JP2021193643A - Heating element device and control device - Google Patents

Heating element device and control device Download PDF

Info

Publication number
JP2021193643A
JP2021193643A JP2020099167A JP2020099167A JP2021193643A JP 2021193643 A JP2021193643 A JP 2021193643A JP 2020099167 A JP2020099167 A JP 2020099167A JP 2020099167 A JP2020099167 A JP 2020099167A JP 2021193643 A JP2021193643 A JP 2021193643A
Authority
JP
Japan
Prior art keywords
heating element
resistance
temperature detector
terminal
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020099167A
Other languages
Japanese (ja)
Inventor
邦信 佐々木
Kuninobu Sasaki
達典 伊藤
Tatsunori Ito
大昌 伊藤
Hiromasa Ito
正聡 上木
Masaaki Ueki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020099167A priority Critical patent/JP2021193643A/en
Publication of JP2021193643A publication Critical patent/JP2021193643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Temperature (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

To provide a heating element device which uses two resistors, namely a heating resistor and a temperature measuring resistor, so as to enable size reduction as well as appropriate temperature control of the heating resistor, and also to provide a control device for controlling a heating part which uses both of the heating resistor and the temperature measuring resistor.SOLUTION: A heating element device 10 comprises a heating part and a control part. The heating part has: a heating resistor 22; a temperature measuring resistor 23 which measures the temperature of the heating resistor; a heating element terminal 24 which is brought into conduction with one end of the heating resistor; a temperature measuring element terminal 25 which is brought into conduction with one end of the temperature measuring resistor; and a common terminal 26 which is brought into conduction with the other end of the heating resistor and with the other end of the temperature measuring resistor. The control part has: a resistance detecting part which detects a resistance value of the temperature measuring resistor; a heating element control part 50 which controls electric power to be applied to the heating resistor, in accordance with the resistance value of the temperature measuring resistor thus detected; and a detection timing control part 80 which causes the resistance detecting part to detect the resistance value of the temperature measuring resistor during a period when the electric power is not applied to the heating resistor.SELECTED DRAWING: Figure 1

Description

本発明は、発熱抵抗体とこの発熱抵抗体の温度を測温する測温抵抗体とを有する発熱部を制御する発熱体装置、発熱抵抗体と測温抵抗体とを有する発熱部を制御する制御装置に関する。 INDUSTRIAL APPLICABILITY The present invention controls a heat generating element device having a heat generating resistor and a resistance temperature measuring resistor for measuring the temperature of the heat generating resistor, and a heating element having a heat generating resistor and a resistance temperature measuring resistor. Regarding the control device.

従来、発熱抵抗体に通電して発熱させるにあたり、発熱抵抗体の近傍に測温抵抗体を配置し、この測温抵抗体の抵抗値を検知することで、発熱抵抗体の温度を検知し、発熱抵抗体の通電を制御する発熱体装置が知られている。 Conventionally, when energizing a heat-generating resistor to generate heat, a resistance temperature detector is placed in the vicinity of the resistance thermometer, and the resistance value of this resistance thermometer is detected to detect the temperature of the resistance thermometer. A heating element device that controls energization of a heat generating resistor is known.

一方、特許文献1,2に示すように、発熱抵抗体と測温抵抗体の2つを用いるのに代えて、温度に依存して抵抗値が変化する特性を有する温度依存性抵抗ヒータを用いるものも知られている。 On the other hand, as shown in Patent Documents 1 and 2, instead of using both the heat generation resistor and the resistance temperature detector, a temperature-dependent resistance heater having a characteristic that the resistance value changes depending on the temperature is used. Things are also known.

特開2008−234413号公報Japanese Unexamined Patent Publication No. 2008-234413 特開2009−86963号公報Japanese Unexamined Patent Publication No. 2009-86963

前述の発熱抵抗体と測温抵抗体の2つを用いる発熱体装置では、発熱抵抗体に通電するため、この発熱抵抗体の一端及び他端に導通する2つの端子及びこれに接続する2本の配線と、測温抵抗体に通電するため、この測温抵抗体の一端及び他端に導通する2つの端子及びこれに接続する2本の配線の、合計4つの端子及び4本の配線を用いるので、互いに独立した回路に出来る。このため、発熱抵抗体の通電制御とは関係なく、適切なタイミングで測温抵抗体の抵抗値を検知して、発熱抵抗体の通電制御に利用することができる。 In a heating element device that uses both a heating element and a resistance temperature detector as described above, in order to energize the heating element, two terminals that conduct to one end and the other end of this heating element and two that are connected to this terminal. In order to energize the resistance temperature detector, a total of 4 terminals and 4 wires, 2 terminals conducting to one end and the other end of the resistance temperature detector and 2 wires connected to the terminal, are provided. Since it is used, it can be a circuit independent of each other. Therefore, regardless of the energization control of the heat generation resistor, the resistance value of the resistance temperature detector can be detected at an appropriate timing and used for the energization control of the heat generation resistor.

しかしながら、発熱抵抗体と測温抵抗体の2つを用いるに当たり、4つの端子及び4本の配線が必要となり、発熱抵抗体及び測温抵抗体を有する発熱部や、4本の配線を設けるためのスペースを要し、小型化に難がある。 However, in order to use two of the heat generation resistor and the resistance temperature detector, four terminals and four wirings are required, and a heat generation part having the heat generation resistor and the resistance temperature detector and four wirings are provided. Space is required, and it is difficult to reduce the size.

一方、前述の特許文献1,2のように、温度依存性抵抗ヒータを用いる場合には、この温度依存性抵抗ヒータの一端及び他端に導通する2つの端子及びこれに接続する2本の配線で足りる。このため、温度依存性抵抗ヒータを有する発熱部や、2本の配線を設けるためのスペースが少なくて済み、小型化にも有利である。なおこの2本の配線を用いて、温度依存性抵抗ヒータに電力を印加するほか、温度依存性抵抗ヒータに抵抗値測定用の小電流を流して、温度依存性抵抗ヒータの抵抗値を検知することで、温度依存性抵抗ヒータの通電制御に利用する。 On the other hand, when a temperature-dependent resistance heater is used as in Patent Documents 1 and 2 described above, two terminals conducting on one end and the other end of the temperature-dependent resistance heater and two wirings connected to the terminal are connected to the terminal. Is enough. Therefore, the space for providing the heat generating portion having the temperature-dependent resistance heater and the two wirings is small, which is advantageous for miniaturization. In addition to applying electric power to the temperature-dependent resistance heater using these two wires, a small current for measuring the resistance value is passed through the temperature-dependent resistance heater to detect the resistance value of the temperature-dependent resistance heater. Therefore, it is used for energization control of the temperature-dependent resistance heater.

しかしながら、この温度依存性抵抗ヒータに大きな電力を投入して発熱させたい場合、特に電源電圧が低い電源を用いて、温度依存性抵抗ヒータを駆動したい場合には、温度依存性抵抗ヒータの持つ抵抗値を低く設定せざるを得ない。ところが、温度依存性抵抗ヒータの抵抗値を低くした場合には、抵抗値測定用の小電流を流した場合に発生する電圧降下が小さくなり、温度依存性抵抗ヒータの抵抗値を適切に検知し難い。また、ヒータと電源を結ぶ配線に生じる抵抗を無視できなくなり、この点からも温度依存性抵抗ヒータの抵抗値を適切に検知し難くなる。そこで、抵抗値測定用の電流を大きくすると、抵抗値測定用の電流自体が、温度依存性抵抗ヒータの温度に影響を及ぼすほか、配線に生じる抵抗による影響も同様に大きくなる。このため、この温度依存性抵抗ヒータの抵抗値を利用した精密な通電制御が難しくなる。 However, if you want to generate heat by applying a large amount of power to this temperature-dependent resistance heater, especially if you want to drive the temperature-dependent resistance heater using a power supply with a low power supply voltage, the resistance of the temperature-dependent resistance heater There is no choice but to set the value low. However, when the resistance value of the temperature-dependent resistance heater is lowered, the voltage drop generated when a small current for measuring the resistance value is passed becomes small, and the resistance value of the temperature-dependent resistance heater is appropriately detected. hard. Further, the resistance generated in the wiring connecting the heater and the power supply cannot be ignored, and from this point as well, it becomes difficult to appropriately detect the resistance value of the temperature-dependent resistance heater. Therefore, when the current for measuring the resistance value is increased, the current for measuring the resistance value itself affects the temperature of the temperature-dependent resistance heater, and the influence of the resistance generated in the wiring also increases. Therefore, precise energization control using the resistance value of this temperature-dependent resistance heater becomes difficult.

本発明は、かかる問題点に鑑みてなされたものであって、発熱抵抗体と測温抵抗体の2つを用いることで、発熱抵抗体の温度を適切に制御できると共に、小型化もできる発熱体装置を提供する。また、発熱抵抗体と測温抵抗体の2つを用いた発熱部を制御する制御装置も提供する。 The present invention has been made in view of the above problems, and by using two heating elements, a heating element and a resistance temperature detector, the temperature of the heating element can be appropriately controlled and the heat generation can be reduced. Provide body equipment. Further, a control device for controlling a heat generating portion using both a heat generating resistor and a resistance temperature detector is also provided.

その一態様は、通電により発熱する発熱抵抗体、上記発熱抵抗体の温度を測温する測温抵抗体、上記発熱抵抗体の一端に導通する発熱体端子、上記測温抵抗体の一端に導通する測温体端子、及び、上記発熱抵抗体の他端と上記測温抵抗体の他端に導通する共通端子、を有する発熱部と、上記発熱体端子に導通する発熱体配線と、上記測温体端子に導通する測温体配線と、上記共通端子に導通する共通配線と、上記測温体配線と上記共通配線を通じて上記測温抵抗体の抵抗値を検知する抵抗検知部、上記発熱体配線と上記共通配線を通じて上記発熱抵抗体に印加する電力を、上記抵抗検知部で検知した上記測温抵抗体の上記抵抗値に応じて制御する発熱体制御部、及び、上記発熱抵抗体に電力を印加していない期間に、上記抵抗検知部に上記測温抵抗体の上記抵抗値を検知させる検知時期制御部、を有する制御部と、を備える発熱体装置である。 One embodiment is a resistance thermometer that generates heat when energized, a resistance temperature detector that measures the temperature of the resistance thermometer, a resistance thermometer terminal that conducts to one end of the resistance thermometer, and a resistance thermometer that conducts to one end of the resistance temperature detector. A heat generating portion having a resistance thermometer terminal, a common terminal conducting to the other end of the resistance thermometer and the other end of the resistance temperature detector, a heating element wiring conducting to the heating element terminal, and the measurement. A resistance detector that detects the resistance value of the resistance temperature detector through the resistance thermometer wiring that conducts to the temperature measuring body terminal, the common wiring that conducts to the common terminal, the temperature measuring body wiring, and the common wiring, and the heating element. Power applied to the heat generating resistor through the wiring and the common wiring to control the power applied to the resistance temperature detector according to the resistance value of the resistance temperature detector detected by the resistance detector, and to the heat generating resistor. This is a heating element device including a control unit having a detection timing control unit that causes the resistance detection unit to detect the resistance value of the resistance temperature detector during a period in which the resistance temperature detector is not applied.

この発熱体装置では、発熱抵抗体と測温抵抗体の2つを用いながらも、発熱部において、独立した4つの端子ではなく、発熱体端子、測温体端子のほか、発熱抵抗体と測温抵抗体で共用する共通端子の合計3つの端子を有している。そして、発熱部と制御部とを、通常4本の配線で接続するところを、発熱体配線、測温体配線、及び共通配線の3本の配線で接続している。このため、この発熱体装置において、発熱部や配線のためのスペースを小型化できる。 In this heating element device, although two heating elements and resistance temperature detectors are used, in the heating element, instead of four independent terminals, a heating element terminal, a resistance temperature detector terminal, and a heating element are measured. It has a total of three terminals, which are common terminals shared by the temperature resistor. The heating element and the control unit are usually connected by four wirings, but are connected by three wirings, a heating element wiring, a resistance temperature measuring element wiring, and a common wiring. Therefore, in this heating element device, the space for the heating element and wiring can be reduced.

その一方、発熱抵抗体と測温抵抗体の2つを用いるので、発熱抵抗体の抵抗の大小や、印加電圧の大小に拘わらず、抵抗検知部で適切に抵抗値を検知でき、発熱体制御部で発熱抵抗体に印加する電力を適切に制御できる。 On the other hand, since two types of heat-generating resistor and resistance temperature detector are used, the resistance value can be appropriately detected by the resistance detection unit regardless of the magnitude of the resistance of the heating resistor and the magnitude of the applied voltage, and the heating element can be controlled. The power applied to the heat generation resistor can be appropriately controlled by the unit.

