JP2021195451A - Epoxy resin composition - Google Patents

Epoxy resin composition Download PDF

Info

Publication number
JP2021195451A
JP2021195451A JP2020102765A JP2020102765A JP2021195451A JP 2021195451 A JP2021195451 A JP 2021195451A JP 2020102765 A JP2020102765 A JP 2020102765A JP 2020102765 A JP2020102765 A JP 2020102765A JP 2021195451 A JP2021195451 A JP 2021195451A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
curing agent
component
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020102765A
Other languages
Japanese (ja)
Other versions
JP7337462B2 (en
Inventor
直行 串原
Naoyuki Kushihara
和昌 隅田
Kazumasa Sumida
雅浩 金田
Masahiro Kaneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=79197261&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021195451(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020102765A priority Critical patent/JP7337462B2/en
Publication of JP2021195451A publication Critical patent/JP2021195451A/en
Application granted granted Critical
Publication of JP7337462B2 publication Critical patent/JP7337462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

To provide an epoxy resin composition which does not bleed and enables acquisition of a cured product having low thermal expansion property, low elastic modulus and heat resistance.SOLUTION: An epoxy resin composition is provided which includes the following components (A) to (D): epoxy resin (A), a curing agent (B), polyester polyol (C) having no isocyanate group, and an inorganic filler (D), and in which a number average molecular weight of the component (C) is 1,500-10,000. A semiconductor element sealing material is provided which is made of the epoxy resin composition. A semiconductor device is provided which comprises a semiconductor element sealed with the epoxy resin composition.SELECTED DRAWING: None

Description

本発明は、エポキシ樹脂組成物に関し、好ましくは半導体素子封止用等として有用な熱硬化性エポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition, preferably a thermosetting epoxy resin composition useful for encapsulating semiconductor devices and the like.

近年、携帯電話やスマートフォン、超薄型の液晶やプラズマTV、軽量ノート型パソコン等の電子機器の小型化が進んでいる。これらの電子機器に用いられる電子部品は高密度集積化、さらには高密度実装化等が進んでいる。また、これらの電子部品に用いられる樹脂材料には製造時及び使用時の熱応力の関係から、低膨張かつ低弾性率のものが求められている。 In recent years, electronic devices such as mobile phones, smartphones, ultra-thin LCDs, plasma TVs, and lightweight notebook personal computers have been miniaturized. Electronic components used in these electronic devices are being integrated at high densities, and are being mounted at high densities. Further, the resin material used for these electronic parts is required to have a low expansion and a low elastic modulus due to the relationship of thermal stress during manufacturing and use.

熱応力低減を目的としてエポキシ樹脂へのフィラー高充填化が検討されてきた。フィラーを高充填化することで、エポキシ樹脂の熱膨張率を低減することが可能となる。しかしながら、エポキシ樹脂の弾性率が大きくなり、またエポキシ樹脂の強度も低下することからヒートサイクル試験などでSiチップや基板が破壊されるという問題が生じる。 Higher filler filling in epoxy resin has been studied for the purpose of reducing thermal stress. By increasing the filling of the filler, it is possible to reduce the coefficient of thermal expansion of the epoxy resin. However, since the elastic modulus of the epoxy resin increases and the strength of the epoxy resin also decreases, there arises a problem that the Si chip or the substrate is destroyed in a heat cycle test or the like.

熱応力を低減する別の手法として、エポキシ樹脂への可撓性エポキシ樹脂の添加が検討されてきた(特許文献1、2)。これらの手法では、熱応力低減に効果はあるものの、ガラス転移温度の低下や線膨張係数の増加などの問題が生じる。 As another method for reducing thermal stress, addition of a flexible epoxy resin to an epoxy resin has been studied (Patent Documents 1 and 2). Although these methods are effective in reducing thermal stress, they cause problems such as a decrease in the glass transition temperature and an increase in the coefficient of linear expansion.

こういった問題を解決する手法として高分子熱可塑性樹脂をエポキシ樹脂に添加する手法が検討されてきた(特許文献3)。高分子熱可塑性樹脂をエポキシ樹脂に添加することで、熱応力の低減は可能であるが、使用するエポキシ樹脂により分散性が著しく低下し、ブリードが発生するといった問題が生じる。 As a method for solving such a problem, a method of adding a polymer thermoplastic resin to an epoxy resin has been studied (Patent Document 3). By adding the polymer thermoplastic resin to the epoxy resin, it is possible to reduce the thermal stress, but the epoxy resin used causes a problem that the dispersibility is significantly lowered and bleeding occurs.

特開2011−119605号公報Japanese Unexamined Patent Publication No. 2011-119605 特開2018−141143号公報Japanese Unexamined Patent Publication No. 2018-141143 特開2017−008312号公報Japanese Unexamined Patent Publication No. 2017-008312

従って、本発明は、低熱膨張性、低弾性率、耐熱性を有する硬化物が得られるエポキシ樹脂組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide an epoxy resin composition capable of obtaining a cured product having low thermal expansion, low elastic modulus, and heat resistance.

本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、エポキシ樹脂、硬化剤、イソシアネートを有さないポリエステルポリオール、及び無機充填材を含むエポキシ樹脂組成物において、ポリエステルポリオールの数平均分子量が1,500〜10,000の範囲内であることにより得られる組成物はブリードすることなく、且つ、低熱膨張性、低弾性率及び耐熱性を有する硬化物を与えることを見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have found that the number of polyester polyols in an epoxy resin composition containing an epoxy resin, a curing agent, a polyester polyol having no isocyanate, and an inorganic filler. We have found that the composition obtained by having an average molecular weight in the range of 1,500 to 10,000 gives a cured product having low thermal expansion property, low elasticity and heat resistance without bleeding. Completed the invention.

即ち、本発明は、下記のエポキシ樹脂組成物等を提供するものである。 That is, the present invention provides the following epoxy resin compositions and the like.

[1]
下記(A)〜(D)成分:
(A)エポキシ樹脂
(B)硬化剤
(C)イソシアネート基を有さないポリエステルポリオール
(D)無機充填材
を含み、前記(C)成分の数平均分子量が1,500〜10,000の範囲内であるエポキシ樹脂組成物。

[2]
(B)成分がアミン系硬化剤、フェノール硬化剤、酸無水物系硬化剤のいずれか1種類である、[1]に記載のエポキシ樹脂組成物。

[3]
(C)成分の水酸基価が10〜100mg KOH/gである、[1]または[2]に記載のエポキシ樹脂組成物。

[4]
(C)成分が(A)エポキシ樹脂100質量部に対して、1〜40質量部である、[1]〜[3]のいずれか1つに記載のエポキシ樹脂組成物。

[5]
(C)成分が、芳香族環を含むものである、[1]〜[4]のいずれか1つに記載のエポキシ樹脂組成物。

[6]
(C)成分の75℃における粘度が1,000〜20,000mPa.sである、[1]〜[5]のいずれか1つに記載のエポキシ樹脂組成物。

[7]
[1]〜[6]のいずれか1つに記載のエポキシ樹脂組成物の硬化物。

[8]
[1]〜[6]のいずれか1つに記載のエポキシ樹脂組成物からなる半導体素子封止材。

[9]
[1]〜[6]のいずれか1つに記載のエポキシ樹脂組成物で封止された半導体素子を備える半導体装置。
[1]
The following components (A) to (D):
(A) Epoxy resin (B) Curing agent (C) Polyester polyol without isocyanate group (D) Inorganic filler, and the number average molecular weight of the component (C) is in the range of 1,500 to 10,000. Is an epoxy resin composition.

[2]
The epoxy resin composition according to [1], wherein the component (B) is any one of an amine-based curing agent, a phenol-based curing agent, and an acid anhydride-based curing agent.

[3]
(C) The epoxy resin composition according to [1] or [2], wherein the hydroxyl value of the component is 10 to 100 mg KOH / g.

