物を仕込み、それにアルコール溶剤を添加しスラリーを得るとよい。
あるいは、脂肪族炭化水素アミンとアルコール溶剤とを反応容器に仕込み、それに銀化合物−アルコールスラリーを添加してもよい。
本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミンとして、例えば、炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を用いてもよい。これら各成分は、通常、アミン混合液として用いられるが、ただし、前記銀化合物(又はそのアルコールスラリー)に対する前記アミンの混合は、必ずしも混合された状態のアミン類を用いて行う必要はない。前記銀化合物(又はそのアルコールスラリー)に対して、前記アミン類を順次添加してもよい。
本明細書において、確立された用語であるが、「脂肪族炭化水素モノアミン」とは、1〜3個の1価の脂肪族炭化水素基と1つのアミノ基とからなる化合物である。「炭化水素基」とは、炭素と水素とのみからなる基である。ただし、前記脂肪族炭化水素モノアミン(A)、及び前記脂肪族炭化水素モノアミン(B)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。この窒素原子がアミノ基を構成することはない。
また、「脂肪族炭化水素ジアミン」とは、2価の脂肪族炭化水素基(アルキレン基)と、該脂肪族炭化水素基を介在した2つのアミノ基と、場合によっては、該アミノ基の水素原子を置換した脂肪族炭化水素基(アルキル基)とからなる化合物である。ただし、前記脂肪族炭化水素ジアミン(C)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。この窒素原子がアミノ基を構成することはない。
炭素総数6以上の脂肪族炭化水素モノアミン(A)は、その炭化水素鎖によって、生成する銀粒子表面への保護剤(安定化剤)としての高い機能を有する。
前記脂肪族炭化水素モノアミン(A)としては、第一級アミン、第二級アミン、及び第三級アミンが含まれる。第一級アミンとしては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の炭素数6〜18の直鎖状脂肪族炭化水素基を有する飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとして、上記の直鎖脂肪族モノアミンの他に、イソヘキシルアミン、2−エチルヘキシルアミン、tert−オクチルアミン等の炭素数6〜16、好ましくは炭素数6〜8の分枝状脂肪族炭化水素基を有する分枝脂肪族炭化水素モノアミンが挙げられる。また、シクロヘキシルアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(すなわち、アルケニルモノアミン)が挙げられる。
第二級アミンとしては、直鎖状のものとして、N,N−ジプロピルアミン、N,N−ジブチルアミン、N,N−ジペンチルアミン、N,N−ジヘキシルアミン、N,N−ジヘプチルアミン、N,N−ジオクチルアミン、N,N−ジノニルアミン、N,N−ジデシルアミン、N,N−ジウンデシルアミン、N,N−ジドデシルアミン、N−メチル−N−プロピルアミン、N−エチル−N−プロピルアミン、N−プロピル−N−ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンとしては、トリブチルアミン、トリヘキシルアミン等が挙げられる。
また、分枝状のものとして、N,N−ジイソヘキシルアミン、N,N−ジ(2−エチルヘキシル)アミン等の第二級アミンが挙げられる。また、トリイソヘキシルアミン、トリ(2−エチルヘキシル)アミン等の第三級アミンが挙げられる。N,N−ジ(2−エチルヘキシル)アミンの場合、2−エチルヘキシル基の炭素数は8であるが、前記アミン化合物に含まれる炭素の総数は16となる。トリ(2−エチルヘキシル)アミンの場合、前記アミン化合物に含まれる炭素の総数は24となる。
上記モノアミン(A)の内でも、直鎖状の場合には、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数6以上とすることにより、アミノ基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6〜12のアルキルモノアミンが好ましく用いられる。前記直鎖脂肪族炭化水素モノアミンのうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
また、分枝脂肪族炭化水素モノアミン化合物を用いると、同じ炭素数の直鎖脂肪族炭化水素モノアミン化合物を用いた場合と比べ、分枝脂肪族炭化水素基の立体的因子により銀粒子表面上へのより少ない付着量で銀粒子表面のより大きな面積を被覆することができる。そのため、銀粒子表面上へのより少ない付着量で、銀ナノ粒子の適度な安定化が得られる。焼成時において除去すべき保護剤(有機安定剤)の量が少ないので、200℃以下の低温での焼成の場合にも、有機安定剤を効率よく除去でき、銀粒子の焼結が十分に進行する。
上記分枝脂肪族炭化水素モノアミンの内でも、イソヘキシルアミン、2−エチルヘキシルアミン等の主鎖の炭素数5〜6の分枝アルキルモノアミン化合物が好ましい。主鎖の炭素数5〜6であると、銀ナノ粒子の適度な安定化が得られやすい。また、分枝脂肪族基の立体的因子の観点からは、2−エチルヘキシルアミンのように、N原子側から2番目の炭素原子において枝分かれしていることが有効である。前記分枝脂肪族モノアミンとして、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
本発明において、前記脂肪族炭化水素モノアミン(A)として、前記直鎖状脂肪族炭化水素モノアミンと、前記分枝状脂肪族炭化水素モノアミンとをそれぞれの利点を得るために併用してもよい。
炭素総数5以下の脂肪族炭化水素モノアミン(B)は、炭素総数6以上の脂肪族モノアミン(A)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記脂肪族モノアミン(A)に比べると極性が高く銀化合物の銀への配位能が高く、そのため錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼成に効果がある。
前記脂肪族炭化水素モノアミン(B)としては、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、 sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、イソペンチルアミン、tert−ペンチルアミン等の炭素数2〜5の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。また、N,N−ジメチルアミン、N,N−ジエチルアミン等のジアルキルモノアミンが挙げられる。
これらの内でも、n−ブチルアミン、イソブチルアミン、 sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、イソペンチルアミン、tert−ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記脂肪族炭化水素モノアミン(B)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
炭素総数8以下の脂肪族炭化水素ジアミン(C)は、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物の銀への配位能が高くなる。また、前記脂肪族炭化水素ジアミン(C)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。さらに、前記脂肪族ジアミン(C)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短い時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間焼成に効果がある。
前記脂肪族炭化水素ジアミン(C)としては、特に限定されないが、エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N’−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N’−ジエチルエチレンジアミン、1,3−プロパンジアミン、2,2−ジメチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N’−ジメチル−1,3−プロパンジアミン、N,N−ジエチル−1,3−プロパンジアミン、N,N’−ジエチル−1,3−プロパンジアミン、1,4−ブタンジアミン、N,N−ジメチル−1,4−ブタンジアミン、N,N’−ジメチル−1,4−ブタンジアミン、N,N−ジエチル−1,4−ブタンジアミン、N,N’−ジエチル−1,4−ブタンジアミン、1,5−ペンタンジアミン、1,5−ジアミノ−2−メチルペンタン、1,6−ヘキサンジアミン、N,N−ジメチル−1,6−ヘキサンジアミン、N,N’−ジメチル−1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素総数8以下のアルキレンジアミンであり、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。
