JP2021193667A - 固体光源装置 - Google Patents

固体光源装置 Download PDF

Info

Publication number
JP2021193667A
JP2021193667A JP2021128480A JP2021128480A JP2021193667A JP 2021193667 A JP2021193667 A JP 2021193667A JP 2021128480 A JP2021128480 A JP 2021128480A JP 2021128480 A JP2021128480 A JP 2021128480A JP 2021193667 A JP2021193667 A JP 2021193667A
Authority
JP
Japan
Prior art keywords
light
solid
light source
excitation light
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021128480A
Other languages
English (en)
Other versions
JP7228010B2 (ja
Inventor
浩二 平田
Koji Hirata
涼 野村
Ryo Nomura
康彦 國井
Yasuhiko Kunii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2021128480A priority Critical patent/JP7228010B2/ja
Publication of JP2021193667A publication Critical patent/JP2021193667A/ja
Application granted granted Critical
Publication of JP7228010B2 publication Critical patent/JP7228010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Abstract

【課題】励起光により蛍光体を励起して所望の光を得る光源装置において高い光変換効率を得る。【解決手段】励起光を発生する固体発光部と、固体発光部からの励起光を点状に集光する集光部と、集光部により点状に集光された励起光の焦点近傍において、励起光の反射散乱と励起光により励起された蛍光光の発光を交互に繰り返す反射散乱・蛍光発光部と、を備え、固体発光部は、蛍光体19を塗布した蛍光体層と、蛍光体19を励起する励起光源12を備えており、励起光源12からの励起光は、特定偏波の光を蛍光体層に対して40度から70度の範囲の入射角度で蛍光体層に照射するように構成される。【選択図】図2

