JP2021194548A - Reaction facility - Google Patents

Reaction facility Download PDF

Info

Publication number
JP2021194548A
JP2021194548A JP2020099918A JP2020099918A JP2021194548A JP 2021194548 A JP2021194548 A JP 2021194548A JP 2020099918 A JP2020099918 A JP 2020099918A JP 2020099918 A JP2020099918 A JP 2020099918A JP 2021194548 A JP2021194548 A JP 2021194548A
Authority
JP
Japan
Prior art keywords
vertical furnace
furnace
opening
vertical
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020099918A
Other languages
Japanese (ja)
Other versions
JP6935952B1 (en
Inventor
清治 道前
Seiji Michimae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020099918A priority Critical patent/JP6935952B1/en
Application granted granted Critical
Publication of JP6935952B1 publication Critical patent/JP6935952B1/en
Publication of JP2021194548A publication Critical patent/JP2021194548A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To provide a treatment facility having improved abilities capable of coping with various kinds of materials to be processed such as wastes, compared to conventional dry distillation furnaces, so as to further improve decomposition of materials to be processed and recovery efficiency of useful substances.SOLUTION: A reaction facility comprises: a cylindrical vertical furnace having an upper part, a lower part, and a lowermost part; a water reservoir part for holding a reservoir water where the lowermost part of the vertical furnace is at least partially soaked; one or more combustion chambers provided adjacent to a periphery of the vertical furnace outside the lower part of the vertical furnace; an air box provided outside the lower part of the vertical furnace; and a blow nozzle connected with the air box via an opening/closing port and having its tip connected with an interior space of the vertical furnace, wherein the combustion chamber and the interior space of the vertical furnace are partitioned with a vertical grating, the vertical grating forms a hole connecting a first opening opposed to the combustion chamber and a second opening opposed to the interior space of the vertical furnace, the hole has an outside region, a central region and an inside region, the outside region is tapered from the first opening toward the central region gradually, the central region has a substantially constant narrow dimension, and the inside region becomes wider from the central region toward the second opening at an opening angle of 55-65°.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物等を加熱して分解処理すると共に有用な炭素系あるいは炭化水素系物質を生産することができる反応設備に関する。 The present invention relates to a reaction facility capable of heating and decomposing waste and the like and producing useful carbon-based or hydrocarbon-based substances.

廃棄物等を乾溜に基づき分解処理する炉が従来技術において知られている(特許文献1〜4)。これらの炉では、まず、炉内に堆積させた被処理物を、炉内の空気を用いて燃焼させる。この燃焼による酸化で炉内空気中の酸素を二酸化炭素に変えて消費し、炉内を無酸素化するとともに、その燃焼熱で高温無酸素ガスを発生させる。そして、高温無酸素ガスが炉内の被処理物の間を通過するとき、被処理物中の炭素含有物質に乾溜反応が起こる。炉上方で回収される乾溜ガス及び炉下方で回収される残渣からは、直接、あるいは冷却等の分離処理を経て、油、可燃ガス、カーボン等の炭化水素系又は炭素系の物質を回収することができる。 A furnace for decomposing waste or the like based on carbonization is known in the prior art (Patent Documents 1 to 4). In these furnaces, first, the object to be treated deposited in the furnace is burned using the air in the furnace. Oxidation by this combustion converts oxygen in the furnace air into carbon dioxide and consumes it, making the inside of the furnace oxygen-free and generating high-temperature oxygen-free gas by the combustion heat. Then, when the high-temperature oxygen-free gas passes between the objects to be treated in the furnace, a carbonization reaction occurs in the carbon-containing substances in the objects to be treated. Hydrocarbon-based or carbon-based substances such as oil, combustible gas, and carbon shall be recovered from the carbonization gas recovered above the furnace and the residue recovered below the furnace, either directly or through separation treatment such as cooling. Can be done.

特開平5−180425号公報Japanese Unexamined Patent Publication No. 5-180425 特開2000−291927号公報Japanese Unexamined Patent Publication No. 2000-291927 特開2001−107053号公報Japanese Unexamined Patent Publication No. 2001-107053 特開2014−25632号公報Japanese Unexamined Patent Publication No. 2014-25632

従来から乾溜炉で処理されてきた代表的な廃棄物の一例が古タイヤである。タイヤは特有の形状のゴムの他に繊維性材料や金属ワイヤー等を含んでいるため、乾溜ガスの通過及び分解途中の固形物の暫時的降下を促進させることに適した空隙を炉内で自然に形成しやすく、特に乾溜炉に適した被処理物であると見られた。 Old tires are an example of typical waste that has been treated in a carbonization furnace. Since tires contain fibrous materials, metal wires, etc. in addition to the uniquely shaped rubber, voids suitable for promoting the passage of carbonization gas and the temporary descent of solid matter during decomposition are naturally created in the furnace. It was seen that it was easy to form and was particularly suitable for the dry distillation furnace.

しかしながら、タイヤに限らずより多様な被処理物に対応できるように処理設備の能力を改善すること、及び、被処理物の分解と有用物質の回収の効率をさらに改善することという課題がある。 However, there are problems of improving the capacity of the processing equipment so as to be able to handle a wider variety of objects to be processed, not limited to tires, and further improving the efficiency of decomposition of the objects to be processed and recovery of useful substances.

本発明者は、上記課題に関して、炉内において被処理物を取り巻くガスを単に高温にするだけでなく、被処理物周辺に空隙を創出し特定のガスの流れを生じさせる設計とすることが著しく有利になることを、長年の研究と実践のなかから見出した。本発明の反応設備は、被処理物(炭素含有物体)を乾溜機序で熱分解すると同時に、同設備の構成に基づき炉内に起こさせるガス流と被処理物との相互作用及び/又は化学反応を誘起させ得る設計を有するものである。 Regarding the above-mentioned problems, the present inventor is remarkably designed not only to raise the temperature of the gas surrounding the object to be treated in the furnace to a high temperature but also to create voids around the object to be processed to generate a specific gas flow. We have found an advantage in many years of research and practice. The reaction equipment of the present invention thermally decomposes the object to be treated (carbon-containing object) by a carbonization mechanism, and at the same time, the interaction and / or chemistry between the gas flow generated in the furnace and the object to be treated based on the configuration of the equipment. It has a design that can induce a reaction.

本発明は少なくとも以下の実施形態を含む。
[1]
上部、下部、及び最下部を有する筒状の竪型炉と、
前記竪型炉の最下部が少なくとも部分的に浸漬する貯留水を保持する貯水部と、
前記竪型炉の下部の外側において前記竪型炉の外周に隣接して設けられた燃焼室と、
前記竪型炉の下部の外側にさらに設けられたエアボックスと、
開閉口を介して前記エアボックスと接続し、先端が前記竪型炉の内部空間に接続する吹込ノズルと
を備え、
前記燃焼室と前記竪型炉の内部空間とは竪格子によって隔てられ、前記竪格子は、前記燃焼室に面する第1開口と前記竪型炉の内部空間に面する第2開口とを繋げる孔を形成し、
前記孔は、外側域と中央域と内側域を有し、前記外側域は前記第1開口から前記中央域へと徐々に狭くなり、前記中央域は略一定の狭さを有し、前記内側域は、前記中央域から前記第2開口へと55〜65°の開口角度で広くなっている、
反応設備。
[2]
前記吹込ノズルは、外円筒と、前記外円筒に入れ子式に内接する内円筒とを含み、前記外円筒及び前記内円筒はそれぞれ円筒の胴体側面に穴を有しており、前記外円筒及び/又は前記内円筒を互いに対して回転させて両者の穴が重なる面積を変動させることにより前記開閉口を提供するように構成されている、[1]に記載の反応設備。
[3]
前記エアボックスに接続され前記エアボックス中に高CO濃度ガスを供給する、高CO濃度ガス供給部をさらに備える、[1]又は[2]に記載の反応設備。
The present invention includes at least the following embodiments.
[1]
A cylindrical vertical furnace with an upper part, a lower part, and a lowermost part,
A water storage unit that holds the stored water in which the bottom of the vertical furnace is at least partially immersed.
A combustion chamber provided adjacent to the outer periphery of the vertical furnace on the outside of the lower part of the vertical furnace, and
An air box further provided on the outside of the lower part of the vertical furnace, and
It is equipped with a blowing nozzle that is connected to the air box via an opening / closing port and whose tip is connected to the internal space of the vertical furnace.
The combustion chamber and the internal space of the vertical furnace are separated by a vertical lattice, and the vertical lattice connects a first opening facing the combustion chamber and a second opening facing the internal space of the vertical furnace. Form a hole,
The hole has an outer region, a central region, and an inner region, the outer region gradually narrows from the first opening to the central region, and the central region has a substantially constant narrowness, and the inner region has a substantially constant narrowness. The region widens from the central region to the second opening at an opening angle of 55-65 °.
Reaction equipment.
[2]
The blowing nozzle includes an outer cylinder and an inner cylinder nested inscribed in the outer cylinder, and the outer cylinder and the inner cylinder each have a hole in the side surface of the body of the cylinder, and the outer cylinder and / Alternatively, the reaction facility according to [1], wherein the opening / closing port is provided by rotating the inner cylinders with respect to each other to change the area where the holes overlap with each other.
[3]
Connected to said air box for supplying a high CO 2 concentration gas in the air box, further comprising a high CO 2 concentration gas supply unit, the reaction equipment described in [1] or [2].

