JP2021191570A - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP2021191570A
JP2021191570A JP2020098947A JP2020098947A JP2021191570A JP 2021191570 A JP2021191570 A JP 2021191570A JP 2020098947 A JP2020098947 A JP 2020098947A JP 2020098947 A JP2020098947 A JP 2020098947A JP 2021191570 A JP2021191570 A JP 2021191570A
Authority
JP
Japan
Prior art keywords
sludge
returned
sewage
tank
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020098947A
Other languages
Japanese (ja)
Other versions
JP7453068B2 (en
Inventor
乃大 矢出
Norihiro Yaide
賢一 二見
Kenichi Futami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2020098947A priority Critical patent/JP7453068B2/en
Publication of JP2021191570A publication Critical patent/JP2021191570A/en
Application granted granted Critical
Publication of JP7453068B2 publication Critical patent/JP7453068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

To provide a wastewater treatment method capable of obtaining an excellent coagulation treatment effect, improvement of treated water quality and improvement of solid-liquid separability in the solid-liquid separation step by using a coagulation auxiliary agent in the returned sludge, and capable of achieving compactness of sedimentation equipment, increase in the amount of treated water in the existing sedimentation equipment, and high performance of water quality improvement.SOLUTION: A wastewater treatment method including a biological treatment step, includes a solid-liquid separation step in a subsequent stage of the biological treatment step. The wastewater treatment method includes adding a coagulation auxiliary agent to sludge drawn from the solid-liquid separation step in a subsequent stage of the biological treatment step or concentrated sludge obtained by concentrating the sludge, and then returning the sludge or the concentrated sludge containing the coagulation auxiliary agent to the biological treatment step.SELECTED DRAWING: Figure 5

Description

本発明は、排水処理方法に関する。特に、有機性排水処理において、雨天時下水や晴天時下水を含む下水処理や、工場排水処理に関するものであり、排水処理における固液分離性の低下や、生物処理における生物処理性や固液分離性の低下等の課題を解決し、優れた排水処理効果を得ることができる排水処理方法に関するものである。 The present invention relates to a wastewater treatment method. In particular, in organic wastewater treatment, it is related to sewage treatment including rainy weather sewage and sunny weather sewage, and factory wastewater treatment. The present invention relates to a wastewater treatment method capable of solving problems such as deterioration of properties and obtaining an excellent wastewater treatment effect.

合流式下水道の雨水と汚水が混ざった雨天時下水や、晴天時の合流式下水道や分流式下水道の下水のほか、し尿、浄化槽汚泥、埋立地浸出水や民間事業所から排出される有機性排水のBOD(Biochemical Oxygen Demand:生物化学的酸素要求量)や懸濁物質(以下、SS)は、生物処理で除去される。得られた処理水は、公共用水域に放流されたり、再度高度処理して、再利用されたりする。 In addition to sewage in rainy weather, which is a mixture of rainwater and sewage from combined sewerage, sewage in combined sewerage and diversion type sewerage in fine weather, urine, septic tank sludge, landfill leachate, and organic wastewater discharged from private business establishments. BOD (Biochemical Oxygen Demand: biochemical oxygen demand) and suspended solids (hereinafter referred to as SS) are removed by biological treatment. The obtained treated water is discharged into public water areas, or is highly treated again and reused.

雨天時下水は、未処理下水として公共用水域に放流するのでなく、貯留施設(雨天時貯留池)に貯留され、降雨後に下水処理場で処理するのが一般的である。雨天時貯留池が満杯になった場合、雨水で希釈された下水については、沈殿・消毒処理後に簡易処理水をして放流されるのが一般的である。 Sewage in rainy weather is not discharged as untreated sewage to public water areas, but is generally stored in a storage facility (reservoir in rainy weather) and treated at a sewage treatment plant after rainfall. When the reservoir is full in rainy weather, it is common for sewage diluted with rainwater to be discharged after sedimentation and disinfection treatment with simple treated water.

民間事業所排水の生物処理では、糸状菌によるバルキングにより、沈殿槽での固液分離障害が発生することがあり、その対策として、高分子凝集剤、有機凝結剤やバルキング防止剤が使用されることが知られている。 In the biological treatment of wastewater from private business establishments, bulking by filamentous fungi may cause solid-liquid separation problems in the settling tank, and polymer coagulants, organic coagulants and anti-bulking agents are used as countermeasures. It is known.

図1には、晴天時の合流式下水道の下水処理フローの一例が示されている。 FIG. 1 shows an example of the sewage treatment flow of the combined sewerage system in fine weather.

下水は沈砂池を経由して、最初沈殿池で下水に含まれるSSや不溶解性のCOD(Chemical Oxygen Demand:化学的酸素要求量)やBODが固液分離で除去される。最初沈殿池処理水は反応タンクに流入して、反応タンクの活性汚泥で下水の有機物が分解除去され、後段の最終沈殿池で処理水と活性汚泥主体の汚泥に固液分離される。処理水は公共用水域に放流されたり、その処理水を高度処理して下水処理場の洗浄水などに利用されたりする。汚泥は、返送汚泥として反応タンクの最前段部に返送されて、反応タンクの活性汚泥濃度が維持されることで反応タンク内において、安定した生物処理が行われる。 The sewage first passes through a sand basin, and SS, insoluble COD (Chemical Oxygen Demand) and BOD contained in the sewage are removed by solution separation. The first settling pond treated water flows into the reaction tank, the organic matter of the sewage is decomposed and removed by the activated sludge in the reaction tank, and the final settling pond in the latter stage is solid-liquid separated into the treated water and the sludge mainly composed of activated sludge. The treated water is discharged into public water areas, or the treated water is highly treated and used as washing water for sewage treatment plants. The sludge is returned to the front stage of the reaction tank as returned sludge, and the concentration of activated sludge in the reaction tank is maintained, so that stable biological treatment is performed in the reaction tank.

返送汚泥に使われない汚泥は余剰汚泥として、最終沈殿池から引き抜かれて、濃縮や脱水などの汚泥処理をされる。濃縮には重力濃縮や機械濃縮があり、機械濃縮では無薬注や高分子凝集剤を余剰汚泥に添加して、ベルト濃縮機や遠心濃縮機で濃縮される。余剰汚泥濃度は1重量%前後に対して、濃縮汚泥濃度は数重量%になる。下水の余剰汚泥は濃縮を経て脱水機で脱水される。民間事業所の排水処理設備から排出される余剰汚泥は濃縮せずに直接脱水する場合が多い。 The sludge that is not used for the returned sludge is extracted from the final settling basin as surplus sludge and treated with sludge such as concentration and dehydration. Concentration includes gravity concentration and mechanical concentration. In mechanical concentration, no chemical injection or polymer flocculant is added to excess sludge, and the sludge is concentrated by a belt concentrator or a centrifugal concentrator. The excess sludge concentration is about 1% by weight, while the concentrated sludge concentration is several% by weight. Excess sludge in sewage is concentrated and then dehydrated by a dehydrator. Excess sludge discharged from wastewater treatment facilities of private business establishments is often directly dehydrated without concentration.

図2には、従来の雨天時下水処理フローが示されている。 FIG. 2 shows a conventional sewage treatment flow in rainy weather.

合流下水道からの雨天時下水は、下水処理場に到達するまでにポンプ場等から公共用水域に放流される。下水処理場に到達した雨天時下水は、最初沈殿池を経由して、最初沈殿池処理水は雨天時下水量1Q(雨天時計画時間最大汚水量。以下同様)を生物処理し、1Q以上の雨天時下水は簡易処理等を行って、公共用水域に放流される。簡易処理として、最初沈殿池によるSS除去や最初沈殿池処理水の消毒がある。 Rainy weather sewage from the combined sewerage system is discharged from a pumping station or the like to a public water area by the time it reaches the sewage treatment plant. The sewage in rainy weather that reaches the sewage treatment plant first passes through the settling basin, and the treated water in the first settling basin is biologically treated with 1Q of sewage in rainy weather (maximum amount of sewage in the planned time in rainy weather. Sewage in rainy weather is simply treated and discharged into public water areas. Simple treatments include SS removal by the first settling basin and disinfection of the first settling basin treated water.

一方、公共用水域への放流水の負荷量の低減のために、最初沈殿池処理水に対して合流改善技術を適用したのちに、公共用水域に放流する技術がある。合流改善技術はポンプ場や雨水吐き口、最初沈殿池に適用されて、夾雑物除去、高速ろ過、凝集分離、消毒及び計測・制御技術によって、ポンプ場や雨水吐き口、最初沈殿池から排出される雨天時下水や雨天時下水の最初沈殿池処理水の水質改善を図るものである。夾雑物に関する合流改善技術として、雨水吐き口に設置する夾雑物等の除去施設、水量の抑制として雨水滞水池の設置・雨水貯留管の設置、遮集管の増強、合流式下水道の分流化などで、すべて処理設備や装置が伴う合流改善技術がある。 On the other hand, in order to reduce the load of the discharged water to the public water area, there is a technology to first apply the confluence improvement technology to the settling basin treated water and then discharge it to the public water area. Confluence improvement technology is applied to pump stations, rainwater spouts, and first settling basins, and is discharged from pump stations, rainwater spouts, and first settling basins by contaminant removal, high-speed filtration, coagulation separation, disinfection, and measurement / control technology. The purpose is to improve the quality of the first settling basin treated water in rainy weather and sewage in rainy weather. Confluence improvement technology for contaminants includes removal facilities for contaminants installed at the rainwater spout, installation of stormwater stagnation ponds and stormwater storage pipes, reinforcement of shield pipes, diversion of combined sewers, etc. So, there is a merging improvement technology that involves all processing equipment and equipment.

図3には、従来の雨天時下水量3Q(1Qの3倍。以下同様。)を生物処理する下水処理フローの一例(雨天時下水活性汚泥処理方法)が示されている。 FIG. 3 shows an example of a sewage treatment flow (method for treating activated sludge in rainy weather) for biologically treating a conventional amount of sewage in rainy weather 3Q (three times 1Q; the same applies hereinafter).

雨天時下水活性汚泥処理方法は合流式下水の降雨初期の汚濁を改善する技術で、既存の下水処理場の活性汚泥処理設備を利用するものである。以前は1Qだけを生物処理し、残りの2Q(1Qの2倍。以下同様。)を最初沈殿池で沈殿後に放流していたが、この雨天時下水活性汚泥処理方法では3Qのうち1Qを反応タンク前段に流入させて従来通り処理し、今まで最初沈殿池で沈殿後に放流していた残りの2Qを反応タンク後段の1/4のところに投入し生物処理を行う。 The activated sludge treatment method for sewage in rainy weather is a technology for improving the pollution of combined sewage at the initial stage of rainfall, and uses the activated sludge treatment equipment of the existing sewage treatment plant. Previously, only 1Q was biologically treated, and the remaining 2Q (twice as much as 1Q; the same applies hereinafter) was first discharged after sedimentation in a settling basin, but with this rainy weather sewage activated sludge treatment method, 1Q out of 3Q is reacted. It is flowed into the first stage of the tank and treated as before, and the remaining 2Q, which had been discharged after sedimentation in the first settling basin, is put into 1/4 of the second stage of the reaction tank for biological treatment.

雨天時下水が3Qを超える場合は雨天時下水を合流改善技術で簡易処理したのちに公共用水域に放流される。 If the sewage in the rain exceeds 3Q, the sewage in the rain is simply treated by the confluence improvement technology and then discharged into the public water area.

図4には、従来の排水の生物処理フローが示されている。 FIG. 4 shows a conventional biological treatment flow of wastewater.

特に、民間事業所の被処理水を生物処理する場合に、民間事業所で製造する製造品の種類の変更や、排水量の増大などで、急激な有機物の負荷変動等によって、バルキングが発生し、沈殿槽での処理水SSのキャリーオーバーや汚泥の沈降濃縮性が低下することがある。沈殿槽での固液分離障害の原因の大半は、糸状菌によるバルキングである。その際に、返送汚泥に高分子凝集剤やバルキング防止剤を添加して、高分子凝集剤やバルキング防止剤を含む返送汚泥を生物処理槽の最前段に返送する技術がある。 In particular, when biologically treating water to be treated at private business establishments, bulking occurs due to sudden load fluctuations of organic substances due to changes in the types of products manufactured at private business establishments and an increase in the amount of wastewater. The carryover of the treated water SS in the settling tank and the settling concentration of sludge may decrease. Most of the causes of solid-liquid separation disorders in the settling tank are bulking due to filamentous fungi. At that time, there is a technique of adding a polymer flocculant or an anti-bulking agent to the returned sludge and returning the returned sludge containing the polymer flocculant or the anti-bulking agent to the front stage of the biological treatment tank.

大阪市の事例(https://www.nissuicon.co.jp/jigyou/gesuidou/utenji-kasseiodei/)によると、雨天時下水活性汚泥処理方法では雨天時下水の3Qshのうち1Qshを反応槽(「反応タンク」とも呼ばれる。)前段において従来通りの有機物を生物処理し、今まで沈殿放流していた残りの雨天時下水2Qshを反応槽後段の1/4のところにステップ投入し処理する。反応槽後段で吸着した有機物は、最終沈殿池で沈殿し、反応槽に返送されて、生物処理される。下水活性汚泥法の一つであるバイオソープション法を活用することで、反応槽の後段では、活性汚泥が再び吸着力が回復するため、安定した処理を継続して行うことができる。雨天時下水活性汚泥法もこの原理を利用し、放流される雨天時初期の汚濁量が削減できる。 According to the case of Osaka City (https://www.nissuicon.co.jp/jigyou/gesuidou/utenji-kasseiodei/), 1Qsh out of 3Qsh of sewage in rainy weather is used in the reaction tank (" It is also called "reaction tank".) In the first stage, the conventional organic matter is biologically treated, and the remaining 2Qsh of sewage in rainy weather, which has been settled and discharged until now, is stepped into 1/4 of the second stage of the reaction tank for treatment. The organic matter adsorbed in the latter stage of the reaction vessel is settled in the final settling basin and returned to the reaction vessel for biological treatment. By utilizing the biosoaption method, which is one of the sewage activated sludge methods, the activated sludge recovers its adsorptive power again in the latter stage of the reaction tank, so that stable treatment can be continued. The sewage activated sludge method in rainy weather also uses this principle to reduce the amount of pollution in the early stage of rainy weather.