Description

本発明は、青色レーザ光源により蛍光体を励起することで発光色を得る固体光源装置に関する。
近年におけるLED等の固体発光素子の著しい発展に伴い、当該固体発光素子を光源として利用した照明装置は、小型・軽量で、かつ、低消費電力で環境保護にも優れた長寿命な光源として、各種の照明器具において広く利用されてきており、車載の電子装置として各種の制御が可能な視認性にも優れた車両用のヘッドライト装置、更には投射型表示装置の光源としても利用されてきている。
例えば、従来、車両用のヘッドライト装置として、ロービーム用LED光源アレイとハイビーム用LED光源アレイと、これらLED光源からのロービーム光とハイビーム光を受けてコリメートする第1の光学ライトガイドと、コリメートされたロービーム光とハイビーム光を拡散パターンの組み合わせとして拡散する第2光学のライトガイド等を備え、これらのアレイや光学ライトガイドをケーシング内に機械的に支持する車両用ヘッドランプは、以下の特許文献1により既に知られている。
また、新たな光源装置として特許文献2によれば、レーザ光源を光源として利用し、高効率で小型の固体光源装置が開示されている。具体的には、青色レーザ光により緑色、赤色蛍光体または黄色蛍光体を励起することで励起光である青色レーザ光と合わせて効率良く白色光を得る構成が開示されている。
特表2008−532250号公報 特開2015−121606号公報
固体光源であるLEDは、その発光効率の向上に伴って車両用のヘッドランプ装置における発光源として用いることが有効となっている。しかしながら、上述した従来技術、特許文献1では、その光利用効率を向上するための具体的な技術手段については開示されていない。
一方、プロジェクタ用の光源として特許文献2に示されたように、青色レーザ光で蛍光体を励起することでエタンディユーを小さくして照明系の光利用効率を高めた方式が提案されているが、蛍光体の発光効率を向上する具体的な技術手段については開示されていない。
そこで、本発明は、モジュール化された面状の照明用光源として容易に利用可能な光源装置としてLED光源、特に青色LEDからの励起光と前記励起光から放射される光の利用効率が高い車両用のヘッドライト装置や青色レーザプロジェクタ用の光源を提供することをその目的とするものである。
上記の目的を達成するための第一の実施形態として、本発明によれば、励起光を発生する固体発光部と、前記固体発光部からの励起光を点状に集光する集光部と、前記集光部により点状に集光された前記励起光の焦点近傍において、前記励起光の反射散乱と前記励起光により励起された蛍光光の発光を交互に繰り返す反射散乱・蛍光発光部と、を備え、前記固体発光部は、蛍光体を塗布した蛍光体層と、前記蛍光体を励起する励起光源を備えており、前記励起光源からの前記励起光は、特定偏波の光を前記蛍光体層に対して40度から70度の範囲の入射角度で前記蛍光体層に照射するように構成される。
上述した本発明によれば、青色光を励起光として蛍光体を励起する光源の発光効率が高く低コストで製造可能、かつ、小型でかつモジュール化が容易な光源装置を実現でき、低消費電力で、環境保護にも優れ、かつ、長寿命な車両用のヘッドライト装置やプロジェクタ用光源装置が実現できる。
本発明の光源装置の実施例1としての車両用のヘッドライト装置を自動車の前照灯として適用した全体構成(a)と光源部の斜視図(b)である。 本発明の光源装置の実施例1としての車両用のヘッドライト装置の全体構成(a)とその光源部を示す断面図(b)である。 本発明の光源装置の実施例2としてのプロジェクタの全体構成を示す図である。 プロジェクタの照明光学系の光源部の第一の実施例である。 プロジェクタの照明光学系の光源部の第二の実施例である。 プロジェクタの照明光学系の光源部の第一の実施において全反射レンズをリフレクタとして利用した変形例を示す図である。 励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部の原理を示す詳細断面図である。 励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部の原理を示す詳細断面図である。 励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部を示す詳細断面図である。 励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部を示す詳細断面図である。 従来技術による励起光を蛍光光の出射方向と同一方向から入射させる励起光反射型の実施例を示す本発明による光源部の原理を示す詳細断面図である。 従来技術による励起光を蛍光光の出射方向と異なる方向から入射させる励起光透過型の実施例を示す本発明による光源部の原理を示す詳細断面図である。 蛍光体への励起光の入射角と反射角の関係を示す図である。 P偏光とS偏光に対する屈折率1.5の物質に対する反射率の角度特性の一例を示す図である。 緑蛍光光の青励起光に対する変換効率の励起光入射角度特性を示す特性図である。 励起光の偏光光別蛍光体層への入射角度依存性を示す特性図である。 蛍光光の出力に対する励起光の角度依存性を示す特性図である。 本発明の実施例である蛍光体への励起光入射角度依存性を示す特性図である。 蛍光体層への励起光偏光方向別の入射角度に対する光変換効率を示す図である。 蛍光体層への励起光入射角度に対する偏光方向による光変換効率の比率を示す図である。