なお、発熱体制御部によって、発熱抵抗体に電力を印加している期間には、共通配線にも大きな電流が流れるので、共通配線の持つ抵抗で発生する電圧降下も大きくなる。このため、発熱抵抗体に電力を印加している期間に、測温抵抗体の抵抗値を検知するべく、測温体配線及び共通配線を通じて電流を流した場合には、発熱抵抗体に流した電流に起因して共通配線に生じる電圧降下の影響が、測温抵抗体の抵抗値に加わるため、抵抗値の検知精度が低下する。 Since a large current flows through the common wiring during the period when the power is applied to the heating element by the heating element control unit, the voltage drop generated by the resistance of the common wiring also becomes large. Therefore, when a current is passed through the resistance temperature detector wiring and the common wiring in order to detect the resistance value of the resistance temperature detector during the period when power is applied to the resistance temperature detector, the current is passed through the resistance temperature detector. Since the influence of the voltage drop that occurs in the common wiring due to the current is added to the resistance value of the resistance temperature detector, the detection accuracy of the resistance value is lowered.

これに対し、上述の発熱体装置では、発熱抵抗体に電力を印加していない期間に、抵抗検知部で測温抵抗体の抵抗値を検知する。このため、発熱抵抗体に大きな電流を流すことで生じる影響を排除し、測温抵抗体の抵抗値を適切に検知して、発熱抵抗体の温度を適切に測温でき、発熱体制御部での制御を適切に行うことができる。 On the other hand, in the above-mentioned heating element device, the resistance value of the resistance temperature detector is detected by the resistance detection unit during the period when the electric power is not applied to the heating element. Therefore, the influence caused by passing a large current through the heating element can be eliminated, the resistance value of the resistance temperature detector can be detected appropriately, and the temperature of the resistance temperature detector can be measured appropriately. Can be controlled appropriately.

なお、発熱体端子、測温体端子、共通端子としては、例えば、発熱抵抗体、測温抵抗体を設けた発熱素子(発熱部)をなすヒータ基板に設置され、ケーブルやリード線、ボンディングワイヤなどの接続配線が接続される端子などが挙げられる。
また、発熱体配線、測温体配線、共通配線としては、例えば、発熱抵抗体、測温抵抗体を設けた発熱素子をなすヒータ基板に設置された端子に直接又は間接に接続するケーブルやリード線、ボンディングワイヤなどの接続配線や、ヒータ基板を収容したパッケージに設けたリードピンなどの外部接続端子、配線基板内に形成された導体配線などを用いることもできる。
The heating element terminal, resistance temperature detector terminal, and common terminal are, for example, installed on a heater substrate forming a heating element (heating element) provided with a heating element and a resistance temperature detector, and are used for cables, lead wires, and bonding wires. Examples include terminals to which connection wiring such as is connected.
Further, as the heating element wiring, the temperature measuring body wiring, and the common wiring, for example, a cable or a lead directly or indirectly connected to a terminal installed on a heater board forming a heat generating element provided with a heating element or a temperature measuring resistor. It is also possible to use connection wiring such as wires and bonding wires, external connection terminals such as lead pins provided in the package containing the heater substrate, and conductor wiring formed in the wiring board.

また、発熱体制御部における制御方式に限定はなく、発熱抵抗体に印加する電力を変化させるために電圧あるいは電流を制御するに当たり、パルス幅変調(PWM)、パルス振幅変調(PAM)などのパルス変調方式を採用することができる。また、発熱抵抗体に連続的な電圧及び電流を印加し、適宜その大きさを変化させるアナログ方式を採用することもできる。 Further, the control method in the heating element control unit is not limited, and a pulse such as pulse width modulation (PWM) or pulse amplitude modulation (PAM) is used to control the voltage or current in order to change the power applied to the heating element. A modulation method can be adopted. Further, it is also possible to adopt an analog method in which a continuous voltage and current are applied to the heat generation resistor and the magnitude thereof is appropriately changed.

また、検知時期制御部は、発熱抵抗体に電力が印加されていない期間に、抵抗値の検知するようにする。具体的には、例えば、パルス変調方式で電力を印加する場合において、電力の印加をオフとする期間など、発熱体制御部が、発熱抵抗体に電力が印加しない期間を選んで、抵抗検知部に抵抗値の検知をさせる手法が挙げられる。このほか、例えば10秒毎の期間のうち最初の100m秒の期間など、抵抗検知部による抵抗値の検知の期間に合わせて、検知期間を含む期間に亘り、電力が印加されない時期を設けることもできる。 Further, the detection timing control unit detects the resistance value during the period when the electric power is not applied to the heat generation resistor. Specifically, for example, in the case of applying electric power by a pulse modulation method, the heating element control unit selects a period in which electric power is not applied to the heating element, such as a period in which the application of electric power is turned off, and the resistance detection unit. There is a method of detecting the resistance value. In addition, for example, a period during which power is not applied may be provided for a period including the detection period according to the period for detecting the resistance value by the resistance detection unit, such as the period of the first 100 ms of the period every 10 seconds. can.

さらに前述の発熱体装置であって、前記発熱体制御部は、前記発熱抵抗体に印加する前記電力を、予め定めた周波数で、かつ、100%未満の上限値の範囲内のオンデューティ比でパルス変調制御する発熱体パルス制御部であり、前記検知時期制御部は、上記上限値のオンデューティ比で上記発熱抵抗体に上記電力を印加する場合であっても、上記電力を印加しない期間に、前記抵抗検知部に前記抵抗値を検知させる発熱体装置とすると良い。 Further, in the above-mentioned heating element device, the heating element control unit applies the electric power applied to the heating element to a predetermined frequency and an on-duty ratio within a range of an upper limit value of less than 100%. It is a heating element pulse control unit that controls pulse modulation, and the detection timing control unit is a period in which the power is not applied even when the power is applied to the heating element with the on-duty ratio of the upper limit. It is preferable to use a heating element device that causes the resistance detection unit to detect the resistance value.

この発熱体装置では、発熱体パルス制御部で、発熱抵抗体に印加する電力を、予め定めた周波数で、かつ、100%未満の上限値(例えば、上限値90%)の範囲内のオンデューティ比でパルス変調制御する。そして、検知時期制御部は、上限値(例えば90%)のオンデューティ比で発熱抵抗体に電力を印加する場合であっても、電力を印加しない期間(例えば、残る10%のオフ期間)、即ち、必ず電力印加がオフとされる期間に、抵抗検知部に抵抗値を検知させる。このため、発熱体パルス制御部による発熱抵抗体への電力印加に影響されることなく、抵抗検知部によって測温抵抗体の抵抗値を適切に検知でき、発熱体パルス制御部による電力制御を適切に行うことができる。 In this heating element device, in the heating element pulse control unit, the power applied to the heating element is on-duty at a predetermined frequency and within an upper limit value of less than 100% (for example, an upper limit value of 90%). Pulse modulation control is performed by the ratio. Then, even when power is applied to the heat generation resistor at the on-duty ratio of the upper limit value (for example, 90%), the detection timing control unit does not apply power (for example, the remaining 10% off period). That is, the resistance value is detected by the resistance detection unit during the period when the power application is always turned off. Therefore, the resistance value of the resistance temperature detector can be appropriately detected by the resistance detection unit without being affected by the power applied to the heating element by the heating element pulse control unit, and the power control by the heating element pulse control unit is appropriate. Can be done.

なお、発熱体パルス制御部で行うパルス変調制御の手法としては、パルス幅変調(PWM)、パルス振幅変調(PAM)のほか、パルスの幅と振幅の両者を変更する手法も挙げられる。 As a method of pulse modulation control performed by the heating element pulse control unit, in addition to pulse width modulation (PWM) and pulse amplitude modulation (PAM), a method of changing both the pulse width and the amplitude can be mentioned.

さらに上述の発熱体装置であって、前記発熱体パルス制御部は、前記発熱抵抗体に印加する前記電力を、パルス幅変調により制御する発熱体装置とするのが好ましい。
パルス幅変調制御により、発熱抵抗体に印加する電力を制御する場合には、定電圧電源の出力をスイッチ素子(MOSFET、トランジスタ、サイリスタなど)でオンオフさせることで容易に制御を行うことができるので、制御回路が簡単になる利点がある。
Further, in the above-mentioned heating element device, it is preferable that the heating element pulse control unit is a heating element device that controls the electric power applied to the heating element by pulse width modulation.
When controlling the power applied to the heat-generating resistor by pulse width modulation control, the control can be easily performed by turning the output of the constant voltage power supply on and off with a switch element (MOSFET, transistor, thyristor, etc.). , Has the advantage of simplifying the control circuit.

さらに上述のいずれかに記載の発熱体装置であって、前記発熱部は、前記発熱抵抗体からの加熱による温度上昇で予め与えた機能を生じる被加熱機能体をも有する発熱体装置とすると良い。 Further, it is preferable that the heating element device according to any one of the above is a heating element device having a heating element that produces a function given in advance by a temperature rise due to heating from the heat generation resistor. ..

この発熱体装置では、発熱部は、被加熱機能体をも有する。このため、被加熱機能体を発熱抵抗体で適切な温度に加熱することができるので、被加熱機能体に予め与えた機能を適切に生じさせることができる。 In this heating element device, the heating element also has a functional body to be heated. Therefore, since the functional body to be heated can be heated to an appropriate temperature by the heat generation resistor, the function given in advance to the functional body to be heated can be appropriately generated.

なお、被加熱機能体としては、予め定めた温度範囲への加熱により、予め与えた検知機能(例えば、気流の流速検知機能、還元性ガス、メタンなどのガス検知機能など)を奏するセンサ体や、予め与えた能動機能(例えば、遠赤外線放射機能など)を奏する能動機能体が挙げられる。
また、発熱部としては、発熱抵抗体と測温抵抗体の二者のほか、上述のセンサ体や能動機能体をも同じ基板上やパッケージ内に有するものが挙げられる。
As the functional body to be heated, a sensor body or a sensor body that exhibits a detection function given in advance (for example, a flow velocity detection function for air flow, a gas detection function for reducing gas, methane, etc.) by heating to a predetermined temperature range. , An active functional body that exerts an active function given in advance (for example, a far-infrared radiation function).
Further, as the heat generating portion, in addition to the heat generating resistor and the resistance temperature detector, those having the above-mentioned sensor body and active functional body on the same substrate or in the package can be mentioned.

さらに、上述の発熱体装置であって、前記被加熱機能体は、前記発熱抵抗体からの加熱による温度上昇で予め与えた検知機能を生じるセンサ体である発熱体装置とすると良い。 Further, in the above-mentioned heating element device, the heating element may be a heating element device which is a sensor body that produces a detection function given in advance by a temperature rise due to heating from the heating resistor.

この発熱体装置では、被加熱機能体はセンサ体である。そしてこの発熱体装置では、センサ体を発熱抵抗体で適切な温度に加熱することができるので、センサ体に予め与えた機能を適切に生じさせることができる。 In this heating element device, the functional body to be heated is a sensor body. In this heating element device, the sensor body can be heated to an appropriate temperature by the heating element, so that the function given in advance to the sensor body can be appropriately generated.

なお、センサ体としては、予め定めた温度範囲(例えば活性化温度を越える温度範囲)への加熱により、検知したい環境(環境空気の流速、被測定ガスのガス濃度変化)の変化により、予め定めた起電力を発生したり、抵抗値が変化したりするなど、予め与えた検知機能(例えば、気流の流速検知機能、メタンなどのガス検知機能など)を奏するものが挙げられる。 The sensor body is predetermined by heating to a predetermined temperature range (for example, a temperature range exceeding the activation temperature) and by changing the environment (environmental air flow velocity, gas concentration change of the measured gas) to be detected. Examples thereof include those that perform a detection function given in advance (for example, a flow velocity detection function for air flow, a gas detection function for methane, etc.), such as generating an electromotive force or changing a resistance value.

また、制御部には、センサ体の制御を行うセンサ体制御部を有しているものも、センサ体制御部を有していないものも含まれる。ここで、上述の発熱体装置であって、前記制御部は、前記センサ体における、前記検知機能について制御を行うセンサ体制御部を有する発熱体装置とするのが好ましい。この発熱体装置では、制御部にセンサ体制御部を有しており、発熱抵抗体の制御のみならず、センサ体の制御をも行うことができ、取り扱いが容易となる。 Further, the control unit includes a unit having a sensor body control unit that controls the sensor body and a control unit having no sensor body control unit. Here, in the above-mentioned heating element device, it is preferable that the control unit is a heating element device having a sensor body control unit that controls the detection function in the sensor body. This heating element device has a sensor body control unit in the control unit, and can control not only the heating element but also the sensor body, which facilitates handling.