特許文献1(特開平11−104696号公報)には、(1)原水に無機凝集剤を添加するとともに、高分子凝集剤を含む返送汚泥を添加して凝集反応を行わせる凝集工程、(2)凝集工程で生成した凝集フロックを固液分離する固液分離工程、(3)固液分離工程から得られる処理水を逆浸透膜装置及び/又はイオン交換装置に通水して脱塩する脱塩工程、(4)固液分離工程から排出される凝集汚泥の一部を凝集工程に返送する汚泥返送工程、並びに(5)凝集工程に返送される凝集汚泥に高分子凝集剤を添加する工程を有することを特徴とする純水製造方法が開示されている。 Patent Document 1 (Japanese Unexamined Patent Publication No. 11-104696) describes (1) an agglutination step of adding an inorganic agglutinating agent to raw water and adding a return sludge containing a polymer agglutinating agent to cause an agglutination reaction (2). ) Solid-liquid separation step of solid-liquid separation of agglutinated flocs generated in the agglutination step, (3) Desalting by passing the treated water obtained from the solid-liquid separation step through a reverse osmosis membrane device and / or an ion exchange device. A salt step, (4) a sludge return step of returning a part of the agglutinated sludge discharged from the solid-liquid separation step to the agglutination step, and (5) a step of adding a polymer flocculant to the agglutinating sludge returned to the agglutination step. A method for producing pure water is disclosed.

純水製造方法は凝集工程と、固液分離工程と脱塩工程で構成され、凝集工程で生成する凝集フロックが大きく、凝集沈殿処理水の残留高分子凝集剤濃度を低くできるので、後段の逆浸透膜やイオン交換樹脂への汚染が抑えられて、その洗浄頻度を少なくできる純水製造システムを提供することができる。 The pure water production method consists of a coagulation step, a solid-liquid separation step, and a desalting step. It is possible to provide a pure water production system capable of suppressing contamination of the osmosis membrane and the ion exchange resin and reducing the cleaning frequency thereof.

特許文献2(特開平8−103788号公報)には、返送汚泥ラインに薬剤を添加することに関し、「薬剤を返送汚泥ラインに添加することにより、一度に糸状菌を全滅させず連続的に少量ずつ糸状菌や放線菌を殺菌することができ、これによりCODやSSなどの処理水水質を悪化させることなく、効果的にバルキングおよびスカミングを抑制することができる。返送汚泥ラインに薬剤を添加する場合は、返送汚泥流量に対して前記薬剤の添加量を算出する」との開示がある。 In Patent Document 2 (Japanese Unexamined Patent Publication No. 8-103788), regarding the addition of a drug to the return sludge line, "By adding the drug to the return sludge line, a small amount of filamentous fungi is not completely eradicated at one time. Filamentous bacteria and actinomycetes can be sterilized one by one, which can effectively suppress bulking and squamming without deteriorating the quality of treated water such as COD and SS. Add chemicals to the return sludge line. In that case, the amount of the drug added is calculated with respect to the flow rate of the returned sludge. "

非特許文献1(山本高弘、中村貴昭、「大阪市における既存施設を利用した合流式下水道の改善−雨天時下水活性汚泥処理法の開発と実用化−」、EICA:環境システム計測制御学会誌/学会誌「EICA」編集委員会編、2005、第10巻、第2号、9、12頁)には、3W処理法が従来の簡易処理放流を行っていた雨天時下水を放流負荷削減方法として有効であることが開示されている。3W処理法とは、3Qのうち、1Qを活性汚泥処理に、従来簡易処理して放流していた2Qまでの超過水量を反応タンク終段に流入させて活性汚泥処理するものである。 Non-Patent Document 1 (Takahiro Yamamoto, Takaaki Nakamura, "Improvement of combined sewerage system using existing facilities in Osaka City-Development and practical application of activated sludge treatment method for sewage in rainy weather-", EICA: Journal of Environmental System Measurement and Control Society / According to the editorial committee of the academic journal "EICA", 2005, Vol. 10, No. 2, pp. 9, 12), the 3W treatment method used the conventional simple treatment discharge method to use sewage in rainy weather as a method for reducing the discharge load. It is disclosed that it is valid. In the 3W treatment method, 1Q is used for activated sludge treatment, and the excess water amount up to 2Q, which has been simply treated and discharged in the past, is allowed to flow into the final stage of the reaction tank for activated sludge treatment.

特開平11−104696号公報Japanese Unexamined Patent Publication No. 11-104696 特開平8−103788号公報Japanese Unexamined Patent Publication No. 8-103788

山本高弘、中村貴昭、「大阪市における既存施設を利用した合流式下水道の改善−雨天時下水活性汚泥処理法の開発と実用化−」、EICA:環境システム計測制御学会誌/学会誌「EICA」編集委員会編、2005、第10巻、第2号、9、12頁Takahiro Yamamoto, Takaaki Nakamura, "Improvement of combined sewerage system using existing facilities in Osaka City-Development and practical application of activated sludge treatment method for sewage in rainy weather-", EICA: Journal of Environmental System Measurement and Control Society / Journal of the Society "EICA" Editorial Board, 2005, Vol. 10, No. 2, pp. 9, 12

雨天時下水の最初沈殿池の固液分離の課題は以下の通りである。
(1)雨天時下水が設計水量1Q以上の流入で、最初沈殿池での固液分離性が低下する。
(2)最初沈殿池での固液分離性が低下することで、1Q以上の最初沈殿池処理水は公共用水域に放流されるが、その放流水質が悪化する。
The issues of solid-liquid separation of the first sedimentation basin of sewage in rainy weather are as follows.
(1) When the sewage in rainy weather flows in at a design amount of 1Q or more, the solid-liquid separability in the first settling basin deteriorates.
(2) As the solid-liquid separability in the first settling basin deteriorates, the treated water in the first settling basin of 1Q or more is discharged into the public water area, but the quality of the discharged water deteriorates.

そして、上記雨天時下水の生物処理における課題は以下の通りである。
(1)設計水量の3倍の流入水量のために生物処理後の最終沈殿池での固液分離が難しく、最終沈殿池の処理水SSの増加や、返送汚泥濃度の低下がある。
(2)2Q分を反応タンク終段に流入させると、その反応タンクのBOD汚泥負荷が高まり、活性汚泥の凝集性が低下するので、最終沈殿池での固液分離性が低下する。
The problems in biological treatment of sewage in rainy weather are as follows.
(1) Since the amount of inflow water is three times the designed amount of water, it is difficult to separate solid and liquid in the final settling basin after biological treatment, and the treated water SS in the final settling basin increases and the concentration of returned sludge decreases.
(2) When 2Q is poured into the final stage of the reaction tank, the BOD sludge load of the reaction tank increases and the cohesiveness of the activated sludge decreases, so that the solid-liquid separability in the final settling basin decreases.

そして、民間事業所排水の生物処理における課題は以下の通りである。
(1)生物処理における負荷変動等によりバルキングで生物処理槽後段の沈殿槽での固液分離性が低下する。
(2)返送汚泥にバルキング対策薬剤を添加して、生物処理槽前段に返送されるが、生物処理槽滞留中にバルキング対策薬剤の効果低減や生物処理槽の活性汚泥へのダメージがある。
The challenges in biological treatment of wastewater from private businesses are as follows.
(1) Due to load fluctuations in biological treatment, solid-liquid separability in the settling tank at the subsequent stage of the biological treatment tank deteriorates due to bulking.
(2) The anti-bulking agent is added to the returned sludge and returned to the front stage of the biological treatment tank, but the effect of the anti-bulking agent is reduced and the activated sludge in the biological treatment tank is damaged during the stay in the biological treatment tank.

本発明は、上記の事情に鑑みてなされたものであり、返送汚泥に凝集補助剤を使用することで、固液分離工程で優れた凝集処理効果、処理水水質の向上と、固液分離性の向上を得ることができ、沈殿装置のコンパクト化や既存沈殿装置における処理水量の増加や、水質向上の高性能化が達成できる排水処理方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and by using a coagulation auxiliary agent for the returned sludge, an excellent coagulation treatment effect in the solid-liquid separation step, improvement of treated water quality, and solid-liquid separability. It is an object of the present invention to provide a wastewater treatment method that can achieve the improvement of the water quality, the compactness of the settling device, the increase of the treated water amount in the existing settling device, and the improvement of the water quality.

また、本発明の一部の実施態様では、特に、公共用水域に放流される雨天時下水の最初沈殿池処理水の水質と、雨天時下水の生物処理水及び放流水の水質改善が可能な排水処理方法を提供することを課題とする。 Further, in some embodiments of the present invention, it is possible to improve the water quality of the first settling pond treated water of the rainy weather sewage discharged into the public water area and the biologically treated water and the discharged water of the rainy weather sewage. The subject is to provide a wastewater treatment method.

本発明は、上記の諸事情に鑑みてなされたものであり、以下のように特定される。
(1)
生物処理工程を含む排水処理方法であって、
前記排水処理方法は前記生物処理工程の後段に固液分離工程を含み、
前記生物処理工程後段の固液分離工程から引き抜かれる汚泥又は当該汚泥を濃縮した濃縮汚泥に凝集補助剤を添加した後に、前記生物処理工程に、前記凝集補助剤を含む前記汚泥又は前記濃縮汚泥を返送することを含む排水処理方法。
(2)
前記排水処理方法は、さらに前記生物処理工程の前段に固液分離工程を含む(1)に記載の排水処理方法。
(3)
前記生物処理工程の前段の固液分離工程は、雨天時下水が流入する最初沈殿池で行われ、
前記凝集補助剤を含む前記汚泥又は前記濃縮汚泥を、雨天時下水と混合して、前記最初沈殿池にも返送することを特徴とする(2)に記載の排水処理方法。
(4)
前記生物処理工程は、複数の反応タンクにおいて行われ、
前記生物処理工程の後段の固液分離工程は、最終沈殿池で行われ、
前記最終沈殿池から引き抜かれる汚泥は返送汚泥及び余剰汚泥であり、前記返送汚泥の一部を前記複数の反応タンクのうち最前段の反応タンクに返送し、前記返送汚泥の別の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送することを特徴とする(1)〜(3)のいずれかに記載の排水処理方法。
(5)
さらに、前記余剰汚泥を濃縮した濃縮汚泥の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送すること含む(4)に記載の排水処理方法。
(6)
前記生物処理工程は、複数の反応タンクにおいて行われ、
前記生物処理工程の後段の固液分離工程は、最終沈殿池で行われ、
前記最終沈殿池から引き抜かれる汚泥は返送汚泥及び余剰汚泥であり、前記返送汚泥の全部を前記複数の反応タンクのうち最前段の反応タンクに返送し、前記余剰汚泥を濃縮した濃縮汚泥の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送することを特徴とする(1)〜(3)のいずれかに記載の排水処理方法。
(7)
さらに、前記複数の反応タンクのうち最前段の反応タンクに返送する前記返送汚泥にも、凝集補助剤を添加することを含む(4)〜(6)のいずれかに記載の排水処理方法。
The present invention has been made in view of the above circumstances, and is specified as follows.
(1)
It is a wastewater treatment method that includes a biological treatment process.
The wastewater treatment method includes a solid-liquid separation step after the biological treatment step.
After adding a coagulation aid to the sludge extracted from the solid-liquid separation step after the biological treatment step or the concentrated sludge in which the sludge is concentrated, the sludge containing the coagulation aid or the concentrated sludge is added to the biological treatment step. Waste treatment methods, including returning.
(2)
The wastewater treatment method according to (1), further comprising a solid-liquid separation step before the biological treatment step.
(3)
The solid-liquid separation step prior to the biological treatment step is performed in the first settling basin where sewage flows in during rainy weather.
The wastewater treatment method according to (2), wherein the sludge containing the coagulation aid or the concentrated sludge is mixed with sewage in rainy weather and returned to the first settling basin.
(4)
The biological treatment step is performed in a plurality of reaction tanks and is carried out in a plurality of reaction tanks.
The solid-liquid separation step after the biological treatment step is performed in the final settling basin.
The sludge extracted from the final settling basin is returned sludge and surplus sludge, and a part of the returned sludge is returned to the reaction tank at the front stage among the plurality of reaction tanks and aggregated in another part of the returned sludge. The wastewater treatment method according to any one of (1) to (3), wherein the auxiliary agent is added and then returned to the reaction tank in the final stage among the plurality of reaction tanks.
(5)
The wastewater treatment method according to (4), further comprising adding a coagulation aid to a part of the concentrated sludge in which the excess sludge is concentrated and then returning the sludge to the final reaction tank among the plurality of reaction tanks.
(6)
The biological treatment step is performed in a plurality of reaction tanks and is carried out in a plurality of reaction tanks.
The solid-liquid separation step after the biological treatment step is performed in the final settling basin.
The sludge extracted from the final settling basin is returned sludge and surplus sludge, and all of the returned sludge is returned to the first reaction tank among the plurality of reaction tanks, and a part of the concentrated sludge in which the surplus sludge is concentrated. The wastewater treatment method according to any one of (1) to (3), wherein the sludge assisting agent is added to the sludge and then returned to the reaction tank in the final stage among the plurality of reaction tanks.
(7)
The wastewater treatment method according to any one of (4) to (6), further comprising adding a coagulation aid to the returned sludge returned to the reaction tank at the front stage among the plurality of reaction tanks.

本発明によれば、返送汚泥及び/又は余剰汚泥の濃縮汚泥に凝集補助剤を使用することで、固液分離工程で優れた凝集処理効果、処理水水質の向上と、固液分離性の向上を得ることができ、沈殿装置のコンパクト化や既存沈殿装置における処理水量の増加や、沈殿装置出口水や生物処理水の水質向上の高性能化が達成できる排水処理方法を提供することができる。 According to the present invention, by using a coagulation auxiliary agent for the returned sludge and / or the concentrated sludge of the surplus sludge, an excellent coagulation treatment effect in the solid-liquid separation step, improvement of treated water quality, and improvement of solid-liquid separability. It is possible to provide a wastewater treatment method that can achieve compactness of the settling device, an increase in the amount of treated water in the existing settling device, and improvement of the water quality of the settling device outlet water and the biologically treated water.