一実施形態による反応設備の断面図である。It is sectional drawing of the reaction equipment by one Embodiment. 一実施形態による竪格子の概略を示す。(A)は一実施形態による竪格子の一部分の断面図であり、(B)は(A)の部分を炉内から見た場合の概観を示す。An outline of a vertical grid according to an embodiment is shown. (A) is a cross-sectional view of a part of the vertical grid according to one embodiment, and (B) shows an overview when the part (A) is viewed from the inside of the furnace. 一実施形態による吹込ノズルの断面図である。(A)は、エアボックスに繋がる開閉口が全開したところ、(B)は全閉したところを表す。It is sectional drawing of the blowing nozzle by one Embodiment. (A) represents a place where the opening / closing port connected to the air box is fully opened, and (B) represents a place where the opening / closing port is fully closed. 反応設備内で起こり得る物質の動きの概念図である。It is a conceptual diagram of the movement of a substance that can occur in a reaction facility.

以下、添付の図面を参照しながら、本発明の実施形態に係る反応設備を説明する。 Hereinafter, the reaction equipment according to the embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、一実施形態による反応設備100の断面図である。反応設備100の本体は、全体的に筒状である竪型炉110から構成されている。ここでいう「筒」は、円筒であることが特に好ましいが、必ずしもそれに限定されず、楕円筒、多角筒等であってもよい。多角筒にする場合、炉内側の隅に被処理物が詰まることを防ぐために、最隅部は面取りあるいは湾曲面とすることが好ましい。 FIG. 1 is a cross-sectional view of the reaction facility 100 according to the embodiment. The main body of the reaction facility 100 is composed of a vertical furnace 110 having a cylindrical shape as a whole. The "cylinder" referred to here is particularly preferably a cylinder, but is not necessarily limited to that, and may be an elliptical cylinder, a polygonal cylinder, or the like. In the case of a polygonal cylinder, it is preferable that the outermost corner is chamfered or curved in order to prevent the object to be processed from being clogged in the inner corner of the furnace.

反応設備100の炉は竪(縦)型の筒であるが故に、筒の上端付近から投入され炉内に充填された被処理物は、炉内で熱分解されながら重力によって沈降していく。竪型炉のことを竪型キルンともいう。後述するように、反応設備100の稼働の際には、筒の上側は蓋あるいはダンパー等によって、筒の下側は貯留水によってそれぞれ密閉されて外気から遮断される。 Since the furnace of the reaction facility 100 is a vertical (vertical) type cylinder, the object to be treated, which is charged from the vicinity of the upper end of the cylinder and filled in the furnace, is thermally decomposed in the furnace and settles by gravity. A vertical kiln is also called a vertical kiln. As will be described later, when the reaction facility 100 is in operation, the upper side of the cylinder is sealed with a lid or a damper, and the lower side of the cylinder is sealed with stored water to shield it from the outside air.

筒の内径は、被処理物の大きさ等に応じて当業者が適宜選択することができ、例えば0.6〜3mであり得、0.8〜2mが通常好ましく、1〜1.7mがより好ましい。非円筒である場合の内径は、同じ開口面積の円筒を仮定した場合のその円筒の内径として定義することができる。筒の材質も、当業者が通常の知識に基づいて適宜選択することができ、例えば耐火セメントで裏打ちされた鉄製のものが好適である。筒の長さに渡って形状、内径、及び/又は材質を変動させてもよい。筒の最も狭い部分の内径が、最も広い部分の内径の90%以上であることが好ましい。 The inner diameter of the cylinder can be appropriately selected by those skilled in the art depending on the size of the object to be treated and the like, and may be, for example, 0.6 to 3 m, usually 0.8 to 2 m, and 1 to 1.7 m. More preferred. The inner diameter of a non-cylinder can be defined as the inner diameter of a cylinder with the same opening area. The material of the cylinder can also be appropriately selected by those skilled in the art based on ordinary knowledge, and for example, iron ones lined with refractory cement are suitable. The shape, inner diameter, and / or material may vary over the length of the cylinder. It is preferable that the inner diameter of the narrowest portion of the cylinder is 90% or more of the inner diameter of the widest portion.

竪型炉110の高さは例えば3〜15mであり得、4〜10mが通常好ましく、5〜8mがより好ましい。竪型炉110は、上部111、下部112、及び最下部113を有する。上部111は通常、竪型炉110の少なくとも上半分を占め、主たる乾溜処理が行われる部分に相当する。下部112は、上部111の下に位置し、後述する竪格子160、燃焼室130、エアボックス140、及び吹込ノズル150が位置する部分であり、竪型炉110の高さの15〜30%を占めることが好ましい。最下部113は、下部112の下に位置し、竪型炉110の高さの10〜20%を占めることが好ましい。 The height of the vertical furnace 110 can be, for example, 3 to 15 m, usually 4 to 10 m, more preferably 5 to 8 m. The vertical furnace 110 has an upper part 111, a lower part 112, and a lowermost part 113. The upper portion 111 usually occupies at least the upper half of the vertical furnace 110 and corresponds to the portion where the main carbonization treatment is performed. The lower portion 112 is located below the upper portion 111, and is a portion where the vertical grid 160, the combustion chamber 130, the air box 140, and the blowing nozzle 150, which will be described later, are located, and 15 to 30% of the height of the vertical furnace 110. It is preferable to occupy. The bottom 113 is located below the bottom 112 and preferably occupies 10-20% of the height of the vertical furnace 110.

竪型炉の下部112の外側には、竪型炉110の外周に隣接して燃焼室130が設けられている。燃焼室130内では、灯油、軽油、A重油等の可燃油が導入され、着火バーナー131によって燃焼が起こり、その燃焼熱が炉内の被処理物の熱分解その他の反応に供される。燃焼室130はつまり加熱室である。着火バーナーは、例えば当業者に知られるように、可燃油を高圧で噴出させたところにプラグで火花を起こさせて炎を生じさせるものであってよい。 A combustion chamber 130 is provided on the outside of the lower portion 112 of the vertical furnace adjacent to the outer periphery of the vertical furnace 110. In the combustion chamber 130, combustible oil such as kerosene, light oil, and heavy A oil is introduced, combustion occurs by the ignition burner 131, and the combustion heat is used for thermal decomposition and other reactions of the object to be processed in the furnace. The combustion chamber 130 is, in other words, a heating chamber. The ignition burner may be one that causes a spark by a plug at a place where a combustible oil is ejected at a high pressure to generate a flame, as is known to those skilled in the art.

燃焼室130は少なくとも一箇所設けられるが、竪型炉110を取り囲むように2箇所以上設けられることが好ましく、それら複数箇所の燃焼室が互いから等間隔に配置されて竪型炉110を取り囲むことがより好ましい。水平方向に長い一つの燃焼室が帯状に竪型炉110を取り囲んでいてもよい。 Although at least one combustion chamber 130 is provided, it is preferable that two or more combustion chambers are provided so as to surround the vertical furnace 110, and the plurality of combustion chambers are arranged at equal intervals from each other to surround the vertical furnace 110. Is more preferable. One horizontally long combustion chamber may surround the vertical furnace 110 in a strip shape.

燃焼室130を外部から隔てる壁は例えばステンレス製であり得るがこれに限定されない。図1に示す特定の例では、燃焼室130の底と外側壁がステンレス製であり、上側壁が別の耐火材132(耐火セメント)で形成されている。なお、着火バーナー131は燃焼室130内に着火するバーナーであるが、これとは別に、竪型炉110の内部に接続して炉内の被処理物に直接着火する着火バーナーがあってもよい。 The wall separating the combustion chamber 130 from the outside can be, for example, made of stainless steel, but is not limited thereto. In the specific example shown in FIG. 1, the bottom and outer walls of the combustion chamber 130 are made of stainless steel, and the upper side wall is made of another refractory material 132 (refractory cement). The ignition burner 131 is a burner that ignites in the combustion chamber 130, but apart from this, there may be an ignition burner that is connected to the inside of the vertical furnace 110 and directly ignites the object to be processed in the furnace. ..

燃焼室130と、竪型炉110の内部空間とは、略垂直な竪型ロストルすなわち竪格子160によって隔てられている。竪格子160の炉側面(羽口)には高温域が形成される。反応設備100の使用時の炉内の温度は概して数百℃になり得るが、この高温域は炉内の他の場所よりもさらに数百℃温度が高いと推測される。竪格子160の羽口から放出される高温のガス流はまた、被処理物を排斥しながら炉内に空隙を創出し、被処理物の新たな炭素含有表面を継続的に露出させる。 The combustion chamber 130 and the internal space of the vertical furnace 110 are separated by a substantially vertical vertical rostrum, that is, a vertical grid 160. A high temperature region is formed on the furnace side surface (tuyere) of the vertical grid 160. The temperature inside the furnace when the reaction facility 100 is used can be generally several hundred degrees Celsius, but it is estimated that this high temperature region is even higher than other places in the furnace by several hundred degrees Celsius. The hot gas stream emitted from the tuyere of the vertical grid 160 also creates voids in the furnace while repelling the object to be treated, continuously exposing new carbon-containing surfaces of the object to be treated.

