JP2021193347A - 絶縁耐性診断装置及び絶縁耐性診断方法 - Google Patents
絶縁耐性診断装置及び絶縁耐性診断方法 Download PDFInfo
- Publication number
- JP2021193347A JP2021193347A JP2020099383A JP2020099383A JP2021193347A JP 2021193347 A JP2021193347 A JP 2021193347A JP 2020099383 A JP2020099383 A JP 2020099383A JP 2020099383 A JP2020099383 A JP 2020099383A JP 2021193347 A JP2021193347 A JP 2021193347A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric strength
- insulating member
- image
- unit
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】ポリマー製の絶縁部材を有する電力設備の絶縁耐性を、電力設備の運用を停止することなく診断することができる絶縁耐性診断装置及び絶縁耐性診断方法を提供することである。【解決手段】実施形態の絶縁耐性診断装置は、画像解析部と、診断部と、を持つ。画像解析部は、電力設備の絶縁部材の表面に付着した水滴が撮像された画像に基づいて前記絶縁部材表面の汚損度を推定する。診断部は、推定された前記汚損度に基づいて前記電力設備の絶縁耐性を診断する。【選択図】図1
Description
本発明の実施形態は、絶縁耐性診断装置及び絶縁耐性診断方法に関する。
従来、電力設備では、磁器製のがいし(碍子)が絶縁部材として用いられることが多かったが、近年では設備投資の合理化のために、絶縁部材をより安価かつ短納期で入手可能なポリマー製のがいしに置き換えることが行われている。一方で、ポリマー製のがいしは磁器製のがいしと比較して劣化しやすく、絶縁性の低下が生じやすい傾向にある。そのため、磁器製のがいしをポリマー製のがいしに置き換えるに際し、絶縁部材の劣化を適切に検知する方法が検討されている。例えば、絶縁部材の劣化を検知する方法の一つとして、ポリマー製のがいしの外皮材の劣化を化学的に検出する方法などが検討されている。しかしながら、このような従来方法では、絶縁部材の検査のために電力設備の運用を一時停止しなければならず、電力設備の可用性を低下させる要因の一つとなっていた。
本発明が解決しようとする課題は、ポリマー製の絶縁部材を有する電力設備の絶縁耐性を、電力設備の運用を停止することなく診断することができる絶縁耐性診断装置及び絶縁耐性診断方法を提供することである。
実施形態の絶縁耐性診断装置は、画像解析部と、診断部と、を持つ。画像解析部は、電力設備の絶縁部材の表面に付着した水滴が撮像された画像に基づいて前記絶縁部材表面の汚損度を推定する。診断部は、推定された前記汚損度に基づいて前記電力設備の絶縁耐性を診断する。
以下、実施形態の絶縁耐性診断装置及び絶縁耐性診断方法を、図面を参照して説明する。
図1は、実施形態の絶縁耐性診断システム100の構成例を示すブロック図である。絶縁耐性診断システム100は、診断対象の電力設備(図示せず、以下「対象設備」という。)を監視するシステムである。絶縁耐性診断システム100は、電圧情報供給部1と、撮像部2と、絶縁耐性診断装置3と、を備える。電圧情報供給部1は、対象設備の電圧情報を取得して絶縁耐性診断装置3に供給する機能を有する。電圧情報供給部1は、対象設備の電圧位相を測定する機能を有し、その測定結果を示す情報を電圧情報として生成してもよい。この場合、電圧位相の測定方法は、特定のものに限定されない。例えば、電圧位相の測定方法には、電気力(クーロン力)によって電力線に生じるわずかな振動を検知して電圧位相を測定する方法や、電流によって誘起される電磁界を検知して電圧位相をする方法等を用いることができる。
また、電圧情報供給部1は、対象設備の送電電圧を測定する機能に代えて、対象設備の電圧情報を有している装置から電圧情報を取得する機能を有してもよい。また、電圧情報は、それに基づいて対象設備に印加されている送電電圧の位相(以下「電圧位相」という。)を算出又は推定することができるものであれば、必ずしも電圧位相そのものを示す情報でなくてもよい。