晴天時の合流式下水道の下水処理フローを示す図である。It is a figure which shows the sewage treatment flow of a combined sewer in a sunny day. 従来の雨天時下水処理フローを示す図である。It is a figure which shows the conventional sewage treatment flow in rainy weather. 従来の雨天時下水量3Qを生物処理する下水処理フローを示す図である。It is a figure which shows the sewage treatment flow which biologically treats the conventional sewage amount 3Q in rainy weather. 従来の排水の生物処理フローを示す図である。It is a figure which shows the biological treatment flow of the conventional wastewater. 本発明の雨天時下水の処理フローの一例を示す図である。It is a figure which shows an example of the treatment flow of the sewage in rainy weather of this invention. 本発明の雨天時下水の処理フローの一例を示す図である。It is a figure which shows an example of the treatment flow of the sewage in rainy weather of this invention. 本発明の雨天時下水の処理フローの一例を示す図である。It is a figure which shows an example of the treatment flow of the sewage in rainy weather of this invention. 本発明の雨天時下水の下水処理フローの一例を示す図である。It is a figure which shows an example of the sewage treatment flow of the sewage in rainy weather of this invention. 本発明の雨天時下水の下水処理フローの一例を示す図である。It is a figure which shows an example of the sewage treatment flow of the sewage in rainy weather of this invention. 本発明の最初沈殿池への高分子凝集剤注入制御フローの一例を示す図である。It is a figure which shows an example of the polymer coagulant injection control flow to the first sedimentation basin of this invention. 本発明の反応タンクへの高分子凝集剤注入制御フローの一例を示す図である。It is a figure which shows an example of the polymer coagulant injection control flow to the reaction tank of this invention.

次に本発明を実施するための形態を図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。また、本明細書において開示される各実施形態の各具体的な特徴は互いに独立するものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜組み合わせることができることが理解されるべきである。例えば、本発明の最初沈殿池での固液分離性能向上を実現する手法と最終沈殿池での固液分離性能向上を実現する手法は当然組み合わせて実施することができる。 Next, a mode for carrying out the present invention will be described in detail with reference to the drawings. It is understood that the present invention is not limited to the following embodiments, and design changes, improvements, etc. may be appropriately made based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be. In addition, each specific feature of each embodiment disclosed in the present specification is not independent of each other, and may be appropriately combined based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that it can be done. For example, the method for improving the solid-liquid separation performance in the first settling basin and the method for improving the solid-liquid separation performance in the final settling basin of the present invention can be naturally combined.

本発明において、被処理水には、下水、し尿、浄化槽汚泥、埋立地浸出水や民間事業所から排出される有機性排水と、合流式下水道の雨天時下水や雨天時下水の最初沈殿池処理水が含まれる。処理の目的は、被処理水の汚濁物質である懸濁物質やCODやBODや大腸菌の除去である。 In the present invention, the treated water includes sewage, human waste, septic tank sludge, organic wastewater discharged from landfill leachate and private business establishments, and first settling of sewage in rainy weather and sewage in rainy weather in a combined sewerage system. Contains water. The purpose of the treatment is to remove suspended solids, COD, BOD and Escherichia coli which are pollutants of the water to be treated.

(凝集補助剤)
本発明において、凝集補助剤として、後述の有機高分子凝集剤又は有機凝結剤などの有機凝集補助剤と、無機凝集剤を好適に用いることができる。凝集補助剤として、有機凝集補助剤が好ましい。なお、本明細書において、バルキング防止剤として使用できるものであっても、凝集効果を有するものは凝集補助剤の概念に含む。
(Coagulation aid)
In the present invention, as the coagulation aid, an organic coagulation aid such as an organic polymer coagulant or an organic coagulant described later and an inorganic coagulant can be preferably used. As the coagulation aid, an organic coagulation aid is preferable. In addition, in this specification, even if it can be used as an anti-bulking agent, the one having an aggregation effect is included in the concept of an aggregation aid.

(有機高分子凝集剤)
本発明において使用できる有機高分子凝集剤(以下、「高分子凝集剤」という。)には荷電状態によってカチオン性、アニオン性、ノニオン性、両イオン性のものがあり、対象となる最初沈殿池処理水や返送汚泥、濃縮汚泥や活性汚泥に合わせて適宜選定すればよい。特に本発明における生物処理で生成する活性汚泥で使用する場合、カチオン性高分子凝集剤、両性の高分子凝集剤から1種以上を選択して使用することが好ましい。高分子凝集剤は1種を単独で使用することもできるが、2種以上を併用することもできる。
(Organic polymer flocculant)
Organic polymer flocculants (hereinafter referred to as "polymer flocculants") that can be used in the present invention include cationic, anionic, nonionic, and amphoteric depending on the charged state, and are the target first sedimentation reservoirs. It may be appropriately selected according to the treated water, returned sludge, concentrated sludge and active sludge. In particular, when used in activated sludge produced by biological treatment in the present invention, it is preferable to select and use one or more of a cationic polymer flocculant and an amphoteric polymer flocculant. One type of polymer flocculant may be used alone, or two or more types may be used in combination.

カチオン性高分子凝集剤とは、カチオン性モノマーを必須成分として有するものであり、カチオン性モノマーの共重合体又はカチオン性モノマーと上記のノニオン性モノマーとの共重合体である。カチオン性モノマーとしては、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレートもしくはこれらの4級アンモニウム塩などや、分子内にアミジン単位を含有するカチオン性高分子凝集剤も使用できる。 The cationic polymer flocculant has a cationic monomer as an essential component, and is a copolymer of a cationic monomer or a copolymer of a cationic monomer and the above-mentioned nonionic monomer. As the cationic monomer, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate or a quaternary ammonium salt thereof, or a cationic polymer flocculant containing an amidine unit in the molecule can also be used. ..

また、本発明の一部の実施形態では、カチオン性モノマー単位、アニオン性モノマー単位及びノニオン性モノマー単位を共重合した両性高分子凝集剤を使用することができる。 Further, in some embodiments of the present invention, an amphoteric polymer flocculant obtained by copolymerizing a cationic monomer unit, an anionic monomer unit and a nonionic monomer unit can be used.

高分子凝集剤の分子量は200万〜1500万の高分子であることが好ましく、粉末品や液状品がある。高分子凝集剤は任意の方法で使用することができるが、粉末品でも液状品でも製品そのままを排水や汚泥に添加すると、高分子凝集剤成分が固化したり、溶解不良で高分子凝集剤の凝集効果が発揮できないので、水溶液で使用する。通常、溶解に時間を要するため、一般に粉末品や液状品は、溶解水である水道水や工業用水や排水処理の処理水等に溶解して、高分子凝集剤溶解液として調整してから使用される。また、高分子凝集剤の溶解濃度は通常0.01〜0.5重量%程度であり、例えば0.1〜0.3重量%とすることができる。 The molecular weight of the polymer flocculant is preferably 2 million to 15 million, and there are powdered products and liquid products. The polymer flocculant can be used by any method, but if the product itself is added to wastewater or sludge, whether it is a powdered product or a liquid product, the polymer flocculant component may solidify or the polymer flocculant may be poorly dissolved. Since it cannot exert the agglutination effect, it is used in an aqueous solution. Since it usually takes time to dissolve, powdered products and liquid products are generally dissolved in dissolved water such as tap water, industrial water, and treated water for wastewater treatment, and prepared as a polymer flocculant solution before use. Will be done. The dissolution concentration of the polymer flocculant is usually about 0.01 to 0.5% by weight, and can be, for example, 0.1 to 0.3% by weight.

(有機凝結剤)
有機凝結剤は高分子凝集剤より高カチオン性で、分子量が100万以下と小さく、液状品が一般的である。有機凝結剤はカチオン性高分子凝集剤等の高分子凝集剤に比べて、その分子量が低いので、その製品の粘度も低い。そのために濃度や粘度調整のための溶解や希釈作業が不要で、製品のまま、使用できる。
(Organic coagulant)
Organic coagulants are more cationic than polymer flocculants, have a small molecular weight of 1 million or less, and are generally liquid products. Since the organic coagulant has a lower molecular weight than a polymer flocculant such as a cationic polymer flocculant, the viscosity of the product is also low. Therefore, there is no need for dissolution or dilution work to adjust the concentration and viscosity, and the product can be used as it is.

有機凝結剤の種類は特に限定されず、公知のものを1種以上使用することができるが、例を挙げると、縮合系ポリアミン、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体などがある。 The type of the organic coagulant is not particularly limited, and one or more known ones can be used, and examples thereof include a condensation polymer, a dicyandiamide / formarin condensate, polyethyleneimine, polyvinylimidazolin, and polyvinylpyridine. Dialylamine salt / sulfur dioxide copolymer, polydimethyldiallylammonium salt, polydimethyldiallylammonium salt / sulfur dioxide copolymer, polydimethyldiallylammonium salt / acrylamide copolymer, polydimethyldiallylammonium salt / diallylamine hydrochloride derivative co-weight There are coalesced and allylamine salt polymers.

縮合系ポリアミンの具体例としては、アルキレンジクロライドとアルキレンポリアミンとの縮合物、アニリンとホルマリンの縮合物、アルキレンジアミンとエピクロルヒドリンとの縮合物、アンモニアとエピクロルヒドリンとの縮合物などが挙げられる。エピクロルヒドリンと縮合するアルキレンジアミンとしては、ジメチルアミン、ジエチルアミン、メチルプロピルアミン、メチルブチルアミン、ジブチルアミンなどが挙げられる。 Specific examples of the condensation polyamine include a condensate of alkylene dichloride and alkylene polyamine, a condensate of aniline and formarin, a condensate of alkylene diamine and epichlorohydrin, and a condensate of ammonia and epichlorohydrin. Examples of the alkylene diamine that condenses with epichlorohydrin include dimethylamine, diethylamine, methylpropylamine, methylbutylamine, dibutylamine and the like.

(バルキング防止剤)
本発明の一部の実施形態において、さらに返送汚泥及び/又は濃縮汚泥の一部にバルキング防止剤を添加することが好ましい。
(Anti-bulking agent)
In some embodiments of the present invention, it is preferable to further add an anti-bulking agent to a part of the returned sludge and / or the concentrated sludge.

バルキング防止剤は、糸状菌によるバルキングに対応するための薬剤で、返送汚泥及び/又は濃縮汚泥の一部に添加することができる。本発明に適用できるバルキング防止剤は、その分子量が5000〜1500万であることが好ましい。したがって、本発明の一部の実施形態においてバルキング防止剤を返送汚泥及び/又は濃縮汚泥の一部に添加することが好ましく、特に、反応タンクの最終段に返送すべき返送汚泥及び/又は濃縮汚泥の一部に添加することが好ましい。 The anti-bulking agent is an agent for dealing with bulking caused by filamentous fungi, and can be added to a part of returned sludge and / or concentrated sludge. The anti-bulking agent applicable to the present invention preferably has a molecular weight of 5000 to 15 million. Therefore, in some embodiments of the present invention, it is preferable to add an anti-bulking agent to a part of the returned sludge and / or the concentrated sludge, and in particular, the returned sludge and / or the concentrated sludge to be returned to the final stage of the reaction tank. It is preferable to add it to a part of.

バルキング防止剤には、殺菌剤で、殺菌効果が高い4級アンモニウム塩である塩化ベンザルコニウム、塩化ベンゼトニウム及びこれらの混合物、カチオン性高分子凝集剤、有機凝結剤などがある。殺菌剤は、バルキングの原因である糸状菌の鞘状体の収縮や切断、溶菌することで、バルキングが緩和されたり、解消されたりする。なお、カチオン性高分子凝集剤や有機凝結剤は糸状菌を含む活性汚泥を凝集することができるので、沈降性が改善される。 Anti-bulking agents include benzalkonium chloride, benzethonium chloride and mixtures thereof, which are bactericidal agents and are quaternary ammonium salts having a high bactericidal effect, cationic polymer flocculants, and organic coagulants. The bactericidal agent contracts, cuts, and lyses the sheath of the filamentous fungus that causes bulking, thereby alleviating or eliminating bulking. Since the cationic polymer flocculant and the organic coagulant can aggregate activated sludge containing filamentous fungi, the sedimentation property is improved.

カチオン性及び両性高分子凝集剤及び有機凝結剤は、本発明において凝集補助剤として扱うため、好ましい実施形態において添加されるバルキング防止剤は、凝集補助剤以外のバルキング防止剤をいう。 Since the cationic and amphoteric polymer flocculants and the organic coagulant are treated as coagulation aids in the present invention, the anti-bulking agent added in the preferred embodiment means an anti-bulking agent other than the anti-aggregation agent.

(沈殿装置)
本発明において、本発明の効果を達成できる限り、沈殿装置の構成は特に限定されないが、本発明を適用できる一般的な沈殿装置の構造等について、以下のように説明する。
(Precipitation device)
In the present invention, the configuration of the settling device is not particularly limited as long as the effect of the present invention can be achieved, but the structure and the like of a general settling device to which the present invention can be applied will be described as follows.

生物処理後の活性汚泥を含む混合液の固液分離の沈殿装置には、横流式沈殿池と、上向流式沈殿槽がある。一般的には、横流式沈殿池は下水処理の固液分離に、上向流式沈殿槽は民間事業所排水処理の固液分離に使用される。 The settling device for solid-liquid separation of the mixed liquid containing activated sludge after biological treatment includes a cross-flow type settling basin and an upward-flow type settling tank. Generally, the cross-flow sedimentation basin is used for solid-liquid separation of sewage treatment, and the upward-flow sedimentation tank is used for solid-liquid separation of wastewater treatment of private business establishments.

横流式沈殿池は、横流式沈殿池の流入部から流入水が流入し、反対側の処理水の流出部までに到達する間に凝集フロックやSSが沈降し、固液分離される。処理水の流れ方向はおおよそ水平方向である。 In the cross-flow type settling basin, inflow water flows in from the inflow part of the cross-flow type settling basin, and aggregated flocs and SS settle while reaching the outflow part of the treated water on the opposite side, and solid-liquid separation is performed. The flow direction of the treated water is approximately horizontal.

上向流式沈殿槽は、上向流式沈殿槽の中心部のセンターウエルに流入水を導き、センターウエル下部から沈殿槽全体に均等に流出させて、処理水と汚泥に固液分離させる。処理水の流れ方向はおおよそ上向きである。 The upward flow type settling tank guides the inflow water to the center well in the center of the upward flow type settling tank, and evenly flows out from the lower part of the center well to the entire settling tank, and separates the treated water and sludge into solid and liquid. The flow direction of the treated water is approximately upward.

図5に、本発明の雨天時下水の処理フローの一例で、最初沈殿池での固液分離性能向上を実現する手法を示す。 FIG. 5 shows an example of the treatment flow of sewage in rainy weather of the present invention, and shows a method for improving the solid-liquid separation performance in the first settling basin.

図5に示されるように、最終沈殿池の返送汚泥と凝集補助剤を返送汚泥配管や返送汚泥配管途中に設けた混合槽で混合し、凝集補助剤を含む返送汚泥を雨天時下水と混合して、最初沈殿池で固液分離し、雨天時下水の汚濁物質であるSS、COD、BOD、大腸菌を返送汚泥とともに初沈汚泥として除去する。 As shown in FIG. 5, the return sludge of the final settling pond and the coagulation auxiliary agent are mixed in the return sludge pipe and the mixing tank provided in the middle of the return sludge pipe, and the return sludge containing the coagulation auxiliary agent is mixed with the sewage in rainy weather. First, solid-liquid separation is performed in the settling pond, and SS, COD, BOD, and Escherichia coli, which are pollutants of sewage in rainy weather, are removed as the first settled sludge together with the returned sludge.

