JP2021194778A - Integral structure of copper material and pps-based resin composition and method for manufacturing the same - Google Patents

Integral structure of copper material and pps-based resin composition and method for manufacturing the same Download PDF

Info

Publication number
JP2021194778A
JP2021194778A JP2020100248A JP2020100248A JP2021194778A JP 2021194778 A JP2021194778 A JP 2021194778A JP 2020100248 A JP2020100248 A JP 2020100248A JP 2020100248 A JP2020100248 A JP 2020100248A JP 2021194778 A JP2021194778 A JP 2021194778A
Authority
JP
Japan
Prior art keywords
resin composition
copper
based resin
pps
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020100248A
Other languages
Japanese (ja)
Inventor
直樹 安藤
Naoki Ando
嘉寛 山口
Yoshinori Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2020100248A priority Critical patent/JP2021194778A/en
Publication of JP2021194778A publication Critical patent/JP2021194778A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a seal structure for a copper electrode for extracting electricity to the outside of a battery box in a lithium ion battery or the like which prevents intrusion of moisture, oxygen and other gases into the battery box.SOLUTION: A structure can be applied to a lid of a lithium ion battery in which a copper electrode having a chemically converted surface and a specific polyphenylene sulfide-based resin composition are directly and integrally bonded to each other. The polyphenylene sulfide-based resin composition is a resin composition containing a polyphenylene sulfide resin as a main component and a modified polyolefin resin as a sub-component, and is added with 15-25 wt.% of a glass short fiber based on the whole resin composition as a reinforcement material component. A bonding force between the copper electrode and the polyphenylene sulfide-based resin composition is 40 MPa or more in measurement of a shear bond strength, and a shear bond viscous value that prevents breakage even when an external force in a shear direction due to continuous 300 times of repeating is applied thereto is 33 MPa or more.SELECTED DRAWING: Figure 8

Description

本発明は、銅材とPPS系樹脂組成物の一体化構造物とその製造方法に関する。更に詳しくは、リチウムイオン電池等の電極引き出し部に用いられ、特に、外部から電解液への水分子等の異物質の侵入を抑えることができるシール構造を有する、銅材とPPS系樹脂組成物の一体化構造物とその製造方法に関する。 The present invention relates to an integrated structure of a copper material and a PPS-based resin composition and a method for producing the same. More specifically, a copper material and a PPS-based resin composition used for an electrode drawing portion of a lithium ion battery or the like and having a sealing structure capable of suppressing the invasion of foreign substances such as water molecules into the electrolytic solution from the outside. Regarding the integrated structure and its manufacturing method.

リチウムイオン電池(以下、「LIB」という。)は、電解液に浸漬される正極、負極から集電して電力をLIBの本体容器から外部に取り出すために、正電極材に銅材、負電極材にアルミニウム合金材が用いられているものがある。この電極材は、電解液が漏洩しないように、LIBの容器材との固着接合部をシールする必要があり、このために一般にはOリング等が用いられている。本出願人は、このOリング構造ではなく、銅材、アルミニウム合金材である電極材を射出成形金型にインサートし、これに容器の蓋材の樹脂を射出してシールする構造、及び、その構造物の製造方法を提案した(特許文献1、5等参照)。即ち、負極用の引き出し用のアルミニウム合金(以下、「Al合金」と称する。)製の棒状物と、これを支える合成樹脂製の電池蓋との間の接合面(固着面)、及び、正極用の電極引き出し用の銅製棒状物と、この電池蓋との間の接合面(固着面)を改良したものである。本発明者等は、この金属・樹脂部間の接合面(固着面)を改良し、超微細な隙間を通過する水分子や酸素分子の分子数量を極力抑えることができる、金属面の化成処理方法、及びそれに用いる合成樹脂組成物を提案した。 A lithium ion battery (hereinafter referred to as "LIB") has a positive electrode material, a copper material, and a negative electrode in order to collect electricity from a positive electrode and a negative electrode immersed in an electrolytic solution and take out electric power from the main body container of the LIB. Some materials use aluminum alloy materials. This electrode material needs to seal the fixed joint portion of the LIB with the container material so that the electrolytic solution does not leak, and for this purpose, an O-ring or the like is generally used. Instead of this O-ring structure, the applicant has a structure in which an electrode material, which is a copper material or an aluminum alloy material, is inserted into an injection molding mold, and the resin for the lid material of the container is injected into this to seal the structure, and the structure thereof. A method for manufacturing a structure was proposed (see Patent Documents 1, 5, etc.). That is, a joint surface (fixed surface) between a rod-shaped object made of an aluminum alloy for drawing out for a negative electrode (hereinafter referred to as "Al alloy") and a battery lid made of synthetic resin that supports the rod, and a positive electrode. This is an improved joint surface (fixing surface) between the copper rod-shaped material for drawing out the electrodes and the battery lid. The present inventors have improved the bonding surface (fixing surface) between the metal and resin portions, and can suppress the molecular quantity of water molecules and oxygen molecules passing through ultrafine gaps as much as possible. A method and a synthetic resin composition used for the method were proposed.

LIBは優れた2次電池であり、既に世界中で実用化され使用されているが、例えば、日本国内の自然環境下では、5年程度で蓄電量が急激に低下する傾向がある。この原因の一つに、完全無水であるべき電解液に、水分等の異物が侵入することも劣化の原因の一つとも言われている。取り分け、上記の金属・樹脂部間の接合面は、線膨張係数の違い等の理由から、異材質である金属と樹脂の接着力が経年変化に耐えられない問題がある。また、上記金属と樹脂間のシールは、上記の理由から高度なガスシール性と、熱応力による繰返しのクリープ応力に対する耐久性も要求される。本発明の発明者等(以下、「発明者等」という。)は、上記LIBの引き出し電極材(銅材とAl合金材)と、これに接合(固着)する蓋材に用いる合成樹脂は、ポリフェニレンサルファイド樹脂(Poly Phenylene Sulfide Resin、以下「PPS」という。)系の組成物「例えば、『SGX120』(東ソー株式会社(本社:日本国東京都))」(以下、「SGX120」という。)が最適であると考え提案した。この提案した「銅材とAl合金材」の双方、又は一方の表面は、特定の化成処理されたものである(特許文献1、4、5参照)。 LIB is an excellent secondary battery and has already been put into practical use and used all over the world. For example, in the natural environment in Japan, the amount of stored electricity tends to decrease sharply in about 5 years. It is said that one of the causes of this deterioration is the intrusion of foreign substances such as water into the electrolytic solution, which should be completely anhydrous. In particular, the above-mentioned joint surface between the metal and resin portions has a problem that the adhesive strength between the metal and the resin, which are different materials, cannot withstand the secular change due to the difference in the coefficient of linear expansion and the like. Further, the seal between the metal and the resin is required to have a high degree of gas sealing property and durability against repeated creep stress due to thermal stress for the above reason. The inventors of the present invention (hereinafter referred to as "inventors") have described the above-mentioned LIB pull-out electrode material (copper material and Al alloy material) and the synthetic resin used for the lid material to be bonded (fixed) to the lead-out electrode material (copper material and Al alloy material). Poly Phenylene Sulfide Resin (hereinafter referred to as "PPS")-based composition "For example," SGX120 "(Tosoh Co., Ltd. (Headquarters: Tokyo, Japan))" (hereinafter referred to as "SGX120") I thought it was the best and proposed it. Both or one of the surfaces of the proposed "copper material and Al alloy material" has been subjected to a specific chemical conversion treatment (see Patent Documents 1, 4, and 5).

発明者等が過去に提案したものの中に、金属と結晶性熱可塑性樹脂とを強く直接的に接合させる技術として射出成形機を用いて行うもの、即ち、既に多くの射出成形の関係技術者には既に知られているが、「射出接合法」、「射出接合技術」等と呼称される接合技術がある。その射出接合技術の中に、発明者等が開発し命名した「NMT」と「新NMT」がある(特許文献11、12等参照)。LIBの製造において、このNMTや新NMTを使用すれば、射出成形金型にAl合金や純銅材をインサートし、PPS系樹脂組成物(例えば、「SGX120」)を使用して射出接合したときに、その樹脂部と金属部間の接合力(せん断接合強度)は、何れも約40MPa程度の強さがあり、接合強度が非常に強いことが判明していた。それ故、これらAl合金と、銅材に関する射出接合技術を使って、LIB電池箱内と外気の間の液封止は勿論、ガス封止さえ出来る技術に使用できると考えた。 Among those proposed by the inventors in the past, those performed using an injection molding machine as a technique for strongly and directly bonding a metal and a crystalline thermoplastic resin, that is, to many engineers related to injection molding already. Is already known, but there are joining techniques called "injection joining method", "injection joining technique" and the like. Among the injection joining technologies, there are "NMT" and "new NMT" developed and named by the inventors (see Patent Documents 11, 12, etc.). If this NMT or new NMT is used in the production of LIB, when an Al alloy or pure copper material is inserted into an injection molding die and injection bonding is performed using a PPS-based resin composition (for example, "SGX120"). The bonding force (shear bonding strength) between the resin portion and the metal portion was about 40 MPa, and it was found that the bonding strength was very strong. Therefore, it was thought that these Al alloys and the injection bonding technology for copper materials could be used for technology that can seal not only liquid between the inside of the LIB battery box and the outside air, but also gas sealing.

この技術思想で、LIBの蓋部の構造案を設計して、その構造の開示を行ったのが特許文献1に記載した発明である。ただし、特許文献1に記載し、LIB蓋部の電極引き出し部分に使用した射出接合技術は、Al合金に関するもののみであった。当時、Al合金に対する射出接合のための表面処理法の改良が進み、本発明者等が命名したNMT2処理法を発明した時である。この特許文献1に記載されたものは、LIB蓋部の構造案について提案し開示しているものの、その化成処理の基本は、NMT2処理法という主にAl合金材用に開発し新表面処理法である。このNMT2処理されたAl合金材と、PPS系樹脂「SGX120」との射出接合物におけるその接合面部のガス封止性は高い。当時に於いて、新NMT処理法を施したC1100銅使用の射出接合物は、その接合面におけるガス封止性は従前のOリング封止法に較べればヘリウムガス漏れ実験で1桁以上も高く、使用できない物ではなかった。しかしながら、Al合金材とPPS系樹脂「SGX120」との射出接合物におけるそのガス封止性は、C1100銅材を使用した場合より更に2桁高い。それ故に、ガス封止に関してはAl合金材を使用する技術のみを使ったのである。 Based on this technical idea, the invention described in Patent Document 1 is to design a structural plan of the lid portion of the LIB and disclose the structure. However, the injection joining technique described in Patent Document 1 and used for the electrode drawing portion of the LIB lid portion is only related to Al alloy. At that time, the surface treatment method for injection bonding to Al alloys was improved, and the NMT2 treatment method named by the present inventors was invented. Although the one described in Patent Document 1 proposes and discloses a structural proposal of the LIB lid portion, the basis of the chemical conversion treatment is the NMT2 treatment method, which is a new surface treatment method developed mainly for Al alloy materials. Is. The gas sealing property of the joint surface portion of the injection joint between the NMT2-treated Al alloy material and the PPS-based resin "SGX120" is high. At that time, the injection joint using C1100 copper subjected to the new NMT treatment method had a gas sealing property on the joint surface that was more than an order of magnitude higher in the helium gas leak experiment than the conventional O-ring sealing method. , It wasn't something that couldn't be used. However, the gas sealing property of the injection joint of the Al alloy material and the PPS-based resin "SGX120" is two orders of magnitude higher than that when the C1100 copper material is used. Therefore, for gas sealing, only the technology using Al alloy material was used.

(射出接合物によるガス封止技術)
このように、特許文献1に記載されたものは、主にAl合金に関する射出接合技術について発明されたものであって、Al合金と樹脂のガス封止性について、実験で判明したその高性能を開示したものであった。このAl合金を使用した射出接合物に関しては更に開発を進めた。この射出接合物の接合部の耐湿熱性の強度を確認するための試験を行った。この試験は、本明細書に添付した図1に示す形状の射出接合物(接合強度のための試験片)で行い、これを温度85℃で85%湿度下の環境下で、8千時間晒す高温高湿試験を行っている。この高温高湿試験では、金属・樹脂部間のせん断接合強度は殆ど低下せず、高度な耐湿熱性がある接合方法を実現できた(特許文献2参照)。同様に、−50℃/+150℃の温度衝撃3千サイクルを与えても、金属・樹脂間の接合力が低下しない射出接合物として、具体的な形状設計法も既に提案した(特許文献3参照)。要するに、LIBの電池蓋がPPS系樹脂組成物製であり、電極引き出し部がAl合金材であれば、特許文献1、2、3等で公開された射出接合技術で製作すれば、接合の強度の低下、水分等の異物等の混入もない。即ち、Al合金の金属棒の樹脂板状物の貫通部分で、ガス漏れする速度、正しくは水分子、酸素分子等が電池本体内部に出入りする速度は著しく抑えられ、ガスの完全封止に近いものを実現できた。
(Gas sealing technology using injection joints)
As described above, the one described in Patent Document 1 is mainly invented for injection bonding technology relating to Al alloys, and exhibits the high performance found in experiments regarding the gas sealing property of Al alloys and resins. It was disclosed. Further development was carried out on the injection joint using this Al alloy. A test was conducted to confirm the strength of the moisture resistance and heat resistance of the joint portion of this injection joint. This test is performed on an injection bond (test piece for bonding strength) of the shape shown in FIG. 1 attached herein, which is exposed at a temperature of 85 ° C. and in an environment of 85% humidity for 8,000 hours. We are conducting a high temperature and high humidity test. In this high-temperature and high-humidity test, the shear bonding strength between the metal and resin parts hardly decreased, and a bonding method with high moisture and heat resistance could be realized (see Patent Document 2). Similarly, a specific shape design method has already been proposed as an injection joint in which the bonding force between the metal and the resin does not decrease even when a temperature shock of -50 ° C / + 150 ° C is applied for 3,000 cycles (see Patent Document 3). ). In short, if the battery lid of the LIB is made of a PPS-based resin composition and the electrode extraction portion is an Al alloy material, the strength of the bonding can be obtained by manufacturing with the injection bonding technology published in Patent Documents 1, 2, 3 and the like. There is no decrease in the amount of water, and there is no contamination of foreign substances such as moisture. That is, the speed at which gas leaks, to be correct, the speed at which water molecules, oxygen molecules, etc. enter and leave the battery body is significantly suppressed at the penetration portion of the resin plate-like object of the Al alloy metal rod, which is close to complete gas sealing. I was able to realize something.

一方、純銅であるC1100銅と、上記PPS系樹脂組成物である「SGX120」との射出接合物についてだが、本発明者等が当時推奨する化成処理(例えば、特許文献1に記載の処理方法である。)を施したものは、せん断接合強度が、約40MPa程度の強度を実現できた。そしてこの接合部のガス封止性は、従来のシリコーンゴム製Oリングよりも、優れた性能であることを確認した。しかしながら、前述した様な理由で、特許文献1に記載されたLIBの電池蓋構造提案では、銅部についてその射出接合技術を採用しなかった。このため、銅電極の化成処理を改良した発明をその後に提案した(特許文献5参照)。そして更にその後、この発明を更に改良したものも提案した(特許文献4参照)。 On the other hand, regarding the injection junction of C1100 copper, which is pure copper, and "SGX120", which is the PPS-based resin composition, the chemical conversion treatment recommended by the present inventors at that time (for example, the treatment method described in Patent Document 1). The one subjected to)) was able to achieve a shear bonding strength of about 40 MPa. It was confirmed that the gas sealing property of this joint was superior to that of the conventional silicone rubber O-ring. However, for the reasons described above, the LIB battery lid structure proposal described in Patent Document 1 does not adopt the injection joining technique for the copper portion. Therefore, an invention in which the chemical conversion treatment of the copper electrode was improved was subsequently proposed (see Patent Document 5). Further, after that, a further improved version of this invention was also proposed (see Patent Document 4).