あるいは他の態様は、通電により発熱する発熱抵抗体、上記発熱抵抗体の温度を測温する測温抵抗体、上記発熱抵抗体の一端に導通する発熱体端子、上記測温抵抗体の一端に導通する測温体端子、及び、上記発熱抵抗体の他端と上記測温抵抗体の他端に導通する共通端子、を有する発熱部に、上記発熱体端子に導通する発熱体配線、上記測温体端子に導通する測温体配線、及び、上記共通端子に導通する共通配線で接続する制御装置であって、上記測温体配線と上記共通配線を通じて上記測温抵抗体の抵抗値を検知する抵抗検知部、上記発熱体配線と上記共通配線を通じて上記発熱抵抗体に印加する電力を、上記抵抗検知部で検知した上記測温抵抗体の上記抵抗値に応じて制御する発熱体制御部、及び、上記発熱抵抗体に電力を印加していない期間に、上記測温抵抗体の上記抵抗値を検知させる検知時期制御部、を有する制御装置である。 Alternatively, other embodiments include a resistance thermometer that generates heat when energized, a resistance temperature detector that measures the temperature of the resistance thermometer, a resistance thermometer terminal that conducts to one end of the resistance thermometer, and one end of the resistance temperature detector. A heating element wiring that conducts to the heating element terminal in a heat generating portion having a conducting temperature measuring body terminal and a common terminal that conducts to the other end of the heat generating resistor and the other end of the temperature measuring resistor, the measuring element. It is a control device connected by a temperature measuring body wiring conducting to the temperature measuring body terminal and a common wiring conducting to the common terminal, and detects the resistance value of the resistance temperature detector through the temperature measuring body wiring and the common wiring. A heating element control unit that controls the power applied to the heat generating resistor through the heating element wiring and the common wiring according to the resistance value of the resistance temperature detector detected by the resistance detecting unit. Further, the control device includes a detection timing control unit that detects the resistance value of the resistance temperature detector during the period when power is not applied to the resistance temperature detector.

この制御装置は、発熱抵抗体と測温抵抗体を有する発熱部に、発熱体配線、測温体配線、及び共通配線の3本の配線で接続する。そして、抵抗検知部で測温抵抗体の抵抗値を検知し、発熱体制御部で発熱抵抗体への印加電力を、測温抵抗体の抵抗値に応じて制御するにあたり、検知時期制御部で、発熱抵抗体に電力を印加していない期間に、測温抵抗体の抵抗値を検知させる。このため、制御装置では、発熱抵抗体に大きな電流の電力を印加することで生じる影響を排除し、測温抵抗体の抵抗値を適切に検知して、発熱抵抗体の温度を適切に測温でき、発熱体制御部での制御を適切に行うことができる。 This control device is connected to a heating element having a heating element and a resistance temperature detector by three wirings: a heating element wiring, a resistance temperature measuring element wiring, and a common wiring. Then, the resistance detection unit detects the resistance value of the resistance temperature detector, and the heating element control unit controls the applied power to the resistance temperature detector according to the resistance value of the resistance temperature detector. , The resistance value of the resistance temperature detector is detected during the period when no power is applied to the resistance temperature detector. For this reason, the control device eliminates the effect of applying a large current to the resistance temperature detector, appropriately detects the resistance value of the resistance temperature detector, and measures the temperature of the resistance temperature detector appropriately. It can be appropriately controlled by the heating element control unit.

実施形態1に係る発熱体装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the heating element apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る発熱体装置のうち、基板型の発熱素子の概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of the substrate type heating element among the heating element apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る発熱体装置における、発熱抵抗体に印加する電圧の変化と測温抵抗体の抵抗値の測定タイミングとの関係を示すグラフである。It is a graph which shows the relationship between the change of the voltage applied to a heating element and the measurement timing of the resistance value of a resistance temperature detector in the heating element apparatus which concerns on Embodiment 1. FIG. 実施形態2に係るセンサ装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the sensor device which concerns on Embodiment 2. 実施形態2に係るセンサ装置のうち、金属パッケージ型のセンサユニットの概略構成を示す説明図であり、(a)は斜視図、(b)は部分破断断面図である。It is explanatory drawing which shows the schematic structure of the metal package type sensor unit among the sensor apparatus which concerns on Embodiment 2, (a) is a perspective view, (b) is a partial fracture sectional view. 実施形態2に係るセンサ装置のうち、センサユニットに収容されるセンサ素子の概略構成を示す説明図であり、(a)は第1主面側を、(b)は第2主面側の概略構成を示す。It is explanatory drawing which shows the schematic structure of the sensor element accommodated in the sensor unit among the sensor apparatus which concerns on Embodiment 2, (a) is the 1st main surface side, (b) is the outline of the 2nd main surface side. The configuration is shown. 実施形態2に係るセンサ装置における、発熱抵抗体に印加する電圧の変化と測温抵抗体における抵抗値の測定タイミングとの関係を示すグラフである。It is a graph which shows the relationship between the change of the voltage applied to the heat generation resistor and the measurement timing of the resistance value in a resistance temperature detector in the sensor apparatus which concerns on Embodiment 2. FIG.

(実施形態1)
以下、本発明の第1の実施形態を、図1〜図3を参照しつつ説明する。図1は、本実施形態1に係る発熱体装置10の全体構成を示す図である。図2は、この発熱体装置10のうち、発熱部をなす基板型の発熱素子20の概略構成を示す図である。また図3は、この発熱体装置10における、発熱抵抗体22に印加する発熱体電圧Vpの変化と測温抵抗体23の抵抗値Rsの測定タイミングとの関係を示すグラフである。この発熱体装置10は、基板型の発熱素子20と、これを制御する発熱体制御装置50と、これらの間を接続する3本の配線41,42,43とを備え、発熱体制御装置50によって、発熱素子20を所定の温度に加熱する装置である。
(Embodiment 1)
Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing an overall configuration of a heating element device 10 according to the first embodiment. FIG. 2 is a diagram showing a schematic configuration of a substrate-type heating element 20 forming a heating unit in the heating element device 10. Further, FIG. 3 is a graph showing the relationship between the change in the heating element voltage Vp applied to the heating element 22 and the measurement timing of the resistance value Rs of the resistance temperature detector 23 in the heating element device 10. The heating element device 10 includes a substrate-type heating element 20, a heating element control device 50 for controlling the heating element control device 50, and three wirings 41, 42, 43 connecting the heating element control device 50. This is a device that heats the heating element 20 to a predetermined temperature.

先ず、発熱素子20を図2を参照して説明する。この基板型の発熱素子20は、矩形状のヒータ基板21の第1主面21A上に、発熱抵抗体22と測温抵抗体23を形成したものである。このうちヒータ基板21は、アルミナからなる板状体である。発熱抵抗体22は、白金からなり、ヒータ基板21の第1主面21Aの多くの部分をカバーするようにメアンダ(蛇行)状に延びる。一方、測温抵抗体23は、白金からなり、発熱抵抗体22と所定の距離を保ちつつこの発熱抵抗体22に沿って、メアンダ(蛇行)状に延びている。 First, the heat generating element 20 will be described with reference to FIG. The substrate-type heating element 20 has a heating resistor 22 and a resistance temperature detector 23 formed on the first main surface 21A of the rectangular heater substrate 21. Of these, the heater substrate 21 is a plate-shaped body made of alumina. The heat generation resistor 22 is made of platinum and extends in a meandering shape so as to cover most of the first main surface 21A of the heater substrate 21. On the other hand, the resistance temperature detector 23 is made of platinum and extends in a meandering shape along the heat generation resistor 22 while maintaining a predetermined distance from the heat generation resistor 22.

そして、発熱抵抗体22は、その一端22A(図2において、左上)において、発熱抵抗体22よりも幅広で、概ね半円状の発熱体端子24に導通している。また、測温抵抗体23は、その一端23A(図2において、右上)において、測温抵抗体23よりも幅広で、概ね半円状の測温体端子25に導通している。さらに、発熱抵抗体22の他端22B及び測温抵抗体23の他端23B(図2において、右下)は、共に、発熱抵抗体22及び測温抵抗体23よりも幅広で、概ね半円状の共通端子26に導通している。
これらの発熱抵抗体22、測温抵抗体23、及び3つの端子24〜26は、材料ペーストをヒータ基板21にスクリーン印刷し焼成して形成されている。
The heating element 22 is wider than the heating element 22 at one end 22A (upper left in FIG. 2) and conducts to a substantially semicircular heating element terminal 24. Further, the resistance temperature detector 23 is wider than the resistance temperature detector 23 at one end 23A (upper right in FIG. 2) and conducts to a substantially semicircular resistance temperature detector terminal 25. Further, the other end 22B of the heat generation resistor 22 and the other end 23B of the resistance temperature detector 23 (lower right in FIG. 2) are both wider than the heat generation resistor 22 and the resistance temperature detector 23, and are approximately semi-circular. It is conductive to the common terminal 26.
These heat generation resistors 22, resistance temperature detectors 23, and the three terminals 24 to 26 are formed by screen-printing a material paste on a heater substrate 21 and firing it.

この発熱素子20の3つの端子24〜26は、次述する発熱体制御装置50の端子51,52,53とそれぞれ、配線41,42,43によって接続されている(図1参照)。具体的には、発熱体端子24は、発熱体配線41を介して発熱体制御装置50の端子51と導通している。測温体端子25は、測温体配線42を介して発熱体制御装置50の端子52と導通している。さらに、共通端子26は、共通配線43を介して発熱体制御装置50の端子53と導通している。なお、端子53は、発熱体制御装置50内で接地されている。 The three terminals 24 to 26 of the heating element 20 are connected to the terminals 51, 52, 53 of the heating element control device 50 described below by wirings 41, 42, 43, respectively (see FIG. 1). Specifically, the heating element terminal 24 is electrically connected to the terminal 51 of the heating element control device 50 via the heating element wiring 41. The resistance temperature detector terminal 25 is electrically connected to the terminal 52 of the heating element control device 50 via the resistance temperature detector wiring 42. Further, the common terminal 26 is electrically connected to the terminal 53 of the heating element control device 50 via the common wiring 43. The terminal 53 is grounded in the heating element control device 50.

発熱体制御装置50は、発熱素子20を制御するものであり、抵抗検知回路60と、発熱体制御回路70と、検知時期制御部80とに大別される。このうち、抵抗検知回路60は、端子52と端子53に接続されており、図1に示すように、測温体配線42と共通配線43を通じて、発熱素子20の測温抵抗体23に接続している。抵抗検知回路60は、定電流である抵抗検知電流Isを流す定電流源61と、この定電流源61に生じる電圧Vsを検知する電圧検知部62を有する。この電圧検知部62で検知する電圧Vsは、抵抗検知電流Isを測温抵抗体23に流したことによって生じる測温体電圧Vsである。従って、測温抵抗体23の抵抗値Rsは、Rs=Vs/Isによって得ることができる。このようにして算出した測温抵抗体23の抵抗値Rs、あるいは、これに対応する測温体電圧Vsが、次述する発熱体制御回路70のPWM制御部73に入力され、発熱抵抗体22の制御に用いられる。 The heating element control device 50 controls the heating element 20, and is roughly divided into a resistance detection circuit 60, a heating element control circuit 70, and a detection timing control unit 80. Of these, the resistance detection circuit 60 is connected to the terminal 52 and the terminal 53, and as shown in FIG. 1, is connected to the resistance temperature detector 23 of the heat generating element 20 through the resistance temperature detector wiring 42 and the common wiring 43. ing. The resistance detection circuit 60 includes a constant current source 61 through which a resistance detection current Is, which is a constant current, flows, and a voltage detection unit 62 that detects the voltage Vs generated in the constant current source 61. The voltage Vs detected by the voltage detection unit 62 is the resistance temperature detector voltage Vs generated by passing the resistance detection current Is through the resistance temperature detector 23. Therefore, the resistance value Rs of the resistance temperature detector 23 can be obtained by Rs = Vs / Is. The resistance value Rs of the resistance temperature detector 23 calculated in this way or the corresponding resistance temperature voltage Vs is input to the PWM control unit 73 of the heating element control circuit 70 described below, and the resistance temperature detector 22 Used for control of.