竪格子160は本発明における重要な特徴であり、その詳細を図2で説明する。図2(A)は、一例における竪格子160の一部分の断面図である。この図で示されるように、竪格子160は、燃焼室130に面する側の開口161(第1開口という)と、竪型炉110の内部空間に面する側の開口162(第2開口という)とを繋げるトンネル状の複数の孔163を提供する。各孔(トンネル)163は略水平方向に延在し、燃焼室へと繋がる外側域163aと、炉内部に繋がる内側域163cと、外側域及び内側域を接続する中央域163bとに分けられる。 The vertical grid 160 is an important feature in the present invention, and the details thereof will be described with reference to FIG. FIG. 2A is a cross-sectional view of a part of the vertical grid 160 in one example. As shown in this figure, the vertical grid 160 has an opening 161 (referred to as a first opening) on the side facing the combustion chamber 130 and an opening 162 (referred to as a second opening) on the side facing the internal space of the vertical furnace 110. ) And a plurality of tunnel-shaped holes 163 are provided. Each hole (tunnel) 163 extends substantially horizontally and is divided into an outer region 163a connected to the combustion chamber, an inner region 163c connected to the inside of the furnace, and a central region 163b connecting the outer region and the inner region.

外側域163aは第1開口161から中央域163bへと徐々に狭くなり、中央域163bは略一定の狭さを有し、内側域163cは、中央域163bから第2開口162へと広くなっている。この形状の孔163を有する竪格子160の存在により、燃焼室130内で生じた実質的に無酸素の高温ガスが勢いと角度をもって炉内に放出され、特徴的なガス流を炉内に起こさせる。中央域163bから第2開口162へ広がる開口角度θが重要であることが見出された。すなわちこの開口角度θは55〜65°の範囲内とする。θがこの範囲の外だと、意図するガス流が生じにくくなり得、また圧迫してくる被処理物が羽口を塞いだり孔の中央域163bまで侵入したりしやすくなり得る。 The outer region 163a gradually narrows from the first opening 161 to the central region 163b, the central region 163b has a substantially constant narrowness, and the inner region 163c widens from the central region 163b to the second opening 162. There is. Due to the presence of the vertical grid 160 having holes 163 of this shape, the substantially oxygen-free high-temperature gas generated in the combustion chamber 130 is released into the furnace at an angle and momentum, causing a characteristic gas flow in the furnace. Let me. It was found that the opening angle θ extending from the central region 163b to the second opening 162 is important. That is, this opening angle θ is within the range of 55 to 65 °. If θ is outside this range, the intended gas flow may be less likely to occur, and the pressing object may easily block the tuyere or penetrate to the central region 163b of the hole.

第1開口161から中央域163bへと狭くなる角度はより自由度が高い。その角度は、第1開口161の縦方向(垂直方向)の大きさが第2開口162の縦方向の大きさと略同じとなるような角度とすることが好ましいが、第1開口161の方が第2開口162より縦方向に小さくてもよく、あるいは逆に第1開口161の方が第2開口162より縦方向に最大1.5倍程度まで大きくてもよい。第1開口161の縦方向の大きさは例えば50〜150mmであり得、70〜100mmが好ましい。第2開口162の縦方向の大きさは例えば50〜150mmであり得、80〜110mmが好ましい。中央域163bの縦方向の大きさ(トンネルの高さ)は、例えば20〜100mmであり得、30〜50mmが好ましい。上述したように、この大きさは、中央域163b全長に渡り略一定である。孔163の横方向の大きさ(トンネルの幅)は、例えば50〜300mmであり得、60〜150mmが好ましい。 The angle narrowing from the first opening 161 to the central region 163b has a higher degree of freedom. The angle is preferably such that the size of the first opening 161 in the vertical direction (vertical direction) is substantially the same as the size of the second opening 162 in the vertical direction, but the first opening 161 is preferable. It may be smaller in the vertical direction than the second opening 162, or conversely, the first opening 161 may be larger than the second opening 162 in the vertical direction up to about 1.5 times. The vertical size of the first opening 161 can be, for example, 50 to 150 mm, preferably 70 to 100 mm. The vertical size of the second opening 162 may be, for example, 50 to 150 mm, preferably 80 to 110 mm. The vertical size (tunnel height) of the central region 163b can be, for example, 20 to 100 mm, preferably 30 to 50 mm. As described above, this size is substantially constant over the entire length of the central region 163b. The lateral size (tunnel width) of the hole 163 can be, for example, 50 to 300 mm, preferably 60 to 150 mm.

なお、前段落の記載は、外側域163a−中央域163b−内側域163cに沿ってトンネル状の孔163の縦方向の大きさが変動することを前提にしており、炉内で垂直方向へと傾いたガス流を生じさせるためにこの形態が最も好ましい。しかしながら、孔163の横方向の大きさが変動する実施形態も企図される。 The description in the previous paragraph is based on the premise that the vertical size of the tunnel-shaped hole 163 fluctuates along the outer region 163a-central region 163b-inner region 163c, and is directed in the vertical direction in the furnace. This form is most preferred because it produces a sloping gas flow. However, embodiments are also contemplated in which the lateral size of the hole 163 varies.

孔163全体としての水平方向の長さ(トンネルの奥行)は例えば150〜350mmであり得、200〜250mmが好ましい。孔163全長の10〜25%が内側域163cで占められることが好ましい。孔163全長の15〜50%が中央域163bで占められることが好ましい。孔163全長の30〜70%が外側域163aで占められることが好ましい。好ましい一実施形態では、外側域163aの水平方向の長さが中央域163bの水平方向の長さ以上であり、内側域163cの水平方向の長さが中央域163bの水平方向の長さ以下である。 The horizontal length of the hole 163 as a whole (the depth of the tunnel) can be, for example, 150 to 350 mm, preferably 200 to 250 mm. It is preferable that 10 to 25% of the total length of the hole 163 is occupied by the inner region 163c. It is preferable that 15 to 50% of the total length of the hole 163 is occupied by the central region 163b. It is preferable that 30 to 70% of the total length of the hole 163 is occupied by the outer region 163a. In one preferred embodiment, the horizontal length of the outer region 163a is greater than or equal to the horizontal length of the central region 163b and the horizontal length of the inner region 163c is greater than or equal to the horizontal length of the central region 163b. be.

上述した形状及び寸法の孔163は、例えば、外側域163aと内側域163cに相当する部分を斜めにカットした煉瓦ブロックを利用して形成することができる。煉瓦は蓄熱効果も有し羽口温度を均一化できるため好ましい。図2(A)に示す例では、本来長方形の断面を有する煉瓦ブロックが2箇所斜めにカットされて六角形のプロファイルとなっている。しかしながら、外側域163a及び/又は内側域163cをより深くカットして、五角形あるいは台形のプロファイルとすることもできる。図2(A)の例では、孔163は水平で平坦な天井により画定されている。孔163の天井の形はこれが好ましいが、必ずしもこれに限定されない。 The holes 163 having the above-mentioned shape and dimensions can be formed by using, for example, a brick block in which the portions corresponding to the outer region 163a and the inner region 163c are cut diagonally. Brick is preferable because it also has a heat storage effect and can make the tuyere temperature uniform. In the example shown in FIG. 2A, a brick block originally having a rectangular cross section is cut diagonally at two points to form a hexagonal profile. However, the outer region 163a and / or the inner region 163c can be cut deeper into a pentagonal or trapezoidal profile. In the example of FIG. 2A, the hole 163 is defined by a horizontal, flat ceiling. This is preferred, but not necessarily limited to, the shape of the ceiling of the hole 163.

被処理物の大きさや種類、及び竪型炉110自体の大きさにも応じて、竪格子160における孔163の数及び位置を調節することができる。例えば図1に示す特定の例では、竪格子160の上から下まで多数の孔が密に提供されているが、孔を欠く「壁」の面積割合をもっと増やして、孔の密度を減らすこともできる。竪型炉当たりの孔163の総数は典型的には50〜80個であり得る。築炉の際には孔の数を多めに作っておいて、反応設備100の使用時に適宜孔を塞いで孔163の数及び位置を調節することが簡便である。 The number and position of the holes 163 in the vertical grid 160 can be adjusted according to the size and type of the object to be processed and the size of the vertical furnace 110 itself. For example, in the specific example shown in FIG. 1, a large number of holes are densely provided from the top to the bottom of the vertical grid 160, but the area ratio of the "wall" lacking the holes is further increased to reduce the density of the holes. You can also. The total number of holes 163 per vertical furnace can typically be 50-80. When constructing a furnace, it is convenient to make a large number of holes and appropriately close the holes when using the reaction facility 100 to adjust the number and position of the holes 163.