(銅材に対する射出接合用の表面処理法の変化(本発明の予備試験、開発経緯))
一方、射出接合物における金属・樹脂間の接合力の測定法は、ISO19095として国際規格化された、これは本発明者等が当初から実験として使用してきた手法が公的に規格化されたものである。そのせん断接合強度測定用の射出接合物は、図1に示したものである。即ち、前述した特許文献5、特許文献4に開示した銅、又は銅合金のせん断接合強度は、ISO19095で規格化された以前の測定値である。しかし、図1に示した同じ形状物の試験片からえた数値であり、同じせん断接合強度であるから、本発明の評価指標として同様の数値指標として使える。接合強度を強くする表面処理法が改良されたか否かの判断は、この試験法による射出接合物のせん断接合強度が、向上したか否かで判断していた。但し、この測定試験方法では、接合力がある程度強くなると数値は飽和気味になる。例えば、PPS系樹脂である上記「SGX120」使用したものであれば、銅、又は銅合金の化成処理を改良しても最高値41〜42MPaであり、それ以上の数値は得られない。本発明者等は、改良が進んでせん断接合強度が、38MPaを越すとそれ以後の改良物評価が困難になった。即ち、銅、又は銅合金に限らず、硬質の金属材の場合、真の接合力の強さに関係すると見られるガス封止性の効果や評価は、上記せん断接合強度の測定方法のみでは正しく評価できないことが判明した。
(Changes in Surface Treatment Method for Injection Bonding to Copper Material (Preliminary Test of the Present Invention, Development Process))
On the other hand, the method for measuring the bonding force between metal and resin in an injection junction has been internationally standardized as ISO19095, which is a public standardization of the method used by the present inventors as an experiment from the beginning. Is. The injection joint for measuring the shear joint strength is shown in FIG. That is, the shear bond strength of copper or copper alloy disclosed in Patent Documents 5 and 4 described above is a measurement value before being standardized by ISO1909. However, since it is a numerical value obtained from a test piece of the same shape shown in FIG. 1 and has the same shear joint strength, it can be used as a similar numerical index as an evaluation index of the present invention. Whether or not the surface treatment method for increasing the bonding strength was improved was determined by whether or not the shearing bonding strength of the injection joint by this test method was improved. However, in this measurement test method, the numerical value tends to be saturated when the bonding force becomes strong to some extent. For example, in the case of using the above-mentioned "SGX120" which is a PPS-based resin, the maximum value is 41 to 42 MPa even if the chemical conversion treatment of copper or a copper alloy is improved, and no higher value can be obtained. The present inventors have made progress in the improvement, and when the shear joint strength exceeds 38 MPa, it becomes difficult to evaluate the improved product after that. That is, in the case of hard metal materials, not limited to copper or copper alloys, the effect and evaluation of gas sealing properties, which are considered to be related to the strength of the true bonding force, are correct only by the above method for measuring the shear bonding strength. It turned out that it could not be evaluated.

これに対応すべく本発明者等は、「せん断接合粘り性」という新概念の接合力測定法、即ち、同じ数値のせん断方向の外力を300回だけ繰り返し連続的に加えて、これで破断しないで耐え得る最大の外力を測定する方法を提案した(詳細には後述する。)。そして、この評価法を、新処理法開発の評価指標とした。即ち、本発明者等は、特許文献4に記載された発明をした後に、この評価法で新処理法の開発の評価手法として、各種新処理法を開発した。それ故に、特許文献4に記載した3種の新しい表面化成処理法によるC1100銅片も射出接合させて、図1に示す形状物の試験片をえて、この各々の「せん断接合粘り性」値を測定する確認試験を行った。その結果、特許文献4に示された3種の表面処理品の全ては、それ以前の物より明らかに改良されていたこと、そして、特に3種の表面処理品の中の1種が優れていることが判明した。 In order to deal with this, the present inventors have a new concept of "shear joint tenacity", which is a new concept of joint force measurement method, that is, an external force of the same numerical value in the shear direction is continuously applied 300 times repeatedly, and the joint force is not broken. We proposed a method to measure the maximum external force that can be withstood in (details will be described later). Then, this evaluation method was used as an evaluation index for the development of a new treatment method. That is, the present inventors have developed various new treatment methods as an evaluation method for the development of a new treatment method by this evaluation method after making the invention described in Patent Document 4. Therefore, C1100 copper pieces by the three new surface chemical treatment methods described in Patent Document 4 are also injection-bonded to obtain a test piece of the shape shown in FIG. 1, and the "shear-bonded stickiness" value of each is obtained. A confirmation test was conducted to measure. As a result, all of the three types of surface-treated products shown in Patent Document 4 were clearly improved from the previous products, and one of the three types of surface-treated products was particularly excellent. It turned out to be.

同様に、特許文献4に記載の3種の表面処理法で処理したC1100銅片と、上記「SGX120」とで射出接合物を得て、その金属・樹脂間の接合力を測定した。この3種類の試験片は、共にせん断接合強度が約40MPaで十分高かった。また、これを簡易的な高温、高湿度試験のために家庭用の電気ポットに試験片を浸漬し、温度98℃の純水に72時間浸漬する試験を行い、3種の内の1種だけが72時間の浸漬後で、38MPaのせん断接合強度を示し高い耐湿熱性を示していた。この中の優れた試験片の一つを、10万倍の電顕写真として図5に示す。この電顕写真を観察すると、表面が約10nm径のウイスカで全体が覆われており、多数のウイスカは絡みながら生えており、このウイスカ形状はまるで人間の頭毛のようである。 Similarly, an injection joint was obtained with the C1100 copper piece treated by the three types of surface treatment methods described in Patent Document 4 and the above-mentioned "SGX120", and the bonding force between the metal and the resin was measured. The shear joint strength of all three types of test pieces was about 40 MPa, which was sufficiently high. In addition, for a simple high-temperature, high-humidity test, a test piece was immersed in a household electric kettle and immersed in pure water at a temperature of 98 ° C for 72 hours, and only one of the three types was used. After soaking for 72 hours, it showed a shear bonding strength of 38 MPa and showed high moisture and heat resistance. One of the excellent test pieces is shown in FIG. 5 as an electron micrograph of 100,000 times. When observing this electron micrograph, the entire surface is covered with whiskers having a diameter of about 10 nm, and many whiskers grow while being entwined, and the shape of these whiskers is like human hair.

このウイスカは、分析電子顕微鏡で酸化銅であることが判明した。発明者等が知る限り、特許文献4に示した電子顕微鏡写真(以下、「電顕写真」という。)のように全表面が、密集ウイスカで覆われている金属片は珍しい。本発明において、前述した3種について「せん断接合粘り性」を測定すべくこの密集ウイスカ生成銅片含む3種を再度作成し、これらで「SGX120」の射出接合物を作成し、それらの「せん断接合粘り性」を測定した。その結果、その3種の測定結果は、全て銅の表面処理の基礎発明である特許文献5に記載の物を上回っていただけでなく、前記密集ウイスカ型の1種は他2種よりも高かった。要するに、このウイスカ型の1種は、PPS系樹脂組成物である「SGX120」使用の射出接合物として、せん断接合強度、せん断接合粘り性、接合力耐湿熱性の全てでAl合金使用の射出接合物に近い高数値を示した。 This whisker was found to be copper oxide by analytical electron microscopy. As far as the inventor and others know, it is rare for a metal piece whose entire surface is covered with a dense whisker as shown in the electron micrograph (hereinafter referred to as "electron micrograph") shown in Patent Document 4. In the present invention, in order to measure the "shear joint stickiness" of the above-mentioned three types, three types including the dense whiskers-generated copper pieces are re-created, and an injection junction of "SGX120" is prepared from these to prepare their "shear". "Joint stickiness" was measured. As a result, the measurement results of the three types were all higher than those described in Patent Document 5, which is the basic invention of the surface treatment of copper, and one of the dense whiskers type was higher than the other two types. .. In short, this kind of whisker type is an injection bonding product using Al alloy in all of shear bonding strength, shear bonding stickiness, and bonding strength moisture resistance as an injection bonding product using "SGX120", which is a PPS-based resin composition. It showed a high value close to.

[本発明の開発経緯]
このような経過で、特許文献4に記載された化成処理方法の中で、ウイスカを発生する銅片を作る表面処理法を、更に化成処理を試行錯誤により微調整して、せん断接合粘り性が更に高くなる処理法を探索した。そして、特許文献4に記載された発明の改良発明として位置づけ、本発明では銅における「最新の新NMT処理法1」と命名した。そしてこの「最新の新NMT処理法1」で、C1100銅を処理し、LIBに用いることができると判断した。要するに、この銅片を使用した射出接合物は、せん断接合強度が約42MPaと高いだけでなく、その接合力に耐湿熱性がある。そして、この射出接合物は、「せん断接合粘り性」値でも35.3MPaの高値を示したので、接合面部のガス封止性も高いと予測した。この理由は、Al合金とPPS系樹脂組成物との射出接合物も、せん断接合強度が約40MPaと高いだけでなく、その接合力に耐湿熱性があり「せん断接合粘り性」値もC1100銅材でえた35.3MPaと同値で高い。要するに、この改良によりその射出接合物は、せん断接合強度、せん断接合粘り性、接合力耐湿熱性の全てで、Al合金使用の射出接合物と同等の高い数値をえた。
[Development process of the present invention]
In such a process, among the chemical conversion treatment methods described in Patent Document 4, the surface treatment method for producing copper pieces that generate whiskers is further finely adjusted by trial and error, and the shear bonding stickiness is improved. We searched for a higher processing method. Then, it was positioned as an improved invention of the invention described in Patent Document 4, and was named "latest new NMT treatment method 1" in copper in the present invention. Then, it was determined that C1100 copper could be treated by this "latest new NMT treatment method 1" and used for LIB. In short, the injection joint using this copper piece not only has a high shear joint strength of about 42 MPa, but also has moisture resistance and heat resistance in its bonding force. Since this injection joint showed a high value of 35.3 MPa even in the "shear joint stickiness" value, it was predicted that the gas sealing property of the joint surface portion was also high. The reason for this is that the injection bond between the Al alloy and the PPS resin composition not only has a high shear bond strength of about 40 MPa, but also has a moisture resistance to the bond force and a "shear bond stickiness" value of C1100 copper material. It is as high as 35.3 MPa obtained. In short, due to this improvement, the injection joint has high values equivalent to those of the injection joint using Al alloy in all of the shear joint strength, the shear joint tenacity, and the bonding force, moisture resistance and heat resistance.

[ウイスカ型銅表面の接合性]
基本的にAl合金と銅材は、物理化学的に同等のPPS系樹脂に対する接合物性を有することから、その接合部におけるガス封止性も類似していると推定した。但し、銅材の表面にウイスカが頭毛のように生えた超微細凹凸面に対し、射出樹脂がそのウイスカの生え際まで短時間で流動して侵入しているか否かについて、現在の技術では観察はできない。完全封止に近いAl合金・PPS系樹脂の射出接合物が実現できたAl合金表面の電顕写真(例えば、図4参照)は、そのような微細凹凸周期の凹部の深さは、明らかにウイスカ面の写真(例えば、図5参照)から得られる凹部深さ(ここではウイスカ層の厚さ)より浅いからである。
[Joinability of whisker type copper surface]
Since the Al alloy and the copper material basically have physicochemically equivalent bonding characteristics to the PPS-based resin, it is presumed that the gas sealing properties at the bonding portion are also similar. However, with the current technology, it is observed whether the injection resin flows to the hairline of the whiskers in a short time and invades the ultra-fine uneven surface where whiskers grow like hair on the surface of the copper material. Can't. An electromicrograph of the surface of the Al alloy (see, for example, Fig. 4) in which an injection junction of Al alloy / PPS resin that is close to complete encapsulation was realized shows the depth of the recesses with such a fine uneven period. This is because it is shallower than the recess depth (here, the thickness of the whiskers layer) obtained from the photograph of the whiskers surface (see, for example, FIG. 5).

要するに、ウイスカが形成された表面は、単純な超微細凹凸面形状ではないからである。即ち、ガス封止性としては、ウイスカの生え際にナノレベルの空間が残存している可能性もあり、このウイスカ構造物の方が接合強度で変わらなくてもガス封止性では若干劣るかもしれないと推察される。それ故に本発明では、ウイスカ型に処理された銅片と全く同等なせん断接合強度、「せん断接合粘り性」値を有するC1100銅片用の非ウイスカ型表面を生む表面処理法も開発した。これら表面処理法の改良の結果、銅電極側でのガス封止性が、特許文献4に記載されたものより確実に改良され、アルミ電極部とほぼ同等の性能を示しえると予期出来た。この結果を受けて、図8に示すようなLIB電池蓋の構造案となった。このために新表面処理法によるこの構造の形状例は、先に示したLIB電池蓋構造案(特許文献1に記載の図11に示す構造)より大きく簡略化された。 In short, the surface on which the whiskers are formed is not a simple ultrafine uneven surface shape. That is, as for the gas sealing property, there is a possibility that a nano-level space remains at the hairline of the whiskers, and this whisker structure may be slightly inferior in gas sealing property even if the bonding strength does not change. It is presumed that there is no such thing. Therefore, the present invention has also developed a surface treatment method for producing a non-whisker type surface for C1100 copper pieces having a shear bond strength and a "shear bond stickiness" value that are exactly the same as those of a whisker-treated copper piece. As a result of these improvements in the surface treatment method, it was expected that the gas sealing property on the copper electrode side would be surely improved from that described in Patent Document 4, and that the performance would be almost the same as that of the aluminum electrode portion. Based on this result, the structure of the LIB battery lid as shown in FIG. 8 was proposed. For this reason, the shape example of this structure by the new surface treatment method has been greatly simplified as compared with the above-mentioned LIB battery lid structure proposal (structure shown in FIG. 11 described in Patent Document 1).

(銅の表面処理法の他の問題)
前述したウイスカ型表面を有する銅材に使用する表面処理の水溶液は、硝酸クロム水和物が0.1%濃度とごく少量だが含まれている。この処理液は、大量の銅片処理を行うと処理液も劣化するから新液に交換する必要があり、廃液が発生する。当然ながら、ごく薄いが3価クロム入りの廃水が生じ、これを自然環境に放出することはできないので、排水処理設備のための投資が必要となる。廃水に含まれるクロム量は、ごく薄いためにこの処理コストは大きなものではないが、少なくともその投資費用が発生する。本発明者等は、このコスト意識ではなく、環境保護の観点から、法的基準を満たすというレベル以上の高度の環境保全性を示すべきと考えた。それ故に、銅材表面の処理に使用する処理液は、クロムを含まないものにする変更が望まれる。しかも、これによって処理した銅材と、PPS系樹脂との射出接合物は、その射出接合力がクロムを含む処理液で処理したものと同等、ないしそれ以上の接合強度を有するものでなくてはならない。本発明の化成処理方法は、この接合物の作成にも到達できた。後述するように、これらのクロムを含まない、処理液で処理した処理方法は、後記の表1に示す「最新の新NMT処理法2」及び「最新の新NMT処理法3」(後述)と呼ぶ。この二つの新処理法による処理済み銅材の表面には、酸化銅ウイスカ群は形成されていない。
(Other problems with copper surface treatment)
The above-mentioned aqueous solution of the surface treatment used for the copper material having a whisker-shaped surface contains chromium nitrate hydrate at a concentration of 0.1%, which is a very small amount. When a large amount of copper pieces are treated, the treatment liquid also deteriorates, so it is necessary to replace it with a new liquid, and waste liquid is generated. Naturally, wastewater containing trivalent chromium, which is very thin, is generated and cannot be released into the natural environment, so investment for wastewater treatment equipment is required. Since the amount of chromium contained in wastewater is very thin, this treatment cost is not large, but at least the investment cost is incurred. The present inventors considered that they should show a high degree of environmental conservation above the level of satisfying legal standards from the viewpoint of environmental protection, not from this cost consciousness. Therefore, it is desirable to change the treatment liquid used for treating the surface of the copper material so that it does not contain chromium. Moreover, the injection bonding product between the copper material treated by this and the PPS-based resin must have a bonding strength equal to or higher than that treated with a treatment liquid containing chromium in its injection bonding force. It doesn't become. The chemical conversion treatment method of the present invention has also reached the point of producing this bonded product. As will be described later, the treatment methods treated with the treatment liquid containing no chromium are referred to as "latest new NMT treatment method 2" and "latest new NMT treatment method 3" (described later) shown in Table 1 below. Call. No copper oxide whiskers are formed on the surface of the copper material treated by these two new treatment methods.

(射出接合技術)
前述した「射出接合技術」について改めて詳細に述べる。金属と合成樹脂を強く接合する技術は、自動車、家電品、各種産業機器等の部品製造業だけでなく広い産業分野において求められ、このために多くの接着剤が開発されている。このような接合技術は、あらゆる製造業において基幹となる技術である。一方、金属と樹脂を接合するとき、接着剤を使用しない接合方法は、従来から研究され種々提案されている。本発明者等が開発し名付け、前述した「NMT(Nano Molding Technologyの略)」と「新NMT(New Nano Molding Technologyの略)」である。本発明でいうNMTは、特定の化成処理により表面処理をしたAl合金と樹脂組成物との接合技術であり、予め射出成形金型内にインサートしていたAl合金片に、結晶性熱可塑性樹脂を射出し、樹脂部分を成形すると同時に、その成形品とAl合金片とを接合する方法である。又、本発明でいう新NMTは、Al合金を含む全金属種と樹脂組成物との同様な接合技術であり、NMTと異なるのはインサート前に行う金属類への表面処理法に関する基本理論が異なることである。このように射出成形機を介して、金属材等の固形物と熱可塑性樹脂を接合すること、又はその技術を、発明者等は「射出接合」又は「射出接合技術」と称した。
(Injection joining technology)
The above-mentioned "injection joining technology" will be described in detail again. Technology for strongly joining metal and synthetic resin is required not only in the parts manufacturing industry such as automobiles, home appliances, and various industrial equipment, but also in a wide range of industrial fields, and many adhesives have been developed for this purpose. Such joining technology is a core technology in all manufacturing industries. On the other hand, when joining a metal and a resin, a joining method that does not use an adhesive has been conventionally studied and variously proposed. The above-mentioned "NMT (abbreviation of Nano Molding Technology)" and "New NMT (abbreviation of New Nano Molding Technology)" developed and named by the present inventors. NMT referred to in the present invention is a joining technique of an Al alloy surface-treated by a specific chemical conversion treatment and a resin composition, and is a crystalline thermoplastic resin in an Al alloy piece previously inserted into an injection molding mold. Is injected to form the resin portion, and at the same time, the molded product and the Al alloy piece are joined. Further, the new NMT referred to in the present invention is a bonding technique similar to that of all metal species including Al alloy and a resin composition, and is different from NMT in the basic theory regarding the surface treatment method for metals performed before insertion. It's different. The technique of joining a solid substance such as a metal material and a thermoplastic resin via an injection molding machine in this way, or the technique thereof, is referred to by the inventors as "injection joining" or "injection joining technique".