一方、発熱体制御回路70は、端子51、及び切替スイッチ81を介して端子53に接続されており、図1に示すように、発熱体配線41と共通配線43を通じて発熱抵抗体22に、発熱体電圧Vpを印加する。これによって、発熱抵抗体22に発熱体電流Ihが流れ、発熱抵抗体22に発熱体電力PWが印加される。発熱体制御回路70は、所定のオン電圧Vponを発生する定電圧電源71と、発熱抵抗体22へのオン電圧Vponの印加を断続するスイッチ素子72と、このスイッチ素子72のオンオフを行ってオン電圧Vponの印加期間を制御するPWM(パルス幅変調)制御を行うPWM制御部73とを有する。スイッチ素子72は、例えば、MOSFET、サイリスタなどで構成されている。このように本実施形態1では、パルス幅変調制御により、発熱抵抗体22に印加する発熱体電力PWを制御するので、所定のオン電圧Vponを発生する定電圧電源71の出力をスイッチ素子72でオンオフさせることで容易に制御を行うことができるので、制御回路が簡単になる。 On the other hand, the heating element control circuit 70 is connected to the terminal 53 via the terminal 51 and the changeover switch 81, and as shown in FIG. 1, heat is generated to the heating element 22 through the heating element wiring 41 and the common wiring 43. A body voltage Vp is applied. As a result, the heating element current Ih flows through the heating element 22 and the heating element power PW is applied to the heating element 22. The heating element control circuit 70 is turned on by turning on / off the constant voltage power supply 71 that generates a predetermined on-voltage Vpon, the switch element 72 that interrupts the application of the on-voltage Vpon to the heating resistor 22, and the switch element 72. It has a PWM control unit 73 that performs PWM (pulse width modulation) control that controls the application period of the voltage Vpon. The switch element 72 is composed of, for example, a MOSFET, a thyristor, or the like. As described above, in the first embodiment, since the heating element power PW applied to the heating element 22 is controlled by the pulse width modulation control, the output of the constant voltage power supply 71 that generates a predetermined on-voltage Vpon is output by the switch element 72. Since control can be easily performed by turning it on and off, the control circuit becomes simple.

PWM制御部73は、図3に示すように、予め定めた周波数fp(例えば、fp=1Hz)で、即ち、予め定めた周期Tp(=1/fp、例えば、Tp=1/fp=1sec)で電圧パルスEpを発熱抵抗体22に繰り返し印加するにあたり、予め定めた上限オン期間Ponm(例えば、Tp=1secのうち、Ponm=900msec)の範囲内において、スイッチ素子72をオンさせる期間の長さをPWM(パルス幅変調)制御する。即ち、上限オン期間Ponmの長さを上限として、この期間内の所望のオン期間Ponに亘り、スイッチ素子72をオンさせる。これにより、上限オン期間Ponmの長さを最大の100%とすると、オン期間Ponの長さを、0〜100%の範囲で変化させることができることになり、PWM制御を実現できる。 As shown in FIG. 3, the PWM control unit 73 has a predetermined frequency fp (for example, fp = 1 Hz), that is, a predetermined period Tp (= 1 / fp, for example, Tp = 1 / fp = 1 sec). When the voltage pulse Ep is repeatedly applied to the heat generation resistor 22, the length of the period during which the switch element 72 is turned on within the range of the predetermined upper limit on period Ponm (for example, Ponm = 900 msec out of Tp = 1 sec). Is PWM (Pulse Width Modulation) control. That is, the switch element 72 is turned on for a desired on-period Pon within this period, with the length of the upper limit on period Ponm as the upper limit. As a result, assuming that the maximum length of the on-period Ponm is 100%, the length of the on-period Pon can be changed in the range of 0 to 100%, and PWM control can be realized.

本実施形態1では、このPWM制御部73において、オン期間Ponの長さを決めるのに当たり、前述のようにして抵抗検知回路60で得た測温抵抗体23の抵抗値Rs(あるいは測温体電圧Vs)を用いる。例えば、現在得られている抵抗値Rsが、発熱抵抗体22の目標温度に対応する測温抵抗体23の抵抗値Rsよりも、大幅に大きく、発熱抵抗体22の温度が目標温度よりも大幅に低い場合には、PWM制御部73において、オン期間Ponの長さを長くする制御を行う。これにより、より多くの発熱体電力PWが発熱抵抗体22に印加され、発熱抵抗体22を温度上昇させるあるいは温度上昇を加速できる。一方、現在得られている抵抗値Rsが、発熱抵抗体22の目標温度に対応する測温抵抗体23の抵抗値Rsに近くなった場合、即ち、発熱抵抗体22の温度が目標温度に近くなった場合には、PWM制御部73において、オン期間Ponの長さを短くする制御を行う。これにより、より少ない発熱体電力PWが発熱抵抗体22に印加され、発熱抵抗体22の温度上昇を鈍化させるあるいは温度を低下できる。なお、PWM制御部73において、抵抗値Rsあるいは測温体電圧Vsを用いた具体的な制御手法としては、上述の手法に限らず、公知の制御手法を用いれば良く、詳細な記載を省略する。 In the first embodiment, in the PWM control unit 73, the resistance value Rs (or the resistance thermometer) of the resistance temperature detector 23 obtained by the resistance detection circuit 60 as described above is used to determine the length of the on-period Pon. Voltage Vs) is used. For example, the currently obtained resistance value Rs is significantly larger than the resistance value Rs of the resistance temperature detector 23 corresponding to the target temperature of the heat generation resistor 22, and the temperature of the heat generation resistor 22 is significantly larger than the target temperature. If it is too low, the PWM control unit 73 controls to lengthen the length of the on-period Pon. As a result, more heating element power PW is applied to the heating element 22 to raise the temperature of the heating element 22 or accelerate the temperature rise. On the other hand, when the currently obtained resistance value Rs is close to the resistance value Rs of the resistance temperature detector 23 corresponding to the target temperature of the heat generation resistor 22, that is, the temperature of the heat generation resistor 22 is close to the target temperature. If this happens, the PWM control unit 73 controls to shorten the length of the on-period Pon. As a result, less heating element power PW is applied to the heating element 22 so that the temperature rise of the heating element 22 can be slowed down or lowered. The PWM control unit 73 may use a known control method, not limited to the above method, as a specific control method using the resistance value Rs or the resistance temperature detector voltage Vs, and detailed description thereof will be omitted. ..

ところで、発熱体制御回路70により、発熱抵抗体22に発熱体電圧Vpを印加し、発熱体電流Ihを流している期間に、抵抗検知回路60で測温抵抗体23の抵抗値Rsを測定する場合には、測定する抵抗値Rsに誤差が含まれ好ましくない。本実施形態1の発熱体装置10では、発熱抵抗体22を駆動する発熱体電流Ihを流すのに、発熱体配線41と共通配線43とを用いる一方、測温抵抗体23の抵抗値Rsを検知するための抵抗検知電流Isを、測温体配線42と共通配線43とを用いており、共通配線43が共用されている。図1において、破線で象徴的に示すように、この共通配線43には、共通配線抵抗43Rが含まれている。このため、発熱抵抗体22に発熱体電流Ihを流している場合には、共通配線43には、共通配線抵抗43R(抵抗値をRcとする)により、Vc=Rc・Ihの電圧降下Vcが発生する。 By the way, the heating element voltage Vp is applied to the heating element 22 by the heating element control circuit 70, and the resistance value Rs of the resistance temperature detector 23 is measured by the resistance detection circuit 60 while the heating element current Ih is flowing. In some cases, the resistance value Rs to be measured contains an error, which is not preferable. In the heating element device 10 of the first embodiment, the heating element wiring 41 and the common wiring 43 are used to pass the heating element current Ih that drives the heating element 22, while the resistance value Rs of the temperature measuring resistor 23 is set. The resistance detection current Is for detection uses the heating element wiring 42 and the common wiring 43, and the common wiring 43 is shared. In FIG. 1, as symbolically shown by a broken line, the common wiring 43 includes a common wiring resistance 43R. Therefore, when a heating element current Ih is passed through the heating element 22, a voltage drop Vc of Vc = Rc · Ih is generated in the common wiring 43 due to the common wiring resistance 43R (the resistance value is Rc). appear.

ここで、発熱抵抗体22を駆動する発熱体電流Ihの大きさは、発熱抵抗体22の抵抗値や求める発熱量、定電圧電源71のオン電圧Vponの大きさにもよるが、例えば、Ih=10Aなど大きな値とする場合が多い。特に、定電圧電源71として電池などを用いる場合にはオン電圧Vponを大きくしにくいので、発熱抵抗体22に所望の電力を印加するには,発熱抵抗体22の抵抗値を低くし、発熱体電流Ihを大きくしがちである。これに対し、抵抗検知電流Isは、測温抵抗体23の抵抗値Rsや電圧検知部62の許容電圧範囲などにもよるが、Is=10mAなど、発熱体電流Ihに比して遙かに小さくする場合(Is<<Ih)が多い。 Here, the magnitude of the heating element current Ih that drives the heating element 22 depends on the resistance value of the heating element 22, the required calorific value, and the magnitude of the on-voltage Vpon of the constant voltage power supply 71, and is, for example, Ih. In many cases, it is a large value such as = 10A. In particular, when a battery or the like is used as the constant voltage power supply 71, it is difficult to increase the on-voltage Vpon. Therefore, in order to apply the desired power to the heating element 22, the resistance value of the heating element 22 is lowered to generate a heating element. The current Ih tends to be large. On the other hand, the resistance detection current Is is far more than the heating element current Ih, such as Is = 10 mA, although it depends on the resistance value Rs of the resistance temperature detector 23 and the allowable voltage range of the voltage detection unit 62. There are many cases of making it smaller (Is << Ih).

このため、発熱抵抗体22に発熱体電流Ihを流している場合に、測温抵抗体23の抵抗値Rsを測定するべく、抵抗検知電流Isをも流すと、電圧検知部62で得られる測温体電圧Vsは、Vs=Rs・Is+Rc(Ih+Is)となる。抵抗検知電流Isに比して発熱体電流Ihが遙かに大きい場合(Ih>>Is)には、Vs≒Rs・Is+Rc・Ihとなる。この場合、共通配線抵抗43Rの抵抗値Rcが小さくとも、抵抗検知電流Isに比して発熱体電流Ihが遙かに大きいことから、発熱体電流Ihによる電圧降下Vc(=Rc・Ih)は、測温抵抗体23における抵抗検知電流Isによる電圧降下Rs・Isに比して無視できない大きさとなり、測温体電圧Vsから、測温抵抗体23の抵抗値Rsを適切に得られない虞がある。 Therefore, when the heating element current Ih is passed through the heat generating resistor 22, if the resistance detection current Is is also passed in order to measure the resistance value Rs of the resistance temperature detector 23, the measurement obtained by the voltage detection unit 62 is obtained. The warm body voltage Vs is Vs = Rs · Is + Rc (Ih + Is). When the heating element current Ih is much larger than the resistance detection current Is (Ih >> Is), Vs≈Rs · Is + Rc · Ih. In this case, even if the resistance value Rc of the common wiring resistance 43R is small, the heating element current Ih is much larger than the resistance detection current Is, so that the voltage drop Vc (= Rc · Ih) due to the heating element current Ih is , The voltage drop due to the resistance detection current Is in the temperature measuring resistor 23 is not negligible, and the resistance value Rs of the temperature measuring resistor 23 may not be appropriately obtained from the temperature measuring body voltage Vs. There is.

そこで、図3に示すように、オン期間Ponとは逆の、発熱抵抗体22に電力PWを印加していないオフ期間Poffに、抵抗検知部60に測温抵抗体23の抵抗値Rsを検知させる。本実施形態1の発熱体装置10においては、周期Tpのうち、絶対オフ期間Poffaの期間(例えば、Tp=1secのうち、Poffa=100msec)は、電圧パルスEpをオフとし、共通配線43に発熱体電流Ihを流さない期間とする。そして、この絶対オフ期間Poffa内に、つまり、発熱抵抗体22に発熱体電力PWを印加していない期間に、測温抵抗体23の抵抗値Rs(測温体電圧Vs)を取得する。具体的には、検知時期制御部80は、切替スイッチ81と、この切替スイッチ81のオンオフを制御するスイッチ制御部82とを含んでおり、スイッチ制御部82は、PWM制御部73と同期して動作する。そして、スイッチ制御部82は、周期Tpのうち、絶対オフ期間Poffaの期間中は切替スイッチ81をオフにさせ、上限オン期間Ponmの期間中は切替スイッチ81をオンにさせる。これにより、上限オン期間Ponmの期間中は、PWM制御部73により、オン期間Ponの長さを変化させることができる。 Therefore, as shown in FIG. 3, the resistance value Rs of the resistance temperature detector 23 is detected by the resistance detector 60 during the off-period Poff in which the power PW is not applied to the heat-generating resistor 22, which is the opposite of the on-period Pon. Let me. In the heating element device 10 of the first embodiment, the voltage pulse Ep is turned off during the absolute off period Poffa period (for example, Tp = 1 sec, Poffa = 100 msec) in the period Tp, and heat is generated in the common wiring 43. It is a period in which the body current Ih does not flow. Then, the resistance value Rs (resistance temperature detector voltage Vs) of the resistance temperature detector 23 is acquired within this absolute off period Poffa, that is, during the period when the heating element power PW is not applied to the heating element 22. Specifically, the detection timing control unit 80 includes a changeover switch 81 and a switch control unit 82 that controls the on / off of the changeover switch 81, and the switch control unit 82 synchronizes with the PWM control unit 73. Operate. Then, the switch control unit 82 turns off the changeover switch 81 during the absolute off period Poffa and turns on the changeover switch 81 during the upper limit on period Ponm in the cycle Tp. Thereby, during the period of the upper limit on period Ponm, the length of the on period Pon can be changed by the PWM control unit 73.