撮像部2は、対象設備を撮像するカメラ等の撮像装置を用いて構成される。具体的には、撮像部2は、光学レンズや光学フィルタ、絞り等の光学系機構と、イメージセンサやメモリー、画像演算回路等の電子系機構と、を備える。撮像部2は、これらの各機構を備えることにより、対象設備が撮像された画像データを生成し、生成した画像データを絶縁耐性診断装置3に出力する。この際、撮像部2は、予め定められているカメラパラメータのほか、絶縁耐性診断装置3から指定されるカメラパラメータを用いて対象設備を撮像することができる。
なお、画像から後述する各事象(例えば水滴の形状変化や放電発光など)を精度良く検出するため、撮像部2は、約300nm〜約400nmの波長を有する近紫外光を透過させるとともに当該波長帯より大きな波長を有する可視光線を減衰させる光学フィルタを有することが望ましい。
図2は、撮像部2の設置場所の具体例を示す図である。図2は、電力設備の一例として、送電線を吊架する鉄塔Fを示している。鉄塔Fにおいて、各送電線Ln(nは1〜6の整数)は、対応する吊架部40−nによって空中に吊架される。各吊架部40−nは、対応する各送電線Lnを鉄塔Fから吊り下げる線状の吊り下げ部41−nと、盤面が吊り下げ部41−nと直交するように保持される円盤状の絶縁部材42−n−1〜42−n−4とを備える。各吊架部40−nの絶縁部材42−n−1〜42−n−4は、ポリマー製のがいし(碍子)を用いて構成される。
この場合、例えば撮像部2は、吊架部40−nごとに、それぞれの絶縁部材42−nの盤面を撮像できる位置および姿勢で鉄塔Fに設置される。図2の例では、各吊架部40−nのそれぞれに撮像部2−nが設けられている。なお、後述するが、撮像部2を用いて絶縁部材42−nの盤面を撮像する目的は、盤面に付着した水滴を撮像するためである。このため、撮像部2は、水滴が保持されやすい絶縁部材42−nの上面を撮像できる位置および姿勢で設置されることが望ましい。
なお、撮像部2によって取得された画像データは、撮像タイミングにおける対象設備の状態を示す情報として、後述するカメラパラメータの制御や、対象設備の診断に用いられるため、1つの画像データの中では、各画素値の検出タイミングは同じであることが望ましい。そのため、撮像部2のシャッター方式としては、1つの画像データ内で各画素値の検出タイミングが異なりうるローリングシャッター方式よりも、1つの画像データ内の全画素値で検出タイミングが同じであるグローバルシャッター方式を採用するのが望ましい。
図1の説明に戻る。絶縁耐性診断装置3は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、プログラムを実行する。絶縁耐性診断装置3は、プログラムの実行によって電圧位相検出部31、制御部32、解析部33および診断部34を備える装置として機能する。なお、絶縁耐性診断装置3の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。プログラムは、電気通信回線を介して送信されてもよい。
電圧位相検出部31は、電圧情報供給部1から供給される位相情報に基づいて対象設備に印加されている交流電圧の位相を検出する機能を有する。具体的には、電圧位相検出部31は、対象設備が送電する電気信号、当該電気信号に相関する電磁波信号、又は当該電気信号に同期して動作する機器の振動に基づいて電圧位相を検出する。例えば、電圧情報が対象設備が送電する電気信号そのものの値(例えば電圧又は電流の値)を示す場合、電圧位相検出部31は、その信号値の時間的変化を求めることにより電圧位相の変化を検出することができる。
また、電圧情報が対象設備によって送電される電気信号そのものの値ではなく、その電気信号によって誘起される電磁波信号の値(例えば誘導起電力や、誘導電圧、磁界強度、磁界密度などの値)を示す場合、電圧位相検出部31は、その信号値の時間的変化を求めることにより電圧位相の変化を検出することができる。また、電圧位相検出部31は、クーロン力によって電力線に生じるわずかな振動を検知して電圧位相を検出してもよい。電圧位相検出部31は、このように検出された電圧位相を示す情報(以下「電圧位相情報」という。)を制御部32に出力する。
制御部32は、電圧位相検出部31から供給される電圧位相情報に基づいて撮像部2のカメラパラメータを調整する機能を有する。例えば、カメラパラメータは、露光時間(シャッタースピードともいう。)や絞り、露光タイミング、ホワイトバランス、ISO感度などのパラメータである。制御部32は、電圧位相情報に基づいてカメラパラメータの各パラメータ値を決定し、決定したパラメータ値での撮像動作を撮像部2に指示する。