以下、本発明の実施の形態について、添付の図面を参照しながら、詳細に説明する。なお、本発明は以下の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための図において、同一の機能を有するものは、同一の符号を付けて示し、また、その繰り返しの説明については省略する場合もある。
まず、図1には、本発明の一実施の形態になる、固体発光素子を用いた車両用ヘッドライト装置を搭載した車両1を、その斜視図およびその一部拡大図により示す。図1(a)は、本発明の車両用のヘッドライト装置1000を搭載した車両1の全体を示しており、図1(b)は、当該車両のヘッドライト装置部分の拡大図を示している。
図2(a)は、上記図1(b)に示したヘッドライト装置1000の側面断面であり、図2(b)は、その光源部分の構成断面を示している。加えて、図3は、本発明の一実施例による光源装置を光源として採用する、即ち、上記のヘッドライト装置の光源装置を利用して車両の前方に車両の進行方向などを含めた情報を投射して表示する車両用のプロジェクタの全体構造を示す図である。
(実施例1)
図1に示すヘッドライト装置1000は、これらの図にも示すように、基本的には、光源装置である可視光照明ユニット10と、当該照明ユニットからの出射照明光を車両1の前方空間、および車両1が走行する路面上に照射するための光学系であり、いわゆる、プロジェクタレンズ51とから構成されている。更には、プロジェクタレンズ51に替えて、反射ミラー60を用いて投射光学性を構成しても良く、あるいは、図2(a)にも示すように、プロジェクタレンズ51と反射ミラー60の双方から構成することで路面への照射光の分布を高精度に制御し、ヘッドライト装置全体の容積を低減してもよい。
そして、これらの図からも明らかなように、本発明になるヘッドライト装置1000では、可視光照明ユニット10からの照明光は、励起光源12からの励起光を蛍光体に照射することで蛍光光を得る構成となっている。光源装置では、一例として、白色光を得る場合には、図2(b)に示すように、励起光源12からの励起光である青色光束13により励起された蛍光体19は黄色または緑と赤の混合色などを発光し、励起光の青色と混色することで白色の光を得ることができる。即ち、白色に対して前記励起光とは補色の関係になる波長領域の光束を発光することが好ましい。得られた照射光束は、図2(a)に示されたように反射ミラー60により所定の方向に折り曲げられる。このことにより、反射面の形状自由度により照射方向、強度の更なる精密な制御が可能になる。
続いて、以下には、上述した本発明になるヘッドライト装置1000の各構成要件の詳細について説明する。
<光源ユニット>
本発明の光源装置である可視光照明ユニット10は、白色光を得るために、励起光源12として、後にも述べる1つまたは複数の固体光源である半導体光源素子LED(Light Emitting Diode)やLASER(Light Amplification by Stimulated Emission of Radiation)を用い、黄色または緑と赤色を発光する蛍光体19を励起して得られる光と励起光を混色することで所望の白色光を得るように構成されている。図2(b)に図示したように、混合色光の出射方向から照射して蛍光光と励起光を反射面17で反射させて所望の方向に出射させる方式(以下「反射方式」と記載)と、蛍光体19を配置した溝部の底面に励起光源を配置する方式(図示せず、以下「透過方式」と記載)があるが、ヘッドライト装置全体をコンパクトにするために透過方式が採用される場合が多い。
以下、図2(b)に示した反射方式を中心に、かつ、説明の都合上、励起光として青色レーザ光を用いた場合の方式について、その構成および得られる効果について説明する。
光源ユニットから効率良く光源光を得るためには、以下に示し3つの要因を低減することが有効であることを発明者等は実験により導き出した。
(1)励起光源12からの励起光13を効率良く蛍光体に照射する。
(2)蛍光体19により発生した蛍光を効率良く所望の方向に出射させる。
(3)蛍光体の発光効率を高める。
上述した(1)を実現するためには、蛍光体19を含む蛍光体層に励起光束13を照射する。この時、蛍光体層表面での反射を低減するために表面に反射防止膜21を設ける。更に、励起光13は蛍光体層への入射角と反射角の関係を示した図13と同じ励起光の入力エネルギーに対して、蛍光光の出力を実験により求めた。結果は図19に示すようにP偏光を用いた方が、S偏光より光変換効率(出射光エネルギー/入射光エネルギー)が高く光を取り出せることが判った。図20はP偏光を用いた場合の効率とS偏光を用いた場合の光変換効率の比を励起光の入射角度をパラメータとして示したものである。P偏光の方が高効率であり、入射角30度付近が最も効率が高いことが判った。これは、図14に示すP波とS波の違いにより界面での反射率が異なることと、以下で詳解する蛍光体の冷却による発光効率の向上の両者が原因であった。