[4]
The epoxy resin composition according to any one of [1] to [3], wherein the component (C) is 1 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin (A).

[5]
The epoxy resin composition according to any one of [1] to [4], wherein the component (C) contains an aromatic ring.

[6]
The viscosity of the component (C) at 75 ° C. is 1,000 to 20,000 mPa. The epoxy resin composition according to any one of [1] to [5], which is s.

[7]
The cured product of the epoxy resin composition according to any one of [1] to [6].

[8]
A semiconductor device encapsulant comprising the epoxy resin composition according to any one of [1] to [6].

[9]
A semiconductor device including a semiconductor device sealed with the epoxy resin composition according to any one of [1] to [6].

本発明のエポキシ樹脂組成物は、ブリードすることなく、且つ、低熱膨張性、低弾性率、耐熱性に優れる硬化物を与える。従って、本発明のエポキシ樹脂組成物は半導体素子封止材等として好適に用いることができる。 The epoxy resin composition of the present invention provides a cured product that does not bleed and has excellent low thermal expansion, low elastic modulus, and heat resistance. Therefore, the epoxy resin composition of the present invention can be suitably used as a semiconductor device encapsulant or the like.

図1は、実施例にて、25℃から300℃までの間で試験片の寸法変化を測定した結果についての該寸法と温度との関係をプロットしたグラフの一例であり、ガラス転移温度の決定方法を示すものである。FIG. 1 is an example of a graph plotting the relationship between the dimensional change and the temperature of the result of measuring the dimensional change of the test piece between 25 ° C. and 300 ° C. in the example, and determining the glass transition temperature. It shows the method.

本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、ポリエステルポリオール、及び無機充填剤を含む、エポキシ樹脂組成物であり、該ポリエステルポリオールがイソシアネート基を有さず、かつ数平均分子量が1,500〜10,000であることを特徴とする。
以下、本発明について詳細に説明する。
The epoxy resin composition of the present invention is an epoxy resin composition containing an epoxy resin, a curing agent, a polyester polyol, and an inorganic filler, and the polyester polyol does not have an isocyanate group and has a number average molecular weight of 1,. It is characterized by being 500 to 10,000.
Hereinafter, the present invention will be described in detail.

(A)エポキシ樹脂
本発明に用いられる(A)成分のエポキシ樹脂は本発明の主成分であり、公知のエポキシ樹脂を用いることができる。(A)成分のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリスフェノールアルカン型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能型エポキシ樹脂、シリコーン変性エポキシ樹脂、多環芳香族類のジグリシジルエーテル化合物並びにこれらにリン化合物を導入したリン含有エポキシ樹脂等が挙げられる。これらは1種単独で又は2種以上を併用して用いることができる。
(A) Epoxy resin The epoxy resin of the component (A) used in the present invention is the main component of the present invention, and a known epoxy resin can be used. Examples of the epoxy resin of the component (A) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, and bisphenol. F novolak type epoxy resin, stillben type epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, trisphenol alkane type epoxy resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin , Dicyclopentadiene type epoxy resin, alicyclic epoxy resin, polyfunctional epoxy resin, silicone-modified epoxy resin, polycyclic aromatic diglycidyl ether compound, phosphorus-containing epoxy resin in which a phosphorus compound is introduced, and the like. Be done. These can be used alone or in combination of two or more.

(A)成分の配合量は、エポキシ樹脂組成物全質量に対して3〜60質量%であることが好ましく、5〜50質量%がより好ましく、7〜40質量%がさらに好ましい。 The blending amount of the component (A) is preferably 3 to 60% by mass, more preferably 5 to 50% by mass, still more preferably 7 to 40% by mass, based on the total mass of the epoxy resin composition.

(B)硬化剤
本発明に用いられる(B)成分の硬化剤はエポキシ樹脂の硬化剤であり、公知の硬化剤を用いることができる。この硬化剤は、該硬化剤の分子中の反応性官能基(アミノ基、フェノール性水酸基、酸無水物基等)と、(A)成分のエポキシ樹脂中のエポキシ基とを反応させ、三次元架橋構造を形成した硬化物を得るために添加される。
(B) Curing Agent The curing agent of the component (B) used in the present invention is an epoxy resin curing agent, and a known curing agent can be used. This curing agent is three-dimensional by reacting a reactive functional group (amino group, phenolic hydroxyl group, acid anhydride group, etc.) in the molecule of the curing agent with an epoxy group in the epoxy resin of the component (A). It is added to obtain a cured product having a crosslinked structure.

(B)成分の硬化剤としては、例えば、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤等が挙げられ、なかでも、アミン系硬化剤が好ましい。
アミン系硬化剤としては、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン等の芳香族ジアミノジフェニルメタン化合物、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等が挙げられる。これらを1種単独で又は2種以上を併用して用いることができる。
Examples of the curing agent for the component (B) include an amine-based curing agent, a phenol-based curing agent, an acid anhydride-based curing agent, and the like, and among them, an amine-based curing agent is preferable.
Examples of the amine-based curing agent include 3,3'-diethyl-4,4'-diaminodiphenylmethane, 3,3', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 3,3', 5, Examples thereof include aromatic diaminodiphenylmethane compounds such as 5'-tetraethyl-4,4'-diaminodiphenylmethane, 2,4-diaminotoluene, 1,4-diaminobenzene, 1,3-diaminobenzene and the like. These can be used alone or in combination of two or more.

(A)成分中の全エポキシ基に対するアミン系硬化剤中の全アミノ基のモル比は、0.7〜1.2が好ましく、0.7〜1.1がより好ましく、0.85〜1.05がさらに好ましい。前記モル比が0.7未満では未反応のエポキシ基が残存し、ガラス転移温度が低下、又は密着性が低下するおそれがある。一方、前記モル比が1.2を超えると硬化物が硬く脆くなり、リフロー時又は温度サイクル時にクラックが発生するおそれがある。 The molar ratio of the total amino groups in the amine-based curing agent to the total epoxy groups in the component (A) is preferably 0.7 to 1.2, more preferably 0.7 to 1.1, and 0.85-1. 0.05 is more preferred. If the molar ratio is less than 0.7, unreacted epoxy groups may remain, and the glass transition temperature may decrease or the adhesion may decrease. On the other hand, if the molar ratio exceeds 1.2, the cured product becomes hard and brittle, and cracks may occur during reflow or temperature cycle.

フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、ナフタレン環含有フェノール樹脂、アラルキル型フェノール樹脂、トリフェノールアルカン型フェノール樹脂、ビフェニル骨格含有アラルキル型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、複素環型フェノール樹脂、ナフタレン環含有フェノール樹脂、レゾルシノール型フェノール樹脂、アリル基含有フェノール樹脂、ビスフェノールA型樹脂、ビスフェノールF型樹脂等のビスフェノール型フェノール樹脂等が挙げられる。これらを1種単独で又は2種以上を併用して用いることができる。 Examples of the phenol-based curing agent include phenol novolac resin, naphthalene ring-containing phenol resin, aralkyl-type phenol resin, triphenolalcan-type phenol resin, biphenyl skeleton-containing aralkyl-type phenol resin, biphenyl-type phenol resin, and alicyclic phenol resin. Examples thereof include a heterocyclic phenol resin, a naphthalene ring-containing phenol resin, a resorsinol type phenol resin, an allyl group-containing phenol resin, a bisphenol A type resin, and a bisphenol type phenol resin such as a bisphenol F type resin. These can be used alone or in combination of two or more.

硬化剤としてフェノール樹脂が用いられる場合、エポキシ樹脂中に含まれるエポキシ基1モルに対して、硬化剤中に含まれるフェノール性水酸基のモル比は、0.5〜1.5が好ましく、0.8〜1.2がより好ましい。 When a phenol resin is used as the curing agent, the molar ratio of the phenolic hydroxyl group contained in the curing agent to 1 mol of the epoxy group contained in the epoxy resin is preferably 0.5 to 1.5, and 0. 8 to 1.2 are more preferable.