具体的には、制御部32は、露光時間制御部321および露光タイミング制御部322露光タイミング制御部3222を備える。露光時間制御部321は撮像部2の撮像動作の露光時間を制御する機能を有し、露光タイミング制御部322は撮像部2の撮像動作の露光タイミングを制御する機能を有する。具体的には、露光時間制御部321は撮像部2の露光時間を決定し、露光タイミング制御部322は撮像部2の露光開始タイミングを決定する。
解析部33は、対象設備が撮像された画像データの解析処理を実行することにより、対象設備の絶縁性能に関する指標値を取得する機能を有する。具体的には、解析部33は、撮像部2から対象設備の画像データを入力する画像データ入力部331と、入力した画像データについて画像解析処理を実行する画像解析部332とを備える。ここで、画像解析部332が実行する画像解析処理は、絶縁部材42の表面に付着した水滴の画像に基づいて絶縁部材42表面の汚損度を推定する処理である。解析部33は、画像解析処理の結果を示す情報(以下「解析結果情報」という。)を診断部34に出力する。
診断部34は、解析部33から解析結果情報を入力し、入力した解析結果情報に基づいて対象設備の絶縁耐性を診断する。具体的には、診断部34は、対象設備が有する絶縁部材42の状態に基づき、対象設備の絶縁性能について診断を行う。
電力設備の安定稼働のためには、電力設備の劣化状態を把握し、保全・更新を計画的に実施する必要がある。従来、送変電設備には絶縁部材として磁器製のがいしが用いられてきたが、近年の設備投資への合理化が進んでおり、より安価で短納期のポリマー製のがいしへの置き換えが進められている。一方で、ポリマー製のがいしは磁器がいしと比較して、材料の劣化事象が生じやすいことから、適宜検査を行って健全性を確認することが検討されている。しかし、活線の運用状態でポリマーの状態を把握することは困難であった。
実施形態の絶縁耐性診断システム100は、このような課題を解決するために上記構成を備え、対象設備を撮像した画像から対象設備の絶縁性能の診断を可能にするものである。以下、このような効果を奏する実施形態の絶縁耐性診断装置3について詳細に説明する。
図3は、実施形態の絶縁耐性診断装置3が対象設備の絶縁部材を診断する処理の流れを示すフローチャートである。まず、電圧位相検出部31が電圧情報供給部1から電圧情報を入力する(ステップS101)。電圧位相検出部31は入力した電圧情報に基づいて対象設備に印加されている送電電圧の位相(電圧位相)を検出する(ステップS102)。電圧位相検出部31は、検出した電圧位相を示す電圧位相情報を制御部32に出力する。
続いて、制御部32では、露光時間制御部321が電圧位相検出部31から電圧位相情報を入力し、入力した電圧位相情報に基づいて撮像部2に指示すべき露光時間又は/および露光開始タイミングを決定する(ステップS103)。ここで、撮像部2の露光時間および露光開始タイミングを調整するのは、次に説明する水滴の形状変化がより正確に撮像されるようにするためである。
図4は、対象設備の絶縁部材に付着した水滴の形状が対象設備の電圧位相に応じて変化する様子を模式的に示した図である。図4(A)は電圧位相に応じた送電電圧の変化の具体例を示し、図4(B)及び(C)は水滴の形状の変化の具体例を示す。横軸はいずれも時間である。絶縁部材の表面に付着している水滴は、送電電圧による高電界にさらされており、静電力(クーロン力)を受けている。このため、導電率が低い(純水に近く高抵抗であり、誘電率が高い)水滴ほど静電力の影響を強く受け、電圧(電界)に応じた形状の変化を見せると考えられる。一方、導電率が高い(抵抗が低く、誘電率が低い)水滴ほど静電力の影響を受けにくく、電圧(電界)によらない一様な形状を保つと考えられる。
例えば、送電電圧(交流電圧)が図4(A)のように変化する場合、導電率が低い水滴は、図4(B)に示すように、送電電圧が最も大きいタイミングT1及びT2において、その形状が最も大きく変化する。また、この場合、導電率が高い水滴は、図4(C)に示すように、送電電圧の変化によらず一定の形状を保っている。
このように、絶縁部材の表面に付着した水滴の形状は、水滴の導電率および送電電圧に応じて変化するため、時系列に撮像された複数の画像から絶縁部材の表面に付着した1つ以上の水滴を識別するとともに、その形状の時系列の変化を識別することにより、水滴の導電率(水滴の汚損度に相関する)を推定することができる。水滴形状の時系列の変化は、単位時間当たりの水滴形状の変化量を求めることにより識別することができる。