更に、発明者らは、蛍光体層の構成を図11および図12に示す蛍光体19とバインダ23の間に空隙が存在する従来技術による構成に替えて、図7および図8に示すような、空隙の密度を大幅に低減するため、蛍光体19とバインダ23を焼成するなどを採用することにより、蛍光体と真空(または空気)界面での反射を防止する構造とした。この時、使用した蛍光体としては、緑発光蛍光体としてLuAG:Ce(屈折率1.85)、黄色蛍光体としてYAG:Ce(屈折率1.82)を使用し、また、バインダとしては、透明性と熱伝導率が高い酸化アルミ(アルミナ)(屈折率1.76)と酸化チタン(屈折率2.5)を使用して比較検討した。この結果、蛍光体19とバインダ23の屈折率差が小さい酸化アルミをバインダ23として使用した場合の方が、蛍光体内部での散乱光21の発生が低減される従来技術による空隙が存在する方法に比べて、光出力が6%以上改善する結果を得た。即ち、バインダとしては、前記蛍光体との屈折率差が0.2以下の部材を用いることが好ましいことが分かった。
次に、上述した(2)を実現するため、図9および図10にも示すように蛍光体層を設ける構造体15、18に溝部分16を設け、当該溝部分16の開口形状が図中の断面方向では奥行き方向に向かって一部または全部が小さくなる断面形状(いわゆる、「すり鉢状」)とする。この時、構造体18と蛍光体19の接触面には90%以上の可視光線反射率を有する反射膜17、20を設けることで所望の方向に得られた光を出射することができる。また構造体18に蛍光体19とバインダを焼成すると冷却時に収縮が発生する。この結果、反射面と蛍光体層の間に空気または真空の界面が発生するが、蛍光体層の平均屈折率が1.75程度になるため一部の光は全反射して所望の方向に出射するので、以降の光学系に対して効率良く光を取り出すことができる。
最後に、上述した(3)を実現するための技術手段について、発明者らは励起光を照射した状態での蛍光体温度と光変換効率の関係を調査し、蛍光体の温度上昇により光変換効率が低下することを突き止めた。そこで蛍光体温度を低減するために上述した構造体を、熱伝導率の高い金属とし、かつ、その溝部分の反射面には金属性の反射膜でも高い反射率を有するアルミまたは銀合金の反射膜を設けることで光変換効率を8%以上向上させた。この時、蛍光体19と酸化アルミ製のバインダ23を焼成し熱的に結合することで励起光による蛍光体の温度上昇が軽減し、高効率化を実現した。
また、温度上昇を低減するもう1つの手段として励起光を蛍光体層に斜めから照射することで蛍光体層に入射する励起光のエネルギー密度を低減し受熱後の熱伝導効率を高めることで、励起光および蛍光光の光出力を向上できることを見出した。結果を図17に示す。横軸は蛍光体層に対する励起光線の入射角度、縦軸は励起光と蛍光光の出力を示したものである。また、図18の横軸は蛍光体層に対する励起光線の入射角度を、縦軸には励起光が蛍光体層に垂直入射した場合の出力を、相対値1.00とした場合の励起光と蛍光光の出力を比較して示したもので、上述したように、励起光を蛍光体層に斜めから照射することで蛍光体層に入射する励起光のエネルギー密度を低減し、結果として、受熱後の熱伝導効率を高めることで励起光および蛍光光の光出力が向上した。上記の結果から、特に、励起光線としては、P偏光光であり、また、その入射角度は、40度から70度の範囲での入射するように構成することが好ましい。
以上、本発明の光源装置として可視光照明ユニット10は、白色光を得るために、励起光源12として、後にも述べる1つまたは複数の固体光源である半導体光源素子LED(Light Emitting Diode)やLASER(Light Amplification by Stimulated Emission of Radiation)を用い、黄色または緑と赤色を発光する蛍光体19を励起して得られた光と励起光を混色することで所望の白色光を得るように構成されたものとして、更には、図2(b)に図示したように、実施例について、混合色の出射方向から照射して蛍光光と励起光を反射面17、20で反射させ所望の方向に出射させる方式(以下「反射方式」と記載)について説明した。しかしながら、本発明はそれらに限定されることなく、図8および図10に示すように、蛍光体19を配置した溝部の底面に励起光源を配置する透過方式においては、励起光束φ2の入射側と蛍光光と励起光の一部が混色され出射する光出射面にも反射防止膜を設けることより、反射損出を低減している。なお、これらの例では、その他構成上の差はなく、同様な構成で同様な効果が得られることは言うまでもない。
(実施例2)
<プロジェクタ>
以下、図3を参照にしながら本発明の他の実施例としての光源ユニットを光源として採用した車両用のプロジェクタについて述べる。なおこの図はプロジェクタの全体構成を示しており、特に、映像信号に応じた光強度変調を、いわゆる、透過型液晶パネルにより行なう方式について説明する。同図において各色光の光路に配置されている要素を区別するために符号の後ろに色光を示すR,G,Bを添えて示し区別の必要がない場合には色光の添え字を省略する。加えて偏光方向を明確にするために同図においては右手系の直交座標系を用いて以降説明する。即ち、光軸101をZ軸としZ軸に直交する面内で図3の紙面に平行な軸をY軸とし、図の紙面裏から表に向かう軸をX軸としY軸に平行な面をY方向、X軸に平行な方向をX方向と記載する。更に偏光方向を区別するために偏光方向がX方向の偏光光をX偏光光と偏光方向がY方向の偏光光をY偏光光と以下記載する。