(NMT)
Al合金使用の射出接合技術であるNMTは、本発明者等はその成立の必要条件として以下の4又は5条件を規定した。まず、Al合金側に関しては、以下(1)及び(2)が必要条件である。なお、この2点を満足するようAl合金表面を化学処理することを「NMT処理」と称した。
(1)20〜50nm径の超微細凹部で全表面が覆われていること。
(2)そしてその表面層に水溶性アミン系化合物が化学吸着していること。
次に、射出する樹脂組成物側に関して、以下の2点又は3点が必要条件である。
(3)使用する樹脂組成物は、高結晶性熱可塑性樹脂を主成分とする樹脂組成物である。
(4)その高結晶性熱可塑性樹脂は、高温下でアミン系分子と化学反応すること。
(5)その樹脂組成物は、従成分樹脂として、主成分樹脂に相溶し得る樹脂、又は主成分樹脂に相溶しない樹脂であっても第3成分樹脂を加えることで主成分樹脂への相溶や部分的相溶が可能となる樹脂を含むこと。
上記(1)〜(4)が必須の必要条件であり、上記(5)の条件が加われば射出接合力がより強くなる。上記(1)〜(5)の条件を満たし、かつ、上記(2)のアミン系化合物として水和ヒドラジンを選択したものが実用化されたNMTである。
(NMT)
The present inventors have specified the following 4 or 5 conditions as the necessary conditions for the establishment of NMT, which is an injection joining technology using an Al alloy. First, regarding the Al alloy side, the following (1) and (2) are necessary conditions. The chemical treatment of the Al alloy surface so as to satisfy these two points was referred to as "NMT treatment".
(1) The entire surface is covered with ultrafine recesses having a diameter of 20 to 50 nm.
(2) And the water-soluble amine compound is chemically adsorbed on the surface layer.
Next, regarding the resin composition side to be injected, the following two or three points are necessary conditions.
(3) The resin composition used is a resin composition containing a highly crystalline thermoplastic resin as a main component.
(4) The highly crystalline thermoplastic resin chemically reacts with amine-based molecules at high temperatures.
(5) The resin composition can be made into a main component resin by adding a third component resin as a secondary component resin, even if it is a resin that is compatible with the main component resin or a resin that is incompatible with the main component resin. Contains a resin that is compatible or partially compatible.
The above (1) to (4) are indispensable necessary conditions, and if the above condition (5) is added, the injection bonding force becomes stronger. An NMT that satisfies the above conditions (1) to (5) and has hydrated hydrazine selected as the amine compound of the above (2) has been put into practical use.

(NMT2、NMT5〜NMT8)
NMT処理したAl合金に対し、PBT(ポリブチレンテレフタレート)系樹脂組成物が射出接合することにより、強力な接合力が得られることを本発明者等が発見した。そしてその後、同様にNMT処理したAl合金に対し、PPS系樹脂組成物が射出接合できることを発明者等は発見した(特許文献12)。次に、特許文献1に記載したように、Al合金の表面処理法を改良して「NMT2」処理法を開発し、この処理物と前述したPBT系樹脂、PPS系樹脂との射出接合力が向上することを発見した。特に、PPS系樹脂使用物ではそのせん断接合強度が約40MPaとなり、その射出接合物を温度85℃で85%湿度下に、6千〜8千時間以上晒して、せん断接合強度が37〜40MPaも保たれ、最高度の耐湿熱性ある金属・樹脂一体化物が得られることを初めて見出した。本発明者等はこの技術をNMT2と称した。
(NMT2, NMT5 to NMT8)
The present inventors have discovered that a strong bonding force can be obtained by injection-bonding a PBT (polybutylene terephthalate) -based resin composition to an NMT-treated Al alloy. After that, the inventors have discovered that the PPS-based resin composition can be injection-bonded to the NMT-treated Al alloy (Patent Document 12). Next, as described in Patent Document 1, the surface treatment method of the Al alloy was improved to develop the "NMT2" treatment method, and the injection bonding force between this treated product and the above-mentioned PBT-based resin and PPS-based resin was increased. I found it to improve. In particular, in the case of PPS-based resin-based products, the shear bonding strength is about 40 MPa, and the injection bonded product is exposed to 85% humidity at a temperature of 85 ° C. for 6,000 to 8,000 hours or more, and the shear bonding strength is as high as 37 to 40 MPa. For the first time, we have found that a metal-resin integrated product that is maintained and has the highest degree of moisture resistance and heat resistance can be obtained. The present inventors referred to this technique as NMT2.

NMT2を、発明者等はAl合金とPPS系樹脂との射出接合技術で最高度の技術としていたが、その後の実験で未だ問題点が出てきた。即ち、Al合金をNMT2処理してから1週間以上保管して、PPS系樹脂組成物の射出接合工程を行うと、せん断接合強度の耐湿熱性が低下方向に向かうことである。本出願人がNMT2を最も大規模に実施したのは、Al合金製スマートフォンのAl合金製本体の製造である。このとき、化成処理物したAl合金を1週間以上保管し続けると、所望の接合強度が得られないこと、正しくは、せん断接合強度は得られるが、その長期耐熱性が低下することが判明した。その対策で、NMT2処理法を改善し、各種Al合金に対するNMT5、NMT7、NMT8処理法等と称する化成処理方法を開発した。これら新型の処理法を使用すると、上記の有効保管日数は4週間以上となる。加えて、各種Al合金に対して、本発明者等が命名した、NMT5−Oxy、NMT7−Oxy、NMT5−Ano、NMT7−Ano処理法等の新たな新NMT処理法(後述する)を使用すると、前記した有効保管日数は数か月以上となり、NMT2の弱点は完全に払拭された(特許文献2)。 The inventors used NMT2 as the highest level of injection bonding technology for Al alloys and PPS-based resins, but problems still emerged in subsequent experiments. That is, when the Al alloy is treated with NMT2 and then stored for one week or more and the injection bonding step of the PPS-based resin composition is performed, the moisture and heat resistance of the shear bonding strength tends to decrease. The applicant has carried out NMT2 on the largest scale in the manufacture of the Al alloy body of the Al alloy smartphone. At this time, it was found that if the chemical-treated Al alloy was stored for one week or longer, the desired bonding strength could not be obtained, and to be correct, the shear bonding strength could be obtained, but the long-term heat resistance was lowered. .. As a countermeasure, the NMT2 treatment method was improved, and a chemical conversion treatment method called NMT5, NMT7, NMT8 treatment method, etc. for various Al alloys was developed. When these new treatment methods are used, the above-mentioned effective storage days are 4 weeks or more. In addition, when a new new NMT treatment method (described later) such as NMT5-Oxy, NMT7-Oxy, NMT5-Ano, NMT7-Ano treatment method named by the present inventors is used for various Al alloys. The above-mentioned effective storage days have been several months or more, and the weak points of NMT2 have been completely eliminated (Patent Document 2).

(新NMT)
各種金属材と樹脂組成物を射出接合させることができる新NMTを本発明者等は発明し、その原理的な処理法を金属種毎に発明し提案した(特許文献5〜9)。即ち、Mg合金、Al合金、銅、ステンレス鋼、一般鋼材、特殊鋼板等、市場に供給される実用金属のほぼ全種に対応する射出接合技術として開示した。ここで使用する高結晶性熱可塑性樹脂は、NMT用の射出接合用樹脂と同じであった。
(New NMT)
The present inventors have invented a new NMT capable of injection-bonding various metal materials and resin compositions, and have invented and proposed a principle treatment method for each metal type (Patent Documents 5 to 9). That is, it is disclosed as an injection joining technology corresponding to almost all kinds of practical metals supplied to the market such as Mg alloys, Al alloys, copper, stainless steels, general steel materials, and special steel plates. The highly crystalline thermoplastic resin used here was the same as the injection bonding resin for NMT.

「新NMT」の成立条件は、発明者等の定義では次の5点を必要条件としている。その中の使用金属材に関して、以下3点が必要条件となる。そして、この3点(以下の(1)〜(3))を満足するように化学処理することを「新NMT処理」と言う。即ち、
(i)金属材は0.8〜10μm周期の微細粗面を有していること、及び
(ii)その粗面上に5〜300nm(好ましくは50〜100nm)周期の超微細凹凸面形状を有すること、及び、
(iii)前記の表面層は金属酸化物、金属リン酸化物のような硬質のセラミック質の薄層で覆われていること、
そして、射出樹脂側には以下2点が必要条件となる。即ち、
(iV)高結晶性熱可塑性樹脂を主成分とする樹脂組成物を使用すること、
(V)前記樹脂組成物には、主成分である高結晶性熱可塑性樹脂以外に従成分樹脂として、主成分樹脂に相溶し得る樹脂か、又は、主成分樹脂に相溶せぬ樹脂であっても更に第3成分樹脂として主成分樹脂への部分的にでも相溶を進める樹脂を含むこと、である。
The conditions for establishing the "new NMT" are the following five necessary conditions according to the definition of the inventor and the like. The following three points are necessary conditions for the metal materials used. The chemical treatment that satisfies these three points ((1) to (3) below) is called "new NMT treatment". That is,
(I) The metal material has a fine rough surface with a period of 0.8 to 10 μm, and (ii) an ultrafine uneven surface shape with a period of 5 to 300 nm (preferably 50 to 100 nm) is formed on the rough surface. To have and
(Iii) The surface layer is covered with a thin layer of hard ceramic material such as metal oxide and metal phosphor oxide.
The following two points are necessary conditions on the injection resin side. That is,
(IV) Use a resin composition containing a highly crystalline thermoplastic resin as a main component,
(V) The resin composition may be a resin that is compatible with the main component resin or a resin that is incompatible with the main component resin as a component resin other than the highly crystalline thermoplastic resin that is the main component. Even if there is, the third component resin contains a resin that promotes compatibility even partially with the main component resin.

新NMTは、全金属種に対して開発された。銅の新NMTでの特許出願された最初の発明は、特許文献5に記載された発明であり、その表面の化成処理法の改良は、特許文献1に記載の処理法を経て、特許文献4記載の処理法に至っている、ことは前述した。特許文献4に記載された発明は、そこで開示されているC1100銅の表面処理法の中に、超微細凹凸面として、短い酸化銅ウイスカが頭毛のように、銅板表面を覆う処理物が存在することである。この銅板を使用して、「SGX120」と射出接合物させた場合、そのせん断接合強度は、約40MPaである。これを温度85℃で85%湿度下に3千時間放置した後、これを乾燥して測定すると、せん断接合強度は、32MPaまで低下する。しかし、この超過酷な加速試験での結果からみれば、地球表面上の一般的な大気環境下において、実用的にはその接合力は、十分高い耐湿熱性があると判断した。これら開示された発明が、本発明等が知る限りの最新の銅材の射出接合技術に関係する表面処理法である。 The new NMT has been developed for all metal species. The first invention for which a patent was filed for a new NMT of copper was the invention described in Patent Document 5, and the improvement of the chemical conversion treatment method for the surface thereof was carried out through the treatment method described in Patent Document 1 and then in Patent Document 4. It was mentioned above that the processing method described has been reached. In the invention described in Patent Document 4, in the surface treatment method of C1100 copper disclosed therein, there is a treated product in which a short copper oxide whisker covers the surface of a copper plate like a head hair as an ultrafine uneven surface. It is to be. When this copper plate is used to form an injection bond with "SGX120", its shear bond strength is about 40 MPa. When this is left at a temperature of 85 ° C. under 85% humidity for 3,000 hours and then dried and measured, the shear bonding strength drops to 32 MPa. However, judging from the results of this harsh acceleration test, it was judged that the bonding strength is sufficiently high in moisture and heat resistance in practical use under the general atmospheric environment on the earth's surface. These disclosed inventions are surface treatment methods related to the latest injection bonding technology for copper materials as far as the present invention and the like are known.

WO2012/070654WO2012 / 070654 特開2019−188651JP-A-2019-188651 特開2019−217704JP-A-2019-217704 特開2017−132243JP-A-2017-132243 WO2008−047811WO2008-047811 WO2008−069252WO2008-069252 WO2008−081933WO2008-081933 WO2008−078714WO2008-078714 WO2009−011398WO2009-011398 WO2009−116484WO2009-116484 特開2003−103563Japanese Patent Application Laid-Open No. 2003-103563 WO2004−041532WO2004-041532

[銅部材と樹脂のガス封止性]
前記した特許文献1、2、3に記載された方法を使用すれば、LIBの電極引き出し部含む電池蓋構造部自体に完全に近いガス封止性を与える。即ち、PPS系樹脂とAl合金棒材が成す射出接合部には、ほぼ完全に近いヘリウムガスの封止性があり、PPS系樹脂組成物と銅棒材が成す射出接合部分を、特許文献1に記載の図11に示した形状とする、即ち、その銅棒部を1mm厚程度のAl合金薄板で巻き上げ、銅とAl合金とを塑性変形を伴う「締り嵌め」により接合する。これを正電極引き出し部用部材とし、Al合金材用の高度表面処理をして、PPS系樹脂「SGX120」とで射出接合すれば、この銅・樹脂接合部も前記のAl合金使用物と同等のヘリウムガス封止性が生じる。即ち、特許文献1には、既にLIBの電解液部と外気の間をほぼ完全なガス封止性にする案が既に示されているが、それはAl合金材の優れた表面処理法にだけ頼り、LIB用の電極引き出し部材としてはやや厄介な加工工程を含んでいる。
[Gas sealing property of copper member and resin]
By using the methods described in Patent Documents 1, 2 and 3 described above, the battery lid structure itself including the electrode extraction portion of the LIB is provided with a near-perfect gas sealing property. That is, the injection joint portion formed by the PPS-based resin and the Al alloy rod has a nearly perfect sealing property of helium gas, and the injection joint portion formed by the PPS-based resin composition and the copper rod material is described in Patent Document 1. The shape shown in FIG. 11 is shown in FIG. 11, that is, the copper rod portion is wound up with an Al alloy thin plate having a thickness of about 1 mm, and the copper and the Al alloy are joined by "tightening" accompanied by plastic deformation. If this is used as a member for the positive electrode extraction part, advanced surface treatment for the Al alloy material is performed, and injection bonding is performed with the PPS-based resin "SGX120", this copper-resin bonding portion is also equivalent to the above-mentioned Al alloy material. The helium gas sealing property is generated. That is, Patent Document 1 has already shown a proposal to make the space between the electrolytic solution portion of the LIB and the outside air almost completely gas-sealing, but it relies only on the excellent surface treatment method of the Al alloy material. , The electrode drawing member for LIB includes a slightly troublesome processing step.

本発明は、銅の射出接合技術が大きく進展させ得たのでこれを開示すると共に、同じ技術がLIBの銅製電極引き出し部としてより簡潔に使用でき、高寿命のLIB生産がより容易にできることを示すものである。また、本発明による銅材使用の射出接合物には、その銅材に3価クロムを少量含む水溶液を表面処理液の1つとして使用した物(銅材表面がウイスカ毛で覆われている物)と、クロム材を処理液として全く使用していない物の双方がある。何れもその銅材・樹脂間の接合力関係データは同値だが、その接合面層のガス封止性は双方高いながらも微妙に異なる可能性がある。その僅かな差異が最終的に商業化されたLIBの寿命に関してどのような差異になるかは図り難い。先ずは、高度な環境問題から言えばクロム系化合物含む処理液を使用した製品は避けた方が良い。 The present invention discloses that the copper injection bonding technique has made great progress, and shows that the same technique can be used more concisely as a copper electrode lead-out part of a LIB, and that a long-life LIB production can be made more easily. It is a thing. Further, the injection junction using a copper material according to the present invention uses an aqueous solution containing a small amount of trivalent chromium as one of the surface treatment liquids (the surface of the copper material is covered with whiskers). ) And those that do not use chromium material as a treatment liquid at all. Although the data on the bonding force between the copper material and the resin are the same in both cases, the gas sealing properties of the bonding surface layer may be slightly different, although both are high. It is difficult to determine what the slight difference will ultimately be in terms of the life of the commercialized LIB. First of all, from the viewpoint of advanced environmental problems, it is better to avoid products that use treatment solutions containing chromium-based compounds.