酸無水物系硬化剤としては、例えば、3,4−ジメチル−6−(2−メチル−1−プロペニル)−1,2,3,6−テトラヒドロ無水フタル酸、1−イソプロピル−4−メチル−ビシクロ[2.2.2]オクト−5−エン−2、3−ジカルボン酸無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ピロメリット酸二無水物、マレイン化アロオシメン、ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラビスベンゾフェノンテトラカルボン酸二無水物、(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4―ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物等が挙げられる。これらを1種単独で又は2種以上を併用して用いることができる。 Examples of the acid anhydride-based curing agent include 3,4-dimethyl-6- (2-methyl-1-propenyl) -1,2,3,6-tetrahydroanhydride phthalic acid and 1-isopropyl-4-methyl-. Bicyclo [2.2.2] Oct-5-en-2, 3-dicarboxylic acid anhydride, methyltetrahydroanhydride, methylhexahydroanhydride, hexahydroanhydride, methylhymic anhydride, pyromellitic acid Dianhydride, maleic aloosimene, benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetrabisbenzophenonetetracarboxylic acid dianhydride, (3,4-dicarboxyphenyl) ether dianhydride , Bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride and the like. These can be used alone or in combination of two or more.

酸無水物系硬化剤が用いられる場合、(A)エポキシ樹脂中のエポキシ基に対する硬化剤中の酸無水物基(−CO−O−CO−)の当量比は、0.5〜1.5であることが好ましい。前記当量比が0.5未満では、未反応のエポキシ基が残存することで、ガラス転移温度が低下し、更に密着性も低下するおそれがある。前記当量比が1.5を超えると、硬化物が硬く脆くなるためリフロー時又は温度サイクル試験時にクラックが発生するおそれがある。 When an acid anhydride-based curing agent is used, (A) the equivalent ratio of the acid anhydride group (-CO-O-CO-) in the curing agent to the epoxy group in the epoxy resin is 0.5 to 1.5. Is preferable. If the equivalent ratio is less than 0.5, the unreacted epoxy group remains, which may lower the glass transition temperature and further lower the adhesion. If the equivalent ratio exceeds 1.5, the cured product becomes hard and brittle, and cracks may occur during reflow or temperature cycle test.

(C)イソシアネート基を有さないポリエステルポリオール
(C)成分のポリエステルポリオールは、イソシアネート基を有さないものであり、例えば多価カルボン酸又はその無水物と、多価アルコールとの重縮合による得られるポリエステルポリオールを用いることができる。中でも、1分子中に芳香族環を1つ以上有するものが好ましい。
芳香族環を有し、多価カルボン酸又はその無水物と、多価アルコールとの重縮合により得られるポリエステルポリオールは、芳香族環を有する多価カルボン酸又はその無水物を用いたものであっても、芳香族環を有する多価アルコールを用いたものであっても、芳香族環を有する多価カルボン酸及び芳香族環を有する多価アルコールを用いたものであっても、いずれでもよい。
(C) Polyester polyol having no isocyanate group The polyester polyol as a component of (C) has no isocyanate group, and is obtained by, for example, polycondensation of a polyvalent carboxylic acid or an anhydride thereof with a polyhydric alcohol. Polyester polyols can be used. Among them, those having one or more aromatic rings in one molecule are preferable.
The polyester polyol having an aromatic ring and obtained by polycondensation of the polyvalent carboxylic acid or its anhydride and the polyhydric alcohol is the one using the polyvalent carboxylic acid having an aromatic ring or its anhydride. However, it may be either one using a polyhydric alcohol having an aromatic ring, or one using a polyvalent carboxylic acid having an aromatic ring and a polyhydric alcohol having an aromatic ring. ..

上記多価カルボン酸としては、例えば、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、フタル酸、無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、イソフタル酸、テレフタル酸、無水ナジック酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、トリメリット酸、無水トリメリット酸、ピロメリット酸及び無水ピロメリット酸等が挙げられる。これらは1種単独でも2種以上を組み合せて使用してもよい。 Examples of the polyvalent carboxylic acid include malonic acid, succinic acid, anhydrous succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, phthalic acid, anhydrous phthalic acid, hexahydrochloride anhydrous phthalic acid, tetrahydrophthalic anhydride, and isophthalic acid. Examples thereof include acids, terephthalic acid, nadic acid anhydride, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, trimellitic acid, trimellitic anhydride, pyromellitic acid and pyromellitic anhydride. These may be used alone or in combination of two or more.

上記多価アルコールとしては、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、1,2−ブチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、シクロヘキサンジオール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、及びペンタエリスリトール等が挙げられる。これらは1種単独でも2種以上を組み合せて使用してもよい。 Examples of the polyvalent alcohol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2-butylene glycol, and 1,5. -Pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, cyclohexanediol, bisphenol A ethylene oxide adduct, bisphenol A propylene oxide Additives, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, glycerin, trimethylolpropane, trimethylolethane, pentaerythritol and the like can be mentioned. These may be used alone or in combination of two or more.

(C)成分のポリエステルポリオールの数平均分子量(Mn)は、1,500〜10,000であり、好ましくは2,000〜8,000である。 The number average molecular weight (Mn) of the polyester polyol as the component (C) is 1,500 to 10,000, preferably 2,000 to 8,000.

(C)成分のポリエステルポリオールは、(A)エポキシ樹脂や(B)硬化剤との相溶性に優れ、低膨張性かつ低弾性率の硬化物を得るのに適し、該ポリエステルポリオールの水酸基価は、10〜100mg KOH/gであることが好ましく、より好ましくは15〜80mg KOH/gであり、20〜70mg KOH/gが最も好ましい。 The polyester polyol of the component (C) has excellent compatibility with the epoxy resin (A) and the curing agent (B), and is suitable for obtaining a cured product having low expansion and a low elastic modulus, and the hydroxyl value of the polyester polyol is , 10-100 mg KOH / g, more preferably 15-80 mg KOH / g, and most preferably 20-70 mg KOH / g.

(C)成分のポリエステルポリオールは、JIS Z 8803:2011記載の方法でE型粘度計を用いて測定した測定開始から2分後の75℃における粘度が1,000〜20,000mPa・sの範囲であるものが好ましく、1,500〜15,000mPa・sの範囲であるものがより好ましい。この範囲内であれば、(A)エポキシ樹脂及び(B)硬化剤への分散が容易となる。 The polyester polyol as the component (C) has a viscosity in the range of 1,000 to 20,000 mPa · s at 75 ° C. 2 minutes after the start of measurement measured using an E-type viscometer by the method described in JIS Z 8803: 2011. Is preferable, and those in the range of 1,500 to 15,000 mPa · s are more preferable. Within this range, dispersion in (A) epoxy resin and (B) curing agent becomes easy.

なお、上記の数平均分子量とは、下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレンを標準物質とした数平均分子量を指すこととする。

[GPC測定条件]
展開溶媒:テトラヒドロフラン
流速:0.6mL/min
カラム:
TSK Guardcolumn SuperH−L
TSKgel SuperH4000(6.0mmI.D.×15cm×1)
TSKgel SuperH3000(6.0mmI.D.×15cm×1)
TSKgel SuperH2000(6.0mmI.D.×15cm×2)
(いずれも東ソー社製)
カラム温度:40℃
試料注入量:20μL(試料濃度:0.5質量%−テトラヒドロフラン溶液)
検出器:示差屈折率計(RI)
The above number average molecular weight refers to the number average molecular weight using polystyrene as a standard substance measured by gel permeation chromatography (GPC) under the following conditions.