図3においてプロジェクタの光学系は照明光学系100と光分離光学系30、リレー光学系40、3つのフィールドレンズ29(29R、29G、29B)と3つの透過型の液晶パネル60(60R、60G、60B)と光合成手段である光合成プリズム200と投写手段である投写レンズ300を備えている。液晶パネル60は光入射側に入射側偏光板50(50R、50G、50B)を備え、光出射側に出射側偏光板80(80R、80G、80B)を備えている。これらの光学素子は基体550に装着されて光学ユニット500を構成する。また、光学ユニット500は、液晶パネル60を駆動する駆動回路570、液晶パネル60などを冷却する冷却用ファン580、各回路に電力を供給する電源回路560と共に図示されない筐体に搭載され、プロジェクタを構成する。
以下、上述したプロジェクタを構成する各部の詳細を説明する。映像表示素子である液晶パネル60を均一に照射する照明光学系100は、上述した略白色光を出射する固体発光素子から成る可視光照明ユニット10とオプチカルインテグレータを構成する第一および第二のレンズアレイ21、22と偏光変換素子25と集光レンズ(重畳レンズ)27とを含んで構成される。
上記照明光学系100からの略白色光を3原色光に光分解する光分解光学系30は2つのダイクロイックミラー31、32と光路の方向を変える反射ミラー33を含んでいる。また、リレー光学系40はフィールドレンズである第1リレーレンズ41とリレーレンズである第2リレーレンズ42と光路折り返しミラー45、46を含んで構成されている。
このような構成において、固体発光素子から成る光源ユニット10からは図3に破線で示す光軸101に略平行な光束が射出される。そして、光源ユニット10から出射された光は、偏光変換インテグレータに入射する。この偏光変換インテグレータは第1のアレイレンズ21と第2のアレイレンズ22からなる均一照明を実現するオプチカルインテグレータと、光の偏光方向を所定の偏光方向に揃えて直線偏光光に変換するための偏光ビームスプリッタアレイからなる偏光変換素子25とを含んでいる。即ち、上述した偏光変換インテグレータでは、上記第2のアレイレンズ22からの光は、偏光変換素子25により、所定の偏光方向、例えば直線偏光光のX偏光に揃えられる。
そして、第1のアレイレンズ21の各レンズセルの投影像は、それぞれ集光レンズ27、フィールドレンズ29G、29B、リレー光学系40、フィールドレンズ29Rにより各液晶パネル60上に重ね合わせられる。このようにして、固体光源からの偏光方向がランダムな光を所定偏光方向(ここではX偏光光)に揃えながら、液晶パネルを均一に照明する。
一方、光分離光学系30は照明光学系100から射出された略白色光をB光(青色帯域の光)と、G光(緑色帯域の光)とR光(赤色帯域の光)に分離して、それぞれ対応する液晶パネル60(60R、60G、60B)に向かうそれぞれの光路(B光路、G光路、R光路)に導光する。即ち、ダイクロイックミラー31により反射したB光は反射ミラー33で反射してフィールドレンズ29B、入射側偏光版50Bを通過してB光用の液晶パネル60Bに入射する(B光路)。また、G光およびR光はダイクロイックミラー31を透過し、ダイクロイックミラー32によりG光とR光に分離される。G光はダイクロミラー32を反射してフィールドレンズ29G、入射側偏光版50Gを通じて、G光用液晶パネル60Gに入射する(G光路)。R光はイクロミラー32を透過してリレー光学系40に入射する。リレー光学系40に入射したR光はフィールドレンズの第1リレーレンズ41によって反射ミラー45を経由して、第2リレーレンズ42の近傍に集光(収束)し、フィールドレンズ29Rに向けて発散する。そしてフィールドレンズ29Rで光軸にほぼ平行とされ入射側偏光板50Rを通過してR光用の液晶パネル60Rに入射する(R光路)。
光強度変調部を構成する各液晶パネル60(60R、60G、60B)は駆動回路570で駆動されX方向を透過軸とする入射側偏光板50(50R、50G、50B)により偏光度が高められ、光分離光学系30から入射するX偏光の色光をカラー映像に応じて変調してY偏光の光学像を形成する。
上述したようにして形成された各色光のY偏光の光学像は、出射偏光板80(80R、80G、80B)に入射する。入射側偏光版80R、80G、80BはY方向を透過軸とする偏光版でこれにより不要な偏光成分(ここではX偏光光)が除去され、コントラストが向上する。以上述べた方法で形成された各色光の光学像は光合成手段である合成プリズム200に入射して合成されカラー映像を得て投写レンズ300により例えば走行路面上に拡大投写される。
<プロジェクタ用光源ユニット>
図4は、本発明の実施形態の1つである固体光源装置の他の構成として、特に、上記車両用のプロジェクタの光源ユニット10としての原理を説明するための図である。当該ユニット10は固体素子の発光源である青色帯域(B色)の光を発光する半導体レーザ素子または発光ダイオードを略円板状の基板上に複数配列した半導体レーザ素子群110と、上記半導体レーザ素子群110のレーザ光出射面に対向して略45度の角度で傾斜して配置された例えば放物面を備えた反射鏡(リフレクタ)130と、当該反射鏡の焦点(F)近傍において回転する円盤(ホイール)部材140と、その部材を所望の回転速度で回転駆動する駆動手段、例えば電動モータ150を備えている。