以上のような背景から本発明は、以下の目的を達成するものである。
本発明の目的は、ガス封止性の高い、銅材とPPS系樹脂組成物の一体化構造物とその製造方法を提供することにある。
本発明の他の目的は、せん断接合強度、せん断接合粘り性が高い、銅材とPPS系樹脂組成物の一体化構造物とその製造方法を提供することにある。
本発明の更に他の目的は、銅材の表面処理工程でその処理液の一つに硝酸クロム水和物を含んだ水溶液を使用することなく、せん断接合強度、せん断接合粘り性が高い、銅材とPPS系樹脂組成物の一体化構造物とその製造方法を提供することにある。
From the above background, the present invention achieves the following object.
An object of the present invention is to provide an integrated structure of a copper material and a PPS-based resin composition having high gas-sealing properties and a method for producing the same.
Another object of the present invention is to provide an integrated structure of a copper material and a PPS-based resin composition having high shear joint strength and shear joint tenacity, and a method for producing the same.
Still another object of the present invention is copper, which has high shear bonding strength and shear bonding stickiness, without using an aqueous solution containing chromium nitrate hydrate as one of the treatment liquids in the surface treatment process of copper material. It is an object of the present invention to provide an integrated structure of a material and a PPS-based resin composition, and a method for producing the same.

本発明は、以上の課題を解決するために以下の手段を採る。
本発明1の銅材とPPS系樹脂組成物の一体化構造物は、
表面処理された銅片と、特定のポリフェニレンサルファイド系樹脂組成物とが直接的に接合一体化された構造物であって、
前記ポリフェニレンサルファイド系樹脂組成物は、その樹脂部の主成分をポリフェニレンサルファイド樹脂、従成分を変性ポリオレフィン樹脂で、強化材成分として樹脂組成物全体の15〜25重量%のガラス短繊維が加わった樹脂組成物であり、
前記銅材と前記ポリフェニレンサルファイド系樹脂組成物との接合力が、日本工業規格で規定(ISO19095)する射出接合物によるせん断接合強度の測定で40MPa以上であり、かつ、
前記射出接合物は、300回の連続的な繰り返しによるせん断方向の外力を加えても破断しない引っ張り力と定義されるせん断接合粘り性値が33MPa以上であることを特徴とする。
The present invention adopts the following means in order to solve the above problems.
The integrated structure of the copper material and the PPS-based resin composition of the present invention 1 is
A structure in which a surface-treated copper piece and a specific polyphenylene sulfide-based resin composition are directly bonded and integrated.
The polyphenylene sulfide-based resin composition is a resin in which the main component of the resin portion is polyphenylene sulfide resin, the secondary component is a modified polyolefin resin, and 15 to 25% by weight of short glass fibers of the entire resin composition is added as a reinforcing material component. It is a composition
The bonding force between the copper material and the polyphenylene sulfide resin composition is 40 MPa or more as measured by the shear bonding strength of the injection bonded product specified in the Japanese Industrial Standards (ISO19095), and
The injection joint is characterized by having a shear joint tenacity value of 33 MPa or more, which is defined as a tensile force that does not break even when an external force in the shear direction is applied by continuous repetition of 300 times.

本発明2の銅材とPPS系樹脂組成物の一体化構造物は、本発明1において、前記銅材は、棒状物であって負電極の引き出し部を成し、化成処理による表面処理を済ませたアルミニウム合金製の棒状物を正電極の引き出し部をなし、前記負極部及び前記正極部の引き出し部が外部に貫通している電池蓋を構成し、前記電池蓋の素材が前記ポリフェニレンサルファイド系樹脂組成物であるリチウムイオン電池の電極引き出し部の廻りの構造物であることを特徴とする。 In the present invention 1, the integrated structure of the copper material and the PPS-based resin composition of the present invention 2 is a rod-shaped material, which forms a lead-out portion of a negative electrode, and has been surface-treated by a chemical conversion treatment. A rod-shaped object made of an aluminum alloy forms a lead-out portion of a positive electrode, and a battery lid in which the negative electrode portion and the lead-out portion of the positive electrode portion penetrate to the outside is formed, and the material of the battery lid is the polyphenylene sulfide-based resin. It is characterized in that it is a structure around the electrode pull-out portion of the lithium ion battery which is the composition.

本発明3の銅材とPPS系樹脂組成物の一体化構造物は、本発明1又は2において、前記銅材は、純度が99.90%以上の純銅材であり、前記銅材に接合される前記ポリフェニレンサルファイド系樹脂組成物の厚みは、1mm以下であることを特徴とする。 The integrated structure of the copper material and the PPS-based resin composition of the present invention 3 is a pure copper material having a purity of 99.90% or more in the present invention 1 or 2, and is bonded to the copper material. The thickness of the polyphenylene sulfide-based resin composition is 1 mm or less.

本発明1の銅材とPPS系樹脂組成物の一体化構造物の製造方法は、本発明1ないし3に記載の銅材とPPS系樹脂組成物の一体化構造物の製造方法であって、
表面が化成処理された前記銅部材を射出成形用金型にインサートし、前記ポリフェニレンサルファイド系樹脂組成物を射出することにより、前記銅部材と前記ポリフェニレンサルファイド系樹脂組成物とを直接的に一体化物化することを特徴とする。
The method for producing an integrated structure of a copper material and a PPS-based resin composition according to the present invention 1 is the method for producing an integrated structure of a copper material and a PPS-based resin composition according to the present inventions 1 to 3.
By inserting the copper member having a chemical conversion treatment on the surface into an injection molding die and injecting the polyphenylene sulfide-based resin composition, the copper member and the polyphenylene sulfide-based resin composition are directly integrated. It is characterized by materialization.

以下、本発明を構成する上記の構成物、製造方法の説明、理由、考え方について説明する。
[本発明で使用するPPS系樹脂組成物]
使用樹脂は全て射出接合用樹脂であり、前記したNMT理論、新NMT理論に記載した結晶性熱可塑性樹脂を主成分とし、かつ、少なくともその異高分子を従成分とする樹脂組成物である。具体的に言えば、主成分がPPSの場合には、従成分として変性ポリオレフィン樹脂を使用し、更に第3成分樹脂を少量加えてPPSと変性ポリオレフィン樹脂間での親和力を結果的に高まるようにした。要するに、急冷時のPPS分子の結晶化速度が単独樹脂組成の場合より大幅に遅くなり射出接合し易くなった。このような経過で、前述したように最も射出接合に好適なPPS系樹脂組成物として、前述した「SGX120」等が挙げられる。
Hereinafter, the above-mentioned components constituting the present invention, description of the manufacturing method, reasons, and ideas will be described.
[PPS-based resin composition used in the present invention]
The resins used are all injection bonding resins, and are resin compositions containing the crystalline thermoplastic resin described in the above-mentioned NMT theory and new NMT theory as a main component and at least a different polymer as a secondary component. Specifically, when the main component is PPS, a modified polyolefin resin is used as a secondary component, and a small amount of a third component resin is added so as to increase the affinity between PPS and the modified polyolefin resin as a result. did. In short, the crystallization rate of PPS molecules during quenching was significantly slower than that of the single resin composition, and injection bonding became easier. In such a process, as described above, as the PPS-based resin composition most suitable for injection bonding, the above-mentioned "SGX120" and the like can be mentioned.

[射出接合技術]
本発明でいう射出接合とは、銅材、及び/又はアルミニウム合金を射出成形金型にインサートし、射出成形金型を閉じて、そのキャビティにPPS系樹脂組成物を射出して、金属とPPS系樹脂組成物を接合することをいう。これらの射出成形の条件は、PPS系樹脂組成物に要求される一般的な射出成形で行う。
[アルミニウム合金(Al合金)]
一般的な純アルミニウム、アルミニウム合金であれば、Al-Cu系、Al-Mn系、Al-Si系、Al-Mg系等の展伸材、鋳物材を問わずいかなるものでも良い。好ましくは、汎用され規格化されているものを使用すると良い。
[Injection joining technology]
In the injection bonding as used in the present invention, a copper material and / or an aluminum alloy is inserted into an injection molding die, the injection molding die is closed, and a PPS-based resin composition is injected into the cavity to inject a metal and PPS. It means joining the based resin composition. These injection molding conditions are performed by general injection molding required for PPS-based resin compositions.
[Aluminum alloy (Al alloy)]
Any general pure aluminum or aluminum alloy may be used, regardless of whether it is a wrought material such as Al-Cu-based, Al-Mn-based, Al-Si-based, or Al-Mg-based, or a casting material. It is preferable to use a general-purpose and standardized one.

[銅材]
本発明で用いる銅材は、純銅系の銅材であれば全て使用できる。好ましくは、汎用され規格化されているものを使用すると良い。この表面の好ましい化成処理方法は、特許文献4に詳記されている新NMT型処理法、又はその改良した化成処理方法を使用する(後述する実験例で具体的に詳記する。)。その中ではC1100銅片表面がウイスカを形成する処理法が好ましい。この処理がなされたC1100銅材と、上記「SGX120」との射出接合物(図1形状)のせん断接合強度は、約42MPa、「せん断接合粘り性」値は35.3MPaである。ただ、この表面処理法の中には、3価クロムを少量含む水溶液を使用する浸漬工程が含まれる。そして全浸漬処理を終えた銅材表面は、酸化銅ウイスカが頭毛のように密集して生えた表面形状となる。但し、ウイスカ自体にクロムが含まれている証拠は少なくとも本発明の発明時までには確認できていない。
[Copper material]
As the copper material used in the present invention, any pure copper-based copper material can be used. It is preferable to use a general-purpose and standardized one. As a preferable chemical conversion treatment method for this surface, a new NMT type treatment method described in detail in Patent Document 4 or an improved chemical conversion treatment method thereof is used (specifically described in an experimental example described later). Among them, a treatment method in which the surface of the C1100 copper piece forms a whisker is preferable. The shear joint strength of the injection joint (shape in FIG. 1) between the C1100 copper material subjected to this treatment and the above-mentioned "SGX120" is about 42 MPa, and the "shear joint stickiness" value is 35.3 MPa. However, this surface treatment method includes a dipping step using an aqueous solution containing a small amount of trivalent chromium. The surface of the copper material that has been completely immersed has a surface shape in which copper oxide whiskers are densely grown like hair. However, evidence that the whiskers themselves contain chromium has not been confirmed at least by the time of the invention of the present invention.

一般論で言えば、クロムを含有した処理液で処理した金属材につきその製造物自身を忌避する法規制等はなく、仮にこれらの製品自体を忌避するのであれば、ステンレス鋼含む特殊鋼やクロム処理された亜鉛鍍金鋼板を代表とする現代社会を支える重要材を忌避することになる。この点を正確に言えば、それらを製造する過程では、必ずクロム含有廃水や廃棄物を生じるので、本発明のように、新たに提案される製品においては、その製造プロセスで生じる廃水や廃棄物等の処理プロセスも法的規制をして、その管理強化すべきとなる。このためにその製造プロセス自体を変更して、クロム剤不使用型にすべきという環境保護の考え方も生まれる。本発明では、この思想により開発したものであり、未来の環境を考慮したものでもある。即ち、公的規制を遵守した廃水処理、廃棄物処理をすれば良いとする法順守型にすべきか、それ以上のものにすべきかとの判断は含まない。本発明では何れも使用可能な技術として双方を含めた。即ち、後述する本発明の実施例で言えば、処理法にクロム含有した処理液を含むものが「最新の新NMT処理法1」、処理液にクロム含有物を含まないものが「最新の新NMT処理法2」、「最新の新NMT処理法3」である。 Generally speaking, there are no laws and regulations that repel the product itself for metal materials treated with a treatment liquid containing chromium, and if these products themselves are to be repelled, special steel including stainless steel and chromium are used. It will avoid important materials that support modern society, such as treated zinc-plated steel sheets. To be precise, in the process of manufacturing them, chromium-containing wastewater and waste are always generated. Therefore, in a newly proposed product such as the present invention, wastewater and waste generated in the manufacturing process are always generated. The processing process such as, etc. should also be legally regulated and its management should be strengthened. For this reason, the idea of environmental protection that the manufacturing process itself should be changed to be a chromium agent-free type is also born. The present invention was developed based on this idea, and also considers the future environment. That is, it does not include the judgment as to whether the wastewater treatment and waste treatment in compliance with public regulations should be done in compliance with the law or more. In the present invention, both are included as usable techniques. That is, in the embodiment of the present invention described later, the treatment method containing a chromium-containing treatment liquid is the "latest new NMT treatment method 1", and the treatment liquid containing no chromium-containing substance is the "latest new NMT treatment method 1". "NMT processing method 2" and "latest new NMT processing method 3".

要するに、発明者等は、クロム含有処理液を使用せずに超微細凹凸面を有する、新たに優れたC1100用の新NMT処理法をも開発した。ISO19095に記載の図1形状の射出接合物(試験片)を、「SGX120」と、この新型の表面処理法で処理したC1100銅片で作成した場合と、酸化銅ウイスカで覆われた銅片とを比較した。新型の表面処理法で処理した銅片のせん断接合強度は、41.4MPa、「せん断接合粘り性」値は35.3MPaであり、酸化銅ウイスカで覆われた銅片使用時のせん断接合強度は42.6MPa、「せん断接合粘り性」値は35.3MPaと、両者はほぼ同値である。この時のクロム不含処理液を使用した銅材処理法は、前記した「最新の新NMT処理法2」である。又、同じくクロム不含処理液を使用した銅材処理法「最新の新NMT処理法3」は、上記の処理法2の表面処理品が、乾燥時に外観の色調がややバラつくので、その不安定さを改善した処理法である。 In short, the inventors have also developed a new excellent NMT treatment method for C1100, which has an ultrafine uneven surface without using a chromium-containing treatment liquid. The injection joint (test piece) of the shape shown in FIG. 1 described in ISO19095 was made of "SGX120", C1100 copper piece treated by this new surface treatment method, and copper piece covered with copper oxide whiskers. Was compared. The shear bond strength of the copper piece treated by the new surface treatment method is 41.4 MPa, the "shear bond stickiness" value is 35.3 MPa, and the shear bond strength when using the copper piece covered with copper oxide whisk is. The "shear joint stickiness" value is 42.6 MPa and the value is 35.3 MPa, both of which are almost the same value. The copper material treatment method using the chromium-free treatment liquid at this time is the above-mentioned "latest new NMT treatment method 2". In addition, the copper material treatment method "latest new NMT treatment method 3", which also uses a chromium-free treatment liquid, is not suitable because the surface-treated product of the above treatment method 2 has a slightly different appearance color tone when dried. It is a treatment method with improved stability.

[射出接合技術の−50℃/+150℃の温度衝撃数千サイクル試験]
Al合金の線膨張率は2.3×10−5−1、銅の線膨張率は1.8×10−5−1、そして上記「SGX120」成形物の線膨張率は約4×10−5−1である。それ故に、Al合金と上記「SGX120」の一体化物は、温度変化があると、その接合面付近に接合力と反対方向の内部応力が生じる。要するに、Al合金と上記「SGX120」の接合物の線膨張率差は、1.7×10−5−1程度、銅と上記「SGX120」の接合物の線膨張率差は2.2×10−5−1程度である。これら射出接合物の形状が図1に示した形状である場合、その接合面は10mm×5mmの0.5cmであり、例えば200℃の環境温度変化を与えた場合には、Al合金使用物で1.7×10−5−1×200℃=0.0034=0.34%、又、C1100銅使用物で2.2×10−5−1×200℃=0.0044=0.44%の寸法が温度変化前と比べて生じる。
[Temperature impact of -50 ° C / + 150 ° C thousands of cycles test of injection bonding technology]
The coefficient of linear expansion of Al alloy is 2.3 × 10 -5 K -1 , the coefficient of linear expansion of copper is 1.8 × 10 -5 K -1 , and the coefficient of linear expansion of the above “SGX120” molded product is about 4 ×. It is 10-5 K- 1. Therefore, in the integrated product of the Al alloy and the above-mentioned "SGX120", when there is a temperature change, an internal stress in the direction opposite to the bonding force is generated in the vicinity of the bonding surface. In short, the difference in linear expansion coefficient between the Al alloy and the above-mentioned "SGX120" is about 1.7 x 10-5 K- 1 , and the difference in linear expansion coefficient between copper and the above-mentioned "SGX120" is 2.2 x. It is about 10-5 K- 1. When the shape of these injection joints is the shape shown in FIG. 1, the joint surface is 0.5 cm 2 of 10 mm × 5 mm. For example, when an environmental temperature change of 200 ° C is applied, an Al alloy material is used. 1.7 × 10 -5 K -1 × 200 ° C = 0.0034 = 0.34%, and 2.2 × 10 -5 K -1 × 200 ° C = 0.0044 = 0 with C1100 copper material. A dimension of .44% occurs compared to before the temperature change.