図2(B)は、竪型炉110の内部から竪格子160の一部分を見た例を示す。この例には、煉瓦ブロック1個の幅で形成された横に狭い孔(下)、及び煉瓦ブロック2個の幅で形成された、横により広い孔(上及び中央)が含まれている。このように、個々の孔163の大きさも、被処理物の大きさや種類、及び竪型炉110自体の大きさ等に応じて調節することができる。孔163の大きさあるいは開口面積の調節は、羽口を出る熱流の速度の調節と関連しており、この速度は20m/sにも達し得る。 FIG. 2B shows an example in which a part of the vertical grid 160 is viewed from the inside of the vertical furnace 110. This example includes a narrow horizontal hole (bottom) formed by the width of one brick block and a wider hole (top and center) formed by the width of two brick blocks. As described above, the size of each hole 163 can also be adjusted according to the size and type of the object to be processed, the size of the vertical furnace 110 itself, and the like. Adjusting the size or opening area of the hole 163 is associated with adjusting the rate of heat flow exiting the tuyere, which can reach as high as 20 m / s.

竪型炉の下部112の外側にはさらに、エアボックス140が設けられている。図1に示す特定の例では、エアボックス140は、燃焼室130と隣接して設けられている。このようにすれば、燃焼室130の熱によってエアボックス内のガスを加温することができる。エアボックス140中には、図示していないブロワー等を介してCO(二酸化炭素)含有ガスが導入される。空気も、わずかに二酸化炭素を含むためCO含有ガスと言えるが、本実施形態におけるCO含有ガスは高CO濃度ガスであることが好ましい。本開示において高CO濃度ガスとは、空気よりも二酸化炭素濃度が高く空気よりも酸素濃度が低い気体として定義される。高CO濃度ガスは、典型的には、当該反応設備とは別の設備で何かを燃焼させた際に生じた排出ガスであり、例えば工場、焼却処理施設、火力発電所等の煙突から放出される排出ガスであり得る。高CO濃度ガスの二酸化炭素濃度は例えば5体積%以上であり得、15体積%以上であってもよく、50体積%以上であってもよく、100体積%にもし得る。高CO濃度ガスの酸素濃度は例えば20体積%以下であり得、10体積%以下であってもよく、5体積%以下であってもよく、0体積%にもし得る。 An air box 140 is further provided on the outside of the lower portion 112 of the vertical furnace. In the particular example shown in FIG. 1, the air box 140 is provided adjacent to the combustion chamber 130. In this way, the gas in the air box can be heated by the heat of the combustion chamber 130. A CO 2 (carbon dioxide) -containing gas is introduced into the air box 140 via a blower or the like (not shown). Air also is slightly said to CO 2 containing gas for containing carbon dioxide, it is preferable CO 2 containing gas in the present embodiment is a high CO 2 concentration gas. In the present disclosure, a high CO 2 concentration gas is defined as a gas having a higher carbon dioxide concentration than air and a lower oxygen concentration than air. The high CO 2 concentration gas is typically an exhaust gas generated when something is burned in a facility other than the reaction facility, for example, from a chimney of a factory, an incineration treatment facility, a thermal power plant, or the like. It can be an exhaust gas that is released. The carbon dioxide concentration of the high CO 2 concentration gas may be, for example, 5% by volume or more, 15% by volume or more, 50% by volume or more, or 100% by volume. The oxygen concentration of the high CO 2 concentration gas may be, for example, 20% by volume or less, 10% by volume or less, 5% by volume or less, or 0% by volume.

図1に示す例において、エアボックス140には、吹込ノズル150が貫通しており、吹込ノズル150の先端は、竪型炉110の内部空間に接続している。例えば、吹込ノズル150は、エアボックス140からさらに燃焼室130を貫通し、竪型炉の下部112の内壁のうち竪格子160を欠く部分(あるいは、竪格子160のうち孔163を欠く壁の部分)を通って竪型炉110の内部空間に接続し得る。あるいは、エアボックス140が燃焼室130と重なっていない場合には、吹込ノズル150はエアボックス140だけを貫通した後その先端が竪型炉110の内壁を通って炉の内部空間に接続してもよい。 In the example shown in FIG. 1, the blowing nozzle 150 penetrates the air box 140, and the tip of the blowing nozzle 150 is connected to the internal space of the vertical furnace 110. For example, the blowing nozzle 150 further penetrates the combustion chamber 130 from the air box 140, and the portion of the inner wall of the lower part 112 of the vertical furnace lacking the vertical grid 160 (or the portion of the vertical grid 160 lacking the hole 163). ) Can be connected to the internal space of the vertical furnace 110. Alternatively, if the air box 140 does not overlap the combustion chamber 130, the blowing nozzle 150 may penetrate only the air box 140 and then its tip may be connected to the internal space of the furnace through the inner wall of the vertical furnace 110. good.

いずれにしても、吹込ノズル150は、開閉口151を介してエアボックス140と接続し、先端が竪型炉110の内部空間に接続する。開閉口とは、少なくとも開くことと閉じることができる構造を意味する。開閉口151が開くことによって、内部ガス圧が上昇したエアボックス140から吹込ノズル150内へのガスの流入及び竪型炉110の内部空間への放出が起こり、開閉口151が閉じることによって、エアボックス140から吹込ノズル150内へのガスの流入及び竪型炉110の内部空間への放出が遮断される。開閉口151はさらに、閉じた状態と全開の状態との間で連続的又は非連続的に開口の大きさを変化させ得るように構成されていることが好ましい。 In any case, the blowing nozzle 150 is connected to the air box 140 via the opening / closing port 151, and the tip is connected to the internal space of the vertical furnace 110. An opening and closing means a structure that can be opened and closed at least. When the opening / closing port 151 is opened, gas flows into the blowing nozzle 150 from the air box 140 where the internal gas pressure has risen and is discharged into the internal space of the vertical furnace 110, and when the opening / closing port 151 is closed, air is generated. The inflow of gas from the box 140 into the blowing nozzle 150 and the discharge into the internal space of the vertical furnace 110 are blocked. It is also preferable that the opening / closing port 151 is configured so that the size of the opening can be continuously or discontinuously changed between the closed state and the fully opened state.

吹込ノズル150は、20m/s程度以上の強い風力でガスを被処理物に吹き付けることができるため、被処理物表面に堆積した灰層等を吹き飛ばして炭素含有物質を露出させ、反応を促進させる作用を有する。熱分解で脆くなった被処理物塊を吹き崩す効果も提供し得る。また、必要に応じ、エアボックス140内に導入されるCO含有ガスの酸素含量に依存して、被処理物の燃焼及び/又は酸化を促進させることもできる。 Since the blowing nozzle 150 can blow gas onto the object to be treated with a strong wind force of about 20 m / s or more, the ash layer or the like deposited on the surface of the object to be treated is blown off to expose the carbon-containing substance and promote the reaction. Has an effect. It can also provide the effect of blowing off the mass of material to be treated that has become brittle due to thermal decomposition. Further, if necessary, combustion and / or oxidation of the object to be treated can be promoted depending on the oxygen content of the CO 2- containing gas introduced into the air box 140.

吹込ノズル150の数は1つ以上であり、好ましくは竪型炉110を取り囲んで複数の吹込ノズル150が、より好ましくは放射状に、設置される。竪型炉110の内壁において複数の吹込ノズル150同士の設置間隔は例えば300〜2000mm間隔であり得、400〜800mm間隔が好ましい。吹込ノズル150は、竪型炉110(筒)の中心に向かう角度で設置されてもよいが、その角度からずらして、炉内に堆積した被処理物集合体の外殻部分をこそぎ飛ばす角度で設置されることが好ましい。異なる角度の吹込ノズル150を組み合わせてもよい。互いに異なる高さの位置に設置された吹込ノズル150を組み合わせてもよい。竪型炉110の外へと突出した吹込ノズル150の末端に、耐熱ガラスを組み込むことにより、炉内を操作者が観察できるようにすること又はカメラで監視できるようにすることも可能である。 The number of the blowing nozzles 150 is one or more, and preferably a plurality of blowing nozzles 150 are installed so as to surround the vertical furnace 110, more preferably radially. The installation interval between the plurality of blowing nozzles 150 on the inner wall of the vertical furnace 110 can be, for example, an interval of 300 to 2000 mm, preferably an interval of 400 to 800 mm. The blowing nozzle 150 may be installed at an angle toward the center of the vertical furnace 110 (cylinder), but the angle is shifted from that angle to scrape off the outer shell portion of the aggregate to be processed deposited in the furnace. It is preferable to install in. The blowing nozzles 150 having different angles may be combined. The blowing nozzles 150 installed at different heights may be combined. By incorporating heat-resistant glass at the end of the blowing nozzle 150 projecting out of the vertical furnace 110, it is possible to allow the operator to observe the inside of the furnace or to monitor it with a camera.