[GPC measurement conditions]
Developing solvent: Tetrahydrofuran Flow rate: 0.6 mL / min
column:
TSK Guardcolum SuperH-L
TSKgel SuperH4000 (6.0mm ID x 15cm x 1)
TSKgel SuperH3000 (6.0mm ID x 15cm x 1)
TSKgel SuperH2000 (6.0 mm ID x 15 cm x 2)
(Both manufactured by Tosoh)
Column temperature: 40 ° C
Sample injection amount: 20 μL (sample concentration: 0.5% by mass-tetrahydrofuran solution)
Detector: Differential Refractometer (RI)

ポリエステルポリオールの配合量は、(A)エポキシ樹脂100質量部に対して1〜40質量部であるのが好ましく、4〜35質量部がより好ましく、5〜30質量部が更に好ましい。 The blending amount of the polyester polyol is preferably 1 to 40 parts by mass, more preferably 4 to 35 parts by mass, still more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin (A).

なお、本発明に係るエポキシ樹脂組成物に含まれるポリエステルポリオールは、イソシアネート基を有さないものである。該ポリエステルポリオールの代わりに、ポリエステルポリオールにイソシアネート基を有するポリイソシアネートを用いた場合に比べ、イソシアネート基を有さないポリエステルポリオールを含むエポキシ樹脂組成物は、耐熱性および耐湿性に優れる。 The polyester polyol contained in the epoxy resin composition according to the present invention does not have an isocyanate group. Compared with the case where a polyisocyanate having an isocyanate group is used for the polyester polyol instead of the polyester polyol, the epoxy resin composition containing the polyester polyol having no isocyanate group is excellent in heat resistance and moisture resistance.

(D)無機充填材
(D)成分は、無機充填材であり、エポキシ樹脂組成物の熱膨張率低下及び耐湿信頼性向上の目的で添加される。該無機充填材としては、例えば、溶融シリカ、結晶性シリカ、クリストバライト等のシリカ類、酸化アルミニウム、酸化チタン、酸化マグネシウム等の金属酸化物類、窒化珪素、窒化アルミニウム、ボロンナイトライド等の窒化物類などが挙げられる。中でも、材料の入手容易性や品質の安定性等を勘案すると、シリカ類が好ましく用いられる。これらの無機充填材の平均粒径は、好ましくは0.1〜50μm、更に好ましくは0.5〜30μmであり、用途に応じて選択することができる。平均粒径は、レーザー回折法で測定される体積平均粒径である。また、これらの無機充填材は、1種単独でも2種以上を併用することもできる。
(D) Inorganic filler The component (D) is an inorganic filler and is added for the purpose of lowering the coefficient of thermal expansion and improving the moisture resistance reliability of the epoxy resin composition. Examples of the inorganic filler include silicas such as molten silica, crystalline silica and cristobalite, metal oxides such as aluminum oxide, titanium oxide and magnesium oxide, and nitrides such as silicon nitride, aluminum nitride and boron nitride. Kind and so on. Among them, silicas are preferably used in consideration of availability of materials, stability of quality and the like. The average particle size of these inorganic fillers is preferably 0.1 to 50 μm, more preferably 0.5 to 30 μm, and can be selected according to the intended use. The average particle size is a volume average particle size measured by a laser diffraction method. Further, these inorganic fillers may be used alone or in combination of two or more.

上記無機充填材は、樹脂成分と無機充填材との結合強度を強くするために、シランカップリング剤、チタネートカップリング剤等のカップリング剤で予め表面処理されたものが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、イミダゾールとγ−グリシドキシプロピルトリメトキシシランの反応物、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトプロピルトリメトキシシラン、γ−(チイラニルメトキシ)プロピルトリメトキシシラン等のメルカプトシラン等のシランカップリング剤が挙げられる。なお、表面処理に用いるカップリング剤の配合量及び表面処理方法については特に制限されるものではない。 The inorganic filler is preferably surface-treated in advance with a coupling agent such as a silane coupling agent or a titanate coupling agent in order to strengthen the bonding strength between the resin component and the inorganic filler. Examples of such a coupling agent include epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N. -Β- (Aminoethyl) -γ-Aminopropyltrimethoxysilane, reaction product of imidazole and γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane Examples thereof include silane coupling agents such as aminosilane such as γ-mercaptopropyltrimethoxysilane and mercaptosilane such as γ- (thiylanylmethoxy) propyltrimethoxysilane. The amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の組成物における無機充填材の含有量は、(A)成分100質量部に対して30〜3,500質量部が好ましく、100〜3,000質量部がより好ましく、150〜2,000質量部が特に好ましい。 The content of the inorganic filler in the composition of the present invention is preferably 30 to 3,500 parts by mass, more preferably 100 to 3,000 parts by mass, and 150 to 2,000 parts by mass with respect to 100 parts by mass of the component (A). Parts by mass are particularly preferred.

(E)その他の添加剤
本発明のエポキシ樹脂組成物は、上記(A)〜(D)成分の所定量を配合することによって得られるが、その他の添加剤を必要に応じて本発明の目的、効果を損なわない範囲で添加することができる。かかる添加剤としては、硬化促進剤、難燃剤、イオントラップ剤、酸化防止剤、接着付与剤、離型剤等が挙げられる。
(E) Other Additives The epoxy resin composition of the present invention can be obtained by blending a predetermined amount of the above components (A) to (D), but other additives may be added as necessary for the purpose of the present invention. , Can be added within a range that does not impair the effect. Examples of such additives include curing accelerators, flame retardants, ion trapping agents, antioxidants, adhesion-imparting agents, mold release agents and the like.

前記硬化促進剤は、エポキシ樹脂と硬化剤との硬化反応を促進させるために用いられ、硬化反応を促進させるものであれば特に制限されない。例えばトリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボラン、テトラフェニルホスフィン・テトラフェニルボレート等のリン系化合物、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7等の第3級アミン化合物、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール化合物等が挙げられる。 The curing accelerator is used to accelerate the curing reaction between the epoxy resin and the curing agent, and is not particularly limited as long as it promotes the curing reaction. For example, phosphorus compounds such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine / triphenylboran, tetraphenylphosphine / tetraphenylborate, triethylamine, benzyldimethylamine. , Α-Methylbenzyldimethylamine, tertiary amine compounds such as 1,8-diazabicyclo [5.4.0] undecene-7, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, Examples thereof include imidazole compounds such as 2-phenyl-4-methylimidazole and 2-phenyl-4,5-dihydroxymethylimidazole.

前記難燃剤は、樹脂組成物に難燃性を付与する目的で添加され、特に制限されることなく、公知のものを全て使用することができる。該難燃剤としては、例えば、ホスファゼン化合物、シリコーン化合物、モリブデン酸亜鉛担持タルク、モリブデン酸亜鉛担持酸化亜鉛、水酸化アルミニウム、水酸化マグネシウム、酸化モリブデン等が挙げられる。該シリコーン化合物としては、シリコーンゴムパウダーが挙げられる。 The flame retardant is added for the purpose of imparting flame retardancy to the resin composition, and any known flame retardant can be used without particular limitation. Examples of the flame retardant include phosphazene compounds, silicone compounds, zinc molybdate-supported talc, zinc molybdate-supported zinc oxide, aluminum hydroxide, magnesium hydroxide, molybdate oxide and the like. Examples of the silicone compound include silicone rubber powder.

前記イオントラップ剤は、樹脂組成物中に含まれるイオン不純物を捕捉し、熱劣化や吸湿劣化を防ぐ目的で添加され、特に制限されることなく、公知のものを全て使用することができる。該イオントラップ剤としては、例えば、ハイドロタルサイト類、水酸化ビスマス化合物、希土類酸化物等が挙げられる。 The ion trapping agent is added for the purpose of capturing ionic impurities contained in the resin composition and preventing thermal deterioration and hygroscopic deterioration, and any known ion trapping agent can be used without particular limitation. Examples of the ion trapping agent include hydrotalcites, bismuth hydroxide compounds, rare earth oxides and the like.

前記酸化防止剤は、樹脂組成物の熱劣化を防ぐ目的で添加され、特に制限されることなく、公知のものを全て使用することができる。該酸化防止剤としては、例えば、フェノール系、リン系、硫黄系酸化防止剤が挙げられる。 The antioxidant is added for the purpose of preventing thermal deterioration of the resin composition, and any known antioxidant can be used without particular limitation. Examples of the antioxidant include phenol-based, phosphorus-based, and sulfur-based antioxidants.