一方で、高電界下で形状を変化させるほどに高い水滴の導電性(例えば、導電率、抵抗、誘電率など)は、主に絶縁部材表面の汚れによって水滴が汚損されることによるものと考えられる。このため、送電電圧に対する水滴の形状の変化から、絶縁部材表面の汚損度を推定することができる。すなわち、図4(B)に示すように導電性が低い(導電率:低、電気抵抗:高、誘電率:高)水滴の汚損度は低いと推定され、図4(C)に示すように導電性が高い(導電率:高、電気抵抗:低、誘電率:低)水滴の汚損度は高いと推定される。
ただし、このような汚損度の推定には、上述の水滴の形状変化を精度良く識別できることが必要である。すなわち、上述の水滴の形状変化が正確に撮像されることが必要である。図4でも説明したように、水滴の形状は、送電電圧に応じて変化するため、このような変化が撮像された画像データを得るためには、少なくとも送電電圧の周期変動と、同程度の頻度で撮像を行う必要がある。また、望ましくは、送電電圧が最大値又は最小値(ピーク)をとるタイミングに合わせて水滴を撮像できるとよい。このため、露光時間制御部321は、撮像部2の露光時間を少なくとも送電電圧の周期以下の時間とすることができる。
また、図4の例において水滴の形状の変化をより正確に捉えるには、露光時間制御部321は、電圧位相の1/4周期または3/4周期における水滴の形状が撮像できるように、撮像部2の露光時間を決定するとよい。例えば、電圧位相の1周期がT[秒]であるとすれば、露光時間制御部321は、露光時間をT/4秒以下とすることができる。例えば、露光時間は、数ミリ秒あるいは1ミリ秒以下とすることができる。
また、露光タイミング制御部322は、電圧位相の1/4周期時点(例えば図中の時刻T1のタイミング)または3/4周期時点(例えば図中の時刻T2のタイミング)における水滴の形状が撮像できるように、撮像部2の露光開始タイミングを決定するとよい。より具体的には、電圧位相の1周期がT[秒]であり、かつ露光時間がT/4秒である場合には、露光タイミング制御部322は、1/8周期時点(例えば図中の時刻T3のタイミング)又は5/8周期時点(例えば図中の時刻T4のタイミング)を露光開始タイミングとすることができる。制御部32は、このように決定したカメラパラメータを撮像部2に設定する(ステップS104)。
なお、図4に示した露光開始タイミングおよび露光時間は具体例であり、これに限定されない。露光開始タイミングおよび露光時間は、水滴の形状変化を必要な精度で捉えることができるように、適切に調整されるとよい。
以上、ここまでが、撮像部2を動作を調整する工程(いわゆるキャリブレーション工程)である。以下では、調整済みの撮像部2を用いて対象設備の劣化を診断する診断工程について説明する。
診断工程では、まず撮像部2が、絶縁耐性診断装置3によって設定されたカメラパラメータで対象設備の撮像を行う(ステップS201)。これにより、絶縁部材42の表面が撮像された画像データが取得される。撮像部2は、取得した画像データを絶縁耐性診断装置3に出力する。
なお、上述のとおり、絶縁部材42を撮像する目的は絶縁部材42に付着した水滴を撮像するためである。そのため、撮像部2は、絶縁部材42の表面の水滴がより鮮明に撮像されるように、被写体を所定の倍率で拡大して撮像するように構成されてもよい。また、撮像部2は、絶縁部材42を認識する機能を備えるように構成されてもよく、この場合、撮像部2は当該機能により認識された絶縁部材42を拡大して撮像するように構成されてもよい。また、この場合、さらに撮像部2は、絶縁部材42の表面に付着した水滴を認識するように構成されてもよい。この場合、撮像部2は当該機能により認識された水滴を拡大して撮像するように構成されてもよいし、水滴が認識された場合に絶縁部材42を撮像するように構成されてもよい。また、撮像部2は、このような認識結果を示す情報を画像データとともに絶縁耐性診断装置3に出力してもよい。
続いて、絶縁耐性診断装置3では、解析部33が撮像部2から対象設備の画像データを入力し、入力した画像データの画像解析処理を実行する(ステップS202)。この画像解析処理により、画像からの水滴の検出、および検出された水滴の形状の識別が行われる。なお、画像から水滴を検出する方法は、特定の方法に限定されない。例えば、画像から水滴を検出する方法の一例として、パターンマッチングの結果や各種の画像特徴量に基づいて水滴か否かを判定する方法、各種の機械学習アルゴリズムにより生成された識別器によって水滴か否かを判定する方法などが挙げられる。また、撮像部2が絶縁部材42や水滴を認識する機能を備えている場合、解析部33は、撮像部2による絶縁部材42や水滴の認識結果を用いて水滴の検出を行ってもよい。