図3は、開閉口151を伴う吹込ノズル150の一実施形態の詳細を示す断面図である。この実施形態において、吹込ノズル150は、外円筒152と、外円筒152に入れ子式に内接する内円筒153とを含み、外円筒152及び内円筒153はそれぞれ円筒の胴体側面に穴を有している。そして、外円筒152及び/又は内円筒153を互いに対して回転させて両者の穴が重なる面積を変動させることにより、連続的に開口の大きさを変化させることができる開閉口151が提供されている。例えば、内円筒153の末端に備えられたレバー154を、竪型炉110の外にいる操作者が手動で回すことにより、固定された外円筒152に対して内円筒153を回転させることができる。 FIG. 3 is a cross-sectional view showing details of an embodiment of a blowing nozzle 150 having an opening / closing port 151. In this embodiment, the blowing nozzle 150 includes an outer cylinder 152 and an inner cylinder 153 nested inscribed in the outer cylinder 152, and the outer cylinder 152 and the inner cylinder 153 each have a hole in the side surface of the body of the cylinder. There is. Then, an opening / closing port 151 capable of continuously changing the size of the opening is provided by rotating the outer cylinder 152 and / or the inner cylinder 153 with respect to each other to change the area where the holes overlap with each other. There is. For example, the inner cylinder 153 can be rotated with respect to the fixed outer cylinder 152 by manually turning the lever 154 provided at the end of the inner cylinder 153 by an operator outside the vertical furnace 110. ..

図3(A)は、開閉口151がほぼ全開の状態を表す。吹込ノズル150の胴体側面のうち少なくとも開閉口151を含む領域は、図1に示すようにエアボックス140の内部空間に面しているから、図3(A)の状態では、内部ガス圧が上昇したエアボックス140から吹込ノズル150内へのガスの流入が起こり(図3(A)下の矢印)、流入したガスは吹込ノズル150の先端から竪型炉110の内部空間へと放出される(図3(A)右の矢印)。図3(B)は、レバー154を90度回転させて、すなわち外円筒152に対して内円筒153を90度回転させて、開閉口151を完全に閉じた状態を表す。この場合は、外円筒152の穴と内円筒153の穴が重なっていないので、エアボックス140からのガスの流入及び炉内へのガスの放出は遮断される。実際の操業では、このように全開の状態と閉じた状態とを切り替えるよりも、レバー154を(例えばハンマーで軽く叩いて)僅かに動かせて微調節を行う方が普通である。 FIG. 3A shows a state in which the opening / closing port 151 is almost fully opened. Since the region including at least the opening / closing port 151 on the side surface of the fuselage of the blowing nozzle 150 faces the internal space of the air box 140 as shown in FIG. 1, the internal gas pressure rises in the state of FIG. 3 (A). Gas flows into the blowing nozzle 150 from the air box 140 (arrow in FIG. 3A), and the inflowing gas is discharged from the tip of the blowing nozzle 150 into the internal space of the vertical furnace 110 (the arrow below). FIG. 3 (A) right arrow). FIG. 3B shows a state in which the lever 154 is rotated 90 degrees, that is, the inner cylinder 153 is rotated 90 degrees with respect to the outer cylinder 152, and the opening / closing port 151 is completely closed. In this case, since the hole of the outer cylinder 152 and the hole of the inner cylinder 153 do not overlap, the inflow of gas from the air box 140 and the discharge of gas into the furnace are blocked. In actual operation, it is more common to make fine adjustments by slightly moving the lever 154 (for example, tapping it with a hammer) rather than switching between the fully open state and the closed state.

上述した竪格子160の孔の開口総面積並びに吹込ノズル150による吹込みの風量及び頻度により、被処理物の処理速度あるいは炉内滞留時間を調節することができる。例えば、熱分解効率が比較的低い被処理物に対しては、上記パラメータを増加させることにより処理速度が速まり、炉内を降下するプロセス全体を促進させ得る。なお、竪型炉の下部112の壁のうちエアボックス140に面する部分にも、上述したような竪格子あるいは孔を配置してもよいが、それは必須ではない。 The processing speed or the residence time in the furnace of the object to be processed can be adjusted by the total opening area of the holes of the vertical lattice 160 and the air volume and frequency of the blowing by the blowing nozzle 150. For example, for an object to be treated with a relatively low thermal decomposition efficiency, the processing speed can be increased by increasing the above parameters, and the entire process of descending in the furnace can be promoted. It should be noted that the vertical grid or holes as described above may be arranged on the portion of the wall of the lower portion 112 of the vertical furnace facing the air box 140, but this is not essential.

反応設備100は、エアボックス140に接続されエアボックス140中に高CO濃度ガスを供給する、高CO濃度ガス供給部をさらに備え得る。より単純な例において、高CO濃度ガス供給部は、高CO濃度ガス供給源からガスをエアボックス140中に導入する導管であり、この導管は、エアボックス140に内圧を生じさせるブロワーあるいはポンプを備え得る。図1に示す例における高CO濃度ガス供給部170は、水を収容する水槽を備えている。この特定の実施形態では、導管はいったん水中で途切れた後に、水面上で再開し、エアボックス140へと至る。上述したように高CO濃度ガスは典型的には産業施設からの排出ガスであり、有害物質や燃焼中の粒子などを含む可能性がある。ガスをいったん水に通すことにより、これらのものを除去することができる。 Reaction equipment 100 supplies the high CO 2 concentration gas in air box 140 is connected to the air box 140 may further comprise a high CO 2 concentration gas supply unit. In a simpler example, the high CO 2 concentration gas supply unit is a conduit that introduces gas from the high CO 2 concentration gas supply source into the air box 140, and this conduit is a blower or a blower that causes internal pressure in the air box 140. May be equipped with a pump. The high CO 2 concentration gas supply unit 170 in the example shown in FIG. 1 includes a water tank for accommodating water. In this particular embodiment, the conduit breaks once in the water and then resumes above the surface of the water, leading to the airbox 140. As mentioned above, the high CO 2 concentration gas is typically an exhaust gas from an industrial facility and may contain harmful substances, burning particles and the like. These things can be removed by passing the gas through water once.

竪型炉の下部112の内側、すなわち後述する反応層に相当する部分に、公知の触媒を設置してもよい。公知の触媒の例としては、ニッケル触媒、ルテニウム触媒、ロジウム触媒、パラジウム触媒、又は白金触媒を含む水素化触媒が挙げられる。 A known catalyst may be installed inside the lower part 112 of the vertical furnace, that is, in the portion corresponding to the reaction layer described later. Examples of known catalysts include hydrogenation catalysts including nickel catalysts, ruthenium catalysts, rhodium catalysts, palladium catalysts, or platinum catalysts.

竪型炉110の最下部113は、貯水部120に保持された貯留水に少なくとも部分的に浸漬されている。すなわち、竪型炉110は、その最下部113が貯留水に浸されるかたちで、図示されていない支持構造によって保持され、あるいは吊り下げられている。貯留水は、竪型炉110の底を密閉する役割を果たす。貯水部120は、人工の貯水槽であることが好ましいが、池など天然物に由来するものであってもよい。貯水部120は、貯留水の水位を調節できる構成とすることが好ましい。これは、例えば貯留水の水量の調節、又は貯水槽の容量の調節を通じて達成できる。反応設備100の使用の際には、最も低い水位でも竪型炉110の下端が貯留水から露出するべきではなく、また、竪格子160の開口の最下端から水面までの距離を600mm以内とすることが好ましい。一方、最も高い水位では水面が竪格子160の開口に達するべきではない。分解前の被処理物が竪型炉110の下端から出ることを防ぐ格子又は網を、略水平に最下部113に張設してもよい。 The lowermost portion 113 of the vertical furnace 110 is at least partially immersed in the stored water held in the water storage unit 120. That is, the vertical furnace 110 is held or suspended by a support structure (not shown) so that the lowermost portion 113 thereof is immersed in the stored water. The stored water serves to seal the bottom of the vertical furnace 110. The water storage unit 120 is preferably an artificial water storage tank, but may be derived from a natural product such as a pond. The water storage unit 120 is preferably configured so that the water level of the stored water can be adjusted. This can be achieved, for example, by adjusting the amount of stored water or adjusting the capacity of the water tank. When using the reaction facility 100, the lower end of the vertical furnace 110 should not be exposed from the stored water even at the lowest water level, and the distance from the lowermost end of the opening of the vertical grid 160 to the water surface should be within 600 mm. Is preferable. On the other hand, at the highest water level, the water surface should not reach the opening of the vertical grid 160. A grid or net that prevents the object to be disassembled from coming out from the lower end of the vertical furnace 110 may be stretched substantially horizontally on the lowermost portion 113.