図5を基に、本願発明の第2の実施例としての光源ユニットについて説明する。第一の反射鏡(リフレクタ)130を第二の反射鏡(リフレクタ)130’よりも小径として構成したもので、第一の反射鏡(リフレクタ)130から白色光を得ることができる。円盤(ホイール)部材140の外周部には半導体レーザ素子群110からの励起光が入射する。上記焦点Fの近傍から発光する蛍光光が反射鏡(リフレクタ)130の反射面131に到達しない光を反射するための球面リフレクタ149を設ける。このような球面リフレクタ149によれば上記焦点Fの近傍から発光する蛍光光のほぼ全部を反射鏡(リフレクタ)130を介して出力することが可能となることから光の利用効率を高めることができ、また、その基材142’の出射側表面(上面)には図9および図10に示した断面がすり鉢状の微細な凹部を設けることで蛍光体19からの出射光の出射方向を制御でき、後段の照明光学系(図示せず)の光捕捉率を高めることでエネルギー変換効率を向上する。
以上の説明では、反射鏡(リフレクタ)からその焦点F近傍に集光される励起光に対して、基材上に形成した蛍光面と反射拡散面または透過拡散面とを経時的に順次切り替えて円盤上の基材の表面を複数のセグメントに分け回転させることで、放熱効果の向上と蛍光体に与えるダメージを軽減できる。しかしながら本発明はこれに限定されることなく、例えば、一枚の矩形形状の矩形形状の基材の表面蛍光体面と反射拡散面または透過拡散面を形成しこれを特定周期または不特定周期に振動または焦点Fに対する相対位置を変化させ得る構造とすることで、蛍光体の一点に励起光が集光することで蛍光体に与えるダメージを軽減できる。
図6は反射鏡(リフレクタ)として全反射面と集光レンズとを1つの部材により構成した、いわゆる、全反射レンズ135を利用した構成が示されている。かかる構成によれば、光軸付近の励起光(青色レーザ光線)は、集光レンズ136を通過し、他方、光軸から離れた位置の励起光(青色レーザ光線)は全反射部137で全反射し、いずれの光線も円盤(ホイール)部材140上の一点に集光され、その後、青色光のまま反射拡散または、黄色光に変換され拡散される。そして、円盤(ホイール)部材140の一点から拡散された青色光および黄色光のうち光軸近傍の光線は、再び、集光レンズ136を透過し、いずれの光線も光軸に平行な光線となり、更に、分離ミラー120で反射されてプロジェクタの照明光学形100に入射する。なお、全反射部137にはその表面に反射膜を形成しても良く、また、その表面形状も上記反射鏡(リフレクタ)と同様に、上述した放物面や楕円面など曲面を有する反射鏡(面)とすることが望ましい。即ち、かかる構成によっても上記と同様に、白色の照明光が得られ色による焦点移動(軸上色収差)の影響も実用上問題のないレベルまで抑えることができる。
図6に示す色分離ミラー120は、基材121の励起(青色レーザ)光源側にはP偏光光を透過し、S偏光光を反射する偏光分離膜が設けられており、その反対側の反射鏡(リフレクタ)側には青色光を透過し、黄色光を反射するダイクロイックコートが蒸着されている。P偏光に揃えられた青色レーザ光は、分離ミラーに入射し偏波分離コート面ダイクロイックコート面を透過して反射鏡(リフレクタ)に入射する。反射鏡(リフレクタ)に入射した励起光(青色レーザ光)は円盤(ホイール)部材の一点に集光され、一部の青色光は蛍光体を励起して黄色光を射出し、一部の青色光は偏光を90度回転されS偏光になって拡散される。その後、反射鏡(リフレクタ)で平行になり、黄色光とS偏光に揃えられた青色光は再度分離ミラー120に入射する。
一方、S偏光に揃えられた青色光はダイクロイックコート面を通過し、偏波分離コート面で反射し、プロジェクタの照明系に入射する。
なお、上記に述べた光源ユニットは、上述した車両のプロジェクタ用の光源ユニットに限られることなく、上述したヘッドライト装置1000の光源装置である可視光照明ユニット10としても採用することも可能である。それによれば、上記の光源ユニットと同様に、半導体光源素子LEDやLASERを用いて黄色または緑と赤色を発光する蛍光体19を励起して得られた光を、当該励起光と混色することで、所望の白色光が得ることができ、かつ、発光強度や放熱効果にも優れた固体光源装置を達成することが可能となる。また、当該光源ユニットは、車両用のプロジェクタにのみ限られず、その他、各種の映像をスクリーン等の面上に投射して表示する一般的なプロジェクタの光源として利用することが可能であることは、当業者であれば明らかであろう。
以上、本発明の種々の実施例になる光源および光源装置について述べた。しかしながら、本発明は、上述した実施例のみに限定されるものではなく、蛍光体の発光効率向上と照明光学系での利用効率を向上するための具体的な技術手段であるこのためある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…車両、1000…ヘッドライト装置、10…可視光照明ユニット、12…励起光源、13…励起光(青色光束)、17…反射面、15、18…構造体、17、20…反射膜、19…蛍光体、23…バインダ、21、22…レンズアレイ、25…偏光変換素子、27…集光レンズ、29…フィールドレンズ、30…光分離光学系、31、32…ダイクロイックミラー、33…反射ミラー、40…リレーレンズ光学系、50…入射側偏光板、60…液晶パネル、80…出射側偏光板、100…照明光学系、200…光合成プリズム、300…投写レンズ、500…光学ユニット、550…基体、560…電源回路、570…駆動回路、580…冷却ファン外LEDコリメータユニット、51…プロジェクタレンズ、60…反射ミラー