この接合面で最も長い部分は、11.2mmあるから、Al合金材の場合には、この長さに0.038mmのズレが生じ、銅材の場合にはそれが0.049mmとなる。これが何千回も繰り返されると、何れ接合面の外周部で接合力を保持できない部分が増え、接合力が減少することになる。上記温度変化の場合、熱可塑性樹脂成形物にはクリープ性があり、温度変化が緩慢に進行する場合、線膨張率差によって生じるはずの内部応力は殆ど観察されない。要するに、緩慢に温度変化すると接合面付近では、金属材の変形により樹脂部には強制的に引張りや圧縮力が負荷されるので、樹脂中の非晶部(高分子が縺れ合って形状化している部分)の縺れ模様が変化して僅かな形状変化を起こし、生じた内部応力を緩和する。これは、クリープ現象の説明そのものだが、それ故に、1日の中で早朝と昼過ぎの気温変化、又、四季の大きいが緩慢な温度変化は、クリープにより上記のような線膨張率差があっても破断まで行くことはない。 Since the longest portion of this joint surface is 11.2 mm, a deviation of 0.038 mm occurs in this length in the case of an Al alloy material, and it is 0.049 mm in the case of a copper material. If this is repeated thousands of times, the portion of the outer peripheral portion of the joint surface where the bonding force cannot be maintained will increase, and the bonding force will decrease. In the case of the above temperature change, the thermoplastic resin molded product has creep property, and when the temperature change progresses slowly, the internal stress that should be caused by the difference in linear expansion coefficient is hardly observed. In short, when the temperature changes slowly, the resin part is forcibly loaded with tensile and compressive forces due to the deformation of the metal material near the joint surface, so the amorphous part (polymers are entangled and shaped) in the resin. The entangled pattern of the part) changes to cause a slight change in shape, and the generated internal stress is relieved. This is the explanation of the creep phenomenon itself, but therefore, the temperature change between early morning and early afternoon in the day, and the large but slow temperature change in the four seasons have the above-mentioned difference in linear expansion rate due to creep. Does not go to break.

ただ、LIBの場合、その使用時に激しい温度変化が襲うのは、例えば、寒冷地として知られているアラスカ、シベリア等において使用される冬期の自動車に備えた場合である。寒冷地では、自動車の駐車時は外気温の−50℃程度になり、走行時はLIB内の発熱もあり、エンジンの熱、室内暖房の熱もあるので高いときは80℃程度になる。このような温度変化は、温度変化というよりも温度衝撃である。この温度衝撃は、上記クリープ特性と直接的には関係なく影響しない。それ故に、移動機械用に使用される中型LIBは、−50℃/+100℃の温度衝撃3千サイクル試験程度は十分に耐えねばならない。特許文献3に記載の方法で、Al合金と「SGX120」の射出接合物での温度衝撃3千サイクル試験で行った後、その接合面を観察した。図1に示す形状物(試験片)を一旦作成した後に、その樹脂部を削り取って、その形状を図6、図7のように樹脂部厚を元の図1形状の3mm厚から2mm厚や1mm厚にする。 However, in the case of LIB, a drastic temperature change during its use occurs, for example, when preparing for a winter automobile used in Alaska, Siberia, etc., which are known as cold regions. In cold regions, the outside air temperature is about -50 ° C when the car is parked, and when the car is running, there is heat in the LIB, and the heat of the engine and the heat of the room heating are also present, so the temperature is about 80 ° C when it is high. Such a temperature change is a temperature shock rather than a temperature change. This temperature shock has no direct relation to the creep characteristics and does not affect it. Therefore, medium-sized LIBs used for mobile machines must sufficiently withstand a temperature impact of about 3,000 cycles at -50 ° C / + 100 ° C. After performing a temperature impact 3,000 cycle test on an injection joint of Al alloy and "SGX120" by the method described in Patent Document 3, the joint surface was observed. After creating the shape (test piece) shown in FIG. 1, the resin portion is scraped off, and the shape of the resin portion is changed from 3 mm to 2 mm in the original shape as shown in FIGS. 6 and 7. Make it 1 mm thick.

そして、図1、図6、図7形状物を一挙に、−50℃/+150℃の温度衝撃3千サイクル試験にかけ、その後に全て破断してその金属側の接合面跡を観察した。NMT5〜7処理したAl合金を使用ものは、図1の樹脂部3mm厚品(試験片)では、10mm×5mm、面積0.5cmの接合面の4隅部に樹脂粉がない状態のクリアになっており、中央部は黒色の樹脂紛が残っていた。上記「SGX120」は、カーボンブラック入りの黒色樹脂であり、この接合面の中央部の樹脂紛が残っているといることは、その黒色部分にて接合面が維持されていたことを示している。黒色がない矩形接合部の内の4隅部は、既に樹脂部が金属表面の微細凹部から抜き出されて、接合力ゼロだった部分である。即ち、上記温度衝撃試験で、破断寸前まで剥離が進んだことを示している。図6に示す接合部が2mm厚の部分では、4隅の内の2隅で僅かに樹脂紛がない部分が観察され、ごく狭い面積で接合力が失われていた。そして、図7に示す接合部が1mm厚の部分では、4隅も含めて全く樹脂抜けは生じていなかった。 Then, the shaped objects of FIGS. 1, 6 and 7 were subjected to a temperature shock 3,000 cycle test at −50 ° C./+ 150 ° C., and then all of them were broken and the traces of the joint surface on the metal side were observed. For those using NMT5-7 treated Al alloy, the resin part 3 mm thick product (test piece) in FIG. 1 is clear with no resin powder at the four corners of the joint surface of 10 mm × 5 mm and area 0.5 cm 2. In the center, black resin powder remained. The above "SGX120" is a black resin containing carbon black, and the fact that the resin powder in the central portion of the joint surface remains indicates that the joint surface was maintained in the black portion. .. The four corners of the rectangular joint without black color are the parts where the resin portion has already been extracted from the fine recesses on the metal surface and the bonding force is zero. That is, in the above-mentioned temperature impact test, it is shown that the peeling has progressed to just before breaking. In the portion where the joint portion shown in FIG. 6 was 2 mm thick, a portion where there was little resin powder was observed in two of the four corners, and the bonding force was lost in a very narrow area. Then, in the portion where the joint portion shown in FIG. 7 was 1 mm thick, no resin leakage occurred at all including the four corners.

この結果から、本発明者等は、樹脂厚1.5mmが境目で、1.5mm厚以下の薄い場合には、このような優れた表面処理済みのAl合金に対して、樹脂成形物は接合面積には関係なく温度衝撃が数千サイクルあろうと樹脂が接合し続けると判断した。一方、同様の実験試験をC1100銅片でも行った。即ち、後述する実施例中の実験例「A5」であり、この実験は上記「SGX120」と射出接合させたものである。これは図7に示す形状物(試験片)のみを作成して、−50℃/+150℃の温度衝撃3千サイクル試験にかけた。前述したように、銅材の方がAl合金材より「SGX120」との線膨張率差が大きいので、樹脂厚3mm、樹脂厚2mmのものを、この温度衝撃試験を行った場合、Al合金の実験結果より悪い結果が出ることが予測できた。実験としては、図7に示した形状の樹脂厚1mmの射出接合物(試験片)において、接合面での僅かな剥がれ現象が起こるかを観察した。 From this result, the present inventors have stated that when the resin thickness is 1.5 mm at the boundary and the thickness is 1.5 mm or less, the resin molded product is bonded to such an excellent surface-treated Al alloy. It was judged that the resin would continue to join even if there were thousands of cycles of temperature impact regardless of the area. On the other hand, the same experimental test was also performed on C1100 copper pieces. That is, it is an experimental example "A5" in the examples described later, and this experiment is injection-bonded to the above-mentioned "SGX120". For this, only the shape (test piece) shown in FIG. 7 was prepared and subjected to a temperature impact of 3,000 cycles at −50 ° C./+ 150 ° C. As described above, the copper material has a larger difference in linear expansion coefficient from the Al alloy material than the Al alloy material. Therefore, when this temperature impact test is performed on a resin material having a resin thickness of 3 mm and a resin thickness of 2 mm, the Al alloy material It was predicted that the results would be worse than the experimental results. As an experiment, it was observed whether a slight peeling phenomenon occurred on the joint surface in the injection joint (test piece) having the shape shown in FIG. 7 and having a resin thickness of 1 mm.

その結果は、後述する実施例に示す。仮に、接合部の樹脂の肉厚が1mm厚であれば、その接合面積には関係なく、この厳しい温度衝撃試験に耐えられる接合構造と言える。そして、本発明では、樹脂厚1mm以下という肉厚として、銅とAl合金材の双方を含む「SGX120」との射出接合物の設計に関して、特許文献3に記載の基本設計法に沿って行うことが出来る。図8に示す断面形状は、LIBの本体容器の蓋に適用したときの形状例である。 The results are shown in Examples described later. If the wall thickness of the resin at the joint is 1 mm, it can be said that the joint structure can withstand this severe temperature impact test regardless of the joint area. Then, in the present invention, the design of the injection joint with "SGX120" containing both copper and Al alloy material having a wall thickness of 1 mm or less is carried out in accordance with the basic design method described in Patent Document 3. Can be done. The cross-sectional shape shown in FIG. 8 is an example of the shape when applied to the lid of the main body container of the LIB.

[射出接合操作とアニール処理について]
本発明の射出接合は、前述したように射出接合用の金型を作成し、開いた金型に表面処理済の金属片をインサートし、射出成形金型を閉じて溶融樹脂を射出するものである。この射出接合操作について、特別に留意すべき技術的な特徴は必要ではない。敢えて言えば、射出成形金型の温度と保圧時間である。金型温度は、樹脂メーカーが指示している温度範囲でも良いが、この範囲内で基本的には高めに設定すると良い。具体的には上記「SGX120」使用時には、金型温度として140℃付近が好ましい。そして、えられた射出接合物は、そのまま放冷して最終製品とするのではなく、数時間以内に150℃×1時間程度の加熱処理(アニール処理)をして、樹脂の結晶化を十分に進めた上で、射出接合工程の全工程を終えることが好ましい。上記の理由から、本発明銅材とPPS系樹脂組成物の一体化構造物は、射出成形後にアニール処理することが好ましい。
[Injection joining operation and annealing process]
In the injection bonding of the present invention, as described above, a mold for injection bonding is created, a surface-treated metal piece is inserted into an open mold, the injection molding mold is closed, and molten resin is injected. be. No special technical features are required for this injection joining operation. If you dare to say it, it is the temperature and holding time of the injection molding die. The mold temperature may be in the temperature range specified by the resin manufacturer, but basically it is better to set it higher within this range. Specifically, when the above "SGX120" is used, the mold temperature is preferably around 140 ° C. Then, the obtained injection junction is not allowed to cool as it is to be a final product, but is heat-treated (annealed) at 150 ° C. for about 1 hour within a few hours to sufficiently crystallize the resin. It is preferable to complete the entire injection joining process after proceeding to. For the above reasons, it is preferable that the integrated structure of the copper material of the present invention and the PPS-based resin composition is annealed after injection molding.

[せん断接合強度、せん断接合粘り性値の測定]
ISO19095に、射出接合物における金属部と樹脂成形物間のせん断接合強度(tensile lap-shear strength)、引張り接合強度(tensile strength)の測定法が規定されている。これによると、図1に示す形状物(試験片)を引張り試験機で引張り破断させて、そのせん断接合強度を測定する手法、及び、図2形状物を引張り試験機で引張り破断させて、その引張り接合強度を測定する手法が記載されている。このせん断接合強度のISO規格の基本は、本発明者等が特許文献12に記載された発明をしたときから使用し、提唱した強度試験法である。この引張り接合強度の測定法は、本発明者等が種々経過の上で2015年頃から使用し始めたものである。何れも従来の接着力や接合力の測定法とされた日本工業規格(JIS)に規定(JISK6849、6850)された手法では測定できず、新たに新規定を発明者等が提案し、国際工業規格として規定(ISO19095)された。
[Measurement of shear bond strength and shear bond stickiness value]
ISO19095 defines a method for measuring the shear strength (tensile lap-shear strength) and the tensile strength (tensile strength) between a metal portion and a resin molded product in an injection joint. According to this, a method of tensilely breaking a shaped object (test piece) shown in FIG. 1 with a tensile tester and measuring its shear joint strength, and a method of tensilely breaking the shaped object shown in FIG. 2 with a tensile tester and performing the same. A method for measuring the tensile joint strength is described. The basis of this ISO standard for shear joint strength is a strength test method that has been used and proposed by the present inventors since the invention described in Patent Document 12. This method for measuring the tensile joint strength has been used by the present inventors from around 2015 after various processes. Neither can be measured by the method specified in the Japanese Industrial Standards (JISK6849, 6850), which is the conventional method for measuring adhesive strength and bonding strength. It was specified as a standard (ISO19095).

[「せん断接合粘り性」について]
更に、本発明者等は、せん断接合強度だけではなく「せん断接合粘り性(力)」という新たな接合力の記録評価法を提案し、この「せん断接合粘り性」をせん断接合強度の値より重視した。即ち、これはPPS系樹脂組成物である「SGX120」を使用して、射出接合物(図1に示す形状物)を作成し、その接合面にせん断方向の外力を加え、その外力に対する耐性を測定した。この場合、金属種に関わりなく、せん断接合強度が最高で39〜42MPaとなり、それ以上は観察されなかった。要するに、金属材の種類や表面処理法が種々変わろうと、上記「SGX120」を使用した実験で、図1に示す形状物とした試験片で破断試験を行うと、上限値らしい数値に行き着く。それ故に、金属合金片の表面処理法を更に改善して、そのせん断接合強度を評価して、改善がなされたか、又は、改善されずにむしろ悪化したかは、せん断接合強度が約40MPaに近づくと判明し難くなる。
[About "shear joint stickiness"]
Furthermore, the present inventors have proposed a new recording evaluation method of joining force called "shear joining tenacity (force)" as well as shear joining strength, and this "shear joining tenacity" is calculated from the value of shear joining strength. Emphasis was placed on it. That is, this uses the PPS-based resin composition "SGX120" to create an injection joint (the shape shown in FIG. 1), and applies an external force in the shear direction to the joint surface to make it resistant to the external force. It was measured. In this case, the shear bonding strength was 39 to 42 MPa at the maximum regardless of the metal type, and no more was observed. In short, regardless of the type of metal material and the surface treatment method, when a breaking test is performed on a test piece having the shape shown in FIG. 1 in an experiment using the above "SGX120", a numerical value that seems to be an upper limit is reached. Therefore, the shear bonding strength approaches about 40 MPa depending on whether the surface treatment method of the metal alloy piece is further improved and its shear bonding strength is evaluated and the improvement is made or rather deteriorated without improvement. It becomes difficult to find out.

そのために本発明者等は、新たに「せん断接合粘り性(力)」という測定を提案し、その値が高くなれば、より良い表面処理法が達成できたと判断することにした。この「せん断接合粘り性(力)」は、一種の接合部の疲労試験である。本発明でいう「せん断接合ねばり性」とは、以下の実験方法で得た結果(せん断接合強度)を言う。まず引張り試験機で試験片(図1に示す形状物)を破断して、「せん断接合強度」を事前に測定し確定する。そしてこの試験片に、この「せん断接合強度」の約75%程度の引張り力を、300回だけ連続的に繰り返し与える試験を行う。その荷重の負荷方法は、引張り試験機で行い、その試験機の制御装置の運転ソフトを設定して行う。運転ソフトは、最大引張り力を上記「せん断接合強度」値の75%、最小引張り力を前記の最大引張り力の約2/3とし、かつ、引張り速度を±10mm/分を1サイクルとして運転する。 Therefore, the present inventors have newly proposed a measurement called "shear joint tenacity (force)", and if the value is high, it is judged that a better surface treatment method can be achieved. This "shear joint tenacity (force)" is a kind of fatigue test of a joint. The "shear joint tenacity" as used in the present invention refers to the result (shear joint strength) obtained by the following experimental method. First, the test piece (the shape shown in FIG. 1) is broken by a tensile tester, and the "shear joint strength" is measured and determined in advance. Then, a test is performed in which a tensile force of about 75% of this "shear joint strength" is continuously and repeatedly applied to this test piece only 300 times. The method of applying the load is performed by a tensile tester, and the operation software of the control device of the tester is set. The operation software operates with the maximum tensile force set to 75% of the above-mentioned "shear joint strength" value, the minimum tensile force set to about 2/3 of the above-mentioned maximum tensile force, and the tensile speed set to ± 10 mm / min as one cycle. ..