具体的には、解析部33は、水滴の形状を定量化する値として、水滴の対称度、水滴の歪み度、水滴の大きさ(円相当径など)を求めてもよい。これらに加え、解析部33は、絶縁部材42の劣化に関し、絶縁部材42表面が撮像された画像に基づいて把握され得る他の事象を識別するように構成されてもよい。例えば、解析部33は、画像から放電発光を検出するように構成されてもよい。この場合、例えば解析部33は、検出された放電発光部の色や面積等に基づいて放電発光の強度を算出してもよい。解析部33は、このような画像解析の結果に基づいて絶縁部材42の表面の汚損度を推定する。例えば、解析部33は次の図5に示す関係性に基づいて絶縁部材42の表面の汚損度を推定することができる。
図5は、水滴の大きさと、絶縁部材表面の汚損度と、水滴の形状の変化量と、の関係性の具体例を示す図である。絶縁部材表面の汚損度は、水滴の形状変化から推定できることは上述のとおりであるが、その一方で、水滴の形状変化の大きさ(変化量)は、汚損度に加えて水滴の大きさによっても変化すると考えられる。具体的には、図5に示すように、同じ汚損度でも、水滴の大きさが大きいほど、変化量が小さくなる。これは、水滴自体の質量の変化や帳面表力の変化等によるものと考えられる。
そこで、絶縁部材42について上記関係性を示す情報を測定値に基づいて予め作成しておけば、この情報と、画像から得られた水滴形状の変化量とに基づいて、絶縁部材42の表面の汚損度を推定することが可能となる。なお、放電発光の強度についても同様に、絶縁部材42の表面の汚損度との関係性を示す情報を予め作成しておくことで、画像から得られた放電発光の強度に基づいて、絶縁部材42の表面の汚損度を推定することが可能となる。例えば、解析部33は、このように推定された絶縁部材42の汚損度を解析結果情報として診断部34に出力する。
続いて、診断部34は、解析部33から解析結果情報を入力し、入力した解析結果情報に基づいて対象設備の絶縁耐性を診断し(ステップS203)、その診断結果を示す診断結果情報を出力する。例えば、診断部34は、次の図6に示す関係性に基づいて対象設備の絶縁耐性を診断することができる。
図6は、ポリマー製の絶縁部材を有する対象設備の絶縁破壊電圧と、当該絶縁部材の汚損度との関係性の具体例を示す図である。図6に示すように、対象設備である電力設備の絶縁破壊電圧は、ポリマー製絶縁部材の汚損度が高くなるほど低くなる。これはすなわち、絶縁部材42の汚損度が高くなるほど、電力設備としての絶縁耐性が低下することを意味している。そこで、対象設備について、絶縁部材42表面の汚損度との関係性を示す情報を測定データに基づいて予め作成しておけば、この情報と、画像から推定された汚損度とに基づいて、対象設備の絶縁耐性を推定することが可能となる。
例えば図6の例において、解析結果情報として汚損度Aが取得された場合、対象設備の絶縁破壊電圧としてBを推定することができる。例えば、診断部34はこのような推定値を診断結果情報として出力してもよい。さらに、診断部34は、このように推定された絶縁破壊電圧の値を予め定められた閾値と比較することにより、対象設備の状態を診断するように構成されてもよい。例えば、診断部34は、閾値C1に対して絶縁破壊電圧Bが推定された場合には対象設備の絶縁耐性に異常ありと診断してもよいし、閾値C2に対して絶縁破壊電圧Bが推定された場合には対象設備の絶縁耐性に異常なしと診断してもよい。なお、閾値は汚損度について設けられてもよい。また、汚損度について閾値が設けられる場合、診断部34は汚損度について診断を行ってもよい。
なお、ここでは絶縁部材42の表面の汚損度を解析部33が推定する場合について説明したが、汚損度の推定は診断部34によって行われてもよい。この場合、解析部33は、単位時間当たりの水滴形状の変化量や放電発光の強度等を解析結果情報として診断部34に出力するように構成されてもよい。
このように構成された実施形態の絶縁耐性診断システム100は、対象設備が有するポリマー製絶縁部材の汚損度を、水滴が付着した当該絶縁部材の表面を撮像した画像データに基づいて推定することができる。したがって、実施形態の絶縁耐性診断システム100によれば、絶縁部材がポリマー製のがいしを用いて構成された場合であっても、絶縁部材の劣化を診断するために電力設備を停止する必要がない。そのため、電力設備の絶縁性能をを設備の運用状態において監視することが可能となる。
また、実施形態の絶縁耐性診断システム100は、ポリマー製絶縁部材を撮像する撮像部2のカメラパラメータを対象設備の送電電圧に応じて調整することができる。このため、実施形態の絶縁耐性診断システム100によれば、絶縁部材42の表面に付着した水滴の様子をより正確にとられることが可能となり、絶縁部材42の劣化を精度良く診断することが可能となる。