これらの内でも、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N−ジエチル−1,3−プロパンジアミン、N,N−ジメチル−1,4−ブタンジアミン、N,N−ジエチル−1,4−ブタンジアミン、N,N−ジメチル−1,6−ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(−NH2 )であり、他の1つが第三級アミノ基(−NR1 2 )である炭素総数8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。
1 2 N−R−NH2
ここで、Rは、2価のアルキレン基を表し、R1 及びR2 は、同一又は異なっていてもよく、アルキル基を表し、ただし、R、R1及びR2 の炭素数の総和は8以下である。該アルキレン基は、通常は酸素原子又は窒素原子等のヘテロ原子(炭素及び水素以外の原子)を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。また、該アルキル基は、通常は酸素原子又は窒素原子等のヘテロ原子を含まないが、必要に応じて前記ヘテロ原子を含む置換基を有していてもよい。
2つのアミノ基のうちの1つが第一級アミノ基であると、銀化合物の銀への配位能が高くなり、錯体形成に有利であり、他の1つが第三級アミノ基であると、第三級アミノ基は銀原子への配位能に乏しいため、形成される錯体が複雑なネットワーク構造となることが防止される。錯体が複雑なネットワーク構造となると、錯体の熱分解工程に高い温度が必要となることがある。さらに、これらの内でも、低温焼成においても短時間で銀粒子表面から除去され得るという観点から、炭素総数6以下のジアミンが好ましく、炭素総数5以下のジアミンがより好ましい。前記脂肪族炭化水素ジアミン(C)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
本発明において、前記炭素総数6以上の脂肪族炭化水素モノアミン(A)と、前記炭素総数5以下の脂肪族炭化水素モノアミン(B)及び前記炭素総数8以下の脂肪族炭化水素ジアミン(C)のいずれか一方又は両方との使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A):5モル%〜65モル%
前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の合計量:35モル%〜95モル%
とするとよい。前記脂肪族モノアミン(A)の含有量を5モル%〜65モル%とすることによって、該(A)成分の炭素鎖によって、生成する銀粒子表面の保護安定化機能が得られやすい。前記(A)成分の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記(A)成分の含有量が65モル%を超えると、保護安定化機能は十分であるが、低温焼成によって該(A)成分が除去されにくくなる。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%〜65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%〜50モル%
とするとよい。
前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)の両方とを用いる場合には、それらの使用割合は、特に限定されないが、前記全アミン類[(A)+(B)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%〜65モル%
前記脂肪族モノアミン(B): 5モル%〜70モル%
前記脂肪族ジアミン(C): 5モル%〜50モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%〜65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%〜50モル%
とするとよい。
この場合には、前記(A)成分の含有量の下限については、10モル%以上が好ましく、20モル%以上がより好ましい。前記(A)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
前記脂肪族モノアミン(B)の含有量を5モル%〜70モル%とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼成に寄与でき、さらに、焼成時において前記脂肪族ジアミン(C)の銀粒子表面からの除去を助ける作用が得られやすい。前記(B)成分の含有量が5モル%未満では、錯体形成促進効果が弱かったり、あるいは、焼成時において前記(C)成分が銀粒子表面から除去されにくいことがある。一方、前記(B)成分の含有量が70モル%を超えると、錯体形成促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(B)成分の含有量の下限については、10モル%以上が好ましく、15モル%以上がより好ましい。前記(B)成分の含有量の上限については、65モル%以下が好ましく、60モル%以下がより好ましい。
前記脂肪族ジアミン(C)の含有量を5モル%〜50モル%とすることによって、錯体形成促進効果及び錯体の熱分解促進効果が得られやすく、また、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。前記(C)成分の含有量が5モル%未満では、錯体形成促進効果及び錯体の熱分解促進効果が弱いことがある。一方、前記(C)成分の含有量が50モル%を超えると、錯体形成促進効果及び錯体の熱分解促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(C)成分の含有量の下限については、5モル%以上が好ましく、10モル%以上がより好ましい。前記(C)成分の含有量の上限については、45モル%以下が好ましく、40モル%以下がより好ましい。
前記脂肪族モノアミン(A)と前記脂肪族モノアミン(B)とを用いる(前記脂肪族ジアミン(C)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(B)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%〜65モル%
前記脂肪族モノアミン(B): 35モル%〜95モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%〜65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%〜50モル%
とするとよい。
前記脂肪族モノアミン(A)と前記脂肪族ジアミン(C)とを用いる(前記脂肪族モノアミン(B)を用いずに)場合には、それらの使用割合は、特に限定されないが、上記各成分の作用を考慮して、前記全アミン類[(A)+(C)]を基準として、例えば、
前記脂肪族モノアミン(A): 5モル%〜65モル%
前記脂肪族ジアミン(C): 35モル%〜95モル%
とするとよい。該(A)成分として、前記分枝状脂肪族モノアミンを用いる場合には、前記脂肪族モノアミン(A):5モル%〜65モル%を満たすように、
前記分枝状脂肪族モノアミン:10モル%〜50モル%
とするとよい。
以上の前記脂肪族モノアミン(A)、前記脂肪族モノアミン(B)及び/又は前記脂肪族ジアミン(C)の使用割合は、いずれも例示であり、種々の変更が可能である。
本発明においては、銀化合物の銀への配位能が高い前記脂肪族モノアミン(B)、及び/又は前記脂肪族ジアミン(C)を用いると、それらの使用割合に応じて、前記炭素総数6以上の脂肪族モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼成の場合にも、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
本発明において、前記脂肪族炭化水素アミン[例えば、(A)、(B)及び/又は(C)]の合計量は、特に限定されないが、原料の前記銀化合物の銀原子1モルに対して、1〜50モル程度とするとよい。前記アミン成分の合計量[(A)、(B)及び/又は(C)]が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。一方、前記アミン成分の合計量[((A)、(B)及び/又は(C)]が、前記銀原子1モルに対して、50モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン成分の合計量を例えば2モル程度以上とするとよい。前記アミン成分の合計量を2〜50モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン成分の合計量の下限については、前記銀化合物の銀原子1モルに対して、2モル以上が好ましく、6モル以上がより好ましい。なお、シュウ酸銀分子は、銀原子2個を含んでいる。
本発明において、銀ナノ粒子の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(D)を用いてもよい。前記脂肪族カルボン酸(D)は、前記アミン類と共に用いるとよく、前記アミン混合液中に含ませて用いることができる。前記脂肪族カルボン酸(D)を用いることにより、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上することがある。
前記脂肪族カルボン酸(D)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