最初沈殿池処理水は、消毒等を行って、公共用水域に放流することができる。あるいは、最初沈殿池処理水は、反応タンクに流入して、従来通りに反応タンク前段部に返送される返送汚泥の活性汚泥によって反応タンクで生物処理される。活性汚泥混合液は最終沈殿池で固液分離されて汚泥と、処理水となり、汚泥は返送汚泥と余剰汚泥になり、処理水は消毒後に放流されるか、又は高度処理されて有効活用される。 Initially, the treated water from the settling basin can be disinfected and discharged into public water areas. Alternatively, the first settling basin treated water flows into the reaction tank and is biologically treated in the reaction tank by the activated sludge of the returned sludge that is returned to the front stage of the reaction tank as before. The activated sludge mixture is solid-liquid separated in the final settling pond to become sludge and treated water, the sludge becomes returned sludge and surplus sludge, and the treated water is discharged after disinfection or is highly treated and effectively utilized. ..

最初沈殿池の前段部で、雨天時下水と凝集補助剤が添加された返送汚泥を混合して、最初沈殿池で処理水と、汚泥に固液分離する。最初沈殿池処理水は、生物処理工程をバイパスして(図示では反応タンク(1)〜(4)においてバイパスして行われる)、消毒後に公共用水域に放流される。汚泥は、初沈汚泥として、濃縮されたり、余剰汚泥と混合して、脱水や汚泥消化がなされる。 In the front part of the first settling basin, sewage in rainy weather and returned sludge to which a coagulation aid is added are mixed, and the treated water and sludge are separated into solid and liquid in the first settling basin. Initially, the settling basin treated water is discharged to a public water area after disinfection by bypassing the biological treatment step (in the figure, it is performed by bypassing in the reaction tanks (1) to (4)). The sludge is concentrated as initial sludge or mixed with excess sludge for dehydration and sludge digestion.

また、最初沈殿池の処理水は後段の生物処理工程の反応タンクに流入させて、反応タンクの活性汚泥で生物処理されて、活性汚泥によって雨天時下水の汚濁物質であるSS、COD、BOD、大腸菌が除去される。反応タンクの活性汚泥混合液は反応タンクの最後段から流出して、その先の最終沈殿池で処理水と汚泥に固液分離され、処理水は放流されるか、又は高度処理される。汚泥の一部又は全部は、反応タンクの活性汚泥濃度(MLSS:Mixed Liquor Suspended Solids)を維持するために、返送汚泥として反応タンク(1)の最前段部に返送される。また、最終沈殿池で固液分離される汚泥の一部は、余剰汚泥として濃縮や脱水される。 In addition, the treated water in the first settling pond is flowed into the reaction tank of the biological treatment step in the subsequent stage, and is biologically treated with the activated sludge in the reaction tank. Escherichia coli is removed. The activated sludge mixture in the reaction tank flows out from the final stage of the reaction tank, is solid-liquid separated into treated water and sludge in the final settling basin, and the treated water is discharged or highly treated. A part or all of the sludge is returned to the front stage portion of the reaction tank (1) as a return sludge in order to maintain the activated sludge concentration (MLSS: Mixed Liquor Suspended Solids) of the reaction tank. In addition, a part of the sludge that is solid-liquid separated in the final settling basin is concentrated or dehydrated as excess sludge.

最初沈殿池では雨天時下水から汚濁物質が除去され、反応タンク流入水の汚濁物質負荷量が低減された雨天時下水を反応タンクで生物処理できるので、汚濁物質の濃度変動の激しい雨天時下水でも生物処理水の水質が安定し良好に生物処理ができる。 In the first settling basin, pollutants are removed from the sewage in rainy weather, and the sewage in rainy weather with a reduced pollutant load in the reaction tank can be biologically treated in the reaction tank. The quality of biologically treated water is stable and good biological treatment is possible.

最終沈殿池から引き抜かれた汚泥は2系統の返送汚泥ラインで、最初沈殿池の前段(図中の返送汚泥[2])と、反応タンクの最前段(図中の返送汚泥[1])にそれぞれ返送される。最終沈殿池から引き抜かれた残りの汚泥は余剰汚泥として濃縮や脱水などの汚泥処理がされる。 The sludge extracted from the final settling basin is a two-system return sludge line, which is in the front stage of the first settling basin (return sludge [2] in the figure) and the front stage of the reaction tank (return sludge [1] in the figure). Each will be returned. The remaining sludge drawn from the final settling basin is treated as excess sludge by sludge treatment such as concentration and dehydration.

雨天時下水に添加する凝集補助剤の他に市販のポリ鉄や硫酸バンドなどの無機凝集剤が使用できるが、有機物主体の汚濁物質には無機凝集剤より有機物や活性汚泥の凝集性に優れた有機凝集補助剤が有効である。 Inorganic flocculants such as commercially available polyiron and sulfate bands can be used in addition to the flocculation aids added to sewage in rainy weather, but organic matter-based pollutants have better coagulation of organic matter and activated sludge than inorganic flocculants. Organic aggregation aids are effective.

雨天時下水に高分子凝集剤又は有機凝結剤等を含む返送汚泥を添加し、最初沈殿池でSSやBOD等が除去された雨天時下水は、最初沈殿池処理水として、反応タンクを経由せずに、公共用水域に放流することができる。最初沈殿池でSSやBODが除去された最初沈殿池処理水は、雨天時下水や雨天時下水を単に最初沈殿池で沈殿処理した最初沈殿池処理水より水質が良好で、公共用水域へ放流される放流水の汚濁物質負荷量が大幅に低減できる。 Return sludge containing a polymer flocculant or an organic coagulant is added to the sewage in rainy weather, and the SS and BOD are removed in the first settling basin. It can be discharged into public water areas without the need for it. The first settling basin treated water from which SS and BOD have been removed in the first settling basin has better water quality than the first settling basin treated water in which sewage in rainy weather or sewage in rainy weather is simply settled in the first settling basin, and is discharged to public water areas. The pollutant load of the discharged water can be significantly reduced.

雨天時下水の汚濁物質で、溶解性有機物である溶解性BODや溶解性CODは最終沈殿池から返送される返送汚泥に吸着するので、雨天時下水から溶解性BODは最初沈殿池の引抜汚泥(以下、初沈汚泥)として除去される。一方、雨天時下水のSSや、不溶解性有機物である不溶解性BODや不溶解性COD及び大腸菌は、凝集補助剤を含む返送汚泥表面に吸着、付着して取り込まれて、初沈汚泥として除去される。 Soluble BOD and soluble COD, which are pollutants of sewage in rainy weather and are soluble organic substances, are adsorbed on the returned sludge returned from the final sedimentation pond. Hereinafter, it is removed as the first sedimentation sludge). On the other hand, SS of sewage in rainy weather, insoluble BOD, insoluble COD, and Escherichia coli, which are insoluble organic substances, are adsorbed and adhered to the surface of the returned sludge containing a coagulation aid, and are taken up as initial sludge. Will be removed.

雨天時下水の汚濁物質を取り込んだ初沈汚泥は、余剰汚泥と共に脱水して、下水汚泥燃料に、又は、消化やメタン発酵で汚泥の減量化やガス化が行われる。 Initially settled sludge that has taken in pollutants from sewage in rainy weather is dehydrated together with excess sludge and used as sewage sludge fuel, or sludge is reduced or gasified by digestion or methane fermentation.

本実施形態において、従来以上に雨天時下水の汚濁物質が除去されると、反応タンク流入水である最初沈殿池処理水のBOD濃度が低い値になるので、活性汚泥処理における反応タンクのMLSS濃度を低くして運転することができるので返送汚泥の返送流量が削減でき、その動力費が低減できる。また、最初沈殿池処理水のBOD濃度とMLSS濃度を低いので、空気量を削減でき、ブロワ動力費低減が達成できる。 In the present embodiment, when the pollutant of the sewage in rainy weather is removed more than before, the BOD concentration of the first settling pond treated water which is the inflow water of the reaction tank becomes a low value, so that the MLSS concentration of the reaction tank in the activated sludge treatment becomes low. Since the operation can be performed at a low level, the return flow rate of the returned sludge can be reduced, and the power cost thereof can be reduced. Further, since the BOD concentration and the MLSS concentration of the first settling basin treated water are low, the amount of air can be reduced and the blower power cost can be reduced.

本実施形態においては、既存の引抜汚泥ポンプとは別に、最初沈殿池前段に返送汚泥を返送する返送汚泥ポンプと最初沈殿池前段への返送用の配管等を別途配備する(図示では返送汚泥[2])。 In the present embodiment, separately from the existing drawn sludge pump, a return sludge pump that returns the return sludge to the first stage of the settling basin and a pipe for returning to the first stage of the first settling basin are separately provided (in the figure, the return sludge [return sludge [ 2]).

引抜汚泥ポンプのほかに返送汚泥ポンプ等を配備する理由は、1台の引抜汚泥ポンプだけで最初沈殿池前段と反応タンクに返送汚泥を返送すると、返送汚泥流量の調整が難しいためである。引抜汚泥ポンプがすでに複数台配備されている場合には、その1台を最初沈殿池前段に返送するための返送汚泥ポンプとすることができる。 The reason for deploying a return sludge pump or the like in addition to the drawn sludge pump is that it is difficult to adjust the returned sludge flow rate when the returned sludge is first returned to the first stage of the settling basin and the reaction tank with only one drawn sludge pump. If a plurality of drawn sludge pumps have already been deployed, one of them can be used as a return sludge pump for first returning to the front stage of the settling basin.

返送汚泥の最初沈殿池前段とは、雨天時下水流入管渠から最初沈殿池流入部までである。最初沈殿池流入部とは、流入水の流入部から固液分離部直前までであり、具体的には横流式沈殿池では流入管渠から整流部まで(整流部を含む)、上向流式沈殿槽は流入(原水)配管からセンターウエルまで(センターウエルを含む)である。 The first stage of the return sludge is from the sewage inflow pipe to the inflow part of the first settling basin in rainy weather. The first settling basin inflow part is from the inflow part of the inflow water to just before the solid-liquid separation part. The settling basin is from the inflow (raw water) pipe to the center well (including the center well).

凝集補助剤の添加場所として、返送汚泥ポンプの吸込部や吐出部や返送汚泥配管の途中に設けたラインミキサーや混合槽に添加しても良い。返送汚泥配管の途中に設けた混合槽の撹拌は、機械撹拌でも返送汚泥による水流による撹拌でもよい。 As a place to add the coagulation auxiliary agent, it may be added to a line mixer or a mixing tank provided in the suction part or discharge part of the return sludge pump or in the middle of the return sludge piping. The stirring of the mixing tank provided in the middle of the return sludge piping may be mechanical stirring or stirring by a water flow of the return sludge.

返送汚泥配管の途中に設けた混合槽での返送汚泥の滞留時間は撹拌方法や撹拌強度、凝集沈殿汚泥の返送流量やその濃度で変化するが、例えば0.2〜3分間とすることができる。滞留時間が0.2分以上であれば凝集補助剤と返送汚泥の混合が十分となる。一方、滞留時間が3分間以下であれば、返送汚泥配管の途中に設けた混合槽内に返送汚泥の凝集物が堆積する可能性や最初沈殿池流入部での凝集性が低下する可能性が低く抑えることができる。 The residence time of the returned sludge in the mixing tank provided in the middle of the returned sludge piping varies depending on the stirring method, stirring strength, return flow rate of the coagulated sediment sludge and its concentration, but can be, for example, 0.2 to 3 minutes. .. If the residence time is 0.2 minutes or more, the mixing of the coagulation aid and the returned sludge is sufficient. On the other hand, if the residence time is 3 minutes or less, there is a possibility that agglomerates of the return sludge may be accumulated in the mixing tank provided in the middle of the return sludge piping and the cohesiveness at the inflow part of the first settling basin may be lowered. It can be kept low.

返送汚泥に凝集補助剤を最適量で添加して最初沈殿池前段に返送すれば、さらに凝集補助剤を追加添加する必要はない。追加添加しても最初沈殿池前段や最初沈殿池内部で凝集補助剤の分散均一化に時間がかかるので、かえって処理性が低下する可能性がある。 If the coagulation aid is added in the optimum amount to the returned sludge and first returned to the stage before the settling basin, there is no need to add an additional coagulation aid. Even if additional addition is made, it takes time to make the dispersal auxiliary agent uniform in the pre-stage of the first settling basin and inside the first settling basin, so the processability may be deteriorated.

最初沈殿池に流入する雨天時下水に添加する返送汚泥濃度は雨天時下水量に対するSS濃度は、50〜1000mg/Lとすることが好ましく、100〜500mg/Lとすることがより好ましい。 The concentration of the returned sludge added to the sewage in the rainy weather that initially flows into the settling basin is preferably 50 to 1000 mg / L, more preferably 100 to 500 mg / L with respect to the amount of sewage in the rainy weather.

また、雨天時下水の一般的なSS濃度を100mg/Lと仮定し、返送汚泥濃度/雨天時下水のSS濃度の比は0.5〜10とすることが好ましく、1〜5がより好ましい。 Further, assuming that the general SS concentration of sewage in rainy weather is 100 mg / L, the ratio of the return sludge concentration / SS concentration of sewage in rainy weather is preferably 0.5 to 10, more preferably 1 to 5.