なお、本実施形態では、絶縁部材42の表面に水滴が付着していることを前提として説明したが、天候等によっては絶縁部材42の表面に水滴が付着していない場合も考えらえる。このような場合、絶縁耐性診断システム100は、絶縁部材42の表面に水滴を付着させる手段を含んでもよい。
また、本実施形態では、撮像部2が、絶縁部材42を有する構造物(例えば鉄塔F)に取り付けられた場合を想定したが、撮像部2は必ずしも絶縁部材42を有している構造物に設置される必要はない。例えば、撮像部2は、図7に示すように、絶縁部材42の表面を上空から撮像可能な飛行体(例えばいわゆるドローンなど)に取り付けられてもよい。
以上説明した少なくともひとつの実施形態によれば、実施形態の絶縁耐性診断装置は、電力設備の絶縁部材の表面に付着した水滴が撮像された画像に基づいて前記絶縁部材表面の汚損度を推定する画像解析部と、推定された前記汚損度に基づいて前記電力設備の絶縁耐性を診断する診断部と、を持つことにより、ポリマー製の絶縁部材を有する電力設備の絶縁耐性を、電力設備の運用を停止することなく診断することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
100…絶縁耐性診断システム、1…電圧情報供給部、2,2−1〜2−6…撮像部、3…絶縁耐性診断装置、31…電圧位相検出部、32…制御部、321…露光時間制御部、322…露光タイミング制御部、33…解析部、331…画像データ入力部、332…画像解析部、34…診断部、40−1〜40−6…吊架部、41−1〜41−6…吊り下げ部、42,42−1〜42−6…絶縁部材。
Claims (11)
- 電力設備の絶縁部材の表面に付着した水滴が撮像された画像に基づいて前記絶縁部材表面の汚損度を推定する画像解析部と、
推定された前記汚損度に基づいて前記電力設備の絶縁耐性を診断する診断部と、
を備える絶縁耐性診断装置。 - 前記電力設備による送電電圧の位相に基づいて、前記画像を撮像する撮像部の露光開始タイミング又は露光時間を決定する制御部をさらに備える、
請求項1に記載の絶縁耐性診断装置。 - 前記制御部は、前記送電電圧がピークをとるタイミングにおける前記水滴の形状が撮像されるように前記露光開始タイミング又は露光時間を決定する、
請求項2に記載の絶縁耐性診断装置。 - 前記制御部は、前記露光時間を前記送電電圧の周期以下の時間とする、
請求項3に記載の絶縁耐性診断装置。 - 前記解析部は、前記撮像部が時系列に撮像した複数の画像から前記絶縁部材表面に付着した1つ以上の水滴を識別し、識別された各水滴の形状の時系列の変化量に基づいて前記絶縁部材の汚損度を推定する、
請求項1から4のいずれか一項に記載の絶縁耐性診断装置。 - 前記解析部は、前記画像に撮像された放電発光を認識し、認識した放電発光の画像に基づいてその放電の強度を推定し、推定された前記放電の強度に基づいて前記絶縁部材表面の汚損度を推定する、
請求項1から5のいずれか一項に記載の絶縁耐性診断装置。 - 前記解析部は、測定値に基づいて取得された前記絶縁部材表面の汚損度と前記電力設備の絶縁耐性との関係性を示す情報と、前記解析部によって推定された前記絶縁部材表面の汚損度と、に基づいて前記電力設備の絶縁耐性を診断する、
請求項5又は6に記載の絶縁耐性診断装置。 - 前記電力設備が送電する電気信号、前記電気信号に関する電磁波信号、又は前記電気信号に同期して動作する機器の振動に基づいて、前記送電電圧の位相を検出する電圧位相検出部をさらに備える、
請求項1から7のいずれか一項に記載の絶縁耐性診断装置。 - 前記撮像部は、光学フィルタにより約300nm〜約400nmの波長を有する近紫外光を透過させるとともに前記波長帯より大きな波長を有する可視光線を減衰させる、
請求項1から8のいずれか一項に記載の絶縁耐性診断装置。 - 前記撮像部は、撮像する各画像の全画素値を同じタイミングで検出する、
請求項1から9のいずれか一項に記載の絶縁耐性診断装置。 - 電力設備の絶縁部材の表面に付着した水滴が撮像された画像に基づいて前記絶縁部材表面の汚損度を推定する画像解析ステップと、
推定された前記汚損度に基づいて前記電力設備の絶縁耐性を診断する診断ステップと、
を有する絶縁耐性診断方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020099383A JP2021193347A (ja) | 2020-06-08 | 2020-06-08 | 絶縁耐性診断装置及び絶縁耐性診断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020099383A JP2021193347A (ja) | 2020-06-08 | 2020-06-08 | 絶縁耐性診断装置及び絶縁耐性診断方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021193347A true JP2021193347A (ja) | 2021-12-23 |