これらの内でも、炭素数8〜18の飽和又は不飽和の脂肪族モノカルボン酸が好ましい。炭素数8以上とすることにより、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(D)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
前記脂肪族カルボン酸(D)は、用いる場合には、原料の前記銀化合物の銀原子1モルに対して、例えば0.05〜10モル程度用いるとよく、好ましくは0.1〜5モル、より好ましくは0.5〜2モル用いるとよい。前記(D)成分の量が、前記銀原子1モルに対して、0.05モルよりも少ないと、前記(D)成分の添加による分散状態での安定性向上効果は弱い。一方、前記(D)成分の量が10モルに達すると、分散状態での安定性向上効果が飽和するし、また、低温焼成での該(D)成分の除去がされにくくなる。ただし、低温焼成での該(D)成分の除去を考慮すると、脂肪族カルボン酸(D)を用いなくてもよい。
本発明において、通常は、用いる各脂肪族炭化水素アミン成分を含む混合液;例えば、前記脂肪族モノアミン(A)と、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のいずれか一方又は両方とを含むアミン混合液を調製する[アミン混合液の調製工程]。
アミン混合液は、各アミン(A)、(B)及び/又は(C)成分、及び用いる場合には前記カルボン酸(D)成分を、所定割合で室温にて攪拌して調製することができる。
上記銀化合物(又はそのアルコールスラリー)に、各アミン成分を含む脂肪族炭化水素アミン混合液を添加して、前記銀化合物及び前記アミンを含む錯化合物を生成させる[錯化合物の生成工程]。各アミン成分は、混合液としないで、逐次に銀化合物(又はそのアルコールスラリー)に添加してもよい。
銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物(又はそのアルコールスラリー)に代えて、目的とする金属を含む金属化合物(又はそのアルコールスラリー)を用いる。
銀化合物(又はそのアルコールスラリー)、あるいは金属化合物(又はそのアルコールスラリー)と、所定量のアミン混合液とを混合する。混合は、常温にて行うとよい。「常温」とは周囲温度に応じて5〜40℃を意図する。例えば、5〜35℃(JIS Z 8703)、10〜35℃、20〜30℃を意図する。通常の室温(例えば、15〜30℃の範囲)であってもよい。この際の混合は、攪拌しながら、あるいは銀化合物(あるいは金属化合物)へのアミン類の配位反応は発熱を伴うため、上記温度範囲となるように、例えば5〜15℃程度になるように適宜冷却して攪拌しながら行ってもよい。銀化合物とアミン混合液との混合を、炭素数3以上のアルコール存在下にて行うと、攪拌及び冷却は良好に行うことができる。アルコールとアミン類の過剰分が反応媒体の役割を果たす。
銀アミン錯体の熱分解法においては、従来、反応容器中に液体の脂肪族アミン成分をまず仕込み、その中に粉体の銀化合物(シュウ酸銀)が投入されていた。液体の脂肪族アミン成分は引火性物質であり、その中への粉体の銀化合物の投入には危険がある。すなわち、粉体の銀化合物の投入による静電気による着火の危険性がある。また、粉体の銀化合物の投入により、局所的に錯形成反応が進行し、発熱反応が暴発してしまう危険もある。銀化合物とアミン混合液との混合を、前記アルコール存在下にて行うと、このような危険を回避できる。従って、スケールアップされた工業的な製造においても安全である。
生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化の終了を適宜の分光法等により検出することにより、錯化合物の生成反応の終点を検知することができる。また、シュウ酸銀が形成する錯化合物は一般に無色(目視では白色として観察される)であるが、このような場合においても、反応混合物の粘性の変化などの形態変化に基づいて、錯化合物の生成状態を検知することができる。例えば、錯化合物の生成反応の時間は、30分〜3時間程度である。このようにして、アルコール及びアミン類を主体とする媒体中に銀−アミン錯体(あるいは金属−アミン錯体)が得られる。
本発明において、錯化合物の生成工程で得られた前記錯化合物を含む反応混合物を熱分解工程へと逐次的に移送する。
前記錯化合物を含む反応混合物が熱分解工程へと逐次的に移送された際に、目的とする銀ナノ粒子の結晶核が存在した状態とする。すなわち、第1の形態として、前記錯化合物を含む反応混合物それ自体に目的とする銀ナノ粒子の結晶核が存在した状態とするか、あるいは、第2の形態として、熱分解槽に予め調製された目的とする銀ナノ粒子を存在させておくことが考えられる。
第1の形態:
第1の形態の製造方法は、上述の錯化合物の生成工程と、
錯化合物の生成工程で得られた前記錯化合物を含む反応混合物を60〜90℃の予備加熱温度に予備加熱する、予備加熱工程と、
予備加熱された前記錯化合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、を含んでいる。
図1には、銀ナノ粒子製造装置の一例が示されている。この例の製造装置は、錯化合物の生成工程(I) における、脂肪族炭化水素アミンと銀化合物とを混合して前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させるための、撹拌装置(M:モータ,11:撹拌羽根)を備えた錯化合物の生成反応槽(10)と、
錯化合物の熱分解工程(III) における、前記錯化合物を熱分解させて銀ナノ粒子を形成するための、撹拌装置(M:モータ,31:撹拌羽根)を備えた錯化合物の熱分解反応槽(30)と、
錯化合物含有反応混合物の移送工程(II)における、前記生成反応槽(10)で生成した前記錯化合物を含む反応混合物を前記熱分解反応槽(30)へと逐次的に移送する管状路(20)とを含んでいる。生成反応槽(10)から熱分解反応槽(30)まで伸びた管状路(20)上には、上流側にチューブポンプ(21)[例えば、PTFE(polytetrafluoroethylene)チューブポンプ]が設けられ、チューブポンプ(21)の下流側に予備加熱装置(22)が設けられ、管状路(20)は、前記生成反応槽(10)とチューブポンプ(21)を連結する管状路(20a) と、チューブポンプ(21)と予備加熱装置(22)を連結する管状路(20b) と、予備加熱装置(22)中に位置する管状路(20c) と、予備加熱装置(22)と熱分解反応槽(30)を連結する管状路(20d) とから成る。なお、上流及び下流は、生成反応槽(10) から熱分解反応槽(30)へと移送される錯化合物含有反応混合物の流れ方向に基づいている。
第1の形態において、生成反応槽(10)中の錯化合物を含む常温の反応混合物をチューブポンプ(21)にて管状路(20)内を下流側へと移送して、予備加熱装置(22)により該反応混合物が管状路(20c) を通過する際に60〜90℃の予備加熱温度に予備加熱する。予備加熱された前記錯化合物を含む反応混合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽(30)に逐次添加して前記錯化合物を熱分解させて、銀ナノ粒子を形成する。図1に示した製造装置の構成は一例であり、この例以外の装置を用い得ることは言うまでもない。
予備加熱の温度は、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物及び/又は脂肪族カルボン酸の種類や量によっても異なり得るが、60〜90℃とする。熱分解の温度も錯形成している前記脂肪族炭化水素アミン化合物及び/又は前記脂肪族カルボン酸の種類や量によっても異なり得るが、前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とする。すなわち、予備加熱温度では、その対象の銀アミン錯体はゆっくりと分解し目的とする結晶核が生成する。予備加熱温度が90℃を超えると、銀アミン錯体が急激に熱分解を起こすであろう。
予備加熱温度を例えば60〜90℃とすることにより、次工程の熱分解において小さい平均粒子径を有する銀ナノ粒子を得ることができる。またこの際に得られる銀ナノ粒子は、粒子径分布で1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有している。
次工程の熱分解槽の保持温度は同じであっても、予備加熱温度をより高くすること、及び/又は、予備加熱時間をより長くすることによって、生成する銀ナノ粒子の平均粒子径がより小さくなる傾向にある。予備加熱温度を60〜90℃とすることにより、小さい平均粒子径、例えば0.5nm〜100nm、好ましくは0.5nm〜70nm、より好ましくは0.5nm〜60nm、さらに好ましくは0.5nm〜40nm又は0.5nm〜26nmの平均一次粒子径を有する銀ナノ粒子が得られる。平均粒子径の下限については、特に限定されないが、例えば、5nm程度、あるいは7nm程度となりやすい。
予備加熱温度をより高くすることや、予備加熱時間をより長くすることによって、生成する銀ナノ粒子の平均粒子径がより小さくなる理由は、次のように考えられる。銀ナノ粒子の生成過程において、銀塩(錯化合物)の低分子量化や溶解が熱分解反応の前にまたは同時に進行する。予備加熱温度をより高くすることや、予備加熱時間をより長くすることによって、銀塩(錯化合物)の低分子量化や溶解がより進行し、その結果、最終的に生成する銀ナノ粒子としての粒径がより小さくなるものと考えられる。また、次のようにも考えられる。銀ナノ粒子の生成過程において、銀塩(錯化合物)の分解と共に発生する銀原子が結晶核を形成する条件(過飽和状態)と、該結晶核に銀原子が堆積して粒子が成長する条件(飽和濃度以下状態)がある。予備加熱温度をより高くすることや、予備加熱時間をより長くすることによって、過飽和状態における銀塩の分解をより積極的に起こす。そのことによって、結晶核の発生数が大きくなり、その後の粒子成長に消費される銀原子の数が相対的に少なくなる。その結果、最終的に生成する銀ナノ粒子としての粒径がより小さくなるものと考えられる。上記理論は、ラメール則という粒子の生成則と一致した考え方である。