この300サイクルの連続的繰り返し荷重で、せん断破断しなければ、約2MPaだけ最大引張り荷重を大きくして、同様に300回の繰り返し負荷を加える試験をする。それでも破断しない場合は、更に、約2MPa程を加えて同操作を繰り返し、この繰り返しを図1に示した試験片が破断するまで続ける。破断したら、破断前の最大引張り力をもって、その最大引張り力をMPa表示するか、重力単位のkg/0.5cmで表示し、本発明におけるこの本実験では、これを「せん断接合ねばり性」とした。なお、kg/0.5cmの表示をしたのは、引張り試験機の力量表示がkgであり、図1に示した形状物の接合面の接合面積が0.5cmだったことによる。 If the shear fracture is not caused by the continuous repeated load of 300 cycles, the maximum tensile load is increased by about 2 MPa, and the same test is performed in which the repeated load is applied 300 times. If it still does not break, further add about 2 MPa and repeat the same operation until the test piece shown in FIG. 1 breaks. After fracture, the maximum tensile force before fracture is displayed in MPa or in kg / 0.5 cm 2 in gravitational units. In this experiment in the present invention, this is referred to as "shear joint tenacity". And said. The reason why the display of kg / 0.5 cm 2 is that the force display of the tensile tester is kg and the joint area of the joint surface of the shape shown in FIG. 1 is 0.5 cm 2 .

本発明の銅材とPPS系樹脂組成物の一体化構造物は、せん断接合強度、せん断接合粘り性が強いばかりではなく、その耐せん断的破断力に対して耐湿熱性もある。そして、この双方の物理化学的な物性は、その接合面層に高いガス封止性があることも見いだせた。取り分け、銅材用の新表面処理法を開発でき、その表面処理法として、3価クロム化合物の水溶液を含む処理液を使用するもの、クロム化合物不使用の表面処理液ばかり使用するもの、の双方で新型表面処理法を確立した。これら化成処理を加えたAl合金材、及び、銅材を使用したLIBは、電解液への水分子侵入を実用レベルで封止できる。 The integrated structure of the copper material and the PPS-based resin composition of the present invention not only has strong shear joint strength and shear joint tenacity, but also has moisture and heat resistance against the shear fracture resistance. It was also found that the physicochemical properties of both of them have high gas-sealing properties in the joint surface layer. In particular, a new surface treatment method for copper materials can be developed, and as the surface treatment method, both a treatment liquid containing an aqueous solution of a trivalent chromium compound and a surface treatment liquid containing no chromium compound are used. Established a new surface treatment method. The Al alloy material to which these chemical conversion treatments have been applied and the LIB using the copper material can seal the invasion of water molecules into the electrolytic solution at a practical level.

図1は、ISO19095に規定された金属樹脂接合一体化物における、金属部と樹脂部間のせん断接合強度を測定する目的の射出接合物の外観図である。FIG. 1 is an external view of an injection joint for measuring the shear joint strength between a metal portion and a resin portion in the metal-resin joint integrated product specified in ISO19095. 図2は、ISO19095に規定された金属樹脂接合一体化物における、金属部と樹脂部間の引張り接合強度を測定する目的の射出接合物の外観図である。FIG. 2 is an external view of an injection joint for the purpose of measuring the tensile joint strength between the metal portion and the resin portion in the metal-resin joint integrated product specified in ISO19095. 図3は、ISO19095に規定された金属樹脂接合一体化物における、せん断接合強度を測定する時に使用する補助治具の外観図である。FIG. 3 is an external view of an auxiliary jig used when measuring the shear joint strength in the metal-resin joint integrated product specified in ISO19095. 図4は、A5052Al合金の実験例A−1の化成処理後の表面の電顕写真であり、図4(a)は千倍、図4(b)は1万倍、図4(c)は10万倍の写真である。FIG. 4 is an electron micrograph of the surface of Experimental Example A-1 of A5052Al alloy after chemical conversion treatment. FIG. 4 (a) is 1000 times, FIG. 4 (b) is 10,000 times, and FIG. 4 (c) is. It is a 100,000 times photo. 図5は、C1100銅の表面処理物の電顕十万倍写真であり、実験例A−4の化成処理をした後の表面の写真である。FIG. 5 is an electron micrograph of a surface-treated product of C1100 copper, which is an electron micrograph of the surface after chemical conversion treatment of Experimental Example A-4. 図6は、図1に示した形状物にある樹脂部の接合面上部を機械加工で削り、元の厚さ3mmを2mmに薄くした試験片である。FIG. 6 is a test piece in which the upper part of the joint surface of the resin portion in the shape shown in FIG. 1 is machined to reduce the original thickness of 3 mm to 2 mm. 図7は、図1に示した形状物にある樹脂部の接合面上部を機械加工で削り、元の厚さ3mmを1mmに薄くした試験片である。FIG. 7 is a test piece in which the upper part of the joint surface of the resin portion in the shape shown in FIG. 1 is machined to reduce the original thickness of 3 mm to 1 mm. 図8は、本発明による射出接合物の形状例であり、LIBの本体容器の蓋に適用したときの断面図である。FIG. 8 is an example of the shape of the injection joint according to the present invention, and is a cross-sectional view when applied to the lid of the main body container of the LIB.

本発明の銅材とPPS系樹脂組成物の一体化構造物の実施の形態は、以下に示す実施例の実験例として説明する。 An embodiment of the integrated structure of the copper material and the PPS-based resin composition of the present invention will be described as an experimental example of the examples shown below.

以下、本発明の銅材とPPS系樹脂組成物の一体化構造物の実施例は、以下に説明する実験例として説明する。実験で使用した機器、及び試験方法の概要は以下の通りである。
(a)接合強度の測定1
引張り試験機で射出接合物(図1と図2)を引張り破断するときの破断力を、せん断接合強度、引張り接合強度とした。但し、せん断接合強度の測定では、図3に示した補助治具を使用した。使用した引張り試験機は、「AG−500N/1kN(株式会社島津製作所(本社:日本国京都府)製)」を使用し、引っ張り速度10mm/分で測定した。この測定法はISO19095に規定した方法によった。
(b)接合強度の測定2
前述した「せん断接合粘り性」値の測定は、ISO19095による射出接合物(図1に示す試験片)を使用し、上記引張り試験機「AG−500N/1kN」で、引っ張り速度±10mm/分で行った。具体的な試験機の操作方法については、前述した通りである。
(c)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社 日立ハイテクノロジーズ(本社:日本国東京都)製)」及び「JSM−6700F(日本電子株式会社(本社:日本国東京都)製)」を使用し1〜2KVにて観察した。
Hereinafter, examples of the integrated structure of the copper material and the PPS-based resin composition of the present invention will be described as experimental examples described below. The outline of the equipment used in the experiment and the test method is as follows.
(A) Measurement of joint strength 1
The breaking force at the time of tensile breaking of the injection joints (FIGS. 1 and 2) by the tensile tester was defined as the shear joint strength and the tensile joint strength. However, in the measurement of the shear joint strength, the auxiliary jig shown in FIG. 3 was used. The tensile tester used was "AG-500N / 1kN (manufactured by Shimadzu Corporation (Headquarters: Kyoto, Japan))" and measured at a tensile speed of 10 mm / min. This measurement method was based on the method specified in ISO1909.
(B) Measurement of joint strength 2
The above-mentioned "shear joint tenacity" value is measured by using an injection joint (test piece shown in FIG. 1) by ISO19095 and using the above tensile tester "AG-500N / 1kN" at a tensile speed of ± 10 mm / min. gone. The specific operation method of the testing machine is as described above.
(C) Electron microscope observation SEM type electron microscope "S-4800 (Hitachi High-Technologies Corporation (Headquarters: Tokyo, Japan))" and "JSM-6700F (JEOL Ltd. (Headquarters: Tokyo, Japan))" Made) ”was used and observed at 1 to 2 KV.

[実験例A]金属片の表面処理法
[実験例A−1]A5052Al合金の表面処理(本発明では、「NMT7処理」と呼ぶ。)
厚さ1.5mmのA5052Al合金板を、45mm×18mmに切断しAl合金片とした。浸漬槽に、アルミ用脱脂剤「NA−6(メルテックス株式会社(本社:日本国東京都)製)」(以下、「NA−6」という。)10%を含む水溶液を60℃とし、前記Al合金片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、上記Al合金片を1分間浸漬して水洗した。次に別の浸漬槽に、40℃とした1%濃度の水和塩化アルミニウムと5%濃度の塩酸を含む水溶液を用意し、これにAl合金片を6分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これにAl合金片を4分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸水溶液を用意し、これにAl合金片を1.5分間浸漬した後、これを水洗した。次に別の浸漬槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに1分間浸漬した後、次に別の浸漬槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に6分浸漬した後、これを水洗した。次に67℃に設定した温風乾燥機に、15分間入れて上記化成処理を終えたAl合金片を乾燥し、これを清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A] Surface Treatment Method for Metal Pieces [Experimental Example A-1] Surface Treatment of A5052Al Alloy (referred to as "NMT7 Treatment" in the present invention)
An A5052Al alloy plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm to obtain an Al alloy piece. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6 (Meltex Inc. (Headquarters: Tokyo, Japan))" (hereinafter referred to as "NA-6") in the immersion tank was set at 60 ° C. and described above. After immersing the Al alloy piece for 5 minutes, it was washed with public tap water (Ota City, Gunma Prefecture). Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another dipping tank, and the Al alloy piece was immersed for 1 minute and washed with water. Next, an aqueous solution containing 1% hydrated aluminum chloride at 40 ° C. and 5% hydrochloric acid was prepared in another immersion tank, and an Al alloy piece was immersed in the aqueous solution for 6 minutes and then washed with water. Next, in another immersion tank, an aqueous solution containing 1 hydrogen 2-fluorinated ammon at a concentration of 2% and sulfuric acid at a concentration of 10% was prepared at 40 ° C., and an Al alloy piece was immersed in this solution for 4 minutes and then washed with water. .. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in this for 1 minute and then washed with water. Next, an aqueous nitric acid solution having a concentration of 3% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in the aqueous solution for 1.5 minutes and then washed with water. Next, a hydrated hydrazine aqueous solution having a concentration of 3.5% at 60 ° C. was prepared in another dipping tank, soaked in this for 1 minute, and then placed in another dipping tank at 33 ° C. for 0.5. After immersing in a% concentration hydrated hydrazine aqueous solution for 6 minutes, this was washed with water. Next, the Al alloy pieces having been subjected to the above chemical conversion treatment were dried by putting them in a warm air dryer set at 67 ° C. for 15 minutes, and these were wrapped in clean aluminum foil and stored.

上記処理と同様の処理で、NMT7処理をA5052板片に実施した。この化成処理でえたAl合金片を電子顕微鏡で観察した。図4は、その電子顕微鏡写真(以下、電顕写真という。)を示し、その千倍の電顕写真を図4(a)、1万倍の電顕写真を図(b)、10万倍の電顕写真を図4(c)に示す。千倍写真の観察で判明したことは、小山の繋がりで高く見える部分と広い平地部分があり、これは数十μm周期の山地部分と平野部分が大きな凹凸面をなしていることが観察できる。この部分を目視観察でしたとき、この部分が艶消し面(梨地)に見えるのは、この粗面の存在が原因している。1万倍電顕写真では、数μm周期の微細凹凸面の存在であり、これは金属結晶の結晶粒界が凹部となっている。そして、10万倍電顕写真で判明しているのは、30〜100nm周期の超微細凹凸面であり、金属表面全体で言えば化成処理されたAl合金片の表面は、3重の凹凸面形状になっている。 The NMT7 treatment was carried out on the A5052 plate piece by the same treatment as the above treatment. The Al alloy pieces obtained by this chemical conversion treatment were observed with an electron microscope. FIG. 4 shows the electron micrograph (hereinafter referred to as an electron micrograph), the electron micrograph of 1000 times is shown in FIG. 4 (a), the electron micrograph of 10,000 times is shown in FIG. The electron micrograph of is shown in FIG. 4 (c). The observation of the 1000x photograph revealed that there are high-looking parts and wide flat areas due to the connection of small mountains, and it can be observed that the mountainous areas and plain areas with a period of several tens of μm form large uneven surfaces. When this part is visually observed, the reason why this part looks like a matte surface (pear-skin texture) is due to the presence of this rough surface. In the 10,000-fold electron micrograph, there is a fine uneven surface with a period of several μm, which is a recess in the grain boundary of the metal crystal. The 100,000x electron micrograph reveals an ultrafine uneven surface with a period of 30 to 100 nm, and the surface of the chemical conversion-treated Al alloy piece is a triple uneven surface in terms of the entire metal surface. It has a shape.

[実験例A−2]A6061Al合金の表面処理(本発明では「NMT8処理」という。)
厚さ1.5mmのA6061Al合金板を、45mm×18mmに切断しAl合金片とした。浸漬槽に、上記アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記Al合金片を5分間浸漬して、公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした1%濃度の水和塩化アルミニウムと5%濃度の塩酸を含む水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これにAl合金片を2分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸水溶液を用意し、これにAl合金片を1.5分間浸漬した後、これを水洗した。次に別の浸漬槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意してこれに1分間浸漬した後、次に別の浸漬槽に33℃とした0.5%濃度の水和ヒドラジン水溶液に4.5分浸漬した後、これを水洗した。次に別の浸漬槽に、1.5%濃度の過酸化水素水を用意し、ここに1分浸漬した後、これをよく水洗した。次に別の浸漬槽に、40℃とした0.2%濃度のトリエタノールアミンの水溶液を用意し、これに前記Al合金片を5分浸漬した後、これをよく水洗した。次に、67℃に設定した温風乾燥機に15分間入れて、上記化成処理を終えたAl合金片を乾燥し、これを清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A-2] Surface treatment of A6061Al alloy (referred to as "NMT8 treatment" in the present invention).
An A6061Al alloy plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm to obtain an Al alloy piece. The aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the dipping tank, the Al alloy piece was immersed for 5 minutes, and washed with public tap water (Ota City, Gunma Prefecture). Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in this for 1 minute and then washed with water. Next, an aqueous solution containing 1% hydrated aluminum chloride at 40 ° C. and 5% hydrochloric acid was prepared in another immersion tank, and an Al alloy piece was immersed in this solution for 1 minute and then washed with water. Next, in another immersion tank, an aqueous solution containing 1 hydrogen 2-fluorinated ammon at a concentration of 2% and sulfuric acid at a concentration of 10% was prepared at 40 ° C., and an Al alloy piece was immersed in this solution for 1 minute and then washed with water. .. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in this for 2 minutes and then washed with water. Next, an aqueous nitric acid solution having a concentration of 3% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in the aqueous solution for 1.5 minutes and then washed with water. Next, a hydrated hydrazine aqueous solution having a concentration of 3.5% at 60 ° C. was prepared in another immersion tank and immersed in the aqueous solution for 1 minute, and then in another immersion tank at a concentration of 0.5% at 33 ° C. After immersing in the hydrated hydrazine aqueous solution for 4.5 minutes, this was washed with water. Next, a 1.5% concentration hydrogen peroxide solution was prepared in another immersion tank, soaked in the hydrogen peroxide solution for 1 minute, and then washed well with water. Next, an aqueous solution of triethanolamine having a concentration of 0.2% at 40 ° C. was prepared in another dipping tank, and the Al alloy piece was immersed in the aqueous solution for 5 minutes and then washed well with water. Next, it was placed in a warm air dryer set at 67 ° C. for 15 minutes to dry the Al alloy pieces that had undergone the above chemical conversion treatment, and these were wrapped in clean aluminum foil and stored.

[実験例A−3]A1100Al合金の表面処理(NMT7処理)
厚さ1.5mmのA1100Al合金板を、45mm×18mmに切断しAl合金片とした。浸漬槽に、上記アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、上記Al合金片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の苛性ソーダ水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした1%濃度の水和塩化アルミニウムと5%濃度の塩酸を含む水溶液を用意し、これにAl合金片を10分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした2%濃度の1水素2弗化アンモンと10%濃度の硫酸含む水溶液を用意し、これにAl合金片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに合金片を2分間浸漬した後、水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸水溶液を用意し、これにAl合金片を2分間浸漬した後、これを水洗した。次に別の浸漬槽に、60℃とした3.5%濃度の水和ヒドラジン水溶液を用意して、これに1分間浸漬した後、次に別の浸漬槽に、33℃とした0.5%濃度の水和ヒドラジン水溶液に4分浸漬した後、これを水洗した。次に、67℃に設定した温風乾燥機に15分間入れて、上記化成処理を終えたAl合金片を乾燥し、清浄なアルミ箔で包み保管した。
[Experimental Example A-3] Surface treatment of A1100Al alloy (NMT7 treatment)
An A1100Al alloy plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm to obtain an Al alloy piece. The aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C. in the dipping tank, the Al alloy piece was immersed for 5 minutes, and then washed with public tap water (Ota City, Gunma Prefecture). Next, a caustic soda aqueous solution having a concentration of 10% at 40 ° C. was prepared in another dipping tank, and an Al alloy piece was immersed in this for 1 minute and then washed with water. Next, an aqueous solution containing 1% hydrated aluminum chloride at 40 ° C. and 5% hydrochloric acid was prepared in another immersion tank, and an Al alloy piece was immersed in the aqueous solution for 10 minutes and then washed with water. Next, in another immersion tank, an aqueous solution containing 1 hydrogen 2-fluorinated ammon at a concentration of 2% and sulfuric acid at a concentration of 10% was prepared at 40 ° C., and an Al alloy piece was immersed in this solution for 1 minute and then washed with water. .. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another dipping tank, and the alloy pieces were immersed in the caustic soda aqueous solution for 2 minutes and then washed with water. Next, an aqueous nitric acid solution having a concentration of 3% at 40 ° C. was prepared in another immersion tank, and an Al alloy piece was immersed therein for 2 minutes and then washed with water. Next, a hydrated hydrazine aqueous solution having a concentration of 3.5% at 60 ° C. was prepared in another dipping tank, soaked in this for 1 minute, and then placed in another dipping tank at 33 ° C. for 0.5. After immersing in a% concentration hydrated hydrazine aqueous solution for 4 minutes, this was washed with water. Next, it was placed in a warm air dryer set at 67 ° C. for 15 minutes to dry the Al alloy piece after the above chemical conversion treatment, wrapped in clean aluminum foil, and stored.