Claims (5)

  1. 励起光を発生する固体発光部と、
    前記固体発光部からの励起光を点状に集光する集光部と、
    前記集光部により点状に集光された前記励起光の焦点近傍において、前記励起光の反射散乱と前記励起光により励起された蛍光光の発光を交互に繰り返す反射散乱・蛍光発光部と、を備え、
    前記固体発光部は、蛍光体を塗布した蛍光体層と、前記蛍光体を励起する励起光源を備えており、
    前記励起光源からの前記励起光は、特定偏波の光を前記蛍光体層に対して40度から70度の範囲の入射角度で前記蛍光体層に照射するように構成される、固体光源装置。
  2. 請求項1に記載の固体光源装置において、
    前記固体発光部は、半導体レーザ素子を複数平面状に配置して構成される、固体光源装置。
  3. 請求項1に記載の固体光源装置において、
    前記蛍光体の発光色は、白色に対して前記励起光とは補色の関係になる波長領域の光束を発光する、固体光源装置。
  4. 請求項3に記載の固体光源装置において、
    前記固体発光部からの前記励起光は偏光面を一方向に揃えた青色光である、固体光源装置。
  5. 請求項1に記載の固体光源装置において、
    前記蛍光体層は、前記蛍光体とバインダを焼成して形成し、前記励起光としてP偏光光を用いた、固体光源装置。
JP2021128480A 2017-04-25 2021-08-04 固体光源装置 Active JP7228010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021128480A JP7228010B2 (ja) 2017-04-25 2021-08-04 固体光源装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/016400 WO2018198201A1 (ja) 2017-04-25 2017-04-25 固体光源装置およびヘッドライト装置
JP2019514923A JP6926200B2 (ja) 2017-04-25 2017-04-25 ヘッドライト装置
JP2021128480A JP7228010B2 (ja) 2017-04-25 2021-08-04 固体光源装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019514923A Division JP6926200B2 (ja) 2017-04-25 2017-04-25 ヘッドライト装置