予備加熱温度は、例えば、60〜90℃とするが、70〜90℃とすることが好ましく、75〜85℃とすることがより好ましい。予備加熱時間については、特に限定されないが、製造上の経済性から、30秒〜2時間とすることが好ましく、1分〜1時間とすることがより好ましく、1分〜30分とすることがさらに好ましい。予備加熱する方法については、特に限定されないが、銀の錯化合物を管状路内を通してから熱分解槽に添加し、前記管状路内を所定の温度に加熱する方法や、熱分解槽に移送する前に内部を攪拌できる予備加熱のための反応器を用意し、銀の錯化合物を前記反応器に添加しながら、前記反応器内の内容物の一部を熱分解槽に逐次添加する方法等が考えられる。いずれも、熱分解槽への逐次添加は、連続的に実施しても間欠的に実施しても良い。逐次添加する時間については、特に限定されないが、製造上の除熱能力や経済性から、5分〜20時間とすることが好ましく、10分〜10時間とすることがより好ましく、20分〜5時間とすることがさらに好ましい。またこの際に得られる銀ナノ粒子は、粒子径分布で2つ以上のピークを有している。前記ピーク位置は反応条件により変動するが、通常、動的光散乱法による測定において、1nm以上20nm未満の領域に1つのピークと、20nm以上100nm以下の領域に1つのピークを有している。また、前記2つのピーク以外のピークを持つこともある。
図1に例示されるような予備加熱装置(22)内に収容された管状路(20c) (すなわち、管状加熱装置)を用いて予備加熱を行う場合には、予備加熱時間は、反応混合物の管状路(20c) における滞留時間となる。また、管状路(20c) 部分における管状加熱装置の内径D(mm),長さL(mm)の比L/Dについては、例えば、10〜3000とするとよく、好ましくは、20〜2000、より好ましくは、30〜1500とするとよい。反応混合物の管状路(20)内の移送速度と、内径D(mm)及び長さL(mm)とから、滞留時間が適宜決定される。管状路(20c) 部分以外(すなわち、管状路(20a)、管状路(20b) 、管状路(20d) の各部分)内径D(mm)についても、管状路(20c) 部分と実質的に同じとするとよい。
次に、予備加熱された前記錯化合物を含む反応混合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽に逐次添加して前記錯化合物を熱分解させて、銀ナノ粒子を形成する[錯化合物の熱分解工程]。銀以外の他の金属を含む金属化合物を用いた場合には、目的とする金属ナノ粒子が形成される。還元剤を用いることなく、銀ナノ粒子(金属ナノ粒子)が形成される。ただし、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
このような金属アミン錯体分解法において、一般に、アミン類は、金属化合物の分解により生じる原子状の金属が凝集して微粒子を形成する際の様式をコントロールすると共に、形成された金属微粒子の表面に被膜を形成することで微粒子相互間の再凝集を防止する役割を果たしている。すなわち、金属化合物とアミンの錯化合物を加熱することにより、金属原子に対するアミンの配位結合を維持したままで金属化合物が熱分解して原子状の金属を生成し、次に、アミンが配位した金属原子が凝集してアミン保護膜で被覆された金属ナノ粒子が形成されると考えられる。
この際の熱分解は、予備加熱されたアルコール(用いる場合)及びアミン類を主体とする反応媒体中の錯化合物を、80〜120℃(ただし、前記予備加熱温度よりも高い温度)に保持した熱分解槽に逐次添加して、熱分解させて、銀ナノ粒子を形成する。この際、熱分解は攪拌しながら行うことが好ましい。
熱分解は、被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が生成する温度範囲内において行うとよいが、銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から前記温度範囲内のなるべく低温で行うことが好ましい。シュウ酸銀の錯化合物の場合には、例えば80℃〜120℃程度、好ましくは95℃〜115℃程度、より具体的には100℃〜110℃程度とすることができる。シュウ酸銀の錯化合物の場合には、概ね100℃程度の加熱により分解が起こると共に銀イオンが還元され、被覆銀ナノ粒子を得ることができる。なお、一般に、シュウ酸銀自体の熱分解は200℃程度で生じるのに対して、シュウ酸銀−アミン錯化合物を形成することで熱分解温度が100℃程度も低下する理由は明らかではないが、シュウ酸銀とアミンとの錯化合物を生成する際に、純粋なシュウ酸銀が形成している配位高分子構造が切断されているためと推察される。
錯化合物の熱分解工程において、熱分解の際の銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から、熱分解槽には、錯形成剤及び/又は保護剤として用いた脂肪族炭化水素アミン化合物及び/又は脂肪族カルボン酸を存在させておくことが好ましい。
具体的には、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む脂肪族炭化水素アミン化合物、及び/又は脂肪族カルボン酸(D)を存在させておくことが好ましい。これらの各化合物の比率は、上述した比率に準ずるとよい。また、熱分解槽におけるこれら脂肪族炭化水素アミン化合物及び/又は脂肪族カルボン酸の合計量は、特に限定されることはないが、例えば、錯化合物の生成工程を基準として、1/10〜1/2程度の量とするとよい。
前記錯化合物の熱分解工程において、前記熱分解温度にて、例えば、10〜120分間、好ましくは30〜120分間維持する。このような熱分解反応時間によって、前記錯化合物の熱分解工程が完結される。
また、錯化合物の熱分解は、アルゴンなどの不活性ガス雰囲気内において行うことが好ましいが、大気中においても熱分解を行うことができる。
第2の形態:
第2の形態の製造方法は、上述の錯化合物の生成工程と、
生成した前記錯化合物を熱分解させるための熱分解槽に、予め調製された銀ナノ粒子を存在させておく、熱分解槽の準備工程と、
生成した前記錯化合物を80〜120℃の熱分解温度とされた前記熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、を含んでいる。
第2の形態において、熱分解槽の準備工程は、錯化合物の生成工程からの錯化合物を含む常温の反応混合物を前記熱分解槽に逐次添加する前に行われる。
熱分解槽の準備工程において、予め別途調製された銀ナノ粒子を熱分解槽に入れておく形態を採用し得る。この場合、前記予め調製された銀ナノ粒子は、目的とする脂肪族炭化水素アミンを含む保護剤で表面が被覆されたものであることが好ましい。また、前記予め調製された銀ナノ粒子の平均一次粒子径は、特に限定されないが、5〜50nmであることが好ましい。
また、熱分解槽の準備工程において、該熱分解槽において、予め銀ナノ粒子を調製しておく形態を採用し得る。この場合、上述の錯化合物の生成工程と同様な操作にて、銀化合物及び脂肪族炭化水素アミンを含む錯化合物を生成させ、その後、熱分解温度にまで昇温して錯化合物を熱分解させて脂肪族炭化水素アミンを含む保護剤で表面が被覆され銀ナノ粒子を形成するとよい。前記予め調製された銀ナノ粒子は、目的とする脂肪族炭化水素アミンを含む保護剤で表面が被覆されたものであることが好ましい。また、前記予め調製された銀ナノ粒子の平均一次粒子径は、特に限定されないが、5〜50nmであることが好ましい。この際の予め調製された銀ナノ粒子は、粒子径分布において、1nm以上100nm以下の1つのピークを含むものであってよい。
第2の形態において、前記準備工程においては、該熱分解槽に予め存在させる銀ナノ粒子の量は、特に限定されないが、錯化合物の生成工程で生成させられ該熱分解槽に逐次添加される銀ナノ粒子の理論量を基準として、例えば、0.01〜100%、又は0.05〜70%、好ましくは0.1〜5%程度とするとよい。
前記準備工程の後、該熱分解槽を80〜120℃の熱分解温度とする。
次に、生成した前記錯化合物を80〜120℃の熱分解温度とされた前記熱分解槽に逐次添加して前記錯化合物を熱分解させて、銀ナノ粒子を形成する[錯化合物の熱分解工程]。銀以外の他の金属を含む金属化合物を用いた場合には、目的とする金属ナノ粒子が形成される。還元剤を用いることなく、銀ナノ粒子(金属ナノ粒子)が形成される。ただし、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
このような金属アミン錯体分解法において、一般に、アミン類は、金属化合物の分解により生じる原子状の金属が凝集して微粒子を形成する際の様式をコントロールすると共に、形成された金属微粒子の表面に被膜を形成することで微粒子相互間の再凝集を防止する役割を果たしている。すなわち、金属化合物とアミンの錯化合物を加熱することにより、金属原子に対するアミンの配位結合を維持したままで金属化合物が熱分解して原子状の金属を生成し、次に、アミンが配位した金属原子が凝集してアミン保護膜で被覆された金属ナノ粒子が形成されると考えられる。
この際の熱分解は、アルコール(用いる場合)及びアミン類を主体とする反応媒体中の錯化合物を、80〜120℃に保持した熱分解槽に逐次添加して、熱分解させて、銀ナノ粒子を形成する。この際、熱分解は攪拌しながら行うことが好ましい。