前記接着付与剤は、銅や銀などの金属基材や、シリコンやアルミナといった無機セラミック基材などとの接着強度を強くする目的で添加され、特に制限されることなく、公知のものを全て使用することができる。該接着付与剤としては、シランカップリング剤、チタネートカップリング剤などのカップリング剤が挙げられる。 The adhesive-imparting agent is added for the purpose of strengthening the adhesive strength with a metal base material such as copper or silver or an inorganic ceramic base material such as silicon or alumina, and all known adhesives are used without particular limitation. can do. Examples of the adhesion-imparting agent include coupling agents such as a silane coupling agent and a titanate coupling agent.

前記離型剤は、成形時の離型性を高める目的で添加され、特に制限されることなく、公知のものを全て使用することができる。該離型剤としては、例えば、カルナバワックス、ライスワックスをはじめとする天然ワックス、酸ワックス、ポリエチレンワックス、脂肪酸エステルをはじめとする合成ワックス等が挙げられる。 The mold release agent is added for the purpose of enhancing the mold release property at the time of molding, and all known mold release agents can be used without particular limitation. Examples of the mold release agent include natural waxes such as carnauba wax and rice wax, acid waxes, polyethylene waxes, synthetic waxes such as fatty acid esters, and the like.

上記その他の成分の配合量は、本発明のエポキシ樹脂組成物の用途により相違するが、合計で組成物全体の5質量%以下の量であればよい。 The blending amount of the above other components varies depending on the use of the epoxy resin composition of the present invention, but the total amount may be 5% by mass or less of the total composition.

エポキシ樹脂組成物の製造方法
本発明のエポキシ樹脂組成物の製造方法は特に制限されない。例えば、(A)エポキシ樹脂と(B)硬化剤と(C)ポリエステルポリオールと(D)無機充填材とを、同時に又は別々に必要に応じて加熱処理を行いながら混合、撹拌、溶解及び/又は分散させることにより組成物を得ることができる。また、用途によって、(A)〜(D)成分の混合物に、硬化促進剤、難燃剤、イオントラップ剤、酸化防止剤、接着付与剤、離型剤などのその他の添加剤を添加して混合し、本発明のエポキシ樹脂組成物(例えば、半導体素子封止材等)を得てもよい。
Method for Producing Epoxy Resin Composition The method for producing the epoxy resin composition of the present invention is not particularly limited. For example, (A) epoxy resin, (B) curing agent, (C) polyester polyol, and (D) inorganic filler are mixed, stirred, dissolved, and / or mixed at the same time or separately while heat-treating as necessary. The composition can be obtained by dispersing. Depending on the application, other additives such as a curing accelerator, a flame retardant, an ion trapping agent, an antioxidant, an adhesion-imparting agent, and a mold release agent are added to the mixture of the components (A) to (D) and mixed. However, the epoxy resin composition of the present invention (for example, a semiconductor element encapsulant or the like) may be obtained.

上記製造方法における混合、撹拌及び分散を行う装置については、特に限定されない。例えば、撹拌及び加熱装置を備えたライカイ機、2本ロールミル、3本ロールミル、ボールミル、プラネタリーミキサー、又はマスコロイダー等を用いることができ、これらの装置を適宜組み合わせて使用してもよい。 The apparatus for mixing, stirring and dispersing in the above production method is not particularly limited. For example, a Raikai machine equipped with a stirring and heating device, a two-roll mill, a three-roll mill, a ball mill, a planetary mixer, a mass colloider, or the like can be used, and these devices may be used in combination as appropriate.

本発明のエポキシ樹脂組成物の硬化条件は特に制限されないが、たとえば、60〜200℃、好ましくは80〜180℃の温度で、30分〜10時間、好ましくは1〜5時間加熱すればよい。 The curing conditions of the epoxy resin composition of the present invention are not particularly limited, but for example, heating may be performed at a temperature of 60 to 200 ° C., preferably 80 to 180 ° C. for 30 minutes to 10 hours, preferably 1 to 5 hours.

このようにして得られた本発明のエポキシ樹脂組成物の硬化物は、以下の測定条件によって求められたガラス転移温度(Tg)が100〜200℃の範囲にあることが好ましく、120〜200℃の範囲にあることがより好ましい。この範囲内であれば、得られる硬化物の耐熱性に優れたものとなる。 The cured product of the epoxy resin composition of the present invention thus obtained preferably has a glass transition temperature (Tg) determined by the following measurement conditions in the range of 100 to 200 ° C., preferably 120 to 200 ° C. It is more preferable that it is in the range of. Within this range, the obtained cured product has excellent heat resistance.

ガラス転移温度(Tg)の測定
エポキシ樹脂硬化物を、5×5×15mmの試験片に加工した後、その試験片を熱膨張計TMA8140C(株式会社リガク社製)にセットした。そして、昇温プログラムを昇温速度5℃/分に設定し、19.6mNの一定荷重が加わるように設定した後、25℃から300℃までの間で試験片の寸法変化を測定した。この寸法変化と温度との関係をグラフにプロットした(グラフの一例を図1に示す)。このようにして得られた寸法変化と温度とのグラフから、下記に説明するガラス転移温度の決定方法により、ガラス転移温度を求めた。
Measurement of glass transition temperature (Tg) After processing the cured epoxy resin into a 5 × 5 × 15 mm test piece, the test piece was set in a thermal expansion meter TMA8140C (manufactured by Rigaku Co., Ltd.). Then, the temperature rise program was set to a temperature rise rate of 5 ° C./min, and a constant load of 19.6 mN was set, and then the dimensional change of the test piece was measured between 25 ° C. and 300 ° C. The relationship between this dimensional change and temperature was plotted on a graph (an example of the graph is shown in FIG. 1). From the graph of the dimensional change and the temperature obtained in this way, the glass transition temperature was obtained by the method for determining the glass transition temperature described below.

ガラス転移温度の決定方法
図1に示すように、変曲点の温度以下で寸法変化−温度曲線の接線が得られる任意の温度2点をT1及びT2とし、変曲点の温度以上で同様の接線が得られる任意の温度2点をT1’及びT2’とした。T1及びT2における寸法変化をそれぞれD1及びD2として、点(T1、D1)と点(T2、D2)とを結ぶ直線と、T1’及びT2’における寸法変化をそれぞれD1’及びD2’として、点(T1’、D1’)と点(T2’、D2’)とを結ぶ直線との交点をガラス転移温度(Tg)とした。
Method for determining the glass transition temperature As shown in Fig. 1, T 1 and T 2 are two arbitrary temperatures at which the tangent of the dimensional change-temperature curve can be obtained below the temperature of the inflection point, and above the temperature of the inflection point. any temperature two points similar tangent obtained was T 1 'and T 2'. T 1 and the dimensional change in T 2 as D 1 and D 2, respectively, the dimensional change in the linear and, T 1 'and T 2' connecting the point and (T 1, D 1) and the point (T 2, D 2) as D 1 'and D 2', respectively, the point (T 1 ', D 1' ) to a point (T 2 ', D 2' ) and the intersection point of the glass transition temperature of the straight line connecting the (T g).

半導体装置
上記製造方法で得られた本発明のエポキシ樹脂組成物で半導体素子を封止し、該半導体素子を備える半導体装置を製造することができる。半導体素子の封止方法、及び半導体装置の製造方法は特に制限されない。
Semiconductor device A semiconductor device can be manufactured by encapsulating a semiconductor element with the epoxy resin composition of the present invention obtained by the above manufacturing method. The method for sealing the semiconductor element and the method for manufacturing the semiconductor device are not particularly limited.

以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

実施例1〜13及び比較例1〜5にて用いた各成分は以下の通りである。 The components used in Examples 1 to 13 and Comparative Examples 1 to 5 are as follows.