Family
ID=79168763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020099383A Pending JP2021193347A (ja) | 2020-06-08 | 2020-06-08 | 絶縁耐性診断装置及び絶縁耐性診断方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021193347A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218641A1 (ja) * | 2022-05-13 | 2023-11-16 | 日本電信電話株式会社 | 付着液体量計測システム |
-
2020
- 2020-06-08 JP JP2020099383A patent/JP2021193347A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218641A1 (ja) * | 2022-05-13 | 2023-11-16 | 日本電信電話株式会社 | 付着液体量計測システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6863383B2 (ja) | 欠陥検出装置、欠陥検出方法、及びコンピュータ読み取り可能記録媒体 | |
JP2013530466A (ja) | ステレオカメラシステムの光学式自己診断 | |
JP5168215B2 (ja) | 外観検査装置 | |
JP2019191117A (ja) | 画像処理装置、画像処理方法及びプログラム | |
KR20160034726A (ko) | 현수애자 진단 장치 및 방법 | |
US20210397837A1 (en) | Apparatus for monitoring a switchgear | |
CN112881786A (zh) | 一种漏电检测方法、装置和系统 | |
Jadin et al. | Thermal condition monitoring of electrical installations based on infrared image analysis | |
CN117092470B (zh) | 一种应用于配电箱的电火花检测方法及系统 | |
JP2006293820A (ja) | 外観検査装置、外観検査方法およびコンピュータを外観検査装置として機能させるためのプログラム | |
JP2021193347A (ja) | 絶縁耐性診断装置及び絶縁耐性診断方法 | |
KR101994412B1 (ko) | 무인 비행체와 센서 인터페이스를 이용한 구조물 표면 열화 진단 장치 및 그 방법 | |
WO2019011039A1 (zh) | 道岔信息处理方法及装置 | |
CN117664552B (zh) | 一种设备运行状态监测方法、装置、系统及控制设备 | |
US20220057271A1 (en) | Apparatus for monitoring a switchgear | |
JP6391899B1 (ja) | 電磁継電器診断装置 | |
KR101743595B1 (ko) | 부분 방전 진단 방법 및 시스템, 이를 이용한 몰드 변압기 열화 모니터링 시스템. | |
CN110318953B (zh) | 风电机组电控系统的温度监控方法和设备 | |
KR101622186B1 (ko) | 기기 상태 진단 장치 | |
KR101332715B1 (ko) | 자외선 코로나 카메라를 이용한 전력설비 이상 판별방법 | |
KR102260018B1 (ko) | 콘크리트 구조물의 손상 모니터링 방법 | |
KR20230064416A (ko) | 전력 기기의 결함 진단 장치 및 방법 | |
KR102201337B1 (ko) | 전력소자 및 pcb 소자의 열화진단시스템 | |
CN111222428B (zh) | 一种基于监控视频的器件紧固操作的检测方法 | |
KR102297005B1 (ko) | 전력설비 진단 장치 및 방법 |