熱分解は、被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が生成する温度範囲内において行うとよいが、銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から前記温度範囲内のなるべく低温で行うことが好ましい。シュウ酸銀の錯化合物の場合には、例えば80℃〜120℃程度、好ましくは95℃〜115℃程度、より具体的には100℃〜110℃程度とすることができる。シュウ酸銀の錯化合物の場合には、概ね100℃程度の加熱により分解が起こると共に銀イオンが還元され、被覆銀ナノ粒子を得ることができる。なお、一般に、シュウ酸銀自体の熱分解は200℃程度で生じるのに対して、シュウ酸銀−アミン錯化合物を形成することで熱分解温度が100℃程度も低下する理由は明らかではないが、シュウ酸銀とアミンとの錯化合物を生成する際に、純粋なシュウ酸銀が形成している配位高分子構造が切断されているためと推察される。
錯化合物の熱分解工程において、熱分解の際の銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から、熱分解槽には、錯形成剤及び/又は保護剤として用いた脂肪族炭化水素アミン化合物及び/又は脂肪族カルボン酸を存在させておくことが好ましい。
具体的には、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む脂肪族炭化水素アミン化合物、及び/又は脂肪族カルボン酸(D)を存在させておくことが好ましい。これらの各化合物の比率は、上述した比率に準ずるとよい。また、熱分解槽におけるこれら脂肪族炭化水素アミン化合物及び/又は脂肪族カルボン酸の合計量は、特に限定されることはないが、例えば、錯化合物の生成工程を基準として、1/10〜1/2程度の量とするとよい。
第2の形態において、上述したように、銀化合物及び脂肪族炭化水素アミンを含む錯化合物を熱分解槽に逐次添加して熱分解させる際に、予め調整した銀ナノ粒子を入れておき、80〜120℃に保持した熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する。熱分解槽に予め調整した銀ナノ粒子を入れておくことにより、小さい平均粒子径を有する銀ナノ粒子を得ることができる。また、この際に得られる銀ナノ粒子は、粒子径分布で2つ以上のピークを有している。熱分解槽に予め調製した銀ナノ粒子を入れておくことにより、小さい平均粒子径、例えば、0.5nm〜100nm、好ましくは0.5nm〜70nm、より好ましくは0.5nm〜60nm、さらに好ましくは0.5nm〜40nm又は0.5nm〜26nmの平均一次粒子径を有する銀ナノ粒子が得られる。平均粒子径の下限については、特に限定されないが、例えば、5nm程度、あるいは7nm程度となりやすい。
熱分解槽に予め調製した銀ナノ粒子を入れておくことによって、生成する銀ナノ粒子の平均粒子径がより小さくなる理由は、次のように考えられる。銀ナノ粒子の生成過程において、銀塩(錯化合物)の分解と共に発生する銀原子が結晶核を形成する条件(過飽和状態)と、該結晶核に銀原子が堆積して粒子が成長する条件(飽和濃度以下状態)がある。熱分解槽に予め調製した銀ナノ粒子を入れておくことによって、既に発生した結晶核が多く存在することになる。その結果、最終的に生成する銀ナノ粒子としての粒径がより小さくなるものと考えられる。上記理論は、ラメール則という粒子の生成則と一致した考え方である。
前記錯化合物の熱分解工程において、銀の錯化合物を熱分解槽に逐次添加して熱分解させる際の熱分解槽に入れておく予め調製した銀ナノ粒子の量については、特に限定されないが、製造上の経済性から、錯化合物の生成工程で生成させられ該熱分解槽に逐次添加される銀ナノ粒子の理論量を基準として、例えば、0.01〜100%、又は0.05〜70%、好ましくは0.1〜5%程度とするとよい。ただし、100%を超える量とすることを除外することなく、例えば、150%までの量、あるいは200%までの量としてもよい。熱分解槽に入れておく予め調製した銀ナノ粒子の調製方法については、バッチ手法により調製しても逐次添加により調製しても良い。
熱分解槽への逐次添加は、連続的に実施しても間欠的に実施しても良い。逐次添加する時間については、特に限定されないが、製造上の除熱能力や経済性から、5分〜20時間とすることが好ましく、10分〜10時間とすることがより好ましく、20分〜5時間とすることがさらに好ましい。またこの際に得られる銀ナノ粒子は、粒子径分布で2つ以上のピークを有している。前記ピーク位置は反応条件により変動するが、通常、動的光散乱法による測定において、1〜20nmに1つのピークと20〜100nmに1つのピークを持っている。また、前記2つのピーク以外のピークを持つこともある。
前記錯化合物の熱分解工程において、前記熱分解温度にて、例えば、10〜120分間、好ましくは30〜120分間維持する。このような熱分解反応時間によって、前記錯化合物の熱分解工程が完結される。
また、錯化合物の熱分解は、アルゴンなどの不活性ガス雰囲気内において行うことが好ましいが、大気中においても熱分解を行うことができる。
第2の形態において、図1に例示されるような製造装置を用いてもよい。この場合には、熱分解槽(30)に予め銀ナノ粒子を存在させておき、予備加熱装置(22)を作動させずに、生成反応槽(10)中の錯化合物を含む常温の反応混合物をチューブポンプ(21)にて管状路(20)内を下流側へと移送して、80〜120℃の熱分解温度とされた熱分解槽(30)に逐次添加するとよい。そして、前記錯化合物を熱分解させて、銀ナノ粒子を形成する。図1に示した製造装置の構成は一例であり、この例以外の装置を用い得ることは言うまでもない。
[銀ナノ粒子の後処理工程]
錯化合物の熱分解により、青色光沢を呈する懸濁液となる。この懸濁液から、アルコール溶剤(用いる場合)及び過剰のアミン等の除去操作、例えば、銀ナノ粒子(あるいは金属ナノ粒子)の沈降、適切な溶剤(水、又は有機溶剤)によるデカンテーション・洗浄操作を行うことによって、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が得られる[銀ナノ粒子の後処理工程]。洗浄操作の後、乾燥すれば、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)の粉体が得られる。しかしながら、湿潤状態の銀ナノ粒子を銀ナノ粒子含有インクの調製に供してもよい。
デカンテーション・洗浄操作には、水、又は有機溶剤を用いる。有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; メチルシクロヘキサン、シクロヘキサン等の脂環式炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、ブタノール等のようなアルコール溶剤; アセトニトリル; 及びそれらの混合溶剤を用いるとよい。
本発明のナノ粒子の形成工程においては還元剤を用いなくてもよいので、還元剤に由来する副生成物がなく、反応系から被覆銀ナノ粒子の分離も簡単であり、高純度の被覆銀ナノ粒子が得られる。しかしながら、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
このようにして、用いた保護剤によって表面が被覆された銀ナノ粒子が形成される。前記保護剤は、例えば、前記脂肪族モノアミン(A)を含み、さらに、前記脂肪族モノアミン(B)及び前記脂肪族ジアミン(C)のうちのいずれか一方又は両方を含み、さらに用いた場合には前記カルボン酸(D)を含んでいる。保護剤中におけるそれらの含有割合は、前記アミン混合液中のそれらの使用割合と同等である。金属ナノ粒子についても同様である。
[銀塗料組成物]
得られた銀ナノ粒子を用いて銀塗料組成物を作製することができる。該銀塗料組成物は、制限されることなく、種々の形態をとり得る。例えば、銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができる。あるいは、銀ナノ粒子を有機溶剤中に混練された状態で分散させることにより、いわゆる銀ペーストと呼ばれる銀塗料組成物を作製することができる。
銀塗料組成物を得るための有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; シクロヘキサン、メチルシクロヘキサン、デカリン等の脂環式炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、 sec−ブタノール、tert−ブタノール、n−ペンタノール、n−ヘキサノール、2−エチルヘキサノール、n−ヘプタノール、n−オクタノール、n−ノナノール、n−デカノール、ウンデカノール、ドデカノール等のような直鎖状又は分岐状の脂肪族アルコール溶剤; シクロペンタノール、シクロヘキサノール、シクロヘキサンメタノール等のような環状の(あるいは、環状構造を含有している)脂肪族アルコール溶剤;などが挙げられる。また、銀塗料組成物を得るための有機溶剤としては、銀ペーストを得るためにターピネオール、ジヒドロターピネオールのようなテルペン系溶剤等が挙げられる。
さらに、銀塗料組成物を得るための有機溶剤としては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール:BC)、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノヘキシルエーテル(ヘキシルカルビトール:HC)、ジエチレングリコールモノ2−エチルヘキシルエーテル等のグリコールモノエーテルが例示される。