(A)エポキシ樹脂
(A1)エポキシ樹脂:ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品(ZX1059:新日鉄住金化学社製)
(A2)エポキシ樹脂:多官能型エポキシ樹脂(jER630:三菱ケミカル社製)
(A3)エポキシ樹脂:クレゾールノボラック型エポキシ樹脂(N−655−EXP−S:DIC社製)
(A4)エポキシ樹脂:シリコーン変性エポキシ樹脂(製造方法は以下に示す)
(A) Epoxy resin (A1) Epoxy resin: A mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (ZX1059: manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
(A2) Epoxy resin: Polyfunctional epoxy resin (jER630: manufactured by Mitsubishi Chemical Corporation)
(A3) Epoxy resin: Cresol novolac type epoxy resin (N-655-EXP-S: manufactured by DIC Corporation)
(A4) Epoxy resin: Silicone modified epoxy resin (Manufacturing method is shown below)

シリコーン変性エポキシ樹脂(A4)の製造方法
リフラックスコンデンサー、温度計、撹拌機及び滴下ロートを具備した内容積1リットルの四つ口フラスコへ、下記式(1)

Figure 2021195451
で表されるアリルグリシジルエーテルで変性されたフェノールノボラック樹脂(フェノール当量125、アリル当量1,100)200g、クロロメチルオキシラン800g、セチルトリメチルアンモニウムブロマイド0.6gをそれぞれ入れて加熱し、温度110℃で3時間撹拌混合した。これを冷却して温度70℃とし、160mmHgに減圧してから、この中に水酸化ナトリウムの50%水溶液128gを共沸脱水しながら3時間かけて滴下した。得られた内容物を減圧して溶剤を留去し、次いでメチルイソブチルケトン300gとアセトン300gの混合溶剤にて溶解させた後、水洗し、これを減圧下で溶剤留去して下記式(2)
Figure 2021195451
で表されるアリル基含有のエポキシ樹脂(アリル当量1590、エポキシ当量190)を得た。このエポキシ樹脂とメチルイソブチルケトン170g、トルエン330g、2質量%の白金濃度の2−エチルヘキサノール変性塩化白金酸溶液0.07gを入れ、1時間の共沸脱水を行ない、還流温度にて下記式(3)
Figure 2021195451
で表されるオルガノポリシロキサン133gを滴下時間30分にて滴下した。更に、同一温度で4時間撹拌して反応させた後、得られた内容物を水洗し、溶剤を減圧下で留去したところ黄白色不透明固体の共重合体が得られた。エポキシ当量は280であり、ASTM D4287に従い、コーン/プレート粘度計を用いて測定した150℃でのICI溶融粘度は800mPa.sであり、ケイ素含有量31質量%であった。 Manufacturing method of silicone-modified epoxy resin (A4) To a four-necked flask with an internal volume of 1 liter equipped with a reflux condenser, a thermometer, a stirrer and a dropping funnel, the following formula (1)
Figure 2021195451
200 g of a phenol novolac resin (phenol equivalent 125, allyl equivalent 1,100) modified with allyl glycidyl ether represented by, 800 g of chloromethyloxylan, and 0.6 g of cetyltrimethylammonium bromide are added and heated at a temperature of 110 ° C. The mixture was stirred and mixed for 3 hours. This was cooled to a temperature of 70 ° C., the pressure was reduced to 160 mmHg, and then 128 g of a 50% aqueous solution of sodium hydroxide was added dropwise over 3 hours while azeotropically dehydrating. The obtained content was reduced under reduced pressure to distill off the solvent, then dissolved in a mixed solvent of 300 g of methyl isobutyl ketone and 300 g of acetone, washed with water, and the solvent was distilled off under reduced pressure to obtain the following formula (2). )
Figure 2021195451
An epoxy resin containing an allyl group represented by (allyl equivalent 1590, epoxy equivalent 190) was obtained. 170 g of this epoxy resin, 170 g of methyl isobutyl ketone, 330 g of toluene, 0.07 g of a 2-ethylhexanol-modified platinum chloride acid solution having a platinum concentration of 2% by mass were added, and azeotropic dehydration was performed for 1 hour. 3)
Figure 2021195451
133 g of the organopolysiloxane represented by (1) was added dropwise over a dropping time of 30 minutes. Further, after stirring and reacting at the same temperature for 4 hours, the obtained contents were washed with water and the solvent was distilled off under reduced pressure to obtain a yellow-white opaque solid copolymer. The epoxy equivalent is 280 and the ICI melt viscosity at 150 ° C. measured with a cone / plate viscometer according to ASTM D4287 is 800 mPa. The silicon content was 31% by mass.

(B)硬化剤
(B1)硬化剤:3,3’−ジエチル−4,4’−ジアミノジフェニルメタン(カヤハードAA、日本化薬株式会社製)
(B2)硬化剤:4−メチルヘキサヒドロフタル酸無水物(リカシッドMH:新日本理化社製)
(B3)硬化剤:フェノールノボラック樹脂(DL−92、明和化成(株)製)
(B) Curing agent (B1) Curing agent: 3,3'-diethyl-4,4'-diaminodiphenylmethane (Kayahard AA, manufactured by Nippon Kayaku Co., Ltd.)
(B2) Curing agent: 4-Methylhexahydrophthalic anhydride (Ricacid MH: manufactured by Shin Nihon Rika Co., Ltd.)
(B3) Curing agent: Phenol novolac resin (DL-92, manufactured by Meiwa Kasei Co., Ltd.)

(C)ポリエステルポリオール
(C1)ポリエステルポリオール:芳香族環含有ポリエステルポリオール(OD−X−2360T、DIC社製、数平均分子量2000、水酸基価58mg KOH/g、粘度:75℃で2,100mPa.s)
(C2)ポリエステルポリオール:芳香族環含有ポリエステルポリオール(OD−X−3100、DIC社製、数平均分子量3,000、水酸基価39mg KOH/g、粘度:75℃で9,200mPa.s)
(C3)ポリエステルポリオール:芳香族環含有ポリエステルポリオール(OD−X−3110、DIC社製、数平均分子量7,500、水酸基価16mg KOH/g、粘度:75℃で8,600mPa.s)
(C4)ポリエステルポリオール:イソシアネート基含有ポリエステルポリオール(パンデックス390E、DIC社製、数平均分子量2,400、粘度:75℃で2,500mPa.s)(比較例用)
(C5)ポリエステルポリオール:芳香族環含有ポリエステルポリオール(OD−X−2586、DIC社製、数平均分子量850、水酸基価200mg KOH/g、粘度:75℃で200mPa.s)(比較例用)
(C6)ポリエステルポリオール:脂肪族ポリエステルポリオール(OD−X−2027、DIC社製、数平均分子量2000、水酸基価55mg KOH/g、粘度:75℃で500mPa.s)(比較例用)
(C) Polyester polyol (C1) Polyester polyol: Aromatic ring-containing polyester polyol (OD-X-2360T, manufactured by DIC, number average molecular weight 2000, hydroxyl value 58 mg KOH / g, viscosity: 2,100 mPa.s at 75 ° C. )
(C2) Polyester polyol: Aromatic ring-containing polyester polyol (OD-X-3100, manufactured by DIC Corporation, number average molecular weight 3,000, hydroxyl value 39 mg KOH / g, viscosity: 9,200 mPa.s at 75 ° C.)
(C3) Polyester polyol: Aromatic ring-containing polyester polyol (OD-X-3110, manufactured by DIC Corporation, number average molecular weight 7,500, hydroxyl value 16 mg KOH / g, viscosity: 8,600 mPa.s at 75 ° C.)
(C4) Polyester polyol: Isocyanate group-containing polyester polyol (Pandex 390E, manufactured by DIC, number average molecular weight 2,400, viscosity: 2,500 mPa.s at 75 ° C.) (for comparative example)
(C5) Polyester polyol: Aromatic ring-containing polyester polyol (OD-X-2586, manufactured by DIC Corporation, number average molecular weight 850, hydroxyl value 200 mg KOH / g, viscosity: 200 mPa.s at 75 ° C.) (for comparative example)
(C6) Polyester polyol: Aliphatic polyester polyol (OD-X-2027, manufactured by DIC, number average molecular weight 2000, hydroxyl value 55 mg KOH / g, viscosity: 500 mPa.s at 75 ° C.) (for comparative example)

(D)無機充填材
(D1)溶融シリカ:平均粒径14μmの溶融球状シリカ(龍森社製)
(D) Inorganic filler (D1) Fused silica: Fused spherical silica with an average particle size of 14 μm (manufactured by Ryumori Co., Ltd.)