[実験例A−4]C1100銅の表面処理(本発明では、「新型の新NMT」という。:特許文献4に記載された同様の表面処理法:クロムを含む処理剤を使用)
厚さ1.5mmのC1100銅板を、45mm×18mmに切断し、かつ端部に2mmφの穴を開けて銅板片とした。浸漬槽に上記アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、園芸用の樹脂被膜付き針金でくくった上記銅板片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、これに銅板片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした10%濃度の硝酸水溶液を用意し、これに銅板片を1分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸と0.25%濃度の硝酸第2鉄水和物を含む水溶液を用意し、これに銅板片を10分間浸漬した後、これを水洗した。次に別の浸漬槽に、70℃とした2%濃度の過マンガン酸カリと3%濃度の苛性カリと、0.1%濃度の硝酸クロム水和物を含む水溶液を用意し、これに銅板片を35分間浸漬した後、これを水洗した。次に別の浸漬槽に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダ含む水溶液を用意し、これに銅板片を20分間浸漬した後、これを水洗した。次に、80℃に設定した温風乾燥機に15分間入れて、上記化成処理を終えた銅板片を乾燥し、これを清浄なアルミ箔で包み保管した。銅板片の表面の電顕写真が図5に示したものであり、ウイスカが密集した様子が頭毛のように形成される(特許文献4に記載された同様の処理方法である。)。
[Experimental Example A-4] Surface treatment of C1100 copper (in the present invention, it is referred to as "new NMT" .: Similar surface treatment method described in Patent Document 4: A treatment agent containing chromium is used).
A C1100 copper plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm, and a hole of 2 mmφ was formed at the end to form a copper plate piece. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was placed in a dipping tank at 60 ° C., and the copper plate piece wrapped with a wire with a resin coating for horticulture was immersed for 5 minutes, and then this was immersed in public tap water (Gunma). Washed with water in Ota City, Gunma Prefecture. Next, a caustic soda aqueous solution having a concentration of 1.5% at 40 ° C. was prepared in another dipping tank, and a copper plate piece was immersed in the caustic soda solution for 1 minute and then washed with water. Next, a 10% aqueous nitric acid solution at 40 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in this for 1 minute and then washed with water. Next, in another immersion tank, an aqueous solution containing 3% nitric acid at 40 ° C. and ferric nitrate 0.25% concentration was prepared, and a copper plate piece was immersed in the aqueous solution for 10 minutes, and then this was added. Was washed with water. Next, in another immersion tank, an aqueous solution containing 2% potassium permanganate at 70 ° C., 3% potassium caustic, and 0.1% chromium nitrate hydrate was prepared, and a copper plate piece was prepared therein. Was soaked for 35 minutes and then washed with water. Next, an aqueous solution containing 5% sodium chlorate and 10% caustic soda at 55 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 20 minutes and then washed with water. Next, it was placed in a warm air dryer set at 80 ° C. for 15 minutes to dry the copper plate piece after the above chemical conversion treatment, and the copper plate piece was wrapped in clean aluminum foil and stored. An electron micrograph of the surface of the copper plate piece is shown in FIG. 5, and the appearance of dense whiskers is formed like hair (the same treatment method described in Patent Document 4).

[実験例A−5]C1100銅の表面処理(本発明では、「最新型の新NMTの1」という。:クロムを含む処理剤も使用)
厚さ1.5mmのC1100銅板を、45mm×18mmに切断し、かつ端部に2mmφの穴を開けて銅板片とした。浸漬槽に、上記アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、上記銅板片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の硝酸水溶液を用意し、これに銅板片を3分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸と0.25%濃度の硝酸第2鉄水和物を含む水溶液を用意し、これに銅板片を25分間浸漬した後、これを水洗した。次に別の浸漬槽に、70℃とした2%濃度の過マンガン酸カリと3%濃度の苛性カリと0.1%濃度の硝酸クロム水和物を含む水溶液を用意し、これに銅板片を15分間浸漬した後、これを水洗した。次に別の浸漬槽に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダ含む水溶液を用意し、これに銅板片を8分間浸漬した後、これを水洗した。次に、80℃に設定した温風乾燥機に15分間入れて上記化成処理を終えた銅板片を乾燥した。これらを清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A-5] Surface treatment of C1100 copper (in the present invention, it is referred to as "1 of the latest new NMT": a treatment agent containing chromium is also used).
A C1100 copper plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm, and a hole of 2 mmφ was formed at the end to form a copper plate piece. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was placed in a dipping tank at 60 ° C., the copper plate piece was immersed for 5 minutes, and then washed with public tap water (Ota City, Gunma Prefecture). Next, a 10% aqueous nitric acid solution at 40 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 3 minutes and then washed with water. Next, in another immersion tank, an aqueous solution containing 3% nitric acid at 40 ° C. and ferric nitrate 0.25% concentration was prepared, and a copper plate piece was immersed in the aqueous solution for 25 minutes, and then this was added. Was washed with water. Next, in another immersion tank, an aqueous solution containing 2% potassium permanganate at 70 ° C., 3% potassium caustic, and 0.1% chromium nitrate hydrate was prepared, and a copper plate piece was placed therein. After soaking for 15 minutes, it was washed with water. Next, an aqueous solution containing 5% sodium chlorate and 10% caustic soda at 55 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 8 minutes and then washed with water. Next, the copper plate pieces having been subjected to the above chemical conversion treatment were dried by putting them in a warm air dryer set at 80 ° C. for 15 minutes. These were wrapped together in clean aluminum foil and stored.

[実験例A−6]C1100銅の表面処理(本発明では、「最新型の新NMTの2」という。)
厚さ1.5mmのC1100銅板を、45mm×18mmに切断し、かつ端部に2mmφの穴を開けて銅板片とした。浸漬槽に、アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、園芸用の樹脂被膜付き針金で吊り下げた上記銅板片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の硝酸水溶液を用意し、これに銅板片を3分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸と0.25%濃度の硝酸第2鉄水和物を含む水溶液を用意し、これに銅板片を25分間浸漬した後、これを水洗した。次に別の浸漬槽に、70℃とした2%濃度の過マンガン酸カリと3%濃度の苛性カリとを含む水溶液を用意し、これに銅板片を15分間浸漬した後、これを水洗した。次に別の浸漬槽に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダ含む水溶液を用意し、これに銅板片を8分間浸漬した後、これを水洗した。次に、50℃に設定した温風乾燥機に20分間入れ、更に、これを67℃に設定した温風乾燥機に10分間入れて銅板片を乾燥した。この乾燥した銅板片をまとめて清浄なアルミ箔で包み保管した。
[Experimental Example A-6] Surface treatment of C1100 copper (referred to as "latest new NMT 2" in the present invention).
A C1100 copper plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm, and a hole of 2 mmφ was formed at the end to form a copper plate piece. In the dipping tank, an aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was heated to 60 ° C., and the copper plate piece suspended by a wire with a resin coating for horticulture was immersed for 5 minutes, and then this was immersed in public tap water (public tap water). Washed with water in Ota City, Gunma Prefecture). Next, a 10% aqueous nitric acid solution at 40 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 3 minutes and then washed with water. Next, in another immersion tank, an aqueous solution containing 3% nitric acid at 40 ° C. and ferric nitrate 0.25% concentration was prepared, and a copper plate piece was immersed in the aqueous solution for 25 minutes, and then this was added. Was washed with water. Next, an aqueous solution containing 2% potassium permanganate and 3% potassium caustic at 70 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 15 minutes and then washed with water. Next, an aqueous solution containing 5% sodium chlorate and 10% caustic soda at 55 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 8 minutes and then washed with water. Next, it was placed in a warm air dryer set at 50 ° C. for 20 minutes, and further placed in a warm air dryer set at 67 ° C. for 10 minutes to dry the copper plate pieces. The dried copper plate pieces were wrapped together in clean aluminum foil and stored.

なお、この化成処理法でえた銅片で、銅片の穴があるのと反対方向の端部、その端から5mm程度に線状の僅か色調の違う部分が観察された。全液処理を終了して得た濡れた銅片を、乾燥機内でぶら下げて強制乾燥した故に、この色調の違う部分は、付着水が最後に残る端部にアルカリイオンが濃縮され残留し、これが何らかの微細形状の変化、化学変化をもたらしたものと推定される。本発明者等は、このような乾燥工程で生じる色調変化は、品質のバラつきを生む恐れがあるので、避ける必要があると考えた。それ故に、この実験例A6では、最終工程後の水洗は、イオン交換水等による十分な洗浄は当然ながら丁寧に行う必要がある。更に言えば、このような銅板面の不均一さは上記実験例A4、A5ではみられない。後述する実験例A7は、新アイデアで非常に希薄な水溶性アミンの水溶液に短時間浸漬する方法で、洗浄水に残るアルカリ物質を置換する試みをしたものであり、この浸漬により銅板面の不均一さは改善された。 In the copper pieces obtained by this chemical conversion treatment method, an end portion in the direction opposite to the hole in the copper piece, and a linear portion having a slightly different color tone were observed about 5 mm from the end. Since the wet copper pieces obtained after the whole liquid treatment were hung in the dryer and forcibly dried, alkaline ions were concentrated and remained at the end where the adhered water remained at the end of this different color tone. It is presumed that some kind of fine shape change or chemical change was caused. The present inventors considered that it is necessary to avoid such a change in color tone caused by the drying process because it may cause a variation in quality. Therefore, in this Experimental Example A6, it is naturally necessary to carefully wash the water after the final step with sufficient ion-exchanged water or the like. Furthermore, such non-uniformity of the copper plate surface is not observed in the above-mentioned Experimental Examples A4 and A5. Experimental example A7, which will be described later, is a new idea in which an attempt is made to replace an alkaline substance remaining in the washing water by immersing it in a very dilute aqueous solution of a water-soluble amine for a short time. The uniformity was improved.

[実験例A−7]C1100銅の表面処理(本発明では、「最新型の新NMTの3」という。)
厚さ1.5mmのC1100銅板を、45mm×18mmに切断し、かつ端部に2mmφの穴を開けて銅板片とした。浸漬槽に、上記アルミ用脱脂剤「NA−6」10%を含む水溶液を60℃とし、前記銅板片を5分間浸漬した後、これを公共水道水(群馬県太田市)で水洗した。次に別の浸漬槽に、40℃とした10%濃度の硝酸水溶液を用意し、これに銅板片を3分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした3%濃度の硝酸と0.25%濃度の硝酸第2鉄水和物を含む水溶液を用意し、これに銅板片を25分間浸漬した後、これを水洗した。次に別の浸漬槽に、70℃とした2%濃度の過マンガン酸カリと3%濃度の苛性カリとを含む水溶液を用意し、これに銅板片を15分間浸漬した後、これを水洗した。次に別の浸漬槽に、55℃とした5%濃度の亜塩素酸ソーダと10%濃度の苛性ソーダ含む水溶液を用意し、これに銅板片を8分間浸漬した後、これを水洗した。次に別の浸漬槽に、40℃とした0.02%濃度のジエタノールアミン(DEA)の水溶液を用意し、これに銅板片を0.5分浸漬した後、これをよく水洗した。次に、50℃に設定した温風乾燥機に20分間入れ、更に67℃に設定した温風乾燥機に10分間入れて銅板片を乾燥した後、これを清浄なアルミ箔でまとめて包み保管した。
[Experimental Example A-7] Surface treatment of C1100 copper (referred to as "latest new NMT 3" in the present invention).
A C1100 copper plate having a thickness of 1.5 mm was cut into 45 mm × 18 mm, and a hole of 2 mmφ was formed at the end to form a copper plate piece. An aqueous solution containing 10% of the aluminum degreasing agent "NA-6" was placed in a dipping tank at 60 ° C., the copper plate piece was immersed for 5 minutes, and then washed with public tap water (Ota City, Gunma Prefecture). Next, a 10% aqueous nitric acid solution at 40 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 3 minutes and then washed with water. Next, in another immersion tank, an aqueous solution containing 3% nitric acid at 40 ° C. and ferric nitrate 0.25% concentration was prepared, and a copper plate piece was immersed in the aqueous solution for 25 minutes, and then this was added. Was washed with water. Next, an aqueous solution containing 2% potassium permanganate and 3% potassium caustic at 70 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 15 minutes and then washed with water. Next, an aqueous solution containing 5% sodium chlorate and 10% caustic soda at 55 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 8 minutes and then washed with water. Next, an aqueous solution of 0.02% concentration diethanolamine (DEA) at 40 ° C. was prepared in another immersion tank, and a copper plate piece was immersed in the aqueous solution for 0.5 minutes and then washed well with water. Next, put it in a warm air dryer set at 50 ° C for 20 minutes, and then put it in a warm air dryer set at 67 ° C for 10 minutes to dry the copper plate pieces, and then wrap them in clean aluminum foil and store them. did.

[実験例B]図1に示す形状の射出接合物を作成し、その金属・樹脂間の接合力を測定
実験例A1〜A3、実験例A4〜A7にて得たAl合金片と銅板片を使用し、射出樹脂として、前述したPPS系樹脂組成物「SGX120」を使用して、射出接合物を作成した。作成した射出接合物の「せん断接合強度」、「せん断接合粘り性」の値を計測した。その結果を表1に示す。表1からはAl合金全般でNMT2処理法から発展させたNMT7やNMT8処理品が約40MPaのせん断接合強度を示し、かつ、「せん断接合粘り性」の値で、せん断接合強度の85%程度を示すなど十分に高い強度の接合を有している。又、純アルミニウムに近い不純物1%を含むA1100Al合金で、せん断接合強度がやや低いのはAl合金材がやや軟質(硬度が低い)故である。
[Experimental Example B] An injection joint having the shape shown in FIG. 1 was prepared, and the bonding force between the metal and the resin was measured. As the injection resin, the above-mentioned PPS-based resin composition "SGX120" was used to prepare an injection joint. The values of "shear joint strength" and "shear joint tenacity" of the prepared injection joint were measured. The results are shown in Table 1. From Table 1, the NMT7 and NMT8 treated products developed from the NMT2 treatment method for all Al alloys show a shear bond strength of about 40 MPa, and the value of "shear bond stickiness" is about 85% of the shear bond strength. As shown, it has a sufficiently high strength bond. Further, in the A1100Al alloy containing 1% of impurities close to pure aluminum, the shear bonding strength is slightly low because the Al alloy material is slightly soft (low hardness).

一方、C1100銅使用物のA4〜A7のうちA4とA5は、その表面にウイスカが形成される型であり、ウイスカを形成するために処理液にクロムイオン含んだ物を使用している。特許文献4に記載の表面処理法と同じ処理品はA4であり、本発明で使用するとしたその改良品はA5であり「せん断接合粘り性」が改善されている。厳密な排水処理が必要なクロムイオン含有水溶液を使用しているが、ウイスカ型表面を有していることが何か有利な局面が生じることもあると推察し、本発明で使用できるとした。

Figure 2021194778
On the other hand, of A4 to A7 of C1100 copper materials, A4 and A5 are types in which whiskers are formed on the surface thereof, and those containing chromium ions in the treatment liquid are used to form whiskers. The same treated product as the surface treatment method described in Patent Document 4 is A4, and the improved product used in the present invention is A5, and the "shear joint stickiness" is improved. Although a chromium ion-containing aqueous solution that requires strict wastewater treatment is used, it is presumed that having a whisker-shaped surface may cause some advantageous aspects, and it can be used in the present invention.
Figure 2021194778

クロムイオン不含の処理液を使用して、その表面を化成処理としたのは、表1に示す上記実験のA6とA7であり、A6はその処理法がA5と殆ど同じである(クロムイオン不含の処理液を使ったことのみ異なる)。上記実験のA6とA7は、ウイスカが形成されない処理法であるが、せん断接合強度、せん断接合ねばり性は、ウイスカが形成される化成処理と比べてもそん色はない。A6の銅片では、前述したように、端部5mm程度の箇所に色調の違う部分があり、射出接合面にはその不均一部が含まれた。表1からはA6にはせん断接合強度では、特に異常は見られずせん断接合粘り性も特に悪くない。次に、この対策で実験例A7の処理法を実施した。即ち、薄いアミン水溶液で短時間浸漬することで表面を洗浄する操作を加えた。この薄いアミン水溶液による洗浄により、少なくとも肉眼での観察では不均一性は消えた。 The surface of the treatment liquid containing no chromium ion was subjected to chemical conversion treatment in A6 and A7 of the above experiment shown in Table 1, and the treatment method of A6 is almost the same as that of A5 (chromium ion). Only the use of non-containing treatment liquid is different). A6 and A7 in the above experiment are treatment methods in which whiskers are not formed, but the shear bonding strength and shear bonding stickiness are not comparable to those in the chemical conversion treatment in which whiskers are formed. In the copper piece of A6, as described above, there was a portion having a different color tone at a portion of about 5 mm at the end, and the non-uniform portion was included in the injection joint surface. From Table 1, no particular abnormality was found in the shear joint strength in A6, and the shear joint tenacity was not particularly bad. Next, the treatment method of Experimental Example A7 was carried out as a countermeasure. That is, an operation of cleaning the surface was added by immersing in a dilute aqueous amine solution for a short time. Washing with this dilute aqueous amine solution eliminated the non-uniformity, at least with the naked eye.