さらに、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート:BCA)、プロピレングリコールモノメチルエーテルアセテート(PMA;1−メトキシ−2−プロピルアセテート)、ジプロピレングリコールモノメチルエーテルアセテート)等のグリコールモノエーテルモノエステル;
エチレングリコールジアセテート、ジエチレングリコールジアセテート、プロピレングリコールジアセテート、ジプロピレングリコールジアセテート、1,4−ブタンジオールジアセテート(1,4−BDDA,沸点230℃)、1,6−ヘキサンジオールジアセテート(1,6−HDDA,沸点260℃)、2−エチル−1,6−ヘキサンジオールジアセテート等のグリコールジエステル;
等のグリコールエステル系溶剤が挙げられる。
これら溶剤として、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。所望の銀塗料組成物(銀インク、銀ペースト)の濃度や粘性に応じて、有機溶剤の種類や量を適宜定めるとよい。金属ナノ粒子についても同様である。
本発明により得られた銀ナノ粒子の粉体、及び銀塗料組成物は、安定性に優れている。例えば、銀ナノ粒子の粉体は、1か月間以上の期間において室温保管で安定である。銀塗料組成物は、例えば、50wt%の銀濃度において、1か月間以上の期間において室温で、凝集・融着を起こすことなく安定である。
調製された銀塗料組成物を基板上に塗布し、その後、焼成する。
塗布は、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷などの公知の方法により行うことができる。印刷技術を用いると、パターン化された銀塗料組成物層が得られ、焼成により、パターン化された銀導電層が得られる。
焼成は、200℃以下、例えば室温(25℃)以上150℃以下、好ましくは室温(25℃)以上120℃以下の温度で行うことができる。しかしながら、短い時間での焼成によって、銀の焼結を完了させるためには、60℃以上200℃以下、例えば80℃以上150℃以下、好ましくは90℃以上120℃以下の温度で行うことがよい。焼成時間は、銀インクの塗布量、焼成温度などを考慮して、適宜定めるとよく、例えば数時間(例えば3時間、あるいは2時間)以内、好ましくは1時間以内、より好ましくは30分間以内、さらに好ましくは10分間〜20分間、より具体的には10分間〜15分間とするとよい。
銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値)が発現する。低い抵抗値(例えば15μΩcm以下、範囲としては7〜15μΩcm)を有する銀導電層が形成される。バルク銀の抵抗値は1.6μΩcmである。
低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間での焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
本発明の銀導電材料は、各種の電子デバイス、例えば、電磁波制御材、回路基板、アンテナ、放熱板、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等に適用することができる。
銀導電層の厚みは、目的とする用途に応じて適宜定めるとよく、特に本発明に係る銀ナノ粒子を使用することで比較的膜厚の大きい銀導電層を形成した場合でも高い導電性を示すことができる。銀導電層の厚みは、例えば5nm〜10μm、好ましくは100nm〜5μm、より好ましくは300nm〜2μmの範囲から選択するとよい。
以上、主として銀ナノ粒子を中心に説明したが、本発明によれば、銀以外の金属を含む金属ナノ粒子の製造方法及び該金属ナノ粒子にも適用される。
以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[銀ナノ粒子の平均粒子径]
動的光散乱法(DLS;Dynamic light scattering)により平均粒子径及び粒子径分布を測定した。測定には、ゼイタサイザーナノ(マルバーン社製)を用いた。
[銀焼成膜の比抵抗値]
得られた銀焼成膜について、4端子法(ロレスタGP MCP−T610)を用いて測定した。この装置の測定範囲限界は、107 Ωcmである。
以下の試薬を各実施例及び比較例で用いた。
N,N−ジメチル−1,3−プロパンジアミン(N,N−ジメチルアミノプロピルアミン,MW:102.18):東京化成社製試薬
n−ブチルアミン:東京化成社製試薬
n−ヘキシルアミン:東京化成社製試薬
n−オクチルアミン:東京化成社製試薬
ドデシルアミン:和光純薬社製試薬
ブタノール:和光純薬社製試薬特級
デカリン:東京化成社製試薬
シクロヘキサンメタノール:東京化成社製試薬
シュウ酸銀(MW:303.78):硝酸銀(和光純薬社製)とシュウ酸二水和物(和光純薬社製)とから合成したもの
[実施例1:予備加熱工程あり]
(シュウ酸銀−アミン錯体の形成)
図1を参照して、錯化合物の生成反応槽(10)としての100mLフラスコにシュウ酸銀5.0g(16.5mmol)を仕込み、これに、7.5g(102.5mmol)の1−ブタノールを添加し、シュウ酸銀の1−ブタノールスラリーを調製した。シュウ酸銀の1−ブタノールスラリーに、30℃で、n−ブチルアミン14.45g(197.5mmol)、n−ヘキシルアミン9.99g(98.8mmol)、n−オクチルアミン9.57g(74.1mmol)、ドデシルアミン4.58g(24.7mmol)、及びN,N−ジメチル−1,3−プロパンジアミン10.09g(98.8mmol)のアミン混合液を滴下した。30℃で2時間攪拌して、シュウ酸銀とアミンの錯形成反応を進行させ、白色物質(シュウ酸銀−アミン錯体)を形成した。このようにして、シュウ酸銀−アミン錯体を含む反応液を得た。
(予備加熱工程及び熱分解工程)
錯化合物の熱分解反応槽(30)としての100mLフラスコに1−ブタノール1.50g(20.5mmol)、n−ブチルアミン2.89g(39.5mmol)、n−ヘキシルアミン2.00g(19.8mmol)、n−オクチルアミン1.92g(14.8mmol)、ドデシルアミン0.92g(4.9mmol)、及びN,N−ジメチル−1,3−プロパンジアミン2.02g(19.8mmol)を仕込み、100℃に加熱した。
上記の100℃とされた熱分解槽(30)中に、上記のシュウ酸銀−アミン錯体を含む30℃の反応液を、60℃の温水浴(22)に浸漬されたテフロン(R) チューブ(20c) (外形4mm、内径2mm、長さ3m、L/D=1500)内を通して予備加熱しながら、47分かけて添加し(予備加熱テフロン(R) チューブ(20c) での滞留時間:2分50秒)、添加終了後、さらに100℃で1時間攪拌して、シュウ酸銀−アミン錯体を熱分解させて、濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を得た。
室温まで冷却後、得られた懸濁液にメタノール60gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール18gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。
(銀ナノ粒子分散液)
次に、湿った銀ナノ粒子に、分散溶剤としてシクロヘキサンメタノール/デカリン混合溶剤(重量比=80/20)を銀濃度40wt%となるように加えて攪拌し、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径及び粒子径分布を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、56.1nmであった。粒子径分布でのピークは、11.2nmと78.1nmであった。また、分散液6mLを0.45μmフィルターにて濾過したところ、フィルターの目詰まりなく、全量濾過が可能であった。図2に、実施例1の銀ナノ粒子の粒子径分布の測定結果を示す。
[実施例2:予備加熱工程あり]
(シュウ酸銀−アミン錯体の形成)
実施例1と同様にして、錯化合物の生成反応槽(10)において、シュウ酸銀−アミン錯体を含む反応液を得た。
(予備加熱工程及び熱分解工程)
予備加熱工程及び熱分解工程において、上記の100℃とされた熱分解槽(30)中に、上記のシュウ酸銀−アミン錯体を含む30℃の反応液を、85℃の温水浴(22)に入れたテフロン(R) チューブ(20c) (外形4mm、内径2mm、長さ3m)内を通して予備加熱しながら、47分かけて添加(予備加熱テフロン(R) チューブ(20c) での滞留時間:2分57秒)した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径及び粒子径分布を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、39.9nmであった。粒子径分布でのピークは、5.3nmと59.9nmであった。また、分散液6mLを0.45μmフィルターにて濾過したところ、フィルターの目詰まりなく、全量濾過が可能であった。図3に、実施例2の銀ナノ粒子の粒子径分布の測定結果を示す。
この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.5μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、10.6μΩcmと良好な導電性を示した。
[比較例1:予備加熱工程なし]