本実施形態1では、この電圧パルスEpのオンデューティ比Donは、Don=Pon/Tp×100(%)で与えられ、オンデューティ比Donの上限値Donmは、Donm=Ponm/Tp×100(%)で与えられる。この上限値Donmは、絶対オフ期間Poffaが存在しているので、100%未満の大きさ(例えば、Donm=900/1000×100=90%)となる。 In the first embodiment, the on-duty ratio Don of this voltage pulse Ep is given by Don = Pon / Tp × 100 (%), and the upper limit value Donm of the on-duty ratio Don is Donm = Ponm / Tp × 100 (%). ). This upper limit value Donm has a size of less than 100% (for example, Donm = 900/1000 × 100 = 90%) because the absolute off period Poffa exists.

かくして本実施形態1では、スイッチ制御部82に同期して、抵抗検知回路60において、共通配線43に発熱体電流Ihが流れていない、絶対オフ期間Poffa内の抵抗測定期間Pr(例えば、Poffa=100msecのうち、Pr=30msec間)に、測温抵抗体23の抵抗値Rsを検知する。具体的には、抵抗測定期間Prに、前述のように電圧検知部62で測温体電圧Vsを検知する、あるいはこれを用いてさらに測温抵抗体23の抵抗値Rsを得て、PWM制御部73に入力する。 Thus, in the first embodiment, in synchronization with the switch control unit 82, in the resistance detection circuit 60, the heating element current Ih does not flow in the common wiring 43, and the resistance measurement period Pr in the absolute off period Poffa (for example, Poffa =). The resistance value Rs of the resistance temperature detector 23 is detected in (Pr = 30 msec) out of 100 msec. Specifically, during the resistance measurement period Pr, the resistance temperature detector voltage Vs is detected by the voltage detection unit 62 as described above, or the resistance value Rs of the resistance temperature detector 23 is further obtained by using this, and PWM control is performed. Input to the unit 73.

かくして、本実施形態1の発熱体装置10では、発熱抵抗体22と測温抵抗体23の2つを用いながらも、これらは、発熱体端子24、測温体端子25のほか、発熱抵抗体22と測温抵抗体23で共用する共通端子26の合計3つの端子に導通している。また、発熱体配線41、測温体配線42、及び共通配線43の3本の配線で発熱体制御装置50に接続している。このため、この発熱体装置10では、発熱素子20をなすヒータ基板21において端子24〜26の3つを設ければ良く、発熱素子20(ヒータ基板21)を小型化できる。また、発熱体装置10では、配線41〜43を3本設ければ良いので、配線41〜43のためのスペースを小型化できる。その一方、発熱抵抗体22と測温抵抗体23の2つを用いるので、発熱抵抗体22の抵抗の大小や、オン電圧Vpon(印加電圧)の大小に拘わらず、抵抗検知回路60で適切に抵抗値Rsを検知でき、発熱体制御回路70で発熱抵抗体22に印加する発熱体電力PWを適切に制御できる。しかも、発熱抵抗体22に大きな発熱体電流Ihを流すことで生じる影響を排除し、測温抵抗体23の抵抗値Rsを適切に検知して、発熱抵抗体22の温度を適切に測温でき、発熱体制御回路70による電力制御を適切に行うことができる。 Thus, in the heating element device 10 of the first embodiment, although the heating element 22 and the resistance temperature detector 23 are used, these are the heating element terminal 24, the resistance temperature detector terminal 25, and the resistance temperature detector 23. It conducts to a total of three terminals, a common terminal 26 shared by 22 and the resistance temperature detector 23. Further, the heating element control device 50 is connected to the heating element control device 50 by three wirings of a heating element wiring 41, a temperature measuring element wiring 42, and a common wiring 43. Therefore, in the heating element device 10, the heater substrate 21 forming the heating element 20 may be provided with three terminals 24 to 26, and the heating element 20 (heater substrate 21) can be miniaturized. Further, in the heating element device 10, since it is sufficient to provide three wirings 41 to 43, the space for the wirings 41 to 43 can be reduced. On the other hand, since the heat generation resistor 22 and the resistance temperature detector 23 are used, the resistance detection circuit 60 can appropriately use the resistance detection circuit 60 regardless of the resistance of the heat generation resistor 22 and the on-voltage Vpon (applied voltage). The resistance value Rs can be detected, and the heating element power PW applied to the heating element 22 can be appropriately controlled by the heating element control circuit 70. Moreover, the influence caused by passing a large heating element current Ih through the heating element 22 can be eliminated, the resistance value Rs of the resistance temperature measuring resistor 23 can be appropriately detected, and the temperature of the heating element 22 can be appropriately measured. , The power can be appropriately controlled by the heating element control circuit 70.

なお、抵抗値Rs(測温体電圧Vs)を適切に測定できる抵抗測定期間Pr及び絶対オフ期間Poffaの長さを確保しつつ、上限値Donm、従って、上限オン期間Ponmの大きさをできるだけ大きく設定するのが好ましい。オン期間Ponの許容範囲を大きくし、発熱抵抗体22に印加する発熱体電力PWの幅を拡げることができるからである。 While ensuring the length of the resistance measurement period Pr and the absolute off period Poffa that can appropriately measure the resistance value Rs (resistance voltage Vs), the upper limit value Donm, and therefore the upper limit on period Ponm, should be as large as possible. It is preferable to set it. This is because the allowable range of the on-period Pon can be increased and the range of the heating element power PW applied to the heating element 22 can be widened.

(実施形態2)
次いで第2の実施形態について、図4〜図7を参照しつつ説明する。図4は、本実施形態に係るセンサ装置110の全体構成を示す図である。図5は、このセンサ装置110のうち、パッケージ型のセンサユニット130の概略構成を示す図である。図6は、パッケージ型のセンサユニット130に収容されるセンサ素子120の概略構成を示す図である。また図7は、このセンサ装置110における、発熱抵抗体22に印加する発熱体電圧Vpの変化と測温抵抗体23の抵抗値Rsの測定タイミングとの関係を示すグラフである。このセンサ装置110は、センサ素子120を有するパッケージ型のセンサユニット130と、センサ素子120を制御するセンサ制御装置150と、これらの間を接続する3本の配線141B,142B,143Bとを備える。このセンサ装置110は、センサ制御装置150によって、センサユニット130内のセンサ素子120に設けたセンサ体127を、同じくセンサ素子120に設けた発熱抵抗体22の発熱により所定の温度に加熱した上で、用いる装置である。なお、前述の実施形態1の同様の部分は、説明を省略するか簡略化する。
(Embodiment 2)
Next, the second embodiment will be described with reference to FIGS. 4 to 7. FIG. 4 is a diagram showing an overall configuration of the sensor device 110 according to the present embodiment. FIG. 5 is a diagram showing a schematic configuration of a package-type sensor unit 130 among the sensor devices 110. FIG. 6 is a diagram showing a schematic configuration of a sensor element 120 housed in a package type sensor unit 130. Further, FIG. 7 is a graph showing the relationship between the change in the heating element voltage Vp applied to the heating element 22 and the measurement timing of the resistance value Rs of the resistance temperature detector 23 in the sensor device 110. The sensor device 110 includes a package-type sensor unit 130 having a sensor element 120, a sensor control device 150 for controlling the sensor element 120, and three wirings 141B, 142B, 143B connecting between them. In this sensor device 110, the sensor body 127 provided in the sensor element 120 in the sensor unit 130 is heated to a predetermined temperature by the heat generated by the heat generation resistor 22 also provided in the sensor element 120 by the sensor control device 150. , The device to be used. The same part of the above-mentioned first embodiment will be omitted or simplified.

先ず、センサユニット130の概略構成を図5(a),(b)を参照して説明する。このパッケージ型のセンサユニット130は、公知の金属缶パッケージ(TOパッケージ、CANパッケージ)131のうち、パッケージ本体132上にセンサ素子120を搭載し、センサ素子120のセンサ基板121に設けた次述する各端子124〜126,128,129と、パッケージ本体132に固定された各ピン133の上端面とを、ボンディングワイヤ135で接続したものである。従って、このセンサユニット130では、センサ素子120に設けた次述する各端子124〜126,128,129は、各ボンディングワイヤ135及び各ピン133により、金属缶パッケージ131の外部に引き出されている。 First, the schematic configuration of the sensor unit 130 will be described with reference to FIGS. 5A and 5B. This package-type sensor unit 130 has the sensor element 120 mounted on the package main body 132 among the known metal can packages (TO package, CAN package) 131, and is provided on the sensor substrate 121 of the sensor element 120 as described below. The terminals 124 to 126, 128, 129 and the upper end surface of each pin 133 fixed to the package body 132 are connected by a bonding wire 135. Therefore, in this sensor unit 130, the terminals 124 to 126, 128, 129 described below provided in the sensor element 120 are drawn out of the metal can package 131 by the bonding wires 135 and the pins 133.

また、パッケージ本体132に被せられたキャップ134の中央には開口134Oが設けられ、メッシュ136が張り渡されて、キャップ134の内外を空気が流通可能とされている。従って、この開口134Oを介して、パッケージ本体132上に搭載されたセンサ素子120の次述するセンサ体127に外気を到達させることができる。 Further, an opening 134O is provided in the center of the cap 134 covered with the package main body 132, and a mesh 136 is stretched so that air can flow inside and outside the cap 134. Therefore, the outside air can reach the sensor body 127 described below of the sensor element 120 mounted on the package main body 132 through the opening 134O.

次いで、センサユニット130のうち、パッケージ本体132に搭載されるセンサ素子120について説明する(図6参照)。このセンサ素子120は、実施形態1のヒータ基板21と同じく、アルミナからなる矩形板状体のセンサ基板121からなり、このセンサ基板121の第1主面121A上に、実施形態1と同材質で同じメアンダ状形態の発熱抵抗体22と測温抵抗体23を形成したものである(図6(a)参照)。 Next, among the sensor units 130, the sensor element 120 mounted on the package main body 132 will be described (see FIG. 6). Like the heater substrate 21 of the first embodiment, the sensor element 120 is made of a rectangular plate-shaped sensor substrate 121 made of alumina, and is made of the same material as that of the first embodiment on the first main surface 121A of the sensor substrate 121. The heat generation resistor 22 and the resistance temperature detector 23 having the same meander shape are formed (see FIG. 6A).

但しこれに加えて、センサ素子120は、センサ基板121の第1主面121Aと反対の第2主面121B上に、センサ体127(本実施形態2では、還元性ガスのガスセンサ)が設けられている(図6(b)参照)。このセンサ体127では、櫛歯状の第1センサ電極127Aと同じく櫛歯状の第2センサ電極127Bとが、互いに離間しつつ噛み合うように組み合わされて配置されている。そしてこれらを覆うようにして第2主面121B上に、金属酸化物半導体からなる酸化物半導体膜127Cが被着されている。この金属酸化物半導体の材質としては、例えば、酸化スズ、酸化亜鉛、酸化タングステンなどが挙げられる。第1センサ電極127Aは、第2主面121B上に設けた第1センサ端子128に接続し、第2センサ電極127Bは、同じく第2主面121B上に設けた第2センサ端子129に接続している。このセンサ体127は、酸化物半導体膜127Cが所定の温度まで加熱されると、活性化してガスセンサとして機能するようになる。即ち、還元性ガスの濃度に応じた抵抗値を示すようになる。そこで、第1センサ端子128と第2センサ端子129との間に定電流を流すことにより、酸化物半導体膜127Cの抵抗に応じた電圧、つまり、還元性ガスの濃度に応じた電圧を得ることができる。 However, in addition to this, the sensor element 120 is provided with a sensor body 127 (in the second embodiment, a gas sensor for reducing gas) on the second main surface 121B opposite to the first main surface 121A of the sensor substrate 121. (See FIG. 6 (b)). In this sensor body 127, the comb-shaped first sensor electrode 127A and the comb-shaped second sensor electrode 127B are arranged in combination so as to be engaged with each other while being separated from each other. An oxide semiconductor film 127C made of a metal oxide semiconductor is adhered on the second main surface 121B so as to cover them. Examples of the material of this metal oxide semiconductor include tin oxide, zinc oxide, tungsten oxide and the like. The first sensor electrode 127A is connected to the first sensor terminal 128 provided on the second main surface 121B, and the second sensor electrode 127B is connected to the second sensor terminal 129 also provided on the second main surface 121B. ing. When the oxide semiconductor film 127C is heated to a predetermined temperature, the sensor body 127 is activated and functions as a gas sensor. That is, the resistance value corresponding to the concentration of the reducing gas is shown. Therefore, by passing a constant current between the first sensor terminal 128 and the second sensor terminal 129, a voltage corresponding to the resistance of the oxide semiconductor film 127C, that is, a voltage corresponding to the concentration of the reducing gas is obtained. Can be done.