(E)その他の成分
(E1)硬化促進剤:2−フェニル−4,5−ジヒドロキシメチルイミダゾール(2PHZ−PW、四国化成社製)
(E2)シリコーンゴムパウダー:平均粒径5μmのシリコーンゴムパウダー(KMP−600、信越化学工業社製)
(E) Other components (E1) Curing accelerator: 2-phenyl-4,5-dihydroxymethylimidazole (2PHZ-PW, manufactured by Shikoku Chemicals Corporation)
(E2) Silicone rubber powder: Silicone rubber powder with an average particle size of 5 μm (KMP-600, manufactured by Shin-Etsu Chemical Co., Ltd.)

上記各成分を表1に記載の配合量(質量部)にて混合して、エポキシ樹脂組成物を得た。各組成物、及び、各組成物を硬化して成る硬化物について、以下に示す方法により、ブリードの有無、ガラス転移温度、線膨張係数(CTE1)、曲げ弾性率、曲げ強さ、反り量、耐熱性及び耐湿信頼性を評価した。結果を表1に示す。 Each of the above components was mixed in the blending amount (part by mass) shown in Table 1 to obtain an epoxy resin composition. For each composition and the cured product obtained by curing each composition, the presence or absence of bleeding, the glass transition temperature, the coefficient of linear expansion (CTE1), the flexural modulus, the bending strength, and the amount of warpage were obtained by the methods shown below. The heat resistance and moisture resistance reliability were evaluated. The results are shown in Table 1.

硬化物サンプルの作製
実施例及び比較例の各エポキシ樹脂組成物を120℃×1時間、さらに180℃×2時間で加熱硬化して成型し、硬化物を得た。
Preparation of Cured Product Samples Each of the epoxy resin compositions of Examples and Comparative Examples was heat-cured at 120 ° C. × 1 hour and further at 180 ° C. × 2 hours to be molded to obtain a cured product.

ブリードの有無の確認
ガラス板上にエポキシ樹脂組成物をそれぞれ1gずつ計量し、上記硬化条件にて硬化させた。得られた硬化物の表面を観察し、オイル状の成分が硬化物の表面に染み出していないものを○、オイル状の成分が硬化物の表面に染み出しているものを×とした。
Confirmation of the presence or absence of bleeding 1 g of each epoxy resin composition was weighed on a glass plate and cured under the above curing conditions. The surface of the obtained cured product was observed, and those in which the oil-like component did not exude to the surface of the cured product were marked with ◯, and those in which the oil-like component exuded to the surface of the cured product were marked with x.

ガラス転移温度(Tg)の測定
上記で得た硬化物を、5×5×15mmの試験片にそれぞれを加工した後、それらの試験片を熱膨張計TMA8140C(株式会社リガク社製)にセットした。そして、昇温プログラムを昇温速度5℃/分に設定し、19.6mNの一定荷重が加わるように設定した後、25℃から300℃までの間で試験片の寸法変化を測定した。この寸法変化と温度との関係をグラフにプロットした(グラフの一例を図1に示す)。このようにして得られた寸法変化と温度とのグラフから、下記に説明するガラス転移温度の決定方法により、実施例及び比較例におけるガラス転移温度を求めた。
Measurement of glass transition temperature (Tg) After processing each of the cured products obtained above into 5 × 5 × 15 mm test pieces, those test pieces were set in a thermal expansion meter TMA8140C (manufactured by Rigaku Co., Ltd.). .. Then, the temperature rise program was set to a temperature rise rate of 5 ° C./min, and a constant load of 19.6 mN was set, and then the dimensional change of the test piece was measured between 25 ° C. and 300 ° C. The relationship between this dimensional change and temperature was plotted on a graph (an example of the graph is shown in FIG. 1). From the graph of the dimensional change and the temperature obtained in this way, the glass transition temperature in Examples and Comparative Examples was obtained by the method for determining the glass transition temperature described below.

ガラス転移温度の決定方法
図1に示すように、変曲点の温度以下で寸法変化−温度曲線の接線が得られる任意の温度2点をT1及びT2とし、変曲点の温度以上で同様の接線が得られる任意の温度2点をT1’及びT2’とした。T1及びT2における寸法変化をそれぞれD1及びD2として、点(T1、D1)と点(T2、D2)とを結ぶ直線と、T1’及びT2’における寸法変化をそれぞれD1’及びD2’として、点(T1’、D1’)と点(T2’、D2’)とを結ぶ直線との交点をガラス転移温度(Tg)とした。
Method for determining the glass transition temperature As shown in Fig. 1, T 1 and T 2 are two arbitrary temperatures at which the tangent of the dimensional change-temperature curve can be obtained below the temperature of the inflection point, and above the temperature of the inflection point. any temperature two points similar tangent obtained was T 1 'and T 2'. T 1 and the dimensional change in T 2 as D 1 and D 2, respectively, the dimensional change in the linear and, T 1 'and T 2' connecting the point and (T 1, D 1) and the point (T 2, D 2) as D 1 'and D 2', respectively, the point (T 1 ', D 1' ) to a point (T 2 ', D 2' ) and the intersection point of the glass transition temperature of the straight line connecting the (T g).

線膨張係数(CTE1)の決定方法
上記ガラス転移温度測定と同じ条件で硬化物の熱機械分析を行い、40℃から80℃までの温度範囲の測定結果から、線膨張係数を算出し、CTE1とした。
Method for determining the coefficient of linear expansion (CTE1) Thermomechanical analysis of the cured product was performed under the same conditions as the above glass transition temperature measurement, and the coefficient of linear expansion was calculated from the measurement results in the temperature range of 40 ° C to 80 ° C. did.

曲げ弾性率
JIS K 6911:2006に準じ、上記硬化物を用いて測定した。
Flexural modulus was measured using the above-mentioned cured product according to JIS K 6911: 2006.

曲げ強さ
JIS K 6911:2006に準じ、上記硬化物を用いて測定した。
Flexural strength Measured using the above-mentioned cured product according to JIS K 6911: 2006.

反り量測定
50×70mmの大きさのPPSの枠がついたCuリードフレームを用いて、実施例及び比較例において作製した組成物を80℃で厚さが5mmになるように注入し、120℃×1時間、さらに180℃×2時間で成型し、成形品を得た。成型後、レーザー三次元測定機を用いて該成形品の反り量を測定した。
Warpage measurement Using a Cu lead frame with a PPS frame having a size of 50 × 70 mm, the compositions prepared in Examples and Comparative Examples were injected at 80 ° C. to a thickness of 5 mm, and 120 ° C. Molding was performed at × 1 hour and further at 180 ° C. × 2 hours to obtain a molded product. After molding, the amount of warpage of the molded product was measured using a laser coordinate measuring machine.

ヒートサイクル試験(耐熱性)
反り量の測定で得た成型品を用いて、ヒートサイクル試験(−65℃で30分間保持、200℃で30分間保持を1,000サイクル繰り返す)に供し、ヒートサイクル試験後の樹脂とCuリードフレームとの剥離状態を超音波探査装置を用いて確認した。合計5つの成型品中の、剥離が認められた成型品数を数えた。
Heat cycle test (heat resistance)
Using the molded product obtained by measuring the amount of warpage, it was subjected to a heat cycle test (holding at -65 ° C for 30 minutes, holding at 200 ° C for 30 minutes was repeated for 1,000 cycles), and the resin and Cu lead after the heat cycle test were performed. The state of separation from the frame was confirmed using an ultrasonic exploration device. The number of molded products in which peeling was observed out of a total of 5 molded products was counted.