竪型炉110の最下部113が貯水部120に少なくとも部分的に浸漬された構成は、本実施形態の反応設備においていくつかの利点を提供する。第一に、竪格子160の近傍に位置付けられた貯水部120の貯留水自体が、高温の被処理物と反応し、竪格子160によって生じる高温のガス流により促進される物質同士の相互作用又は化学反応に関与する。この点については詳しく後述する。第二に、上述したように水位を調節することにより、炉の容量及び炉内の反応を調節することができる。第三に、炉は使用時に著しい高温に晒されるため伸縮するが、本実施形態では炉の下端が水中でフリーであるため、炉全体長の伸縮を許容することができ、炉への構造的負担が緩衝される。第四に、被処理物は炉上部から熱分解等を受けながら徐々に下降してくるが、最後に貯留水に達することにより、処理全体が自動的あるいは半自動的な一つの流れ作業のようになると共に、最終的に残った固形物の分離及び回収が容易になる。例えば、比重が軽い炭素系固形物が水面に浮遊して分離される一方、比重が重い金属、無機物残渣等は貯水部の底に沈んで分離され得る。図示していないが、固形物回収のためのスクレイパ(灰出し装置)、プッシャ、コンベア等を貯水部120内に設けてもよい。 The configuration in which the bottom 113 of the vertical furnace 110 is at least partially immersed in the water reservoir 120 provides some advantages in the reaction equipment of this embodiment. First, the stored water itself of the water storage unit 120 located in the vicinity of the vertical grid 160 reacts with the hot object to be treated, and the interaction between substances promoted by the high temperature gas flow generated by the vertical grid 160 or Involved in chemical reactions. This point will be described in detail later. Secondly, by adjusting the water level as described above, the capacity of the furnace and the reaction in the furnace can be adjusted. Thirdly, the furnace expands and contracts because it is exposed to a significantly high temperature during use, but in the present embodiment, since the lower end of the furnace is free in water, expansion and contraction of the entire length of the furnace can be allowed, and the structure of the furnace can be increased. The burden is buffered. Fourth, the object to be treated gradually descends from the upper part of the furnace while undergoing thermal decomposition, etc., but when it finally reaches the stored water, the entire treatment is automatic or semi-automatic as an assembly line. At the same time, the separation and recovery of the finally remaining solid matter becomes easy. For example, a carbon-based solid having a light specific density floats on the surface of the water and is separated, while a metal having a heavy specific density, an inorganic residue, or the like can sink to the bottom of the water storage portion and be separated. Although not shown, a scraper (ash removal device), a pusher, a conveyor, or the like for collecting solids may be provided in the water storage unit 120.

図1に示す実施形態において、竪型炉110の上部111の上方には、竪型炉内で上昇してくる乾溜ガスを回収するように構成された乾溜ガス回収部180がさらに備えられている。乾溜ガス回収部180は、竪型炉110の内側空間に接続し竪型炉110の外部に至る導管を少なくとも含むものである。この導管は、乾溜ガスを積極的に炉外に吸引するポンプを備えてもよい。乾溜ガス回収部180は、さらに、(1)ガス中に浮遊する固体微粒子を分離・回収するサイクロン、(2)ガスを冷却して液状成分を分離・回収する熱交換器(例えば冷却水管等を含み得る)、(3)タール分離器、(4)油水分離器、(5)溶液への吸収、固体吸着、膜浸透、化学変換等を通じて異なる気体成分を分離・回収するガス精製器等の付属装置を備え得る。これらの付属装置の1つ以上が導管により互いに接続され得る。これらの付属装置は従来技術の乾溜炉で用いられるものと同様であり得るので詳しい説明を要しない。上記微粒子は例えばカーボン微粒子を含み得、液状成分及び気体成分はそれぞれ分子量(炭素数)の異なる炭化水素系物質を含み得る。 In the embodiment shown in FIG. 1, above the upper portion 111 of the vertical furnace 110, a dry distillation gas recovery unit 180 configured to recover the dry distillation gas rising in the vertical furnace is further provided. .. The carbonization gas recovery unit 180 includes at least a conduit connected to the inner space of the vertical furnace 110 and reaching the outside of the vertical furnace 110. This conduit may be equipped with a pump that actively sucks the carbonized gas out of the furnace. The carbonization gas recovery unit 180 further includes (1) a cyclone that separates and recovers solid fine particles suspended in the gas, and (2) a heat exchanger that cools the gas and separates and recovers liquid components (for example, a cooling water pipe, etc.). Included), (3) carbonization separator, (4) oil-water separator, (5) gas purifier that separates and recovers different gas components through absorption into solution, solid adsorption, membrane permeation, chemical conversion, etc. May be equipped with equipment. One or more of these accessories may be connected to each other by conduits. These ancillary devices may be similar to those used in conventional carbonization furnaces and do not require detailed description. The fine particles may contain, for example, carbon fine particles, and the liquid component and the gas component may contain hydrocarbon-based substances having different molecular weights (number of carbon atoms).

反応設備100の上下から得られるこれらの回収物質にはそれぞれ産業的な有用性があることが当業者に理解される。従って反応設備100は、被処理物を原料として有用物質を生産する生産設備として捉えることもできる。 It will be understood by those skilled in the art that each of these recovered substances obtained from above and below the reaction facility 100 has industrial usefulness. Therefore, the reaction facility 100 can be regarded as a production facility for producing a useful substance using the object to be treated as a raw material.

図1に示す実施形態において、竪型炉110の最上部は蓋190で閉じられている。当業者には明らかなように、蓋190を開けた状態で竪型炉110の内部に被処理物が投入される。被処理物は例えばゴム、家庭ごみ等の廃棄物、木材等の植物性もしくは動物性材料、合成樹脂、又はそれらの混合物を含み得る。その後例えばサンドシールを用いて蓋190を密閉し、竪型炉の「筒」の上からの外気流入を遮断することによって、炉内部での被処理物の乾溜が可能になる。上述したように「筒」の下からの外気流入は貯留水によって遮断されている。 In the embodiment shown in FIG. 1, the uppermost portion of the vertical furnace 110 is closed by a lid 190. As will be apparent to those skilled in the art, the object to be processed is put into the vertical furnace 110 with the lid 190 open. The object to be treated may include, for example, rubber, waste such as household waste, plant or animal materials such as wood, synthetic resins, or mixtures thereof. After that, for example, the lid 190 is sealed with a sand seal to block the inflow of outside air from the top of the "cylinder" of the vertical furnace, so that the material to be processed can be carbonized inside the furnace. As described above, the inflow of outside air from under the "cylinder" is blocked by the stored water.

竪型炉110の上部のさらに上に、単純な蓋190の代わりに、2層以上のダンパーを含む被処理物供給塔を提供してもよい。そのような複数層の被処理物供給塔の例は特許文献1〜4に記載されており、本実施形態にも適用され得る。 Further above the top of the vertical furnace 110, a workpiece supply tower containing two or more layers of dampers may be provided instead of the simple lid 190. Examples of such a multi-layered object supply tower are described in Patent Documents 1 to 4, and can be applied to the present embodiment.

本発明の反応設備により、従来の乾溜炉と比べて、被処理物の処理及び炭化水素、カーボン等の有用物質の回収の効率を顕著に向上させることができ、無駄の少ない処理施設を提供することができる。この反応設備は、処理設備であると同時に、有用物質の生産設備であるともいえる。 The reaction equipment of the present invention can significantly improve the efficiency of treatment of the object to be treated and recovery of useful substances such as hydrocarbons and carbon as compared with the conventional carbonization furnace, and provide a treatment facility with less waste. be able to. It can be said that this reaction facility is not only a processing facility but also a production facility for useful substances.

参考として、文献「石炭の乾留とコークス化機構」(鉄と鋼、1985年71巻14号 p. 1589-1595)は、石炭の「乾留中の化学反応」について以下のように記述している。「乾留中,石炭の構成分子は基本的には熱的なラジカル反応を受ける。反応は,(1)結合開裂によるラジカル生成,(2)ラジカル同士の反応,(3)分子・ラジカル間反応に大別される。生成コークスに対しては,石炭がこれらの反応を通して,どのような液相を与えるかが最も重要である。(中略)その際高分子ラジカル同士の再結合の防止と再分解による低分子化の促進に対する液相への溶解および低分子ラジカル(特に水素原子)の付加反応による安定化とが,石炭の形成する液相の性質に対して大きな役割を果たす。前者は生成ラジカルを分散させる溶解作用であり,石炭中の液相を構成する低分子成分の役割が大きい。なお低分子成分は元来石炭に含まれる低分子成分や熱分解で生成したラジカルが安定化したものである(図4参照)。後者は,水素供与がその典型的な反応機構である。これらには,熱分解ラジカルが水素供与されて安定化し液相が形成される場合,固体の石炭が直接水素供与されて液相を与える場合がある。水素供与体は石炭自身が内蔵していることもあるし,添加剤として外部から加えるピッチ類が含有することもある。」 For reference, the document "Carbonization and Coking Mechanism" (Iron and Steel, 1985, Vol. 71, No. 14, p. 1589-1595) describes the "chemical reaction during carbonization" of coal as follows. .. "During carbonization, the constituent molecules of coal basically undergo a thermal radical reaction. The reactions are (1) radical generation by bond cleavage, (2) radical-to-radical reaction, and (3) molecular-radical reaction. It is roughly classified. For the produced coke, what kind of liquid phase the coal gives through these reactions is the most important. (Omitted) At that time, prevention and re-decomposition of high molecular radicals are prevented. Dissolution into the liquid phase and stabilization by the addition reaction of low molecular weight radicals (particularly hydrogen atoms) play a major role in the properties of the liquid phase formed by coal. It is a dissolving action that disperses, and the role of the low molecular weight components that make up the liquid phase in coal is large. (See Figure 4). In the latter, hydrogen donation is a typical reaction mechanism, in which solid coal is directly carbonized when thermal decomposition radicals are hydrogenated to stabilize and form a liquid phase. Radicals may be donated to provide a liquid phase. The hydrogen donor may be contained in the coal itself, or may contain radicals added from the outside as additives. "

本発明は特定の理論に拘束されず、また、比較的シンプルな反応といえる石炭の乾留ですら上記のような込み入った記述になることからも窺えるように、炉内の反応の全体像はあまりに複雑で当業者であってもその全体を正確に記述することはできない。しかしながら、図4は、稼働中の反応設備100内で少なくとも起こり得ることをきわめて模式的に示している。なおここでの記述順序は必ずしも時系列を表すものではなく、これらの事象は多かれ少なかれ同時進行で起こり得る。 The present invention is not bound by a specific theory, and the overall picture of the reaction in the furnace is too large, as can be seen from the complicated description described above even for carbonization of coal, which can be said to be a relatively simple reaction. It is complicated and even a person skilled in the art cannot accurately describe the whole. However, FIG. 4 shows very schematically what can happen at least within the operating reaction facility 100. It should be noted that the description order here does not necessarily represent a time series, and these events can occur more or less simultaneously.