さらに、前述の実施形態1の発熱素子20では、発熱抵抗体22及び測温抵抗体23の各端子24〜26は、ヒータ基板21の第1主面21A上にのみ形成されていた。これに対し、本実施形態2のセンサ素子120では、センサ基板121の第1主面121A上に設けた発熱抵抗体22及び測温抵抗体23に接続する発熱体端子124、測温体端子125、共通端子126は、それぞれ、センサ基板121の側面121Cに設けた半円柱状の窪み121D1〜121D3上を通じて、第2主面121B上にまで延びている。このため、このセンサ素子120では、センサ基板121の第2主面121B上に設けた各端子124〜126,128,129と、金属缶パッケージ131の各ピン133とを、ボンディングワイヤ135で接続することができる。本実施形態2においても、センサ素子120の発熱抵抗体22、測温抵抗体23、センサ電極127A,127B、及び、各端子124〜126,128,129は、材料ペーストをセンサ基板121にスクリーン印刷し焼成して形成されている。酸化物半導体膜127Cも、センサ基板121に材料ペーストをスクリーン印刷し焼成して形成されている。 Further, in the heat generating element 20 of the first embodiment described above, the terminals 24 to 26 of the heat generating resistor 22 and the resistance temperature detector 23 are formed only on the first main surface 21A of the heater substrate 21. On the other hand, in the sensor element 120 of the second embodiment, the heating element terminal 124 and the resistance temperature measuring element terminal 125 connected to the heating element 22 and the resistance temperature measuring element 23 provided on the first main surface 121A of the sensor substrate 121. The common terminals 126 extend onto the second main surface 121B through the semi-cylindrical recesses 121D1 to 121D3 provided on the side surface 121C of the sensor substrate 121, respectively. Therefore, in this sensor element 120, the terminals 124 to 126, 128, 129 provided on the second main surface 121B of the sensor substrate 121 and the pins 133 of the metal can package 131 are connected by the bonding wire 135. be able to. Also in the second embodiment, the heat generating resistor 22, the resistance temperature detector 23, the sensor electrodes 127A, 127B, and the terminals 124 to 126, 128, 129 of the sensor element 120 are screen-printed with the material paste on the sensor substrate 121. It is formed by firing. The oxide semiconductor film 127C is also formed by screen-printing a material paste on the sensor substrate 121 and firing it.

このセンサ素子120の5つの端子124〜126,128,129は、上述するように、次述するセンサ制御装置150の5つの端子151〜155と、それぞれ、配線141〜145によって接続されている(図4参照)。具体的には、発熱体端子124は、発熱体配線141を介してセンサ制御装置150の端子151と導通している。測温体端子125は、測温体配線142を介して端子152と導通している。さらに、共通端子126は、共通配線143を介して端子153と導通している。なお、端子153は、センサ制御装置150内で接地されている。また、第1センサ端子128は、第1センサ配線144を介してセンサ制御装置150の端子154と導通している。第2センサ端子129は、第2センサ配線145を介して端子155と導通している。 As described above, the five terminals 124 to 126, 128, 129 of the sensor element 120 are connected to the five terminals 151 to 155 of the sensor control device 150 described below by wirings 141 to 145, respectively. See FIG. 4). Specifically, the heating element terminal 124 is conductive with the terminal 151 of the sensor control device 150 via the heating element wiring 141. The resistance temperature detector terminal 125 is conducting with the terminal 152 via the resistance temperature detector wiring 142. Further, the common terminal 126 is electrically connected to the terminal 153 via the common wiring 143. The terminal 153 is grounded in the sensor control device 150. Further, the first sensor terminal 128 is electrically connected to the terminal 154 of the sensor control device 150 via the first sensor wiring 144. The second sensor terminal 129 is electrically connected to the terminal 155 via the second sensor wiring 145.

但し、発熱体配線141は、発熱体端子124からピン端子130Aに至る、ボンディングワイヤ135及びピン133からなる、センサユニット130内に属するユニット内発熱体配線141Aと、センサユニット130のピン端子130Aから端子151に至る外部発熱体配線141Bとからなる。同様に、測温体配線142は、測温体端子125からピン端子130Bに至る、ボンディングワイヤ135及びピン133からなるユニット内測温体配線142Aと、ピン端子130Bから端子152に至る外部測温体配線142Bとからなる。共通配線143は、共通端子126からピン端子130Cに至る、ボンディングワイヤ135及びピン133からなるユニット内共通配線143Aと、ピン端子130Cから端子153に至る外部共通配線143Bとからなる。また、第1センサ配線144は、第1センサ端子128からピン端子130Dに至る、ボンディングワイヤ135及びピン133からなるユニット内第1センサ配線144Aと、ピン端子130Dから端子154に至る外部第1センサ配線144Bとからなる。第2センサ配線145は、第2センサ端子129からピン端子130Eに至る、ボンディングワイヤ135及びピン133からなるユニット内第2センサ配線145Aと、ピン端子130Eから端子155に至る外部第2センサ配線145Bとからなる。 However, the heating element wiring 141 is from the heating element wiring 141A in the unit belonging to the sensor unit 130, which is composed of the bonding wire 135 and the pin 133 from the heating element terminal 124 to the pin terminal 130A, and the pin terminal 130A of the sensor unit 130. It consists of an external heating element wiring 141B leading to the terminal 151. Similarly, the resistance temperature detector wiring 142 includes the resistance temperature detector wiring 142A in the unit consisting of the bonding wire 135 and the pin 133 from the resistance temperature detector terminal 125 to the pin terminal 130B, and the external temperature measurement from the pin terminal 130B to the terminal 152. It consists of body wiring 142B. The common wiring 143 includes an internal common wiring 143A including a bonding wire 135 and a pin 133 from the common terminal 126 to the pin terminal 130C, and an external common wiring 143B from the pin terminal 130C to the terminal 153. Further, the first sensor wiring 144 includes a first sensor wiring 144A in the unit composed of a bonding wire 135 and a pin 133 from the first sensor terminal 128 to the pin terminal 130D, and an external first sensor extending from the pin terminal 130D to the terminal 154. It consists of wiring 144B. The second sensor wiring 145 includes the second sensor wiring 145A in the unit consisting of the bonding wire 135 and the pin 133 from the second sensor terminal 129 to the pin terminal 130E, and the external second sensor wiring 145B from the pin terminal 130E to the terminal 155. It consists of.

センサ制御装置150は、センサユニット130に収容されたセンサ素子120を制御するものであり、センサ検知部190のほか、実施形態1の発熱体制御装置50と概ね同様の、抵抗検知回路60と、発熱体制御回路170と、検知時期制御部80とを備える。このうち、センサ検知部190は、第1センサ配線144、第1センサ端子128、センサ体127、第2センサ端子129、第2センサ配線145の順に並ぶ経路で定電流を流し、センサ体127(酸化物半導体膜127C)の抵抗値を検知して、還元性ガスの濃度を検知する。そして、検知した還元性ガスの濃度を示す信号を、センサ出力配線191を介して、センサ出力端子156から、センサ制御装置150の外部に向けて出力する。 The sensor control device 150 controls the sensor element 120 housed in the sensor unit 130, and includes a sensor detection unit 190, a resistance detection circuit 60 which is substantially the same as the heating element control device 50 of the first embodiment, and a resistance detection circuit 60. A heating element control circuit 170 and a detection timing control unit 80 are provided. Of these, the sensor detection unit 190 passes a constant current through a path arranged in the order of the first sensor wiring 144, the first sensor terminal 128, the sensor body 127, the second sensor terminal 129, and the second sensor wiring 145, and the sensor body 127 ( The resistance value of the oxide semiconductor film 127C) is detected to detect the concentration of the reducing gas. Then, a signal indicating the concentration of the detected reducing gas is output from the sensor output terminal 156 to the outside of the sensor control device 150 via the sensor output wiring 191.

一方、抵抗検知回路60は、実施形態1と同様であり、端子152と端子153に接続されており、図4に示すように、測温体配線142と共通配線143を通じて、センサ素子120の測温抵抗体23に接続している。抵抗検知回路60での検知手法の説明は省略する。抵抗検知回路60で算出した測温抵抗体23の抵抗値Rs、あるいは、これに対応する測温体電圧Vsは、次述する発熱体制御回路170のPAM制御部173に入力され、発熱抵抗体22の制御に用いられる。 On the other hand, the resistance detection circuit 60 is the same as that of the first embodiment, and is connected to the terminal 152 and the terminal 153. As shown in FIG. 4, the resistance detection circuit 60 measures the sensor element 120 through the temperature measuring body wiring 142 and the common wiring 143. It is connected to the temperature resistor 23. The description of the detection method in the resistance detection circuit 60 will be omitted. The resistance value Rs of the resistance temperature detector 23 calculated by the resistance detection circuit 60 or the corresponding resistance temperature voltage Vs is input to the PAM control unit 173 of the heating element control circuit 170 described below, and the resistance temperature detector is heated. 22 is used for control.

次いで、発熱体制御回路170について説明する。前述の実施形態1では、発熱体制御回路70において、PWM制御によって、発熱抵抗体22の通電制御を行った。これに対し、本実施形態2の発熱体制御回路170では、PAM(パルス振幅変調)制御によって、発熱抵抗体22の通電制御を行う点で異なるが、他は同様である。そこで異なる点を中心に説明する。 Next, the heating element control circuit 170 will be described. In the above-described first embodiment, the heating element control circuit 70 controls the energization of the heating element 22 by PWM control. On the other hand, the heating element control circuit 170 of the second embodiment is different in that the energization control of the heating element 22 is performed by PAM (pulse amplitude modulation) control, but the other points are the same. Therefore, the differences will be mainly explained.

発熱体制御回路170は、発熱抵抗体22の端子151、及び切替スイッチ81を介して端子153に接続されており、図4に示すように、発熱体配線141と共通配線143を通じて発熱抵抗体22に、発熱体電圧Vpを印加する。これによって、発熱抵抗体22に発熱体電流Ihが流れ、発熱抵抗体22に発熱体電力PWが印加される。発熱体制御回路170は、出力電圧の大きさが可変のオン電圧Vpxを発生する可変定電圧電源171と、発熱抵抗体22に印加するオン電圧Vpxの大きさを所定の周期Tp毎に変化させるPAM(パルス振幅変調)制御を行うPAM制御部173とを有する。 The heating element control circuit 170 is connected to the terminal 153 via the terminal 151 of the heating element 22 and the changeover switch 81, and as shown in FIG. 4, the heating element 22 is connected through the heating element wiring 141 and the common wiring 143. The heating element voltage Vp is applied to. As a result, the heating element current Ih flows through the heating element 22 and the heating element power PW is applied to the heating element 22. The heating element control circuit 170 changes the magnitude of the on-voltage Vpx applied to the heating element 22 and the variable constant voltage power supply 171 that generates the on-voltage Vpx having a variable output voltage every predetermined period Tp. It has a PAM control unit 173 that performs PAM (pulse amplitude modulation) control.

PAM制御部173は、図7に示すように、予め定めた周波数fp(例えば、fp=1Hz)で、即ち、所定の周期Tp(=1/fp、例えば、Tp=1sec)で電圧パルスEpを発熱抵抗体22に繰り返し印加するにあたり、予め定めたオン期間Pon(例えば、Tp=1secのうち、Pon=900msec)の範囲にわたり、オン電圧Vpxを印加する。なお、実施形態1のPWM制御とは異なり、このPAM制御部173におけるPAM制御では、オン期間Ponは一定であるので、このオン期間Ponは上限オン期間Ponmの長さに相当している。但し、オン電圧Vpxを、上限オン電圧Vpxm以下の範囲で可変としている。これにより、上限オン電圧Vpxmの大きさを最大の100%とすると、オン電圧Vpxの大きさを、0〜100%の範囲で変化させることができることになり、PAM制御を実現できる。 As shown in FIG. 7, the PAM control unit 173 generates a voltage pulse Ep at a predetermined frequency fp (for example, fp = 1 Hz), that is, at a predetermined period Tp (= 1 / fp, for example, Tp = 1 sec). When repeatedly applied to the heat generation resistor 22, the on-voltage Vpx is applied over a predetermined on-period Pon (for example, Pon = 900 msec out of Tp = 1 sec). Unlike the PWM control of the first embodiment, in the PAM control in the PAM control unit 173, the on-period Pon is constant, so that the on-period Pon corresponds to the length of the upper limit on-period Ponm. However, the on-voltage Vpx is variable within the range of the upper limit on-voltage Vpxm or less. As a result, if the magnitude of the upper limit on-voltage Vpxm is set to 100% at the maximum, the magnitude of the on-voltage Vpx can be changed in the range of 0 to 100%, and PAM control can be realized.