上記返送汚泥濃度/雨天時下水のSS濃度の比の好適範囲は、雨天時下水の一般的なSS濃度100mg/Lを考慮して定められたものである。返送汚泥濃度/雨天時下水のSS濃度の比が、0.5以上であれば、最初沈殿池での固液分離が容易になる。すなわち、雨天時下水のSS濃度に対する返送汚泥濃度が十分に高い。雨天時下水のSSや溶解性BODなどを吸着や付着させるための返送汚泥の活性汚泥が十分であるためである。一方、返送汚泥濃度/雨天時下水のSS濃度の比が、10以下であれば、最初沈殿池流入水のSS濃度が高まるので最初沈殿池での固液分離が難しくなる可能性を低く抑えることができる。つまり、返送汚泥濃度が加味されて最初沈殿池流入水のSS濃度が高まると、最初沈殿池で流入SSに起因する汚泥が堆積し、汚泥界面が上昇して、最初沈殿池処理水に汚泥に起因するSSが流出することがあるので、返送汚泥濃度/雨天時下水のSS濃度の比が、10以下であることが好ましい。 The preferable range of the ratio of the return sludge concentration / SS concentration of sewage in rainy weather is determined in consideration of the general SS concentration of 100 mg / L of sewage in rainy weather. When the ratio of the return sludge concentration / SS concentration of sewage in rainy weather is 0.5 or more, solid-liquid separation in the first settling basin becomes easy. That is, the return sludge concentration is sufficiently high with respect to the SS concentration of sewage in rainy weather. This is because the activated sludge of the returned sludge for adsorbing and adsorbing SS and soluble BOD of sewage in rainy weather is sufficient. On the other hand, if the ratio of the return sludge concentration / SS concentration of sewage in rainy weather is 10 or less, the SS concentration of the inflow water of the first settling basin will increase, so the possibility that solid-liquid separation in the first settling basin will be difficult should be kept low. Can be done. In other words, when the SS concentration of the first settling pond inflow water increases in consideration of the returned sludge concentration, sludge caused by the inflow SS accumulates in the first settling pond, the sludge interface rises, and the sludge becomes sludge in the first settling pond treated water. Since the resulting SS may flow out, the ratio of the return sludge concentration / the SS concentration of the sewage in rainy weather is preferably 10 or less.

また、最初沈殿池に流入する雨天時下水への凝集補助剤添加率は返送汚泥の汚泥重量、すなわちSSに対して、0.05〜5.0重量%対SSとすることが好ましく、0.5〜3.0重量%対SSとすることがより好ましい。 Further, the addition rate of the coagulation aid to the sewage in the rainy weather that initially flows into the settling basin is preferably 0.05 to 5.0% by weight with respect to the sludge weight of the returned sludge, that is, SS, and 0. More preferably, it is 5 to 3.0% by weight vs. SS.

従来のように、最初沈殿池流入部に凝集補助剤を注入する場合は、凝集補助剤注入率は雨天時下水量に対する凝集補助剤の重量(mg/L)により算出されたが、本発明のように、凝集補助剤を返送汚泥に添加する場合には、凝集補助剤添加率として汚泥処理の脱水等で使用されている「重量%対SS」を指標とするのが好適である。本発明において、凝集補助剤は雨天時下水のSSや返送汚泥の汚泥粒子の凝集を行うもので、SS等の固形物重量に対して、凝集補助剤の添加率が決められるべきものである。水量に対する凝集補助剤の注入率、mg/LではSSや汚泥の固形物が考慮されていない。 When the coagulation aid is first injected into the inflow portion of the sedimentation basin as in the prior art, the coagulation aid injection rate was calculated by the weight of the coagulation aid (mg / L) with respect to the amount of sewage in rainy weather. As described above, when the coagulation auxiliary agent is added to the returned sludge, it is preferable to use "% by weight vs. SS" used for dehydration of sludge treatment as an index as the coagulation auxiliary agent addition rate. In the present invention, the agglutination auxiliary agent agglomerates the sludge particles of SS of sewage in rainy weather and sludge returned sludge, and the addition rate of the agglutination auxiliary agent should be determined with respect to the weight of solid matter such as SS. The injection rate of the coagulation aid to the amount of water, mg / L, does not consider SS or sludge solids.

返送汚泥のSSを含む最初沈殿池流入部のSS濃度は返送汚泥の返送条件で変化するので、雨天時下水量に対する凝集補助剤の重量(単位としてはmg/L被処理水)では凝集補助剤注入量の適正な管理や制御ができない。 Since the SS concentration in the inflow part of the first settling basin including the SS of the returned sludge changes depending on the return conditions of the returned sludge, the weight of the coagulation aid (in mg / L treated water as the unit) with respect to the amount of sewage in rainy weather is the coagulation aid. Proper control and control of injection volume is not possible.

汚泥濃度の指標としてSS(懸濁物質)やTS(Total Solids:全蒸発残留物)がある。また、下水のような溶解塩類濃度(食塩などの溶解塩類濃度)が低い汚泥ではSSとTSの測定値は同じであるが、溶解塩類濃度が高いし尿処理などでは汚泥のSSとTSの数値が異なる場合、汚泥濃度はSSを採用する。 There are SS (suspended solids) and TS (Total Solids: total evaporation residue) as indicators of sludge concentration. In addition, the measured values of SS and TS are the same for sludge with a low concentration of dissolved salts (concentration of dissolved salts such as salt) such as sewage, but the values of SS and TS of sludge are high for urine treatment with a high concentration of dissolved salts. If different, the sludge concentration adopts SS.

なお、本発明において、SS及びTSは以下の定義に従う。
SS:JIS K 0102:2019 工場排水試験方法 14.1 懸濁物質
TS:JIS K 0102:2019 工場排水試験方法 14.2 全蒸発残留物
In the present invention, SS and TS follow the following definitions.
SS: JIS K 0102: 2019 Factory effluent test method 14.1 Suspended solids TS: JIS K 0102: 2019 Factory effluent test method 14.2 Total evaporation residue

図6に本発明の雨天時下水活性汚泥処理方法の処理フローの別の一例を示す。最終沈殿池での固液分離性能向上を実現する手法である。 FIG. 6 shows another example of the treatment flow of the sewage activated sludge treatment method in rainy weather of the present invention. This is a method to improve the solid-liquid separation performance in the final settling basin.

最初沈殿池処理水の1Qを反応タンクの1槽目(反応タンク(1))に流入させて、最終沈殿池からの返送汚泥を従来通りに1槽目に返送する。最初沈殿池処理水の2Qを反応タンクの最終段(図示では4槽目であるが、4槽に限定されない。)にも流入させて、最終沈殿池からの返送汚泥も最終段に返送する(図中の返送汚泥[2])。最終段である4槽目に返送する返送汚泥には凝集補助剤を添加する。凝集補助剤は混合槽又は返送配管に添加されて、反応タンクの最終段である4槽目に入るまでに、返送汚泥と凝集補助剤が混合均一化される。最終沈殿池に最初沈殿池処理水3Qを含む活性汚泥混合液が流入するが、返送汚泥に凝集補助剤が付着しているために、凝集性と沈降濃縮性が良好で、最終沈殿池で汚泥と処理水に固液分離しやすい。 First, 1Q of the settling basin treated water is made to flow into the first tank (reaction tank (1)) of the reaction tank, and the sludge returned from the final settling basin is returned to the first tank as before. The 2Q of the first settling basin treated water is also flowed into the final stage of the reaction tank (the fourth tank in the figure, but not limited to the fourth tank), and the sludge returned from the final settling basin is also returned to the final stage (the sludge returned from the final settling basin is also returned to the final stage). Return sludge in the figure [2]). A coagulation aid is added to the returned sludge returned to the fourth tank, which is the final stage. The agglutination aid is added to the mixing tank or the return pipe, and the return sludge and the agglutination aid are mixed and homogenized by the time it enters the fourth tank, which is the final stage of the reaction tank. Activated sludge mixture containing 3Q of treated water from the first settling basin flows into the final settling basin, but the sludge in the final settling basin has good cohesiveness and sedimentation concentration due to the adhesion auxiliary agent attached to the returned sludge. It is easy to separate solid and liquid into treated water.

反応タンクへの凝集補助剤を含む返送汚泥の添加場所は、最終段の反応タンクや最終段の反応タンクの活性汚泥混合液流出部から最終沈殿池までの流入管渠や配管でもよい。 The place where the returned sludge containing the coagulation auxiliary agent is added to the reaction tank may be an inflow pipe or a pipe from the activated sludge mixed liquid outflow portion of the final stage reaction tank or the final stage reaction tank to the final settling basin.

最終段の反応タンクの活性汚泥混合液の活性汚泥の凝集には最終段の反応タンクに返送する返送汚泥重量当たりの凝集補助剤添加重量比と、活性汚泥混合液と凝集補助剤を含む返送汚泥との混合時間と撹拌強度が重要である。撹拌強度は反応タンクでの空気撹拌や配管流速による撹拌で十分である。混合時間は3分間〜3時間が好ましい。3分間以上であれば活性汚泥の凝集は十分で、3時間以内に収まることで、活性汚泥の凝集体の再分散を防止できる。 For the aggregation of activated sludge in the activated sludge mixture in the final stage reaction tank, the weight ratio of the added aggregate auxiliary agent per weight of the returned sludge returned to the final stage reaction tank, and the returned sludge containing the activated sludge mixture and the aggregated auxiliary agent. Mixing time with and stirring strength are important. As for the stirring strength, air stirring in the reaction tank or stirring by the pipe flow rate is sufficient. The mixing time is preferably 3 minutes to 3 hours. Aggregation of activated sludge is sufficient for 3 minutes or more, and if it is contained within 3 hours, redispersion of aggregates of activated sludge can be prevented.

図7に本発明の雨天時下水の処理フローの別の一例を示す。最初沈殿池での固液分離性能向上を実現する手法である。 FIG. 7 shows another example of the treatment flow of sewage in rainy weather of the present invention. This is a method to improve the solid-liquid separation performance in the first settling basin.

図7では、最初沈殿池前段で、雨天時下水と凝集補助剤が添加された余剰汚泥の濃縮汚泥が混合され、最初沈殿池で固液分離され、雨天時下水の汚濁物質であるBODやCODや大腸菌やSSが除去される。雨天時下水から汚濁物質が除去されて、負荷が低減された雨天時下水は反応タンクで生物処理される。図示では反応タンクは(1)〜(4)の4槽構造であるが、これに限定されない。最終沈殿池で処理水と汚泥に固液分離され、処理水は放流され、又は高度処理される。最終沈殿池から引き抜かれる汚泥は返送汚泥と余剰汚泥とし、返送汚泥は反応タンクに返送される。余剰汚泥は濃縮されて濃縮汚泥になり、その一部は前述のように凝集補助剤を添加、混合されて、最初沈殿池の前段に返送されるが、凝集補助剤が添加されない残りの部分は汚泥処理される。 In FIG. 7, in the first stage of the settling basin, sewage in rainy weather and concentrated sludge of excess sludge to which a coagulation aid is added are mixed, solid-liquid separated in the first settling basin, and BOD and COD which are pollutants of sewage in rainy weather. And Escherichia coli and SS are removed. The pollutants are removed from the sewage in rainy weather, and the sewage in rainy weather with reduced load is biologically treated in the reaction tank. In the figure, the reaction tank has a four-tank structure of (1) to (4), but is not limited to this. In the final settling basin, the treated water and sludge are separated into solid and liquid, and the treated water is discharged or highly treated. The sludge drawn from the final settling basin is returned sludge and excess sludge, and the returned sludge is returned to the reaction tank. Excess sludge is concentrated into concentrated sludge, and a part of it is added and mixed with agglutination aid as described above and first returned to the front stage of the settling basin, but the rest without the agglutination aid is added. Sludge is treated.

余剰汚泥の濃縮や脱水などの汚泥処理において、余剰汚泥は重力濃縮や機械濃縮されて、脱水される。これらの余剰汚泥の濃縮汚泥の一部に凝集補助剤を添加することで、最初沈殿池の前段で、雨天時下水と混合して、最初沈殿池での固液分離性を向上させることができる。また、余剰汚泥の濃縮汚泥は、余剰汚泥や返送汚泥より汚泥濃度が高く、そのために、返送汚泥を返送するより、余剰汚泥の濃縮汚泥を返送したほうが、その返送流量が少なくて済む。 In sludge treatment such as concentration and dehydration of excess sludge, excess sludge is concentrated by gravity or mechanically and dehydrated. By adding a coagulation aid to a part of the concentrated sludge of these surplus sludges, it is possible to improve the solid-liquid separability in the first settling basin by mixing it with sewage in rainy weather at the stage before the first settling basin. .. Further, the concentrated sludge of the surplus sludge has a higher sludge concentration than the surplus sludge and the returned sludge, and therefore, the return flow rate of the concentrated sludge of the surplus sludge is smaller than that of the returned sludge.

最初沈殿池前段に返送するのが余剰汚泥の濃縮汚泥であるので、最初沈殿池の前段への返送条件(具体的には最初沈殿池流入部のSS濃度、凝集補助剤添加率などである。)は図5に示される実施形態と同様である。 Since it is the concentrated sludge of excess sludge that is returned to the first stage of the first settling basin, the conditions for returning it to the first stage of the first settling basin (specifically, the SS concentration of the inflow part of the first settling basin, the addition rate of the coagulation aid, etc.). ) Is the same as the embodiment shown in FIG.

最終沈殿池から引き抜かれた余剰汚泥は、それ単独で濃縮後に初沈汚泥と混合されて脱水されるか、又は余剰汚泥を濃縮せずに脱水される。 The excess sludge drawn from the final settling basin is either concentrated by itself and then mixed with the initial settling sludge and dehydrated, or the excess sludge is dehydrated without being concentrated.

本発明において、余剰汚泥の濃縮汚泥とは初沈汚泥と混合されずに余剰汚泥を単独で濃縮したものである。余剰汚泥以外の初沈汚泥の混ざった汚泥では、活性汚泥が少ないので、本発明の最初沈殿池や生物処理への返送はできない。時間経過と共に余剰汚泥や余剰汚泥の濃縮汚泥は腐敗するので、最初沈殿池や生物処理への返送に当たっては、それを曝気してから返送することが好ましい。曝気は散気管やポンプ循環による酸素供給など任意の方法でよい。また、雨天時下水処理のような緊急時に使用することを目的貯留しても分解性が低く保存性のよい硝酸塩や亜硝酸塩、過酸化水素などの酸化物の添加による余剰汚泥や余剰汚泥の濃縮汚泥の腐敗防止も有効である。 In the present invention, the concentrated sludge of the surplus sludge is a sludge concentrated alone without being mixed with the initial sludge. Sludge mixed with initial sludge other than surplus sludge cannot be returned to the initial settling basin or biological treatment of the present invention because the amount of activated sludge is small. Since excess sludge and concentrated sludge of excess sludge will decay over time, it is preferable to first aerate them before returning them to a settling basin or biological treatment. Aeration may be performed by any method such as oxygen supply by a diffuser pipe or pump circulation. In addition, for the purpose of use in emergencies such as sewage treatment in rainy weather, the concentration of excess sludge and excess sludge by adding oxides such as nitrates, nitrites, and hydrogen peroxide, which are low in decomposition and have good storage stability even when stored. Preventing sludge from decaying is also effective.