Publications (2)

Publication Number Publication Date
JP2021193667A true JP2021193667A (ja) 2021-12-23
JP7228010B2 JP7228010B2 (ja) 2023-02-22

Family

ID=63919528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019514923A Active JP6926200B2 (ja) 2017-04-25 2017-04-25 ヘッドライト装置
JP2021128480A Active JP7228010B2 (ja) 2017-04-25 2021-08-04 固体光源装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019514923A Active JP6926200B2 (ja) 2017-04-25 2017-04-25 ヘッドライト装置

Country Status (2)

Country Link
JP (2) JP6926200B2 (ja)
WO (1) WO2018198201A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165555A (ja) * 2010-02-12 2011-08-25 Hitachi Consumer Electronics Co Ltd 固体光源装置
JP2012190628A (ja) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd 光源装置および照明装置
WO2015111145A1 (ja) * 2014-01-22 2015-07-30 日立マクセル株式会社 光源装置およびこれを用いた映像表示装置
WO2016027373A1 (ja) * 2014-08-22 2016-02-25 日立マクセル株式会社 光源装置、車両用灯具および光源装置の色度調整方法
JP2016194698A (ja) * 2016-05-17 2016-11-17 カシオ計算機株式会社 蛍光体デバイス、照明装置及びプロジェクタ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781367B2 (ja) * 2011-05-20 2015-09-24 スタンレー電気株式会社 光源装置および照明装置
JP2015050124A (ja) * 2013-09-03 2015-03-16 スタンレー電気株式会社 発光装置
JP6631084B2 (ja) * 2015-08-19 2020-01-15 セイコーエプソン株式会社 波長変換素子の製造方法、波長変換素子、照明装置及びプロジェクター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165555A (ja) * 2010-02-12 2011-08-25 Hitachi Consumer Electronics Co Ltd 固体光源装置
JP2012190628A (ja) * 2011-03-10 2012-10-04 Stanley Electric Co Ltd 光源装置および照明装置
WO2015111145A1 (ja) * 2014-01-22 2015-07-30 日立マクセル株式会社 光源装置およびこれを用いた映像表示装置
WO2016027373A1 (ja) * 2014-08-22 2016-02-25 日立マクセル株式会社 光源装置、車両用灯具および光源装置の色度調整方法
JP2016194698A (ja) * 2016-05-17 2016-11-17 カシオ計算機株式会社 蛍光体デバイス、照明装置及びプロジェクタ装置

Also Published As

Publication number Publication date
JP6926200B2 (ja) 2021-08-25
JPWO2018198201A1 (ja) 2019-12-19
JP7228010B2 (ja) 2023-02-22
WO2018198201A1 (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5673247B2 (ja) 光源装置及びプロジェクター
JP5601092B2 (ja) 照明装置及びプロジェクター
JP5671666B2 (ja) 固体光源装置及び投射型表示装置
JP5491888B2 (ja) 投写型表示装置
JP2016099558A (ja) 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
JP5716401B2 (ja) 光源装置及びプロジェクター
JP2012108486A (ja) 光源装置および画像表示装置
JP2012003923A (ja) 照明装置及び画像表示装置
JP2005347263A (ja) 照明装置における離間した波長変換
JP2012185403A (ja) 発光素子とその製造方法、光源装置、およびプロジェクター
JP7031567B2 (ja) 光源光学系、光源装置及び画像投射装置
US10721446B2 (en) Wavelength conversion element, light source apparatus, and projector
JP2012013977A (ja) 光源装置及びプロジェクター
JP2012014972A (ja) 光源装置及びプロジェクター
US9876998B2 (en) Light source apparatus and projector
CN107436529B (zh) 一种光源装置以及投影显示装置
JPWO2017208334A1 (ja) 光源装置とそれを利用した電子装置
JP2012037638A (ja) 光源装置及びプロジェクター
WO2017126027A1 (ja) 蛍光体ホイールとこれを用いた発光ユニットおよびプロジェクタ
JP6926200B2 (ja) ヘッドライト装置
JP5949984B2 (ja) 光源装置及びプロジェクター
JP2019028120A (ja) 照明装置及びプロジェクター
US20190285973A1 (en) Wavelength conversion element, light source device, and projector
JP6353583B2 (ja) 光源装置及び画像投影装置
JP6388051B2 (ja) 光源装置及び画像投影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230210

R150 Certificate of patent or registration of utility model

Ref document number: 7228010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150