本実施形態2では、このPAM制御部173において、オン電圧Vpxの大きさを決めるのに当たり、抵抗検知回路60で得た測温抵抗体23の抵抗値Rs(あるいは測温体電圧Vs)を用いる。例えば、現在得られている抵抗値Rsが、発熱抵抗体22の目標温度に対応する測温抵抗体23の抵抗値Rsよりも、大幅に大きく、発熱抵抗体22の温度が目標温度よりも大幅に低い場合には、PAM制御部173において、オン電圧Vpxの大きさを大きくする制御を行う。これにより、より多くの発熱体電力PWが発熱抵抗体22に印加され、発熱抵抗体22の温度上昇を加速できる。一方、現在得られている抵抗値Rsが、発熱抵抗体22の目標温度に対応する測温抵抗体23の抵抗値Rsに近くなった場合、即ち、発熱抵抗体22の温度が目標温度に近くなった場合には、PAM制御部173において、オン電圧Vpxの大きさを小さくする制御を行う。これにより、より少ない発熱体電力PWが発熱抵抗体22に印加され、発熱抵抗体22の温度上昇を鈍化できる。なお、PAM制御部173において、抵抗値Rsあるいは測温体電圧Vsを用いた具体的な制御手法としては、上述の手法に限らず、公知の制御手法を用いれば良く、詳細な記載を省略する。 In the second embodiment, in the PAM control unit 173, the resistance value Rs (or the resistance temperature Vs) of the resistance temperature detector 23 obtained by the resistance detection circuit 60 is used to determine the magnitude of the on-voltage Vpx. .. For example, the currently obtained resistance value Rs is significantly larger than the resistance value Rs of the resistance temperature detector 23 corresponding to the target temperature of the heat generation resistor 22, and the temperature of the heat generation resistor 22 is significantly larger than the target temperature. If it is too low, the PAM control unit 173 controls to increase the magnitude of the on-voltage Vpx. As a result, more heating element power PW is applied to the heating element 22 and the temperature rise of the heating element 22 can be accelerated. On the other hand, when the currently obtained resistance value Rs is close to the resistance value Rs of the resistance temperature detector 23 corresponding to the target temperature of the heat generation resistor 22, that is, the temperature of the heat generation resistor 22 is close to the target temperature. If this happens, the PAM control unit 173 controls to reduce the magnitude of the on-voltage Vpx. As a result, less heating element power PW is applied to the heating element 22 and the temperature rise of the heating element 22 can be slowed down. In the PAM control unit 173, the specific control method using the resistance value Rs or the resistance temperature detector voltage Vs is not limited to the above-mentioned method, but a known control method may be used, and detailed description thereof will be omitted. ..

ところで、本実施形態2のセンサ装置110でも、発熱抵抗体22を駆動する発熱体電流Ihを流すのに、発熱体配線141と共通配線143とを用いる一方、測温抵抗体23の抵抗値Rsを検知するための抵抗検知電流Isを、測温体配線142と共通配線143とを用いており、共通配線143が共用されている点は、実施形態1の発熱体装置10と同様である。即ち、図4において、破線で象徴的に示すように、この共通配線143には、共通配線抵抗143Rが含まれている。このため、発熱抵抗体22に発熱体電流Ihを流している場合には、共通配線143にも、共通配線抵抗143R(抵抗値をRcとする)により、Vc=Rc・Ihの電圧降下Vcが発生する。したがって、実施形態1と同様、共通配線抵抗143Rの抵抗値Rcが小さくとも、抵抗検知電流Isに比して発熱体電流Ihが遙かに大きい場合(Ih>>Is)には、発熱体電流Ihによる電圧降下Vc(=Rc・Ih)は、測温抵抗体23における抵抗検知電流Isによる電圧降下Rs・Isに比して無視できない大きさとなり、測温体電圧Vsから、測温抵抗体23の抵抗値Rsを適切に得られない虞がある。 By the way, also in the sensor device 110 of the second embodiment, the heating element wiring 141 and the common wiring 143 are used to pass the heating element current Ih that drives the heating element 22 while the resistance value Rs of the resistance temperature detector 23 is used. The resistance detection current Is for detecting is using the resistance temperature measuring element wiring 142 and the common wiring 143, and the common wiring 143 is shared, which is the same as the heating element device 10 of the first embodiment. That is, in FIG. 4, as symbolically shown by the broken line, the common wiring 143 includes the common wiring resistance 143R. Therefore, when a heating element current Ih is passed through the heating element 22, a voltage drop Vc of Vc = Rc · Ih is also generated in the common wiring 143 by the common wiring resistance 143R (the resistance value is Rc). appear. Therefore, as in the first embodiment, even if the resistance value Rc of the common wiring resistance 143R is small, when the heating element current Ih is much larger than the resistance detection current Is (Ih >> Is), the heating element current The voltage drop Vc (= Rc · Ih) due to Ih has a non-negligible magnitude compared to the voltage drop Rs · Is due to the resistance detection current Is in the temperature measuring resistor 23, and the temperature measuring resistor is derived from the temperature measuring body voltage Vs. There is a possibility that the resistance value Rs of 23 cannot be appropriately obtained.

そこで、図7に示すように、実施形態1と同様に、本実施形態2のセンサ装置110においても、周期Tpのうち、絶対オフ期間Poffaの期間(例えば、Tp=1secのうち、Poffa=100msec)は、電圧パルスEpをオフとし、共通配線43に発熱体電流Ihを流さない期間とする。そして、この絶対オフ期間Poffa内に測温抵抗体23の抵抗値Rsを取得する。具体的には、本実施形態2のセンサ装置110においても、検知時期制御部80は、切替スイッチ81と、この切替スイッチ81のオンオフを制御するスイッチ制御部82とを含んでおり、スイッチ制御部82は、PAM制御部173と同期して動作する。そして、スイッチ制御部82は、周期Tpのうち、絶対オフ期間Poffaの期間中は切替スイッチ81をオフにさせ、上限オン期間Ponmの期間中は切替スイッチ81をオンにさせる。これにより、切替スイッチ81をオンにする上限オン期間Ponmの期間中は、PAM制御部173により、オン電圧Vpxの大きさを変化した電圧パルスを発生できる。 Therefore, as shown in FIG. 7, similarly to the first embodiment, in the sensor device 110 of the second embodiment, the absolute off period Poffa period (for example, Tp = 1 sec, Poffa = 100 msec) in the period Tp is also used. ) Is a period in which the voltage pulse Ep is turned off and the heating element current Ih is not passed through the common wiring 43. Then, the resistance value Rs of the resistance temperature detector 23 is acquired within this absolute off period Pofa. Specifically, also in the sensor device 110 of the second embodiment, the detection timing control unit 80 includes a changeover switch 81 and a switch control unit 82 that controls on / off of the changeover switch 81, and is a switch control unit. 82 operates in synchronization with the PAM control unit 173. Then, the switch control unit 82 turns off the changeover switch 81 during the absolute off period Poffa and turns on the changeover switch 81 during the upper limit on period Ponm in the cycle Tp. As a result, during the upper limit on period Ponm in which the changeover switch 81 is turned on, the PAM control unit 173 can generate a voltage pulse in which the magnitude of the on voltage Vpx is changed.

本実施形態2では、この電圧パルスEpのオンデューティ比Donは一定であり(オンデューティ比の上限値Donmに等しく)、Don=Donm=Ponm/Tp×100(%)で与えられる。この上限値Donmは、絶対オフ期間Poffaが存在しているので、100%未満の大きさ(例えば、Donm=900/1000×100=90%)となる。 In the second embodiment, the on-duty ratio Don of this voltage pulse Ep is constant (equal to the upper limit value Donm of the on-duty ratio), and is given by Don = Donm = Ponm / Tp × 100 (%). This upper limit value Donm has a size of less than 100% (for example, Donm = 900/1000 × 100 = 90%) because the absolute off period Poffa exists.

かくして本実施形態2でも、スイッチ制御部82に同期して、抵抗検知回路60において、共通配線143に発熱体電流Ihが流れていない、絶対オフ期間Poffa内の抵抗測定期間Pr(例えば、Poffa=100msecのうち、Pr=30msec間)に、測温抵抗体23の抵抗値Rsを検知する。具体的には、抵抗測定期間Prに、前述のように電圧検知部62で測温体電圧Vsを検知する、あるいはこれを用いてさらに測温抵抗体23の抵抗値Rsを得て、PWM制御部73に入力する。 Thus, also in the second embodiment, in synchronization with the switch control unit 82, the heating element current Ih does not flow in the common wiring 143 in the resistance detection circuit 60, and the resistance measurement period Pr in the absolute off period Poffa (for example, Poffa =). The resistance value Rs of the resistance temperature detector 23 is detected in (Pr = 30 msec) out of 100 msec. Specifically, during the resistance measurement period Pr, the resistance temperature detector voltage Vs is detected by the voltage detection unit 62 as described above, or the resistance value Rs of the resistance temperature detector 23 is further obtained by using this, and PWM control is performed. Input to the unit 73.

かくして、本実施形態2のセンサ装置110でも、発熱抵抗体22と測温抵抗体23の2つを用いながらも、これらは、端子124〜126の3つの端子に導通し、配線141〜143の3本の配線でセンサ制御装置150に接続している。このため、このセンサ装置110では、センサ素子120をなすセンサ基板121において、センサ体127用の端子128,129のほかには、端子124〜126の3つを設ければ良く、センサ素子120(センサ基板121)を小型化できる。また、センサ装置110では、センサ体127用の配線144,145のほかには、配線141〜143を3本設ければ良い。このため、センサ素子120を搭載し、配線141〜143のうち、センサユニット130(金属缶パッケージ131)内に、ボンディングワイヤ135及びピン133によって設けるユニット内配線141A〜143Aの要するスペースを小さくでき、センサユニット130(金属缶パッケージ131)をも小さくできる。また、配線141〜143のうち、外部配線141B〜143Bのためのスペースをも小型化できる。 Thus, even in the sensor device 110 of the second embodiment, although the heat generating resistor 22 and the resistance temperature detector 23 are used, they are conducted to the three terminals of the terminals 124 to 126, and the wirings 141 to 143 are connected. It is connected to the sensor control device 150 with three wires. Therefore, in the sensor device 110, in the sensor substrate 121 forming the sensor element 120, in addition to the terminals 128 and 129 for the sensor body 127, three terminals 124 to 126 may be provided, and the sensor element 120 ( The sensor board 121) can be miniaturized. Further, in the sensor device 110, in addition to the wirings 144 and 145 for the sensor body 127, three wirings 141 to 143 may be provided. Therefore, the sensor element 120 is mounted, and the space required for the wiring 141A to 143A in the unit provided by the bonding wire 135 and the pin 133 in the sensor unit 130 (metal can package 131) among the wirings 141 to 143 can be reduced. The sensor unit 130 (metal can package 131) can also be made smaller. Further, among the wirings 141 to 143, the space for the external wirings 141B to 143B can be reduced.

その一方、本実施形態2のセンサ装置110でも、発熱抵抗体22と測温抵抗体23の2つを用いるので、抵抗検知回路60で適切に抵抗値Rsを検知でき、発熱体制御部170で発熱抵抗体22に印加する発熱体電力PWを適切に制御できる。しかも、発熱抵抗体22に大きな発熱体電流Ihを流すことで生じる影響を排除し、測温抵抗体23の抵抗値Rsを適切に検知して、発熱抵抗体22の温度を適切に測温でき、発熱体制御部170による電力制御を適切に行うことができる。 On the other hand, since the sensor device 110 of the second embodiment also uses the heating element 22 and the resistance temperature detector 23, the resistance detection circuit 60 can appropriately detect the resistance value Rs, and the heating element control unit 170 can detect the resistance value Rs appropriately. The heating element power PW applied to the heating element 22 can be appropriately controlled. Moreover, the influence caused by passing a large heating element current Ih through the heating element 22 can be eliminated, the resistance value Rs of the resistance temperature detector 23 can be appropriately detected, and the temperature of the resistance temperature detector 22 can be appropriately measured. , The power control by the heating element control unit 170 can be appropriately performed.

しかもこのセンサ装置110では、センサ素子120(発熱部)はセンサ体127(被加熱機能体)をも有する。このため、センサ体127を発熱抵抗体22で適切な温度に加熱することができるので、センサ体127に所定の機能(本実施形態2では、還元性ガスを検知する機能)を適切に生じさせることができる。 Moreover, in this sensor device 110, the sensor element 120 (heat generating portion) also has a sensor body 127 (heated functional body). Therefore, since the sensor body 127 can be heated to an appropriate temperature by the heat generation resistor 22, a predetermined function (in the second embodiment, a function of detecting the reducing gas) is appropriately generated in the sensor body 127. be able to.