耐湿信頼性試験
反り量の測定で得た成型品を用いて、耐湿信頼性試験(プレッシャークッカーにて121℃、2.03×105Paの飽和水蒸気下で48時間曝露)に供し、耐湿信頼性試験後の樹脂とCuリードフレームとの剥離状態を超音波探査装置を用いて確認した。合計5つの成型品中の、剥離が認められた成型品数を数えた。

Figure 2021195451
Moisture-resistant reliability test Using the molded product obtained by measuring the amount of warpage, it was subjected to a moisture-resistant reliability test (exposure at 121 ° C with a pressure cooker under saturated steam of 2.03 × 10 5 Pa for 48 hours). The peeled state between the resin and the Cu lead frame after the sex test was confirmed using an ultrasonic probe. The number of molded products in which peeling was observed out of a total of 5 molded products was counted.
Figure 2021195451

Claims (9)

下記(A)〜(D)成分:
(A)エポキシ樹脂
(B)硬化剤
(C)イソシアネート基を有さないポリエステルポリオール
(D)無機充填材
を含み、前記(C)成分の数平均分子量が1,500〜10,000の範囲内であるエポキシ樹脂組成物。
The following components (A) to (D):
(A) Epoxy resin (B) Curing agent (C) Polyester polyol without isocyanate group (D) Inorganic filler, and the number average molecular weight of the component (C) is in the range of 1,500 to 10,000. Is an epoxy resin composition.
(B)成分がアミン系硬化剤、フェノール硬化剤、酸無水物系硬化剤のいずれか1種類である、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the component (B) is any one of an amine-based curing agent, a phenol-based curing agent, and an acid anhydride-based curing agent. (C)成分の水酸基価が10〜100mg KOH/gである、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein the hydroxyl value of the component (C) is 10 to 100 mg KOH / g. (C)成分が(A)エポキシ樹脂100質量部に対して、1〜40質量部である、請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 3, wherein the component (C) is 1 to 40 parts by mass with respect to 100 parts by mass of the epoxy resin (A). (C)成分が、芳香族環を含むものである、請求項1〜4のいずれか1項に記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the component (C) contains an aromatic ring. (C)成分の75℃における粘度が1,000〜20,000mPa.sである、請求項1〜5のいずれか1項に記載のエポキシ樹脂組成物。 The viscosity of the component (C) at 75 ° C. is 1,000 to 20,000 mPa. The epoxy resin composition according to any one of claims 1 to 5, which is s. 請求項1〜6のいずれか1項に記載のエポキシ樹脂組成物の硬化物。 The cured product of the epoxy resin composition according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載のエポキシ樹脂組成物からなる半導体素子封止材。 A semiconductor device encapsulant comprising the epoxy resin composition according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載のエポキシ樹脂組成物で封止された半導体素子を備える半導体装置。 A semiconductor device comprising a semiconductor device sealed with the epoxy resin composition according to any one of claims 1 to 6.
JP2020102765A 2020-06-15 2020-06-15 epoxy resin composition Active JP7337462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102765A JP7337462B2 (en) 2020-06-15 2020-06-15 epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102765A JP7337462B2 (en) 2020-06-15 2020-06-15 epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2021195451A true JP2021195451A (en) 2021-12-27
JP7337462B2 JP7337462B2 (en) 2023-09-04

Family

ID=79197261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102765A Active JP7337462B2 (en) 2020-06-15 2020-06-15 epoxy resin composition

Country Status (1)

Country Link
JP (1) JP7337462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178899A (en) * 2022-12-29 2023-05-30 广东盈骅新材料科技有限公司 Impregnating composition, curing resin, composite fiber material, preparation method of composite fiber material and laminated board
CN116606528A (en) * 2023-07-18 2023-08-18 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061364A1 (en) * 2015-10-08 2017-04-13 リンテック株式会社 Heat-curable resin film and sheet for forming first protective film
JP2017122205A (en) * 2016-01-08 2017-07-13 三菱ケミカル株式会社 Epoxy resin composition, prepreg, and method for producing fiber-reinforced composite material
WO2018143446A1 (en) * 2017-02-06 2018-08-09 ユニチカ株式会社 Polyester resin composition, adhesive agent, and laminated body
WO2019131413A1 (en) * 2017-12-26 2019-07-04 Dic株式会社 Thermosetting composition, thermosetting resin modifying agent, cured product of same, semiconductor sealing material, prepreg, circuit board and buildup film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061364A1 (en) * 2015-10-08 2017-04-13 リンテック株式会社 Heat-curable resin film and sheet for forming first protective film
JP2017122205A (en) * 2016-01-08 2017-07-13 三菱ケミカル株式会社 Epoxy resin composition, prepreg, and method for producing fiber-reinforced composite material
WO2018143446A1 (en) * 2017-02-06 2018-08-09 ユニチカ株式会社 Polyester resin composition, adhesive agent, and laminated body
WO2019131413A1 (en) * 2017-12-26 2019-07-04 Dic株式会社 Thermosetting composition, thermosetting resin modifying agent, cured product of same, semiconductor sealing material, prepreg, circuit board and buildup film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178899A (en) * 2022-12-29 2023-05-30 广东盈骅新材料科技有限公司 Impregnating composition, curing resin, composite fiber material, preparation method of composite fiber material and laminated board
CN116606528A (en) * 2023-07-18 2023-08-18 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof
CN116606528B (en) * 2023-07-18 2023-09-29 成都上泰科技有限公司 Toughening modified epoxy resin high polymer for wide bandgap semiconductor packaging and preparation method thereof

Also Published As

Publication number Publication date
JP7337462B2 (en) 2023-09-04

Similar Documents

Publication Publication Date Title
EP3127933B1 (en) Heat-curable epoxy resin composition
EP3184588A1 (en) Liquid epoxy resin composition
TWI796293B (en) Epoxy resin composition for semiconductor encapsulation and method for producing semiconductor device
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP2009097014A (en) Liquid resin composition for sealing, electronic component device and wafer level chip size package
JP2007182562A (en) Liquid resin composition for electronic element and electronic element device
CN110785451A (en) Liquid resin composition for sealing and electronic component device
TW201902975A (en) Liquid resin composition for compression molding and electronic component device
TWI763877B (en) Thermosetting epoxy resin sheet for semiconductor sealing, semiconductor device, and manufacturing method thereof
JP7337462B2 (en) epoxy resin composition
JP2013064152A (en) Liquid resin composition for electronic component, and electronic component device using the same
TWI793340B (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
EP3257898B1 (en) Epoxy resin composition
JP2006233016A (en) Epoxy resin composition and semiconductor device
TW201829609A (en) Resin composition, resin sheet and semiconductor device, and method for manufacturing semiconductor device wherein the resin sheet is excellent in operability and formability and capable of maintaining flexibility for a long period of time
JP2018062606A (en) Underfill material, electronic component device and method for producing electronic component device
JP2021098786A (en) Liquid epoxy resin composition
JP2017028050A (en) Underfill material and electronic component device using the same
JP2011132337A (en) Epoxy resin composition and semiconductor device
JP6839114B2 (en) Thermosetting epoxy resin sheet for semiconductor encapsulation, semiconductor device, and its manufacturing method
JP2643706B2 (en) Thermosetting resin composition and semiconductor device
KR102137549B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP4759994B2 (en) Epoxy resin composition and semiconductor device
JP7336419B2 (en) Thermosetting epoxy resin composition, thermosetting epoxy resin sheet, and cured product thereof
WO2024202136A1 (en) Epoxy resin composition, electronic component, semiconductor device, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7337462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150