酸化物の製品としての注入率は、余剰汚泥の濃縮汚泥流量に対して、50〜1000mg/Lで、好ましくは100〜500mg/Lである。50mg/L以上であれば、余剰汚泥の濃縮汚泥が好気的になる。1000mg/L以下であれば、酸化物の製品貯蔵量の過度の増大や、注入設備の過大化を回避できる。 The injection rate of the oxide as a product is 50 to 1000 mg / L, preferably 100 to 500 mg / L with respect to the flow rate of the concentrated sludge of the excess sludge. If it is 50 mg / L or more, the concentrated sludge of excess sludge becomes aerobic. If it is 1000 mg / L or less, it is possible to avoid an excessive increase in the product storage amount of the oxide and an excessive increase in the injection equipment.

上記酸化物の添加は、本発明の凝集補助剤の添加前に行う。つまり、余剰汚泥の濃縮汚泥の返送汚泥ポンプの吸込部や吐出部に酸化物の製品を添加することで、余剰汚泥の濃縮汚泥と酸化物との反応性が高いので、凝集補助剤の添加までに余剰汚泥の濃縮汚泥が好気的になり、上記酸化物が残留しない。 The above oxide is added before the addition of the coagulation aid of the present invention. In other words, by adding an oxide product to the suction part and discharge part of the sludge pump that returns concentrated sludge of excess sludge, the reactivity between the concentrated sludge of excess sludge and the oxide is high, so even the addition of a coagulation aid. The concentrated sludge of excess sludge becomes aerobic, and the above oxide does not remain.

余剰汚泥の濃縮は無薬注方式と、既設の濃縮工程で高分子凝集剤を余剰汚泥に添加して濃縮する方式がある。また、重力式濃縮槽や機械式濃縮槽、例えば、遠心濃縮機やベルト型ろ過濃縮機で濃縮する方法がある。 There are two methods for concentrating excess sludge: a chemical-free injection method and a method in which a polymer flocculant is added to the excess sludge in the existing concentration process to concentrate the sludge. Further, there is a method of concentrating with a gravity type concentrating tank or a mechanical type concentrating tank, for example, a centrifugal concentrator or a belt type filtration concentrator.

濃縮汚泥濃度は薬注や無薬注の違いによっても、濃縮方法によっても異なるが、1〜3重量%が一般的である。濃縮で高分子凝集剤を使用し、高分子凝集剤を含む濃縮汚泥を最初沈殿池前段に返送する場合にも、最初沈殿池で雨天時下水が良好に固液分離できる凝集補助剤を選定、使用すべきである。 The concentration of concentrated sludge varies depending on the difference between chemical injection and non-chemical injection and the concentration method, but is generally 1 to 3% by weight. Even when a polymer flocculant is used for concentration and the concentrated sludge containing the polymer flocculant is returned to the first stage of the settling basin, a coagulation aid that can sewage in rainy weather can be separated into solid and liquid well in the first settling basin. Should be used.

図8に本発明の雨天時下水の処理フローの別の一例を示す。最終沈殿池での固液分離性能向上を実現する手法である。 FIG. 8 shows another example of the treatment flow of sewage in rainy weather of the present invention. This is a method to improve the solid-liquid separation performance in the final settling basin.

図8に示される実施形態では、既存の返送汚泥の返送の他に、別の返送汚泥設備を設け、その返送汚泥に凝集補助剤を添加し、反応タンクの最終段に返送汚泥を返送する。最終段の反応タンクで凝集補助剤を含む返送汚泥と最終段反応タンク内の活性汚泥が混合し、沈降性の良い凝集フロックが生成して、最終沈殿池での固液分離性が向上することができる。 In the embodiment shown in FIG. 8, in addition to the existing return sludge return, another return sludge facility is provided, a coagulation aid is added to the return sludge, and the return sludge is returned to the final stage of the reaction tank. In the final stage reaction tank, the returned sludge containing the coagulation aid and the activated sludge in the final stage reaction tank are mixed to generate coagulated flocs with good settling property, and the solid-liquid separability in the final settling basin is improved. Can be done.

反応タンク最前段に返送される既存の返送汚泥に凝集補助剤を添加しても良いが、最終沈殿池に流入するまでに反応タンク内の強い撹拌で凝集フロックが壊されたり、反応タンクの滞留時間を経過することで凝集補助剤の薬剤としての凝集効果が低下する可能性があるので、好ましくは、反応タンクの最前段に返送される返送汚泥に凝集補助剤を添加しない。前記図5〜7の実施形態についても同様である。 A coagulation aid may be added to the existing return sludge that is returned to the front stage of the reaction tank, but the agglomeration flocs may be destroyed by strong stirring in the reaction tank or the reaction tank may stay until it flows into the final settling basin. Since the aggregation effect of the aggregation aid as an agent may decrease over time, it is preferable not to add the aggregation aid to the returned sludge returned to the front stage of the reaction tank. The same applies to the embodiments shown in FIGS. 5 to 7.

図8に示される実施形態では、反応タンク最前段への汚泥返送比は、0.03〜0.5が好ましく、反応タンクの最終段への汚泥返送比は、0.03〜0.5であることが好ましい。この汚泥返送比は、返送汚泥の他、余剰汚泥の濃縮汚泥の返送にも適用できる。反応タンク最前段への汚泥返送比が0.03以上であれば生物処理がより安定になり、反応タンクの最前段への汚泥返送比が0.5以下であれば、最終沈殿池に流入する汚泥量が抑えられるので、最終沈殿池での固液分離の負担が軽減される。また、反応タンクの最終段への汚泥返送比が0.03以上であれば、返送汚泥流量が十分にあり、最終沈殿池で、凝集補助剤を含む汚泥が十分であるために凝集が良好になり、最終沈殿池での固液分離が安定する。反応タンクの最終段への汚泥返送比が0.5以下であれば、最終沈殿池に流入する汚泥量が抑えられるので、最終沈殿池での固液分離が良好になる。 In the embodiment shown in FIG. 8, the sludge return ratio to the front stage of the reaction tank is preferably 0.03 to 0.5, and the sludge return ratio to the final stage of the reaction tank is 0.03 to 0.5. It is preferable to have. This sludge return ratio can be applied not only to the return sludge but also to the return of concentrated sludge of excess sludge. If the sludge return ratio to the front stage of the reaction tank is 0.03 or more, the biological treatment becomes more stable, and if the sludge return ratio to the front stage of the reaction tank is 0.5 or less, it flows into the final settling basin. Since the amount of sludge is suppressed, the burden of solid-liquid separation in the final settling basin is reduced. Further, if the sludge return ratio to the final stage of the reaction tank is 0.03 or more, the return sludge flow rate is sufficient, and the sludge containing the coagulation aid is sufficient in the final settling basin, so that coagulation is good. Therefore, solid-liquid separation in the final settling basin is stable. When the sludge return ratio to the final stage of the reaction tank is 0.5 or less, the amount of sludge flowing into the final settling basin is suppressed, so that solid-liquid separation in the final settling basin is good.

汚泥返送比(下水道施設計画設計指針と解説 後編 第4章水処理施設 4.6.4 (2009年))は以下のように計算される。
汚泥返送比=反応タンクのMLSS/(返送汚泥のSS−反応タンクのMLSS)
式中、反応タンクのMLSSや返送汚泥のSSの単位はmg/Lである。
The sludge return ratio (sewerage facility planning design guideline and explanation Part 2 Chapter 4 Water Treatment Facility 4.6.4 (2009)) is calculated as follows.
Sludge return ratio = MLSS of reaction tank / (SS of return sludge-MLSS of reaction tank)
In the formula, the unit of MLSS of the reaction tank and SS of the returned sludge is mg / L.

また、この処理フローは下水以外に民間事業所排水のバルキング対策にも応用できる。
民間事業所排水処理では下水処理の最初沈殿池がなく、有機性排水は下水処理の反応タンクに相当する生物処理槽で生物処理される。生物処理槽は下水処理の反応タンクのように複数に分割されていない場合が多く、この場合の生物処理槽最終段とは、生物処理槽の活性汚泥混合液の流出部から沈殿槽流入部までを指す。
In addition to sewage, this treatment flow can also be applied to measures against bulking of wastewater from private business establishments.
In private business wastewater treatment, there is no initial settling basin for sewage treatment, and organic wastewater is biologically treated in a biological treatment tank equivalent to a reaction tank for sewage treatment. Unlike the reaction tank for sewage treatment, the biological treatment tank is often not divided into multiple parts. In this case, the final stage of the biological treatment tank is from the outflow part of the activated sludge mixture in the biological treatment tank to the inflow part of the settling tank. Point to.

沈殿槽から引き抜かれる返送汚泥の一部は生物処理槽の最前段に返送し、また、返送汚泥の一部にバルキング防止剤を添加して、生物処理槽の最後段に返送することができる。生物処理槽の最後段に返送することで、バルキング防止剤を含む返送汚泥によって生物処理槽の活性汚泥混合液の汚泥が凝集し、沈殿槽で固液分離性が改善する。 A part of the returned sludge extracted from the settling tank can be returned to the front stage of the biological treatment tank, and a bulking inhibitor can be added to a part of the returned sludge and returned to the final stage of the biological treatment tank. By returning to the final stage of the biological treatment tank, the sludge of the activated sludge mixture in the biological treatment tank is aggregated by the returned sludge containing the anti-bulking agent, and the solid-liquid separability is improved in the settling tank.

本発明において、市販の無機の酸化剤やカチオン系界面活性剤等の各種殺菌剤の1種類又は複数種類を返送汚泥の一部に添加して、生物処理槽の最後段に返送することができる。好ましくは市販のバルキング防止剤と、本発明のバルキング防止剤を混合して、返送汚泥の一部に添加して、生物処理槽の最後段に返送することができる。より好ましくは、市販のバルキング防止剤による活性汚泥へのダメージを低減できる本発明のバルキング防止剤を、返送汚泥の一部に添加して、生物処理槽の最後段に返送することができる。 In the present invention, one or more kinds of various bactericidal agents such as commercially available inorganic oxidizing agents and cationic surfactants can be added to a part of the returned sludge and returned to the final stage of the biological treatment tank. .. Preferably, a commercially available anti-bulking agent and the anti-bulking agent of the present invention can be mixed, added to a part of the returned sludge, and returned to the final stage of the biological treatment tank. More preferably, the anti-bulking agent of the present invention, which can reduce the damage to the activated sludge caused by the commercially available anti-bulking agent, can be added to a part of the returned sludge and returned to the final stage of the biological treatment tank.

凝集補助剤添加率は返送汚泥の汚泥重量、すなわちSSに対して、0.05〜5.0重量%対SSであることが好ましく、0.05〜1.0重量%対SSであることがより好ましい。 The coagulation aid addition rate is preferably 0.05 to 5.0% by weight vs. SS, and is preferably 0.05 to 1.0% by weight vs. SS, with respect to the sludge weight of the returned sludge, that is, SS. More preferred.

図9に本発明の雨天時下水の下水処理フローの別の一例を示す。 FIG. 9 shows another example of the sewage treatment flow of the sewage in rainy weather of the present invention.

図9に示される実施形態では、既存の返送汚泥の返送の他に、余剰汚泥の濃縮設備からの濃縮汚泥の一部に高分子凝集剤や有機凝結剤などの凝集補助剤を添加し、濃縮汚泥を反応タンクの最終段に返送する。 In the embodiment shown in FIG. 9, in addition to the return of the existing returned sludge, a coagulation aid such as a polymer flocculant or an organic coagulant is added to a part of the concentrated sludge from the excess sludge concentration facility to concentrate it. Return the sludge to the final stage of the reaction tank.

濃縮汚泥濃度は返送汚泥濃度の数倍高いので、最終段の反応タンクへの返送流量は、返送汚泥流量より濃縮汚泥返送流量の方が少なくて済む。 Since the concentrated sludge concentration is several times higher than the returned sludge concentration, the return flow rate to the reaction tank in the final stage can be smaller in the concentrated sludge return flow rate than in the return sludge flow rate.

反応タンクに返送するのが余剰汚泥の濃縮汚泥なので、反応タンクへの返送条件は図5に示される実施形態と同様である。 Since it is the concentrated sludge of excess sludge that is returned to the reaction tank, the conditions for returning it to the reaction tank are the same as those of the embodiment shown in FIG.

図10は最初沈殿池への返送汚泥添加における本発明の高分子凝集補助剤注入制御フローの一例を示す。 FIG. 10 shows an example of the polymer coagulation aid injection control flow of the present invention in the addition of return sludge to the first settling basin.

最初沈殿池流入部のSS重量制御と、凝集補助剤注入制御の手順は以下の通りである。
(1)雨天時下水の流量を測定する。又は、運転管理の経験等からの予測値を設定する。
(2)最初沈殿池流入部のSS濃度を設定する。又は、運転管理の経験等からの予測値を設定する。
(3)雨天時下水流量と最初沈殿池流入部のSS濃度の設定値から最初沈殿池流入部のSS重量を計算する(最初沈殿池流入水量は雨天時下水流量>返送汚泥流量であるので、雨天時下水流量のみとする)。
(4)返送汚泥のSS濃度測定又は運転管理記録記載値からSS濃度を推定する。
(5)最初沈殿池流入部のSS重量と返送汚泥のSS濃度から返送汚泥流量を算出する。
(6)返送汚泥流量と返送汚泥濃度から返送汚泥のSS重量を算出する。
(7)返送汚泥のSS重量に対する凝集補助剤添加率設定値から凝集補助剤の添加重量を算出する。
(8)高分子凝集剤や有機凝結剤重量に見合う凝集補助剤溶解液を薬注ポンプで返送汚泥に添加する。
The procedure for controlling the SS weight of the inflow portion of the first settling basin and controlling the injection of the coagulation aid is as follows.
(1) Measure the flow rate of sewage in rainy weather. Alternatively, set a predicted value based on experience in operation management.
(2) First, set the SS concentration of the inflow part of the settling basin. Alternatively, set a predicted value based on experience in operation management.
(3) Calculate the SS weight of the first settling basin inflow part from the set values of the sewage flow rate in rainy weather and the SS concentration of the first settling basin inflow part. Only the sewage flow rate in rainy weather).
(4) Estimate the SS concentration from the SS concentration measurement of the returned sludge or the value recorded in the operation management record.
(5) First, the return sludge flow rate is calculated from the SS weight of the inflow part of the settling basin and the SS concentration of the return sludge.
(6) Calculate the SS weight of the returned sludge from the flow rate of the returned sludge and the concentration of the returned sludge.
(7) Aggregation aid addition rate with respect to SS weight of returned sludge The addition weight of the aggregation aid is calculated from the set value.
(8) A coagulant auxiliary agent solution suitable for the weight of the polymer flocculant or the organic coagulant is added to the returned sludge by a chemical injection pump.