以上において、本発明を実施形態1,2に即して説明したが、本発明は上記実施形態1,2に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施形態1,2では、ヒータ基板21及びセンサ基板121において、発熱抵抗体22及び測温抵抗体23を、メアンダ状の形態としたが、発熱抵抗体は、加熱したい部材に応じて適宜の形状を選択すれば良い。また、測温抵抗体は、発熱抵抗体の温度を適切に検知できる位置に適切な形状として配置すれば良い。また実施形態1,2では、発熱抵抗体22及び測温抵抗体23をヒータ基板21及びセンサ基板121に一体に形成した。しかし、発熱抵抗体と測温抵抗体とを別体とすることもできる。
Although the present invention has been described above with reference to the first and second embodiments, the present invention is not limited to the first and second embodiments, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
For example, in the first and second embodiments, in the heater substrate 21 and the sensor substrate 121, the heat generation resistor 22 and the resistance temperature detector 23 are formed in a meander shape, but the heat generation resistor is appropriately used depending on the member to be heated. You just have to choose the shape of. Further, the resistance temperature detector may be arranged in an appropriate shape at a position where the temperature of the heat generation resistor can be appropriately detected. Further, in the first and second embodiments, the heat generation resistor 22 and the resistance temperature detector 23 are integrally formed on the heater substrate 21 and the sensor substrate 121. However, the heat generation resistor and the resistance temperature detector can be separated from each other.

10 発熱体装置
110 センサ装置(発熱体装置)
20 発熱素子(発熱部)
120 センサ素子(発熱素子,発熱部,被加熱機能部)
21 ヒータ基板
21A (ヒータ基板の)第1主面
121 センサ基板
121A (センサ基板の)第1主面
121B (センサ基板の)第2主面
121C (センサ基板の)側面
22 発熱抵抗体
22A (発熱抵抗体の)一端
22B (発熱抵抗体の)他端
23 測温抵抗体
23A (測温抵抗体の)一端
23B (測温抵抗体の)他端
24,124 発熱体端子
25,125 測温体端子
26,126 共通端子
127 センサ体(被加熱機能体)
130 センサユニット
131 金属缶パッケージ
41,141 発熱体配線
42,142 測温体配線
43,143 共通配線
43R,143R (共通配線に生じる)共通配線抵抗
144 第1センサ配線
145 第2センサ配線
50 発熱体制御装置(制御部,制御装置)
150 センサ制御装置(制御部,制御装置)
60 抵抗検知回路(抵抗検知部)
70,170 発熱体制御回路(発熱体制御部,発熱体パルス制御部)
73 PWM制御部
173 PAM制御部
80 検知時期制御部
81 切替スイッチ
82 スイッチ制御部
190 センサ検知部
PW (発熱抵抗体に印加する)発熱体電力(電力)
Vp (発熱抵抗体に印加される)発熱体電圧
Vpon (定電圧電源が印加する)オン電圧
Vpx (可変電圧電源が印加する)オン電圧
Vpxm (可変電圧電源が印加できる)上限オン電圧
Ih 発熱体電流
Is (定電流電源が流す)抵抗検知電流
Rs (測温抵抗体の)抵抗値
Tp (パルスの)周期
Pon オン期間
Poff オフ期間(発熱抵抗体に電力PWを印加していない期間)
Ponm 上限オン期間
Don オンデューティ比
Donm(オンデューティ比の)上限値
Poffa 絶対オフ期間(オンデューティ比が上限値でも電力を印加しない期間)
Pr 抵抗測定期間
10 Heating element device 110 Sensor device (heating element device)
20 Heat generation element (heat generation part)
120 Sensor element (heat generation element, heat generation part, heated function part)
21 Heater board 21A (heater board) 1st main surface 121 Sensor board 121A (sensor board) 1st main surface 121B (sensor board) 2nd main surface 121C (sensor board) side surface 22 Heat generation resistor 22A (heat generation) One end 22B (of the resistance temperature) End 23 of the other end 23 of the resistance temperature detector 23A One end 23B of the resistance temperature detector 23B The other end 24,124 of the resistance temperature detector Terminal 25,125 Terminals 26,126 Common terminal 127 Sensor body (heated function body)
130 Sensor unit 131 Metal can package 41, 141 Heating element wiring 42, 142 Heating element wiring 43,143 Common wiring 43R, 143R Common wiring resistance 144 1st sensor wiring 145 2nd sensor wiring 50 Heating element Control device (control unit, control device)
150 Sensor control device (control unit, control device)
60 Resistance detection circuit (resistance detection unit)
70, 170 Heating element control circuit (heating element control unit, heating element pulse control unit)
73 PWM control unit 173 PAM control unit 80 Detection timing control unit 81 Changeover switch 82 Switch control unit 190 Sensor detection unit PW (applied to heating element) Heating element power (power)
Vp (applied to the heating resistor) Heat generator voltage Vpon (constant voltage power supply applied) On voltage Vpx (variable voltage power supply applied) On voltage Vpxm (variable voltage power supply can be applied) Upper limit on voltage Ih heating element Current Is (constant current power supply flows) Resistance detection current Rs (temperature measuring resistor) Resistance value Tp (pulse) period Pon on period Poff off period (period when power PW is not applied to the heating resistor)
Ponm upper limit on period Don on-duty ratio Donm (on-duty ratio) upper limit Poffa Absolute off period (period in which power is not applied even if the on-duty ratio is the upper limit)
Pr resistance measurement period

Claims (5)

通電により発熱する発熱抵抗体、
上記発熱抵抗体の温度を測温する測温抵抗体、
上記発熱抵抗体の一端に導通する発熱体端子、
上記測温抵抗体の一端に導通する測温体端子、及び、
上記発熱抵抗体の他端と上記測温抵抗体の他端に導通する共通端子、を有する
発熱部と、
上記発熱体端子に導通する発熱体配線と、
上記測温体端子に導通する測温体配線と、
上記共通端子に導通する共通配線と、
上記測温体配線と上記共通配線を通じて上記測温抵抗体の抵抗値を検知する抵抗検知部、
上記発熱体配線と上記共通配線を通じて上記発熱抵抗体に印加する電力を、上記抵抗検知部で検知した上記測温抵抗体の上記抵抗値に応じて制御する発熱体制御部、及び、
上記発熱抵抗体に電力を印加していない期間に、上記抵抗検知部に上記測温抵抗体の上記抵抗値を検知させる検知時期制御部、を有する
制御部と、を備える
発熱体装置。
A heat-generating resistor that generates heat when energized,
A resistance temperature detector that measures the temperature of the heat-generating resistor,
A heating element terminal that conducts to one end of the heating element
A resistance temperature detector terminal that conducts to one end of the resistance temperature detector, and
A heat generating portion having a common terminal that conducts to the other end of the heat generating resistor and the other end of the resistance temperature measuring resistor.
The heating element wiring that conducts to the heating element terminal and
The temperature measuring body wiring that conducts to the above temperature measuring body terminal,
Common wiring that conducts to the above common terminals and
A resistance detector that detects the resistance value of the resistance temperature detector through the resistance temperature detector wiring and the common wiring.
A heating element control unit that controls the power applied to the heating element through the heating element wiring and the common wiring according to the resistance value of the resistance temperature detector detected by the resistance detection unit, and
A heating element device including a control unit having a detection timing control unit that causes the resistance detection unit to detect the resistance value of the resistance temperature detector during a period in which electric power is not applied to the heat generation resistor.
請求項1に記載の発熱体装置であって、
前記発熱体制御部は、
前記発熱抵抗体に印加する前記電力を、予め定めた周波数で、かつ、100%未満の上限値の範囲内のオンデューティ比でパルス変調制御する
発熱体パルス制御部であり、
前記検知時期制御部は、
上記上限値のオンデューティ比で上記発熱抵抗体に上記電力を印加する場合であっても、上記電力を印加しない期間に、前記抵抗検知部に前記抵抗値を検知させる
発熱体装置。
The heating element device according to claim 1.
The heating element control unit
A heating element pulse control unit that pulse-modulates and controls the electric power applied to the heating element at a predetermined frequency and at an on-duty ratio within the range of an upper limit value of less than 100%.
The detection time control unit
A heating element device that causes the resistance detection unit to detect the resistance value even when the electric power is applied to the heating element at the on-duty ratio of the upper limit value during the period when the electric power is not applied.
請求項1又は請求項2に記載の発熱体装置であって、
前記発熱部は、
前記発熱抵抗体からの加熱による温度上昇により予め与えた機能を生じる被加熱機能体をも有する
発熱体装置。
The heating element device according to claim 1 or 2.
The heat generating part is
A heating element device having a functional body to be heated that produces a function given in advance by a temperature rise due to heating from the heat generation resistor.
請求項3に記載の発熱体装置であって、
前記被加熱機能体は、
前記発熱抵抗体からの加熱による温度上昇で予め与えた検知機能を生じるセンサ体である
発熱体装置。
The heating element device according to claim 3.
The heated functional body is
A heating element device that is a sensor body that produces a detection function given in advance by a temperature rise due to heating from the heating element.
通電により発熱する発熱抵抗体、
上記発熱抵抗体の温度を測温する測温抵抗体、
上記発熱抵抗体の一端に導通する発熱体端子、
上記測温抵抗体の一端に導通する測温体端子、及び、
上記発熱抵抗体の他端と上記測温抵抗体の他端に導通する共通端子、を有する
発熱部に、
上記発熱体端子に導通する発熱体配線、上記測温体端子に導通する測温体配線、及び、上記共通端子に導通する共通配線で接続する
制御装置であって、
上記測温体配線と上記共通配線を通じて上記測温抵抗体の抵抗値を検知する抵抗検知部、
上記発熱体配線と上記共通配線を通じて上記発熱抵抗体に印加する電力を、上記抵抗検知部で検知した上記測温抵抗体の上記抵抗値に応じて制御する発熱体制御部、及び、
上記発熱抵抗体に電力を印加していない期間に、上記測温抵抗体の上記抵抗値を検知させる検知時期制御部、を有する
制御装置。
A heat-generating resistor that generates heat when energized,
A resistance temperature detector that measures the temperature of the heat-generating resistor,
A heating element terminal that conducts to one end of the heating element
A resistance temperature detector terminal that conducts to one end of the resistance temperature detector, and
In the heat generating portion having a common terminal that conducts to the other end of the heat generating resistor and the other end of the resistance temperature measuring resistor,
A control device connected by a heating element wiring conducting to the heating element terminal, a resistance temperature measuring element wiring conducting to the resistance temperature measuring element terminal, and a common wiring conducting to the common terminal.
A resistance detector that detects the resistance value of the resistance temperature detector through the resistance temperature detector wiring and the common wiring.
A heating element control unit that controls the power applied to the heating element through the heating element wiring and the common wiring according to the resistance value of the resistance temperature detector detected by the resistance detection unit, and
A control device having a detection timing control unit that detects the resistance value of the resistance temperature detector during a period in which electric power is not applied to the heat generation resistor.
JP2020099167A 2020-06-08 2020-06-08 Heating element device and control device Pending JP2021193643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020099167A JP2021193643A (en) 2020-06-08 2020-06-08 Heating element device and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099167A JP2021193643A (en) 2020-06-08 2020-06-08 Heating element device and control device

Publications (1)

Publication Number Publication Date
JP2021193643A true JP2021193643A (en) 2021-12-23

Family

ID=79168813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099167A Pending JP2021193643A (en) 2020-06-08 2020-06-08 Heating element device and control device

Country Status (1)

Country Link
JP (1) JP2021193643A (en)

Similar Documents

Publication Publication Date Title
EP0022366A1 (en) A sensor circuit including a sensing device
US5627305A (en) Gas sensing apparatus and method
US6683285B2 (en) Hot-air device
JP2021193643A (en) Heating element device and control device
ES2283093T3 (en) CIRCUIT PROVISION FOR THE SUPERVISION OF AN ELECTRONIC SWITCH FOR THE CONTROL OF A LOAD.
JP4591275B2 (en) Soldering iron equipment
EA199700109A1 (en) METHOD AND DEVICE OF TEMPERATURE MANAGEMENT
JP3331070B2 (en) Atmosphere detector
KR101138357B1 (en) NOx gas sensor control unit
KR950001285A (en) Heating resistance air flow meter and air flow measurement method
JP2004212284A (en) Gas concentration detector
JP2016211921A (en) Temperature characteristic evaluation device of electronic component and temperature control unit used for the same
KR101066956B1 (en) Test Apparatus for Rate of Rise Sport Type Heat Detector
JP2005283381A (en) Heating resistance flow measuring apparatus
US6086251A (en) Process for operating a thermocouple to measure velocity or thermal conductivity of a gas
JP2000206081A (en) Gas sensor with two electrodes
KR102452534B1 (en) Electric heating controller of electric heating device
JPH06503986A (en) How to monitor sensor position
CN220252039U (en) Current detection assembly
JP3999831B2 (en) Gas detection method and apparatus
JP4325409B2 (en) Gas sensor system
JP3933216B2 (en) Gas detector
JP2009023002A (en) Soldering iron device
JP6920905B2 (en) Gas detector
JP2791474B2 (en) Incomplete combustion detection method and apparatus