(シュウ酸銀−アミン錯体の形成)
実施例1と同様にして、錯化合物の生成反応槽(10)において、シュウ酸銀−アミン錯体を含む反応液を得た。
(熱分解工程)
予備加熱工程を行わず、熱分解工程において、上記の100℃とされた熱分解槽(30)中に、上記のシュウ酸銀−アミン錯体を含む反応液を、室温(25℃)とされたテフロン(R) チューブ(20c) (外形4mm、内径2mm、長さ3m)内を通しながら、50分かけて添加した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径及び粒子径分布を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、63.4nmであった。粒子径分布でのピークは、84.0nmであった。また、分散液6mLを0.45μmフィルターにて濾過したところ、フィルターの目詰まりなく、全量濾過が可能であった。図4に、比較例1の銀ナノ粒子の粒子径分布の測定結果を示す。
この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成したが、はじきが多くて均一な銀焼成膜が得られず、比抵抗値の測定ができなかった。
この比較例1では、予備加熱工程を行わなかったので、実施例1,2と比べ、平均粒子径が大きくなり、粒子径分布でのピークも1つしか見られなかった。
[比較例2:予備加熱工程なし]
(シュウ酸銀−アミン錯体の形成)
実施例1と同様にして、錯化合物の生成反応槽(10)において、シュウ酸銀−アミン錯体を含む反応液を得た。
(熱分解工程)
熱分解槽(30)としての100mLフラスコに1−ブタノール4.50g(20.5mmol)のみを仕込み、100℃に加熱した。
予備加熱工程を行わず、熱分解工程において、上記の100℃とされた熱分解槽(30)中に、上記のシュウ酸銀−アミン錯体を含む反応液を、室温(25℃)とされたテフロン(R) チューブ(20c) (外形4mm、内径2mm、長さ3m)内を通しながら、30分かけて添加した以外は、実施例1と同様にして、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径及び粒子径分布を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、101.3nmであった。粒子径分布でのピークは、108.3nmであった。また、分散液6mLを0.2μmフィルターにて濾過したところ、2mL程度で詰りろ過できなかった。図5に、比較例2の銀ナノ粒子の粒子径分布の測定結果を示す。
この比較例2では、比較例1と同様に、予備加熱工程を行わなかったので、実施例1,2と比べ、平均粒子径が大きくなり、粒子径分布でのピークも1つしか見られなかった。しかも、比較例2では、比較例1と比べて、さらに平均粒子径が大きくなった。これは、比較例2では、熱分解槽にはアミン成分ではなく1−ブタノールのみを存在させていたので、熱分解により銀粒子が生成する際に、錯体からアミンが脱離しやすく銀粒子表面のアミン保護剤が不十分となったためと考えられる。
[実施例3:予備加熱工程なし,銀ナノ粒子存在下での熱分解工程]
(シュウ酸銀−アミン錯体の形成)
実施例1と同様にして、錯化合物の生成反応槽(10)において、シュウ酸銀−アミン錯体を含む反応液を得た。
(熱分解槽張り込み液の調製)
200mLフラスコにシュウ酸銀3.0g(9.9mmol)を仕込み、これに、4.5g(60.7mmol)の1−ブタノールを添加し、シュウ酸銀の1−ブタノールスラリーを調製した。シュウ酸銀の1−ブタノールスラリーに、30℃で、n−ブチルアミン8.67g(118.5mmol)、n−ヘキシルアミン6.00g(59.3mmol)、n−オクチルアミン5.74g(44.4mmol)、ドデシルアミン2.75g(14.8mmol)、及びN,N−ジメチル−1,3−プロパンジアミン6.05g(59.3mmol)のアミン混合液を滴下した。30℃で2時間攪拌して、シュウ酸銀とアミンの錯形成反応を進行させ、白色物質(シュウ酸銀−アミン錯体)を形成した。これを100℃まで昇温し、1時間加熱し熱分解させて濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を調製した。これを室温まで冷却した。このようにして、熱分解槽(30)を準備した。
(熱分解工程)
上記熱分解槽(30)の張り込み液を100℃に加熱し、この熱分解槽(30)中に、上記のシュウ酸銀−アミン錯体を含む反応液を、室温(25℃)とされたテフロン(R) チューブ(20c) (外形4mm、内径2mm、長さ0.8m)内を通しながら、30分かけて添加し、添加終了後、さらに100℃で1時間攪拌して、シュウ酸銀−アミン錯体を熱分解させて、濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を得た。
室温まで冷却後、得られた懸濁液にメタノール80gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール24gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。
(銀ナノ粒子分散液)
次に、湿った銀ナノ粒子に、分散溶剤としてシクロヘキサンメタノール/デカリン混合溶剤(重量比=80/20)を銀濃度40wt%となるように加えて攪拌し、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径及び粒子径分布を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、25.7nmであった。粒子径分布でのピークは、34.9nmと1.6nmであった。また、分散液10mLを0.2μmフィルターにて濾過したところ、フィルターの目詰まりなく、全量濾過が可能であった。図6に、実施例3の銀ナノ粒子の粒子径分布の測定結果を示す。
この銀ナノ粒子分散液をスピンコート法により無アルカリガラス板上に塗布し、塗膜を形成した。塗膜形成後、速やかに塗膜を120℃にて15分間の条件で、送風乾燥炉にて焼成し、0.8μm厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定したところ、10μΩcm以下の良好な導電性を示した。
[比較例3:同一反応槽における錯化合物の生成反応と該錯化合物の熱分解反応]
(シュウ酸銀−アミン錯体の形成)
500mLフラスコにシュウ酸銀20.0g(65.8mmol)を仕込み、これに、30.0gの1−ブタノールを添加し、シュウ酸銀の1−ブタノールスラリーを調製した。シュウ酸銀の1−ブタノールスラリーに、30℃で、n−ブチルアミン57.8g(790.1mmol)、n−ヘキシルアミン40.0g(395.0mmol)、n−オクチルアミン38.3g(296.3mmol)、ドデシルアミン18.3g(98.8mmol)、及びN,N−ジメチル−1,3−プロパンジアミン40.4g(395.0mmol)のアミン混合液を滴下した。30℃で2時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させ、白色物質(シュウ酸銀−アミン錯体)を形成した。
(熱分解工程)
シュウ酸銀−アミン錯体の形成後に、反応液温度を10℃/minの速度で30℃から100℃まで昇温し、その後、1時間加熱して、シュウ酸銀−アミン錯体を熱分解させて、濃青色の銀ナノ粒子がアミン混合液中に懸濁した懸濁液を得た。
室温まで冷却後、得られた懸濁液にメタノール200gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール60gを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。
(銀ナノ粒子分散液)
次に、湿った銀ナノ粒子に、分散溶剤としてシクロヘキサンメタノール/デカリン混合溶剤(重量比=80/20)を銀濃度40wt%となるように加えて攪拌し、銀ナノ粒子分散液を調製した。
銀ナノ粒子分散液の銀ナノ粒子の平均粒子径を、ゼイタサイザーナノ(マルバーン社製)を用いて、動的光散乱法により測定したところ、26.21nmであった。また、分散液10mLを0.2μmフィルターにて濾過したところ、フィルターの目詰まりなく、全量濾過が可能であった。図7に、比較例3の銀ナノ粒子の粒子径分布の測定結果を示す。
この比較例3のスケールでは、熱分解反応の同一反応槽における錯化合物の生成反応と該錯化合物の熱分解反応の温度コントロールは可能であった。しかしながら、スケールアップされた工業的製造においては、安全面にリスクがあると考えられる。
I:錯化合物の生成工程
II:錯化合物含有反応混合物の移送工程
III:錯化合物の熱分解工程
10:錯化合物の生成反応槽
M:モータ
11:撹拌羽根
20:管状路
21:チューブポンプ
22:予備加熱装置
30:熱分解反応槽
31:撹拌羽根

Claims (23)

  1. 脂肪族炭化水素アミンを含む保護剤で表面が被覆された銀ナノ粒子であって、粒子径分布において、1nm以上20nm未満のピークと20nm以上100nm以下のピークを含む2つ以上のピークを有する銀ナノ粒子。
  2. 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
    さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、請求項1に記載の銀ナノ粒子。