竪型炉110内の中央付近(実質的に竪型炉の上部111に含まれ得る)には、乾溜域が形成され、ここで投入物(被処理物)の主要な乾溜、すなわち揮発分発生を伴う熱分解が起こる。竪型炉110の上端から投入され堆積していた投入物(被処理物)のうち、上方にあるものは、温度が相対的に低く熱分解の度合いが相対的に低いが、乾溜域から上昇してくる乾溜ガスの熱流を受けて熱交換を行い、やがては熱分解が進行して、重力に従って下降していく。逆に乾溜ガスはやや熱を失って乾溜ガス回収部180に至る。このように、竪型炉では熱が無駄なく効率よく利用される。 A carbonization area is formed near the center of the vertical furnace 110 (which can be substantially contained in the upper 111 of the vertical furnace), where the main dry distillation of the input (processed material), that is, the generation of volatile matter is generated. Pyrolysis with carbonization occurs. Of the inputs (processed objects) that were charged from the upper end of the vertical furnace 110 and accumulated, the ones above are relatively low in temperature and the degree of thermal decomposition is relatively low, but rise from the dry distillation area. It receives the heat flow of the carbonization gas that comes in and exchanges heat, and eventually the thermal decomposition progresses and descends according to the gravity. On the contrary, the carbonization gas loses some heat and reaches the carbonization gas recovery unit 180. In this way, heat is efficiently used in the vertical furnace without waste.

乾溜域の下、竪型炉の下部112に相当する領域には、反応層が形成される。典型的には、反応設備100を稼働させる初期段階で、この領域にある被処理物に直接着火して燃焼させて、炉内の酸素を消費させるが、燃焼室130からの熱流に依存して直接着火は不要になり得る。エアボックス内のガスの酸素濃度が高い場合に、吹込ノズル150でガスを吹き込んで被処理物燃焼の火力を増強させることもできる。炉内の酸素が消費されて主要な乾溜が開始した段階においても、吹込ノズル150を適宜使用して、制御下で酸化反応をもたらすことができる。炉内には相当量の二酸化炭素及び一酸化炭素があり、酸素が減り二酸化炭素の分圧が大きくなると、C+CO→2COの反応に傾く。 Below the carbonization area, a reaction layer is formed in the area corresponding to the lower part 112 of the vertical furnace. Typically, in the initial stage of operating the reaction equipment 100, the object to be treated in this region is directly ignited and burned to consume oxygen in the furnace, but it depends on the heat flow from the combustion chamber 130. Direct ignition may be unnecessary. When the oxygen concentration of the gas in the air box is high, the gas can be blown by the blowing nozzle 150 to increase the thermal power of combustion of the object to be processed. Even at the stage where oxygen in the furnace is consumed and major carbonization starts, the blowing nozzle 150 can be appropriately used to bring about an oxidation reaction under control. There is a considerable amount of carbon dioxide and carbon monoxide in the furnace, and when oxygen decreases and the partial pressure of carbon dioxide increases, the reaction tends to be C + CO 2 → 2CO.

燃焼・乾溜の際には、被処理物の表面がガス境膜又は灰層等で覆われて、これらが化学反応の妨げになることがある(「炉と燃焼装置」(初版)、国井太蔵著、科学技術社、4・4・1)。本発明の反応設備では、吹込ノズル150で随時ガスを吹き込むことにより、これらの反応抑制層を吹き飛ばし、炭素含有表面を露出させることによって、被処理物の反応を進行させ処理を効率化することができる。 During combustion and carbonization, the surface of the object to be treated may be covered with a gas boundary film or ash layer, which may interfere with the chemical reaction ("Furn and Combustion Equipment" (First Edition), Taizo Kunii. Written by Science and Technology Co., Ltd., 4.4.1). In the reaction equipment of the present invention, by blowing gas at any time with the blowing nozzle 150, these reaction suppressing layers are blown off and the carbon-containing surface is exposed, so that the reaction of the object to be treated can be promoted and the treatment can be made more efficient. can.

燃焼室130内では可燃油が燃焼されて、炉内での乾溜その他の反応に必要な熱エネルギーが提供される。竪格子160の、炉内部に面した側(羽口とも呼ぶ)からは、燃焼室130から熱流が勢いよく放出され、これが炉内の羽口近辺で拡散あるいは旋回するガス流を形成する。竪格子160の羽口近辺で形成されるこのガス流をレースウェイと呼ぶ。実際に羽口近辺では、レースウェイの存在のために、被処理物が排斥された空隙が観察される。レースウェイは、上記吹込ノズル150に類似した物理的作用で被処理物の炭素含有表面を(随時的ではなく)継続的に露出させるとともに、その周辺に物質及びエネルギーを流通させて、被処理物の化学反応に関して分子レベルの事象を促進させると考えられる。 Combustible oil is burned in the combustion chamber 130 to provide thermal energy required for carbonization and other reactions in the furnace. A heat flow is vigorously discharged from the combustion chamber 130 from the side of the vertical lattice 160 facing the inside of the furnace (also referred to as a tuyere), which forms a gas flow that diffuses or swirls near the tuyere in the furnace. This gas flow formed near the tuyere of the vertical grid 160 is called a raceway. In fact, in the vicinity of the tuyere, a void is observed in which the object to be treated is excluded due to the existence of the raceway. The raceway continuously exposes the carbon-containing surface of the object to be treated (rather than at any time) by a physical action similar to that of the blow nozzle 150, and circulates substances and energy around the surface of the object to be treated. It is thought to promote events at the molecular level regarding the chemical reaction of.

高温になった被処理物に由来する固形物は、熱分解を受けて巨視的にも小さくなりながら、重力により炉内を下降する。これらきわめて高温の炭素含有固形物が、貯水部120の水面に落下するとき、そこで生じる水蒸気と反応して、水素と一酸化炭素で構成されるいわゆる水性ガスを発生する。これら水蒸気及び水素(図4中Hで示す)は、被処理物中の炭素(C)含有成分との相互作用及び反応に供され、炭素への水素供与(図4中CHで示している)及び炭化水素系物質(C)の生成にも直接的又は間接的に寄与し得る。すなわち、反応エネルギーを提供し反応層の創出に寄与する竪格子160を貯水部120に近接させた配置は戦略的なものである。1種類以上の公知の金属触媒を反応層に設置してもよい。炭素系物質及び無機物等の固形残渣は、貯水部120の水面、水中、又は水底に回収され得る。実際の稼働の際に、貯水部120の貯留水は底まで透き通った綺麗な青色に見られ、固形物の分離・回収が容易であった。何らかの反応生成物が水の浄化を起こした可能性が考えられる。 The solid matter derived from the object to be treated, which has become hot, undergoes thermal decomposition and macroscopically becomes smaller, and then descends in the furnace due to gravity. When these extremely high-temperature carbon-containing solids fall on the water surface of the water storage unit 120, they react with the water vapor generated there to generate a so-called water gas composed of hydrogen and carbon monoxide. These water vapor and hydrogen (indicated by H in FIG. 4) are subjected to interaction and reaction with the carbon (C) -containing component in the object to be treated, and hydrogen is supplied to carbon (indicated by CH in FIG. 4). and may directly or indirectly contribute to the generation of hydrocarbon-based material (C n H m). That is, the arrangement in which the vertical grid 160 that provides the reaction energy and contributes to the creation of the reaction layer is close to the water storage unit 120 is strategic. One or more known metal catalysts may be placed in the reaction layer. Solid residues such as carbon-based substances and inorganic substances can be recovered on the water surface, water, or the bottom of the water storage unit 120. During the actual operation, the stored water in the water storage unit 120 was seen in a clear blue color to the bottom, and it was easy to separate and recover the solid matter. It is possible that some reaction product caused the purification of the water.