汚泥濃度検出手段は近赤外光式汚泥濃度計、レーザー光式汚泥濃度計、マイクロ波汚泥濃度計などの市販の汚泥濃度計が使用できる。汚泥流量検出手段は市販の電磁流量計や超音波流量計などが使用できる。汚泥を返送するポンプは市販品でよく、回転数制御で設定流量に調節して返送することができる。 As the sludge concentration detecting means, a commercially available sludge densitometer such as a near-infrared light type sludge densitometer, a laser light type sludge densitometer, and a microwave sludge densitometer can be used. As the sludge flow rate detecting means, a commercially available electromagnetic flow meter, ultrasonic flow meter, or the like can be used. The pump that returns the sludge may be a commercially available product, and can be adjusted to the set flow rate by controlling the rotation speed and returned.

図11は反応タンク最終段への返送汚泥添加における本発明の高分子凝集補助剤注入制御フローの一例を示したものである。 FIG. 11 shows an example of the polymer coagulation aid injection control flow of the present invention in the addition of returned sludge to the final stage of the reaction tank.

反応タンク最終段のSS重量制御と、高分子凝集剤や有機凝結剤注入制御の手順は以下の通りである。
(1)最初沈殿池処理水又は被処理水(以下、「被処理水」という。)の流量を測定する。
(2)最終段以外の反応タンクのSS(MLSS)濃度を測定する。又は管理値を設定する。
(3)反応タンク最終段の設定SS濃度と、最終段以外の反応タンクの実測のSS濃度の差から反応タンクに返送するSS重量を算出する。
(4)返送汚泥のSS濃度を測定する。
(5)反応タンクで必要なSS重量と返送汚泥のSS濃度から反応タンク最終段に返送する返送汚泥流量を算出する。
(6)反応タンク最終段に返送するSS重量と凝集補助剤添加率設定値により凝集補助剤添加重量を決定する。
(7)凝集補助剤添加重量と溶解濃度から返送汚泥に添加する凝集補助剤溶解液量を決定する。
(8)凝集補助剤注入ポンプを起動して、返送汚泥に凝集補助剤溶解液を添加する。
The procedure for controlling the SS weight at the final stage of the reaction tank and controlling the injection of the polymer flocculant or organic coagulant is as follows.
(1) First, the flow rate of the settling basin treated water or the treated water (hereinafter referred to as "treated water") is measured.
(2) Measure the SS (MLSS) concentration of the reaction tanks other than the final stage. Or set the control value.
(3) The SS weight to be returned to the reaction tank is calculated from the difference between the set SS concentration in the final stage of the reaction tank and the measured SS concentration in the reaction tanks other than the final stage.
(4) Measure the SS concentration of the returned sludge.
(5) The flow rate of the returned sludge returned to the final stage of the reaction tank is calculated from the SS weight required in the reaction tank and the SS concentration of the returned sludge.
(6) The weight of the agglutination aid added is determined by the SS weight returned to the final stage of the reaction tank and the set value of the agglutination aid addition rate.
(7) The amount of the coagulation aid solution to be added to the returned sludge is determined from the weight of the coagulation aid added and the dissolution concentration.
(8) Start the coagulation aid injection pump and add the coagulation aid solution to the returned sludge.

以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。 Hereinafter, examples for better understanding the present invention and its advantages will be illustrated, but the present invention is not limited to the examples.

(従来例1:模擬雨天時下水の最初沈殿池での固液分離)
模擬雨天時下水は晴天時の分流式下水の最初沈殿池流入下水を脱塩素した水道水で2倍希釈したものを試験に供した。模擬雨天時下水はpHが7.4、SSが100mg/L、BODが100mg/Lであった。
(Conventional example 1: Solid-liquid separation in the first settling basin of sewage in simulated rainy weather)
As the simulated rainy weather sewage, the first settling basin inflow sewage in fine weather was diluted 2-fold with dechlorinated tap water and used for the test. The pH of the simulated rainy sewage was 7.4, the SS was 100 mg / L, and the BOD was 100 mg / L.

凝集槽で模擬雨天時下水に高分子凝集剤(エバグロースB−094、両性、分子量500万、水ing(株)製)を添加し、表1の条件で試験した。高分子凝集剤は予め水道水の脱塩素水で溶解濃度が0.1重量%となるように溶解した高分子凝集剤溶解液を使用した。 A polymer flocculant (Ebagulose B-094, amphoteric, molecular weight 5 million, manufactured by Swing Corporation) was added to simulated rainy sewage in a coagulation tank, and the test was conducted under the conditions shown in Table 1. As the polymer flocculant, a polymer flocculant-dissolved solution previously dissolved in tap water with dechlorinated water so that the dissolution concentration was 0.1% by weight was used.

Figure 2021191570
Figure 2021191570

表2に模擬雨天時下水に高分子凝集剤(エバグロースB−094、両性、分子量500万、水ing(株)製)を添加した場合の処理結果を示す。 Table 2 shows the treatment results when a polymer flocculant (Ebagulose B-094, amphoteric, molecular weight 5 million, manufactured by Swing Corporation) was added to the simulated rainy sewage.

Figure 2021191570
Figure 2021191570

模擬雨天時下水量1Qでは高分子凝集剤を2mg/L添加することで、SS除去率が50%、BOD除去率が28%であったが、2Qに模擬雨天時下水量を増加させると、SSやBODの除去率が大きく低下し、模擬雨天時下水の最初沈殿池処理水のSSやBODの濃度が増加することが分かった。 In the simulated rainy weather sewage volume 1Q, the SS removal rate was 50% and the BOD removal rate was 28% by adding 2 mg / L of the polymer flocculant, but when the simulated rainy weather sewage volume was increased in 2Q, It was found that the removal rate of SS and BOD decreased significantly, and the concentration of SS and BOD in the first settling basin treated water of the simulated rainy sewage increased.

(従来例2:模擬雨天時下水に返送汚泥を添加して最初沈殿池での固液分離)
従来例1の模擬雨天時下水を表1の凝集槽と同じ形状で同じ有効容量の混合槽を設け、その混合槽に従来例2の返送汚泥を添加し、次に表1の凝集槽を設け、その凝集槽に高分子凝集剤(エバグロースB−094、両性、分子量500万、水ing(株)製)を添加した後に、表1の条件で試験した。試験に用いた従来例2の返送汚泥は終末処理場から採取した汚泥で、その性状は、SSが6000mg/L、TSが5800mg/L、VSS/SSが82%であった。表3に模擬雨天時下水に返送汚泥と直接高分子凝集剤を添加した場合の処理結果を示す。
(Conventional Example 2: Solid-liquid separation in the first settling basin by adding return sludge to sewage in simulated rainy weather)
The simulated rainy weather sewage of Conventional Example 1 is provided with a mixing tank having the same shape as the coagulation tank of Table 1 and having the same effective capacity, the return sludge of Conventional Example 2 is added to the mixing tank, and then the coagulation tank of Table 1 is provided. After adding a polymer flocculant (Ebagulose B-094, amphoteric, molecular weight 5 million, manufactured by Swing Corporation) to the flocculation tank, the test was conducted under the conditions shown in Table 1. The returned sludge of Conventional Example 2 used in the test was sludge collected from the terminal treatment plant, and its properties were 6000 mg / L for SS, 5800 mg / L for TS, and 82% for VSS / SS. Table 3 shows the treatment results when the returned sludge and the polymer flocculant were directly added to the simulated rainy sewage.

Figure 2021191570
Figure 2021191570

(実施例1:高分子凝集剤を添加した返送汚泥を模擬雨天時下水に添加して最初沈殿池での固液分離)
従来例1の模擬雨天時下水に高分子凝集剤(エバグロースB−094、両性、分子量500万、水ing(株)製)を添加した従来例2の返送汚泥を模擬雨天時下水量に対してSSとして100〜300mg/L添加し、表1の条件で試験した。高分子凝集剤添加率は返送汚泥のSS重量あたりの添加率で、0.7〜3.0重量%対SSであった。また、処理水量に対する高分子凝集剤注入率は、1〜6mg/Lであった。表4に高分子凝集剤を添加した返送汚泥を模擬雨天時下水に添加した処理結果を示す。
(Example 1: Return sludge to which a polymer flocculant is added is added to sewage in simulated rainy weather, and solid-liquid separation is first performed in a settling basin).
The returned sludge of Conventional Example 2 to which a polymer flocculant (Ebagrose B-094, amphoteric, molecular weight 5 million, manufactured by Swing Corporation) was added to the simulated rainy sewage of Conventional Example 1 was applied to the simulated rainy sewage amount. 100 to 300 mg / L was added as SS, and the test was conducted under the conditions shown in Table 1. The addition rate of the polymer flocculant was the addition rate per SS weight of the returned sludge, which was 0.7 to 3.0% by weight vs. SS. The injection rate of the polymer flocculant with respect to the amount of treated water was 1 to 6 mg / L. Table 4 shows the treatment results of adding the returned sludge to which the polymer flocculant was added to the simulated rainy weather sewage.

Figure 2021191570
Figure 2021191570

高分子凝集剤を添加した返送汚泥と模擬雨天時下水を混合することで、模擬雨天時下水のSSが高分子凝集剤を添加した返送汚泥に効果的に取り込まれるために、処理水量が1Qから3Qに増加しても最初沈殿槽でのSS除去率やBOD除去率が低下せず、SSやBOD除去性能が維持できたことが分かった。 By mixing the returned sludge to which the polymer flocculant is added and the simulated rainy weather sewage, the SS of the simulated rainy weather sewage is effectively taken into the returned sludge to which the polymer flocculant is added, so that the treated water amount is from 1Q. It was found that the SS removal rate and the BOD removal rate in the first settling tank did not decrease even if the increase was increased to 3Q, and the SS and BOD removal performance could be maintained.

(従来例3:3W法による模擬最初沈殿槽処理水の活性汚泥処理)
従来例1の模擬雨天時下水を模擬雨天時下水量3Qで無薬注で、表1の装置を用い固液分離し、得られた処理水を模擬最初沈殿槽処理水とした。その性状は、pH7.3、SS62mg/L、BOD78mg/Lであった。
(Conventional Example 3: Activated sludge treatment of simulated first settling tank treated water by 3W method)
The simulated rainy sewage of Conventional Example 1 was solid-liquid separated using the equipment shown in Table 1 with no chemical injection at the simulated rainy sewage volume of 3Q, and the obtained treated water was used as the simulated first settling tank treated water. The properties were pH 7.3, SS 62 mg / L, and BOD 78 mg / L.

表5の生物処理装置を用い、模擬最初沈殿槽処理水量3Qを生物処理槽で生物処理試験をした。模擬最初沈殿槽処理水の1Qを生物処理槽の1槽目に、残りの2Qを4槽目に添加した。最終沈殿槽からの返送汚泥は、生物処理槽の1槽目に返送し、生物処理槽の1槽目から3槽目までMLSSを2000mg/Lに維持した。模擬最初沈殿槽処理水量2Qが流入する4槽目のMLSSは約700mg/Lになった。生物処理槽全体のBOD汚泥負荷は0.35kg/kg日であった。 Using the biological treatment equipment shown in Table 5, the simulated initial settling tank treated water volume 3Q was subjected to a biological treatment test in the biological treatment tank. 1Q of the simulated first settling tank treated water was added to the first tank of the biological treatment tank, and the remaining 2Q was added to the fourth tank. The sludge returned from the final settling tank was returned to the first tank of the biological treatment tank, and the MLSS was maintained at 2000 mg / L from the first tank to the third tank of the biological treatment tank. The MLSS of the 4th tank into which the simulated first settling tank treated water volume 2Q flows was about 700 mg / L. The BOD sludge load of the entire biological treatment tank was 0.35 kg / kg day.

Figure 2021191570
Figure 2021191570

表6に3W法による模擬最初沈殿槽処理水の生物処理試験結果を示す。
SS62mg/L、BOD78mg/Lの模擬最初沈殿槽処理水をBOD汚泥負荷0.35kg/kg日で生物処理すると、SS除去率が23%、BOD除去率が63%で、最終沈殿槽での固液分離性が悪化したためにBOD除去率よりSS除去率が低かった。
Table 6 shows the biological treatment test results of the simulated first settling tank treated water by the 3W method.
When the simulated first settling tank treated water with SS62 mg / L and BOD78 mg / L was biologically treated with a BOD sludge load of 0.35 kg / kg days, the SS removal rate was 23% and the BOD removal rate was 63%. The SS removal rate was lower than the BOD removal rate because the liquid separability deteriorated.

Figure 2021191570
Figure 2021191570

(実施例2)
従来例3、3W法との対比で、模擬最初沈殿槽処理水量3Qのうち2Qを生物処理槽の4槽目に流入させ、4槽目には高分子凝集剤や有機凝結剤を含む返送汚泥を返送することとし、4槽目のMLSS濃度を2000mg/Lに維持した。
(Example 2)
In comparison with the conventional examples 3 and 3W method, 2Q of the simulated initial settling tank treated water volume 3Q is flowed into the 4th tank of the biological treatment tank, and the returned sludge containing a polymer flocculant and an organic coagulant is contained in the 4th tank. Was returned, and the MLSS concentration in the 4th tank was maintained at 2000 mg / L.

従来例3の模擬雨天時下水の模擬最初沈殿槽処理水を用いて、表5の生物処理装置の仕様と、表5の試験条件のうち生物処理槽の4槽目のMLSS濃度を1槽目から3槽目と同じで、2000mg/Lにして、模擬最初沈殿槽処理水をその水量3Qで生物処理試験をした。 Using the simulated first settling tank treated water of the simulated rainy sewage of the conventional example 3, the specifications of the biological treatment device in Table 5 and the MLSS concentration of the 4th tank of the biological treatment tank among the test conditions in Table 5 are the first tank. In the same manner as in the third tank, the simulated first settling tank treated water was subjected to a biological treatment test with a water volume of 3Q at 2000 mg / L.

模擬最初沈殿槽処理水量3Qは、生物処理槽の1槽目に1Qを、生物処理槽の4槽目に2Qを流入させて、従来例3と同じに試験した。 The simulated initial settling tank treated water volume 3Q was tested in the same manner as in Conventional Example 3 by inflowing 1Q into the first tank of the biological treatment tank and 2Q into the fourth tank of the biological treatment tank.

1槽目の生物処理槽のMLSS濃度が2000mg/Lになるように返送汚泥を返送し、さらに、2Qが流入する4槽目の生物処理槽のMLSS濃度が2000mg/Lになるように、高分子凝集剤や有機凝結剤を含む返送汚泥を返送した。BOD汚泥負荷は生物処理槽全体で0.29kg/kg日であった。 The returned sludge is returned so that the MLSS concentration of the first biological treatment tank is 2000 mg / L, and the MLSS concentration of the fourth biological treatment tank into which 2Q flows is high so that it is 2000 mg / L. The returned sludge containing a molecular flocculant and an organic coagulant was returned. The BOD sludge load was 0.29 kg / kg day for the entire biological treatment tank.