[実験例C]図1形状の射出接合物を使用した耐湿熱性試験の実施
実験例A5とA6によるC1100銅を使った、上記PPS系樹脂組成物である「SGX120」との射出接合物は、表1に示す結果から判断して、本発明銅材とPPS系樹脂組成物の一体化構造物に使用できるものと判断される。具体的には、例えば、LIBの部品用として、これらを使用した電池箱の蓋部に使用すると、その接合面層における構造が大気中の湿気によって、変化しないので最適である。要するに、その重要な評価指標は、銅材と樹脂成形物との間の接合部の接合力が、湿度含む大気下に、長期に置かれた場合に、低下するようであれば実用化できない。そこで、過酷な加速試験であるが、85℃の温度下で、85%湿度に1000時間晒す、高温高湿試験を行った。その結果を表2に示した。なお、この試験では、高温高湿試験機から試験片を取り出した後に、80℃×48時間の1次乾燥を行った後に、更に、150℃×4時間の2次乾燥を行い、これを放冷後にせん断接合強度を測定した。150℃での乾燥工程は、PPS系樹脂組成物「SGX120」の樹脂内に、拡散状態で含まれている水分を完全に外部へ放出させるためのものである。

Figure 2021194778
[Experimental Example C] Implementation of Moisture and Heat Resistance Test Using Injection Bonds of Fig. 1 The injection joint with "SGX120", which is the PPS-based resin composition, using C1100 copper according to Experimental Examples A5 and A6. Judging from the results shown in Table 1, it is judged that the copper material of the present invention and the PPS-based resin composition can be used in an integrated structure. Specifically, for example, when it is used for the lid of a battery box using these for LIB parts, the structure in the joint surface layer is not changed by the humidity in the atmosphere, so that it is most suitable. In short, the important evaluation index cannot be put into practical use if the bonding force of the bonding portion between the copper material and the resin molded product decreases when it is placed in the atmosphere including humidity for a long period of time. Therefore, although it is a harsh accelerated test, a high-temperature and high-humidity test was conducted in which the product was exposed to 85% humidity for 1000 hours at a temperature of 85 ° C. The results are shown in Table 2. In this test, after taking out the test piece from the high-temperature and high-humidity tester, the primary drying was performed at 80 ° C. × 48 hours, and then the secondary drying was performed at 150 ° C. × 4 hours, and this was released. After cooling, the shear joint strength was measured. The drying step at 150 ° C. is for completely releasing the water contained in the resin of the PPS-based resin composition "SGX120" in a diffused state to the outside.
Figure 2021194778

表2の結果から言えば、せん断接合強度、せん断接合粘り性、共に高温高湿試験機に投入する前の数値から低下しているが、過酷な高温高湿試験での結果としては非常に高い。このAl合金と銅材の低下傾向は、特許文献1に示されたNMT2処理Al合金と、PPS系樹脂組成物「SGX120」との射出接合物と、同じ高温高湿試験のデータについてはかなり類似している。Al合金の場合は、最初の500時間程度で、せん断接合強度は最低値を示し、1000時間までのせん断接合強度は、やや復活して37〜39MPaに戻った。そして、その後は6〜8千時間まで測定しているが接合力は変化しなかった。これは接合面におけるAl合金側の侵入水分子酸素分子による、アルミ錆の生成がその隙間を埋めて完全封止タイプに向かう経過現象と推定される。これが銅の場合は、仮に、ここで発生する銅錆が酸化銅によるものなら、酸素分子と反応して生じたことになる。Al合金材の場合に、上記の測定値から判断し、500時間で生じたことが銅の場合は1000時間と長くかかったのかもしれない。この推論が正しいなら、この温度85℃湿度85%下で行う耐高温高湿試験は、試験が進むほどガス封止性が向上すると言うことに繋がる可能性がある。何れにしても、LIBに本発明を適用した場合、その電池は全天候性があるとみられ、その電池寿命を延ばす上で好ましいはずである。 From the results in Table 2, both the shear bond strength and the shear bond stickiness are lower than the values before being put into the high temperature and high humidity tester, but the results in the harsh high temperature and high humidity test are very high. .. The downward tendency of the Al alloy and the copper material is quite similar to the injection junction of the NMT2-treated Al alloy shown in Patent Document 1 and the PPS-based resin composition "SGX120" and the data of the same high temperature and high humidity test. is doing. In the case of the Al alloy, the shear bond strength showed the lowest value in the first 500 hours, and the shear bond strength up to 1000 hours recovered slightly and returned to 37 to 39 MPa. After that, the measurement was performed for 6,000 to 8,000 hours, but the bonding force did not change. It is presumed that this is a transitional phenomenon in which the formation of aluminum rust due to the invading water molecule oxygen molecule on the Al alloy side on the joint surface fills the gap and moves toward the completely sealed type. In the case of copper, if the copper rust generated here is due to copper oxide, it means that it has reacted with oxygen molecules. Judging from the above measured values in the case of Al alloy material, what happened in 500 hours may have taken as long as 1000 hours in the case of copper. If this reasoning is correct, this high temperature and high humidity resistance test conducted at a temperature of 85 ° C. and a humidity of 85% may lead to an improvement in gas sealing performance as the test progresses. In any case, when the present invention is applied to the LIB, the battery appears to be all-weather and should be preferable in extending the battery life.

[実験例D]−50℃/+150℃の温度衝撃千サイクル試験の実施
実験例A5、A6で作成したC1100銅片と、上記PPS系樹脂組成物「SGX120」との射出接合物(図1に示す形状物)を数個作成し、その後にその樹脂部を削り取って、その形状を図7に示すように、樹脂部の厚さを元の図1形状の3mm厚から、1mm厚にした。そして、−50℃/+150℃の温度衝撃3千サイクル試験にかけ、その後、ニッパー等を使用して、金属部から樹脂部を強引に剥がし取った。その結果、その金属部の接合面跡は、樹脂の黒色紛が4隅部含めて全面に付着しており、樹脂抜けは生じていなかった。この結果から、樹脂厚1mm以下なら優れた表面処理済みのC1100銅に対しては「SGX120」は接合面積には関係なく温度衝撃が数千サイクルあろうと樹脂が接合し続けると判断した。
[Experimental Example D] Implementation of a temperature shock thousand-cycle test at -50 ° C / + 150 ° C An injection junction of the C1100 copper pieces prepared in Experimental Examples A5 and A6 and the PPS-based resin composition "SGX120" (in FIG. 1). Several pieces of the shape shown) were prepared, and then the resin portion was scraped off, and the thickness of the resin portion was changed from 3 mm thickness of the original shape of FIG. 1 to 1 mm thickness as shown in FIG. 7. Then, it was subjected to a temperature shock 3,000 cycle test at −50 ° C./+ 150 ° C., and then the resin portion was forcibly peeled off from the metal portion using a nipper or the like. As a result, the black powder of the resin adhered to the entire surface including the four corners of the joint surface trace of the metal portion, and the resin did not come off. From this result, it was judged that the resin of "SGX120" would continue to be bonded to C1100 copper, which had an excellent surface treatment if the resin thickness was 1 mm or less, regardless of the bonding area, regardless of the temperature impact of several thousand cycles.

一方、同様な実験試験はAl合金に関しては、前述したように特許文献3に記載されているように、本発明では、約1mmを基本として、前述のPPS系樹脂組成物「SGX120」使用の射出接合物の場合の樹脂部厚さとすれば、その射出接合物は−50℃/+150℃の温度衝撃3千サイクル試験に耐え得ることが十分に予期できることになる。 On the other hand, in the same experimental test, as described in Patent Document 3 for Al alloys, in the present invention, injection using the above-mentioned PPS-based resin composition "SGX120" is based on about 1 mm. Given the thickness of the resin part in the case of the joint, it can be fully expected that the injection joint can withstand a temperature impact of 3,000 cycles of −50 ° C./+ 150 ° C.

図8に示すものは、LIB本体の蓋部の構造例を示す断面図である。即ち、本発明に係る銅材とPPS系樹脂組成物の一体化構造物の例であり、LIB箱の蓋部に使用した例である。引き出し部の金属材が長板状、丸棒状であれ、それを樹脂で取り巻き、金属と接合する樹脂部の基本的な厚さを約1mm前後とした。接合面積が広く取り易いので、ガスシール性がよい。なお、上記試験にて温度衝撃3千サイクル試験は−50℃/+150℃と200℃差で行っているが、実際にはLIBの実際の使用環境を考えたとき、−50℃/+100℃の150℃差で十分と思われる。 FIG. 8 is a cross-sectional view showing a structural example of the lid portion of the LIB main body. That is, it is an example of an integrated structure of a copper material and a PPS-based resin composition according to the present invention, and is an example of being used for a lid of a LIB box. Whether the metal material of the drawer portion is a long plate shape or a round bar shape, it is surrounded by a resin, and the basic thickness of the resin portion to be joined to the metal is about 1 mm. Since the joint area is wide and easy to take, the gas sealability is good. In the above test, the temperature impact 3,000 cycle test was performed with a difference of 200 ° C from -50 ° C / + 150 ° C, but in reality, when considering the actual usage environment of LIB, it is -50 ° C / + 100 ° C. A difference of 150 ° C seems to be sufficient.

前述した実施例は、LIBの本体から引き出し用の銅電極に適用したものであったが、これに限らず銅部材とPPS組成物を用いるものであれば、電気機器等の他の製品の部品の構造、製造に用いても良い。 The above-mentioned embodiment was applied to a copper electrode for drawing out from the main body of the LIB, but the present invention is not limited to this, and if a copper member and a PPS composition are used, parts of other products such as electrical equipment are used. It may be used for the structure and manufacture of.

Claims (4)

表面処理された銅片と、特定のポリフェニレンサルファイド系樹脂組成物とが直接的に接合一体化された構造物であって、
前記ポリフェニレンサルファイド系樹脂組成物は、その樹脂部の主成分をポリフェニレンサルファイド樹脂、従成分を変性ポリオレフィン樹脂で、強化材成分として樹脂組成物全体の15〜25重量%のガラス短繊維が加わった樹脂組成物であり、かつ、
前記銅材と前記ポリフェニレンサルファイド系樹脂組成物との接合力が、日本工業規格で規定(ISO19095)する射出接合物によるせん断接合強度の測定で40MPa以上であり、かつ、
前記射出接合物は、300回の連続的な繰り返しによるせん断方向の外力を加えても破断しない引っ張り力と定義されるせん断接合粘り性値が33MPa以上である
ことを特徴とする銅材とPPS系樹脂組成物の一体化構造物。
A structure in which a surface-treated copper piece and a specific polyphenylene sulfide-based resin composition are directly bonded and integrated.
The polyphenylene sulfide-based resin composition is a resin in which the main component of the resin portion is polyphenylene sulfide resin, the secondary component is a modified polyolefin resin, and 15 to 25% by weight of short glass fibers of the entire resin composition is added as a reinforcing material component. It is a composition and
The bonding force between the copper material and the polyphenylene sulfide resin composition is 40 MPa or more as measured by the shear bonding strength of the injection bonded product specified in the Japanese Industrial Standards (ISO19095), and
The injection joint is a copper material and a PPS system characterized by having a shear joint tenacity value of 33 MPa or more, which is defined as a tensile force that does not break even when an external force in the shear direction is applied by continuous repetition of 300 times. Integrated structure of resin composition.
請求項1に記載の銅材とPPS系樹脂組成物の一体化構造物において、
前記銅材は、棒状物であって負電極の引き出し部をなし、化成処理による表面処理を済ませたアルミニウム合金製の棒状物を正電極の引き出し部を成し、前記負極部及び前記正極部の引き出し部が外部に貫通している電池蓋を構成し、前記電池蓋の素材が前記ポリフェニレンサルファイド系樹脂組成物であるリチウムイオン電池の電極引き出し部の廻りの構造物である
ことを特徴とする銅材とPPS系樹脂組成物の一体化構造物。
In the integrated structure of the copper material and the PPS-based resin composition according to claim 1.
The copper material is a rod-shaped material that forms a lead-out portion for a negative electrode, and a rod-shaped material made of an aluminum alloy that has been surface-treated by a chemical conversion treatment forms a lead-out portion for a positive electrode. Copper characterized in that the drawer portion constitutes a battery lid penetrating to the outside, and the material of the battery lid is a structure around the electrode pull-out portion of the lithium ion battery which is the polyphenylene sulfide-based resin composition. An integrated structure of the material and the PPS-based resin composition.
請求項1又は2に記載の銅材とPPS系樹脂組成物の一体化構造物において、
前記銅材は、純度が99.90%以上の純銅材であり、
前記銅材に接合される前記ポリフェニレンサルファイド系樹脂組成物の厚みは、基本的に1mm以下である
ことを特徴とする銅材とPPS系樹脂組成物の一体化構造物。
In the integrated structure of the copper material and the PPS-based resin composition according to claim 1 or 2.
The copper material is a pure copper material having a purity of 99.90% or more.
An integrated structure of a copper material and a PPS-based resin composition, characterized in that the thickness of the polyphenylene sulfide-based resin composition bonded to the copper material is basically 1 mm or less.
請求項1ないし3から選択される1項に記載の銅材とPPS系樹脂組成物の一体化構造物の製造方法において、
表面が化成処理された前記銅部材を射出成形用金型にインサートし、前記ポリフェニレンサルファイド系樹脂組成物を射出することにより、前記銅部材と前記ポリフェニレンサルファイド系樹脂組成物とを直接的に一体化物化することを特徴とする製造方法。
In the method for producing an integrated structure of a copper material and a PPS-based resin composition according to claim 1, which is selected from claims 1 to 3.
By inserting the copper member whose surface has been chemically treated into an injection molding die and injecting the polyphenylene sulfide-based resin composition, the copper member and the polyphenylene sulfide-based resin composition are directly integrated. A manufacturing method characterized by materialization.
JP2020100248A 2020-06-09 2020-06-09 Integral structure of copper material and pps-based resin composition and method for manufacturing the same Pending JP2021194778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020100248A JP2021194778A (en) 2020-06-09 2020-06-09 Integral structure of copper material and pps-based resin composition and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100248A JP2021194778A (en) 2020-06-09 2020-06-09 Integral structure of copper material and pps-based resin composition and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2021194778A true JP2021194778A (en) 2021-12-27

Family

ID=79196902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100248A Pending JP2021194778A (en) 2020-06-09 2020-06-09 Integral structure of copper material and pps-based resin composition and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2021194778A (en)

Similar Documents

Publication Publication Date Title
EP2174766B1 (en) Composite of metal with resin and process for producing the same
TWI464053B (en) Composite of stainless steel and resin and method for making same
JP4452220B2 (en) Composite and production method thereof
US9545740B2 (en) Composite of metal and resin and method for manufacturing the same
JP4527196B2 (en) Composite and production method thereof
JP4927871B2 (en) Metal-resin composite and method for producing the composite
JP5139426B2 (en) Steel composite and manufacturing method thereof
JP7040988B2 (en) Aluminum alloy and resin complex and its manufacturing method
JP5733999B2 (en) Method for producing metal resin composite
WO2004041533A1 (en) Composite of aluminum alloy and resin composition and process for producing the same
JP2006027018A (en) Metal/resin composite body and its manufacturing method
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
CN103228418A (en) Metal resin complex and process for producing thereof
JP2007203585A (en) Composite of aluminum alloy and resin, and its manufacturing method
JP5302315B2 (en) Composite of metal alloy and polyamide resin composition and method for producing the same
JPWO2014024877A1 (en) Aluminum resin bonded body and manufacturing method thereof
WO2019050040A1 (en) Resin-titanium metal bonded body and method for manufacturing same
JP2016088079A (en) Method for producing metal-resin complex
CN114561684A (en) Stainless steel-aluminum alloy composite material and surface pore-forming method thereof
JP2021194778A (en) Integral structure of copper material and pps-based resin composition and method for manufacturing the same
JP5540029B2 (en) Composite of aluminum or aluminum alloy and resin and method for producing the same
JP7071886B2 (en) Aluminum alloy and resin complex
KR101476074B1 (en) Metal resin complex and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402