気体化された、あるいは微粒子状態の、炭化水素系物質(C)及びその他の軽い物質は、竪型炉110内を上昇し、未分解の被処理物に熱を供給しながら、炉の最上部付近にある乾溜ガス回収部180から回収されることができる。回収されたガスからはカーボン微粒子を分離することができ、また当該ガスが熱交換器等により冷却されると、その一部からは液状の炭化水素油を生じ得る。この炭化水素油は、燃焼室130で燃焼させる燃料油としてフィードバックすることもできる。 Gas reduction has been, or particulate state, a hydrocarbon-based material (C n H m) and other of lighter material, rises in the vertical furnace 110, while supplying heat to the object to be processed undegraded, furnace It can be recovered from the dry distillation gas recovery unit 180 near the uppermost part of the. Carbon fine particles can be separated from the recovered gas, and when the gas is cooled by a heat exchanger or the like, liquid hydrocarbon oil can be generated from a part of the gas. This hydrocarbon oil can also be fed back as fuel oil to be burned in the combustion chamber 130.

本発明の反応設備は、タイヤはもちろんのこと他の多様な被処理物にも対応させることができる。また、本発明の反応設備は、酸素ガスや水素ガスなどを外部から供給する必要性を特に有さない一方、一般に排出ガスとして大気に棄てられるだけである高CO濃度ガスを積極的に活用することができる。 The reaction equipment of the present invention can be applied not only to tires but also to various other objects to be treated. In addition, the reaction equipment of the present invention does not have a particular need to supply oxygen gas, hydrogen gas, etc. from the outside, but actively utilizes high CO 2 concentration gas, which is generally only discarded as exhaust gas in the atmosphere. can do.

100 反応設備
110 竪型炉
120 貯水部
130 燃焼室
140 エアボックス
150 吹込ノズル
160 竪格子
100 Reaction equipment 110 Vertical furnace 120 Water storage unit 130 Combustion chamber 140 Air box 150 Blow nozzle 160 Vertical lattice

Claims (3)

上部、下部、及び最下部を有する筒状の竪型炉と、
前記竪型炉の最下部が少なくとも部分的に浸漬する貯留水を保持する貯水部と、
前記竪型炉の下部の外側において前記竪型炉の外周に隣接して設けられた燃焼室と、
前記竪型炉の下部の外側にさらに設けられたエアボックスと、
開閉口を介して前記エアボックスと接続し、先端が前記竪型炉の内部空間に接続する吹込ノズルと
を備え、
前記燃焼室と前記竪型炉の内部空間とは竪格子によって隔てられ、前記竪格子は、前記燃焼室に面する第1開口と前記竪型炉の内部空間に面する第2開口とを繋げる孔を形成し、
前記孔は、外側域と中央域と内側域を有し、前記外側域は前記第1開口から前記中央域へと徐々に狭くなり、前記中央域は略一定の狭さを有し、前記内側域は、前記中央域から前記第2開口へと55〜65°の開口角度で広くなっている、
反応設備。
A cylindrical vertical furnace with an upper part, a lower part, and a lowermost part,
A water storage unit that holds the stored water in which the bottom of the vertical furnace is at least partially immersed.
A combustion chamber provided adjacent to the outer periphery of the vertical furnace on the outside of the lower part of the vertical furnace, and
An air box further provided on the outside of the lower part of the vertical furnace, and
It is equipped with a blowing nozzle that is connected to the air box via an opening / closing port and whose tip is connected to the internal space of the vertical furnace.
The combustion chamber and the internal space of the vertical furnace are separated by a vertical lattice, and the vertical lattice connects a first opening facing the combustion chamber and a second opening facing the internal space of the vertical furnace. Form a hole,
The hole has an outer region, a central region, and an inner region, the outer region gradually narrows from the first opening to the central region, and the central region has a substantially constant narrowness, and the inner region has a substantially constant narrowness. The region widens from the central region to the second opening at an opening angle of 55-65 °.
Reaction equipment.
前記吹込ノズルは、外円筒と、前記外円筒に入れ子式に内接する内円筒とを含み、前記外円筒及び前記内円筒はそれぞれ円筒の胴体側面に穴を有しており、前記外円筒及び/又は前記内円筒を互いに対して回転させて両者の穴が重なる面積を変動させることにより前記開閉口を提供するように構成されている、請求項1に記載の反応設備。 The blowing nozzle includes an outer cylinder and an inner cylinder nested inscribed in the outer cylinder, and the outer cylinder and the inner cylinder each have a hole in the side surface of the body of the cylinder, and the outer cylinder and / The reaction facility according to claim 1, wherein the opening / closing port is provided by rotating the inner cylinder with respect to each other to change the area where the holes overlap with each other. 前記エアボックスに接続され前記エアボックス中に高CO濃度ガスを供給する、高CO濃度ガス供給部をさらに備える、請求項1又は2に記載の反応設備。 Connected to said air box for supplying a high CO 2 concentration gas in the air box, further comprising a high CO 2 concentration gas supply unit, reaction equipment according to claim 1 or 2.
JP2020099918A 2020-06-09 2020-06-09 Reaction equipment Active JP6935952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099918A JP6935952B1 (en) 2020-06-09 2020-06-09 Reaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099918A JP6935952B1 (en) 2020-06-09 2020-06-09 Reaction equipment

Publications (2)

Publication Number Publication Date
JP6935952B1 JP6935952B1 (en) 2021-09-15
JP2021194548A true JP2021194548A (en) 2021-12-27

Family

ID=77657909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099918A Active JP6935952B1 (en) 2020-06-09 2020-06-09 Reaction equipment

Country Status (1)

Country Link
JP (1) JP6935952B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454269B2 (en) 2022-02-21 2024-03-22 清治 道前 Gas production reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823883A (en) * 1981-08-04 1983-02-12 Onahama Smelt & Refining Co Ltd Dry distilling method of waste tire
JPS593505B2 (en) * 1977-05-02 1984-01-24 日立プラント建設株式会社 Municipal waste pyrolysis furnace
JP2004069280A (en) * 2002-08-05 2004-03-04 Akira Hirayama Vertical forced swing type incinerator
JP2006038441A (en) * 2004-07-28 2006-02-09 Takeo Hirahara Combustion equipment comprising lower gasification combustion structure for solid biomass, carbonization furnace, and gasification furnace
JP2012110882A (en) * 2010-11-22 2012-06-14 Th Elema Engineering Co Ltd Pyrolyzer for waste
JP5390723B1 (en) * 2013-06-10 2014-01-15 大谷開発株式会社 Dry distillation incinerator and dry distillation incineration system equipped with the same
JP2014025632A (en) * 2012-07-26 2014-02-06 Seiji Michimae Dry distillation furnace
JP2018108571A (en) * 2016-12-28 2018-07-12 坂本 優蔵 Low-temperature thermal decomposition apparatus for organic matters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593505B2 (en) * 1977-05-02 1984-01-24 日立プラント建設株式会社 Municipal waste pyrolysis furnace
JPS5823883A (en) * 1981-08-04 1983-02-12 Onahama Smelt & Refining Co Ltd Dry distilling method of waste tire
JP2004069280A (en) * 2002-08-05 2004-03-04 Akira Hirayama Vertical forced swing type incinerator
JP2006038441A (en) * 2004-07-28 2006-02-09 Takeo Hirahara Combustion equipment comprising lower gasification combustion structure for solid biomass, carbonization furnace, and gasification furnace
JP2012110882A (en) * 2010-11-22 2012-06-14 Th Elema Engineering Co Ltd Pyrolyzer for waste
JP2014025632A (en) * 2012-07-26 2014-02-06 Seiji Michimae Dry distillation furnace
JP5390723B1 (en) * 2013-06-10 2014-01-15 大谷開発株式会社 Dry distillation incinerator and dry distillation incineration system equipped with the same
JP2018108571A (en) * 2016-12-28 2018-07-12 坂本 優蔵 Low-temperature thermal decomposition apparatus for organic matters

Also Published As

Publication number Publication date
JP6935952B1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JPH0613718B2 (en) Reactor for producing generator gas
CN1014070B (en) Gasifier apparatus
RU2342598C1 (en) Gasifier for thermal recycling of carbon-bearing wastes and method of their recycling
JP6935952B1 (en) Reaction equipment
JP2005126524A (en) Method and apparatus for organic matter gasification
EA009601B1 (en) Method for gasifying substances containing carbon by using a plasma
WO2005033250A2 (en) Gasification method and apparatus
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
RU2631808C2 (en) Method of gasifying fuel biomass and device for its implementation
US10899967B2 (en) Molecular pyrodisaggregator
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JP2006231301A (en) Gasification apparatus of waste
FI76367B (en) GASOMVANDLARE FOER TORRDESTILLERINGSGASER VID PYROLYS AV AVFALL.
KR101898255B1 (en) A thermal decomposition unit with a fixed solids retention and combustion gas induction chiller
CN212537850U (en) Plasma gasification melting furnace
US8568569B2 (en) Method and apparatus for efficient production of activated carbon
CN110617483A (en) Plasma gas melting integrated furnace
JP2994625B1 (en) Carbonization equipment
JP7454269B2 (en) Gas production reactor
RU152204U1 (en) REACTOR FOR THE PROCESSING OF CARBON-CONTAINING MATERIALS
CA2522384A1 (en) Biomass conversion by combustion
WO2015191019A1 (en) Device for incineration of waste
JP4317085B2 (en) Externally heated rotary kiln
CN210832013U (en) Plasma gasification and melting integrated furnace
RU2549947C1 (en) Biomass utilisation plant and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6935952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150