  3. 前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下の直鎖状アルキル基を有する直鎖状アルキルモノアミン、及び炭素数6以上16以下の分枝状アルキル基を有する分枝状アルキルモノアミンからなる群から選ばれる少なくとも1つである、請求項2に記載の銀ナノ粒子。
  4. 前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、請求項2又は3に記載の銀ナノ粒子。
  5. 前記脂肪族炭化水素ジアミン(C)は、2つのアミノ基のうちの1つが第一級アミノ基であり、他の1つが第三級アミノ基であるアルキレンジアミンである、請求項2〜4のうちのいずれかに記載の銀ナノ粒子。
  6. 前記銀ナノ粒子の銀原子1モルに対して、前記脂肪族炭化水素アミンはその合計として1〜50モル用いられている、請求項1〜5のうちのいずれかに記載の銀ナノ粒子。
  7. 100nm以下の平均粒子径を有する、請求項1〜6のうちのいずれかに記載の銀ナノ粒子。
  8. 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
    生成した前記錯化合物を60〜90℃の予備加熱温度に予備加熱する、予備加熱工程と、
    予備加熱された前記錯化合物を前記予備加熱温度よりも高い且つ80〜120℃の熱分解温度とされた熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
    を含む銀ナノ粒子の製造方法。
  9. 前記銀化合物は、シュウ酸銀である、請求項8に記載の銀ナノ粒子の製造方法。
  10. 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、さらに、
    脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、請求項8又は9に記載の銀ナノ粒子の製造方法。
  11. 前記錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを、炭素数3以上のアルコール溶剤下で混合する、請求項8〜10のうちのいずれかに記載の銀ナノ粒子の製造方法。
  12. 前記錯化合物の予備加熱工程において、前記錯化合物を管状加熱装置によって加熱する、請求項8〜11のうちのいずれかに記載の銀ナノ粒子の製造方法。
  13. 前記錯化合物の熱分解工程において、前記錯化合物の添加終了後に熱分解温度にて10〜120分間維持する、請求項8〜12のうちのいずれかに記載の銀ナノ粒子の製造方法。
  14. 前記銀化合物の銀原子1モルに対して、前記脂肪族炭化水素アミンをその合計として1〜50モル用いる、請求項8〜13のうちのいずれかに記載の銀ナノ粒子の製造方法。
  15. 脂肪族炭化水素アミンと銀化合物とを常温にて混合して、前記銀化合物及び前記脂肪族炭化水素アミンを含む錯化合物を生成させる、錯化合物の生成工程と、
    生成した前記錯化合物を熱分解させるための熱分解槽に、予め調製された銀ナノ粒子を存在させておく、熱分解槽の準備工程と、
    生成した前記錯化合物を80〜120℃の熱分解温度とされた前記熱分解槽に逐次添加して熱分解させて、銀ナノ粒子を形成する、錯化合物の熱分解工程と、
    を含む銀ナノ粒子の製造方法。
  16. 熱分解槽の準備工程において、前記予め調製された銀ナノ粒子は、脂肪族炭化水素アミンを含む保護剤で表面が被覆されたものである、請求項15に記載の銀ナノ粒子の製造方法。
  17. 前記銀化合物は、シュウ酸銀である、請求項15又は16に記載の銀ナノ粒子の製造方法。
  18. 前記脂肪族炭化水素アミンは、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)を含み、
    さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)のうちの少なくとも一方を含む、請求項15〜17のうちのいずれかに記載の銀ナノ粒子の製造方法。
  19. 前記錯化合物の生成工程において、脂肪族炭化水素アミンと銀化合物とを、炭素数3以上のアルコール溶剤下で混合する、請求項15〜18のうちのいずれかに記載の銀ナノ粒子の製造方法。
  20. 前記錯化合物の熱分解工程において、前記錯化合物の添加終了後に熱分解温度にて10〜120分間維持する、請求項15〜19のうちのいずれかに記載の銀ナノ粒子の製造方法。
  21. 前記銀化合物の銀原子1モルに対して、前記脂肪族炭化水素アミンをその合計として1〜50モル用いる、請求項15〜20のうちのいずれかに記載の銀ナノ粒子の製造方法。
  22. 請求項1〜7のうちのいずれかに記載の銀ナノ粒子と、有機溶剤とを含む銀塗料組成物。
  23. 基板と、
    前記基板上に、請求項1〜7のうちのいずれかに記載の銀ナノ粒子と、有機溶剤とを含む銀塗料組成物が塗布され、焼成されてなる銀導電層と、
    を有する電子デバイス。
JP2020102477A 2020-06-12 2020-06-12 銀ナノ粒子及びその製造方法 Active JP7474122B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102477A JP7474122B2 (ja) 2020-06-12 2020-06-12 銀ナノ粒子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102477A JP7474122B2 (ja) 2020-06-12 2020-06-12 銀ナノ粒子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2021195590A true JP2021195590A (ja) 2021-12-27
JP7474122B2 JP7474122B2 (ja) 2024-04-24

Family

ID=79197401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102477A Active JP7474122B2 (ja) 2020-06-12 2020-06-12 銀ナノ粒子及びその製造方法

Country Status (1)

Country Link
JP (1) JP7474122B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116532653A (zh) * 2023-07-07 2023-08-04 长春黄金研究院有限公司 Slm铺粉打印成型用银粉及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001861B2 (ja) 2012-01-11 2016-10-05 株式会社ダイセル 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
TW201611198A (zh) 2014-04-11 2016-03-16 阿爾發金屬公司 低壓燒結粉末
US9758689B2 (en) 2014-10-17 2017-09-12 Xerox Corporation Silver nanoparticle inks comprising aminomethylsilanes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116532653A (zh) * 2023-07-07 2023-08-04 长春黄金研究院有限公司 Slm铺粉打印成型用银粉及其制备方法
CN116532653B (zh) * 2023-07-07 2023-09-05 长春黄金研究院有限公司 Slm铺粉打印成型用银粉及其制备方法

Also Published As

Publication number Publication date
JP7474122B2 (ja) 2024-04-24

Similar Documents

Publication Publication Date Title
JP6037494B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6001861B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP5923608B2 (ja) 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク
JP6026565B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP5986636B2 (ja) 銀ナノ粒子の製造方法、銀塗料組成物の製造方法および銀導電材料の製造方法
JP6532862B2 (ja) 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
JP6151893B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
TWI806438B (zh) 銀粒子塗料組成物及其製造方法、以及電子裝置
JP5972479B2 (ja) 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液
JP6370936B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP7474122B2 (ja) 銀ナノ粒子及びその製造方法
JP6378880B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150