高分子凝集剤として、エバグロースC−104G(カチオン性、分子量400万、水ing(株)製)を使用し、有機凝結剤として、エバグロースL−51とエバグロースL−305(いずれも、カチオン性、分子量30万、水ing(株)製)を使用した。カチオン性高分子凝集剤を予め水道水の脱塩素水で溶解濃度が0.1重量%となるように溶解した高分子凝集剤溶解液を使用した。また、有機凝結剤は、小規模試験のためにその添加重量が少ないので、高分子凝集剤と同様に、予め水道水の脱塩素水で溶解濃度が0.1重量%となるように溶解した有機凝結剤溶解液を使用した。 Ebagulose C-104G (cationic, molecular weight 4 million, manufactured by Swing Corporation) is used as a polymer flocculant, and Evagrose L-51 and Evagrose L-305 (both cationic,) are used as organic coagulants. A molecular weight of 300,000, manufactured by Swing Corporation) was used. A polymer flocculant solution was used in which the cationic polymer flocculant was previously dissolved in tap water dechlorinated so that the dissolution concentration was 0.1% by weight. In addition, since the weight of the organic coagulant added is small for a small-scale test, it was previously dissolved in tap water with dechlorinated water so that the dissolution concentration was 0.1% by weight, as with the polymer flocculant. An organic coagulant solution was used.

表7に模擬最初沈殿槽処理水の生物処理試験結果を示す。固液分離性の指標となる最終沈殿槽処理水のSS除去率は、高分子凝集剤のエバグロースC−104G>有機凝結剤のエバグロースL−305>有機凝結剤のエバグロースL−51であった。いずれの凝集補助剤もその添加率を増すと、SS除去率が向上した。 Table 7 shows the results of the biological treatment test of the simulated first settling tank treated water. The SS removal rate of the final settling tank treated water, which is an index of solid-liquid separability, was Ebagulose C-104G as a polymer flocculant> Evagulose L-305 as an organic coagulant> Evagrose L-51 as an organic coagulant. Increasing the addition rate of any of the coagulation aids improved the SS removal rate.

高分子凝集剤と有機凝結剤は生物処理槽の4槽目に返送する返送汚泥に添加し、薬剤添加率は返送汚泥のSS重量当たりの添加率である。 The polymer flocculant and the organic coagulant are added to the returned sludge returned to the fourth tank of the biological treatment tank, and the chemical addition rate is the addition rate per SS weight of the returned sludge.

従来例3と比較して、4槽目の生物処理槽のMLSS濃度が2000mg/Lになるように、高分子凝集剤や有機凝結剤を含む返送汚泥を返送することで、生物処理槽全体のBOD汚泥負荷が0.29kg/kg日に低下し、活性汚泥による生物処理性能が向上してBOD除去率が高まった。また、高分子凝集剤や有機凝結剤による活性汚泥の凝集効果で、最終沈殿槽からのSSの流出が抑制できて、最終沈殿槽処理水のSS除去率も向上した。 By returning the returned sludge containing the polymer flocculant and the organic coagulant so that the MLSS concentration of the fourth biological treatment tank becomes 2000 mg / L as compared with the conventional example 3, the entire biological treatment tank is returned. The BOD sludge load decreased to 0.29 kg / kg day, the biological treatment performance by activated sludge was improved, and the BOD removal rate was increased. In addition, due to the coagulation effect of activated sludge by the polymer flocculant and the organic coagulant, the outflow of SS from the final settling tank could be suppressed, and the SS removal rate of the final settling tank treated water was also improved.

Figure 2021191570
Figure 2021191570

(実施例3)
従来例3、3W法との対比で、模擬雨天時下水の模擬最初沈殿槽処理水の全量を生物処理槽1槽目に流入させて、活性汚泥処理するものとした。
(Example 3)
In comparison with the conventional examples 3 and 3W method, the entire amount of the simulated first settling tank treated water of the simulated rainy sewage was made to flow into the first tank of the biological treatment tank for activated sludge treatment.

従来例3の模擬雨天時下水の模擬最初沈殿槽処理水を用いて、表5の生物処理装置の仕様と、表5の試験条件のうちMLSS濃度を1槽目から4槽目まで、2000mg/Lにして、模擬最初沈殿槽処理水をその水量3Q、9.8m3/日で生物処理試験をした。 Using the simulated first settling tank treated water of the simulated rainy sewage of the conventional example 3, the specifications of the biological treatment device in Table 5 and the MLSS concentration among the test conditions in Table 5 were 2000 mg / from the first tank to the fourth tank. When L was set, the simulated first settling tank treated water was subjected to a biological treatment test at a water volume of 3Q and 9.8 m 3 / day.

模擬最初沈殿槽処理水量3Qは、生物処理槽の1槽目に3Q全量を流入させて、生物処理槽の1槽目だけに高分子凝集剤や有機凝結剤を含む返送汚泥を返送し、その返送汚泥で生物処理槽の1槽目から4槽目まで、のMLSS濃度を1000〜2000mg/Lに調整した。BOD汚泥負荷は生物処理槽全体で0.29〜0.58kg/kg日であった。 In the simulated initial settling tank treated water volume 3Q, the entire amount of 3Q is flowed into the first tank of the biological treatment tank, and the returned sludge containing the polymer flocculant and the organic coagulant is returned only to the first tank of the biological treatment tank. The MLSS concentration in the first to fourth tanks of the biological treatment tank was adjusted to 1000 to 2000 mg / L with the returned sludge. The BOD sludge load was 0.29 to 0.58 kg / kg day for the entire biological treatment tank.

高分子凝集剤は、エバグロースC−104G(カチオン性、分子量400万、水ing(株)製)を使用し、その添加率は返送汚泥のSS重量当たり0.09〜0.57重量%SSであった。 Ebagulose C-104G (cationic, molecular weight 4 million, manufactured by Swing Corporation) is used as the polymer flocculant, and the addition rate is 0.09 to 0.57% by weight per SS weight of the returned sludge. there were.

表8に模擬最初沈殿槽処理水の生物処理試験結果を示す。最終沈殿槽処理水のBOD除去率は生物処理槽全体でのBOD汚泥負荷0.58kg/kg日で82〜83%、BOD汚泥負荷0.39kg/kg日で86〜89%、BOD汚泥負荷0.29kg/kg日で88〜91%となり、生物処理槽のMLSS濃度を高めると、BOD汚泥負荷が下がり、最終沈殿槽処理水のBOD除去率が向上した。高分子凝集剤の添加率を高めると、最終沈殿槽からのSSの流出が抑制できて、最終沈殿槽処理水のSS除去率は向上することが分かった。 Table 8 shows the results of the biological treatment test of the simulated first settling tank treated water. The BOD removal rate of the final settling tank treated water is 82 to 83% for a BOD sludge load of 0.58 kg / kg day, 86 to 89% for a BOD sludge load of 0.39 kg / kg day, and a BOD sludge load of 0 for the entire biological treatment tank. It became 88 to 91% at .29 kg / kg day, and when the MLSS concentration in the biological treatment tank was increased, the BOD sludge load was reduced and the BOD removal rate of the final settling tank treated water was improved. It was found that increasing the addition rate of the polymer flocculant can suppress the outflow of SS from the final settling tank and improve the SS removal rate of the final settling tank treated water.

Figure 2021191570
Figure 2021191570

Claims (7)

生物処理工程を含む排水処理方法であって、
前記排水処理方法は前記生物処理工程の後段に固液分離工程を含み、
前記生物処理工程後段の固液分離工程から引き抜かれる汚泥又は当該汚泥を濃縮した濃縮汚泥に凝集補助剤を添加した後に、前記生物処理工程に、前記凝集補助剤を含む前記汚泥又は前記濃縮汚泥を返送することを含む排水処理方法。
It is a wastewater treatment method that includes a biological treatment process.
The wastewater treatment method includes a solid-liquid separation step after the biological treatment step.
After adding a coagulation aid to the sludge extracted from the solid-liquid separation step after the biological treatment step or the concentrated sludge in which the sludge is concentrated, the sludge containing the coagulation aid or the concentrated sludge is added to the biological treatment step. Waste treatment methods, including returning.
前記排水処理方法は、さらに前記生物処理工程の前段に固液分離工程を含む請求項1に記載の排水処理方法。 The wastewater treatment method according to claim 1, further comprising a solid-liquid separation step in front of the biological treatment step. 前記生物処理工程の前段の固液分離工程は、雨天時下水が流入する最初沈殿池で行われ、
前記凝集補助剤を含む前記汚泥又は前記濃縮汚泥を、雨天時下水と混合して、前記最初沈殿池にも返送することを特徴とする請求項2に記載の排水処理方法。
The solid-liquid separation step prior to the biological treatment step is performed in the first settling basin where sewage flows in during rainy weather.
The wastewater treatment method according to claim 2, wherein the sludge containing the coagulation aid or the concentrated sludge is mixed with sewage in rainy weather and returned to the first settling basin.
前記生物処理工程は、複数の反応タンクにおいて行われ、
前記生物処理工程の後段の固液分離工程は、最終沈殿池で行われ、
前記最終沈殿池から引き抜かれる汚泥は返送汚泥及び余剰汚泥であり、前記返送汚泥の一部を前記複数の反応タンクのうち最前段の反応タンクに返送し、前記返送汚泥の別の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送することを特徴とする請求項1〜3のいずれかに記載の排水処理方法。
The biological treatment step is performed in a plurality of reaction tanks and is carried out in a plurality of reaction tanks.
The solid-liquid separation step after the biological treatment step is performed in the final settling basin.
The sludge extracted from the final settling basin is returned sludge and surplus sludge, and a part of the returned sludge is returned to the reaction tank at the front stage among the plurality of reaction tanks and aggregated in another part of the returned sludge. The wastewater treatment method according to any one of claims 1 to 3, wherein the auxiliary agent is added and then returned to the reaction tank in the final stage among the plurality of reaction tanks.
さらに、前記余剰汚泥を濃縮した濃縮汚泥の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送すること含む請求項4に記載の排水処理方法。 The wastewater treatment method according to claim 4, further comprising adding a coagulation aid to a part of the concentrated sludge in which the excess sludge is concentrated and then returning the sludge to the final reaction tank among the plurality of reaction tanks. 前記生物処理工程は、複数の反応タンクにおいて行われ、
前記生物処理工程の後段の固液分離工程は、最終沈殿池で行われ、
前記最終沈殿池から引き抜かれる汚泥は返送汚泥及び余剰汚泥であり、前記返送汚泥の全部を前記複数の反応タンクのうち最前段の反応タンクに返送し、前記余剰汚泥を濃縮した濃縮汚泥の一部に凝集補助剤を添加した後に、前記複数の反応タンクのうち最終段の反応タンクに返送することを特徴とする請求項1〜3のいずれかに記載の排水処理方法。
The biological treatment step is performed in a plurality of reaction tanks and is carried out in a plurality of reaction tanks.
The solid-liquid separation step after the biological treatment step is performed in the final settling basin.
The sludge extracted from the final settling basin is returned sludge and surplus sludge, and all of the returned sludge is returned to the first reaction tank among the plurality of reaction tanks, and a part of the concentrated sludge in which the surplus sludge is concentrated. The wastewater treatment method according to any one of claims 1 to 3, wherein the sludge assisting agent is added to the sludge and then returned to the reaction tank in the final stage among the plurality of reaction tanks.
さらに、前記複数の反応タンクのうち最前段の反応タンクに返送する前記返送汚泥にも、凝集補助剤を添加することを含む請求項4〜6のいずれかに記載の排水処理方法。 The wastewater treatment method according to any one of claims 4 to 6, further comprising adding a coagulation aid to the returned sludge returned to the reaction tank at the front stage among the plurality of reaction tanks.
JP2020098947A 2020-06-05 2020-06-05 Wastewater treatment method Active JP7453068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098947A JP7453068B2 (en) 2020-06-05 2020-06-05 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098947A JP7453068B2 (en) 2020-06-05 2020-06-05 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2021191570A true JP2021191570A (en) 2021-12-16
JP7453068B2 JP7453068B2 (en) 2024-03-19

Family

ID=78945605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098947A Active JP7453068B2 (en) 2020-06-05 2020-06-05 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7453068B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198591A (en) 2000-01-19 2001-07-24 Kurita Water Ind Ltd Bulking inhibitor for activated sludge and bulking inhibition method
JP2002143883A (en) 2000-11-09 2002-05-21 Ebara Corp Method for treating organic polluted water containing phosphorus
JP3775654B2 (en) 2001-06-08 2006-05-17 株式会社荏原製作所 Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP2007325999A (en) 2006-06-06 2007-12-20 Kurita Water Ind Ltd Method for restraining bulking of activated sludge
JP5743448B2 (en) 2010-07-26 2015-07-01 株式会社西原環境 Sewage treatment equipment

Also Published As

Publication number Publication date
JP7453068B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
EP1461141B1 (en) Method of using water soluble polymers in a membrane biological reactor
Ansari et al. Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater
WO2020066827A1 (en) Operating method for organic waste water treatment apparatus and organic waste water treatment apparatus
CN107352745A (en) Kitchen garbage fermentation waste water processing method
JP6210063B2 (en) Fresh water generation method and fresh water generation apparatus
KR20090030397A (en) Apparatus for high rate removal of nitrogen and phosphorus from swtp/wwtp
Pellegrin et al. Membrane processes
CN107265791A (en) Kitchen garbage slurry fermentation waste water processing unit
KR100917267B1 (en) Graywater recycling apparatus using rainfall
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2003093802A (en) Wastewater treatment apparatus and operation method therefor
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
CN105731728B (en) Improve the method and process unit of activated sludge settling property
JP7453068B2 (en) Wastewater treatment method
JP5947067B2 (en) Wastewater treatment system and method
US11661366B2 (en) Process for selenium removal with biological, chemical and membrane treatment
JP5106182B2 (en) Water treatment method and water treatment apparatus
JPH11239789A (en) Advanced method for water treatment
Zaharia Comparative overview of primary sedimentation-based mechanical stage in some Romanian wastewater treatment systems
CN113526797A (en) System, method and application for treating percolate and flushing water of domestic garbage transfer station
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
JPH11300389A (en) Water treating method and device therefor
CN207552128U (en) A kind of device of integrated membrane process hydridization removal low concentration selenium-containing wastewater
CN105800877A (en) Medical wastewater integrated treatment device and treatment method
KR20050092154A (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7453068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150