JP2021190477A - Iron-based oxide magnetic powder and manufacturing method thereof - Google Patents

Iron-based oxide magnetic powder and manufacturing method thereof Download PDF

Info

Publication number
JP2021190477A
JP2021190477A JP2020091704A JP2020091704A JP2021190477A JP 2021190477 A JP2021190477 A JP 2021190477A JP 2020091704 A JP2020091704 A JP 2020091704A JP 2020091704 A JP2020091704 A JP 2020091704A JP 2021190477 A JP2021190477 A JP 2021190477A
Authority
JP
Japan
Prior art keywords
iron
particles
magnetic powder
based oxide
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020091704A
Other languages
Japanese (ja)
Inventor
雅文 阿尻
Masafumi Ajiri
靖人 宮本
Yasuto Miyamoto
堅之 坂根
Katayuki Sakane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Holdings Co Ltd
Original Assignee
Tohoku University NUC
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Holdings Co Ltd filed Critical Tohoku University NUC
Priority to JP2020091704A priority Critical patent/JP2021190477A/en
Publication of JP2021190477A publication Critical patent/JP2021190477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

To provide a manufacturing method of an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites is replaced with another metal element, in which the number ratio of fine particles is reduced.SOLUTION: There is provided a manufacturing method of an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe site is replaced with another metal element. In the method, a raw material slurry containing particles of ε-iron oxide in which a part of Fe site is replaced with another metal element is subjected to hydrothermal treatment.SELECTED DRAWING: Figure 2

Description

本発明は、高密度磁気記録媒体、電波吸収体等に好適な鉄系酸化物磁性粉、特に粒子の平均粒子径がナノメートルオーダーである鉄系酸化物磁性粉、およびその製造方法に関する。 The present invention relates to an iron-based oxide magnetic powder suitable for a high-density magnetic recording medium, a radio wave absorber, etc., particularly an iron-based oxide magnetic powder having an average particle diameter of particles on the nanometer order, and a method for producing the same.

ε−Fe23は酸化鉄の中でも極めて稀な相であるが、室温において、ナノメートルオーダーのサイズの粒子が20kOe(1.59×106A/m)程度の巨大な保磁力(Hc)を示す為、ε−Fe23を単相で合成する製造方法の検討が従来よりなされてきた(特許文献1参照)。
また、ε−Fe23を磁気記録媒体に用いようとした場合、現時点ではそれに対応出来る高レベルの飽和磁束密度を有する磁気ヘッド用の材料が存在しない。この為、ε−Fe23のFeサイトの一部をAl、Ga、In等の3価の金属で置換することにより、保磁力を調整することも行われており、保磁力と電波吸収特性の関係も調べられている(特許文献2参照)。
ε-Fe 2 O 3 is a very rare phase among iron oxide, at room temperature, the particle size of nanometer order is 20kOe (1.59 × 10 6 A / m) of about giant coercive force (Hc ), A production method for synthesizing ε-Fe 2 O 3 in a single phase has been studied conventionally (see Patent Document 1).
Further, when ε-Fe 2 O 3 is to be used as a magnetic recording medium, there is no material for a magnetic head having a high level of saturation magnetic flux density corresponding to it at present. Therefore, the coercive force is also adjusted by substituting a part of the Fe site of ε-Fe 2 O 3 with a trivalent metal such as Al, Ga, In, etc., and the coercive force and radio wave absorption are also performed. The relationship between the characteristics has also been investigated (see Patent Document 2).

ε−Fe23は、ナノメートルオーダーのサイズで安定相として得られる為、その製造には特殊な方法を必要とする。上述の特許文献1および2には、液相法で生成したオキシ水酸化鉄の微細結晶を前駆体として用い、当該前駆体へゾル−ゲル法によりシリコン酸化物を被覆した後に、熱処理するε−Fe23の製造方法が開示されている。そして、当該液相法として、反応媒体として有機溶媒を用いる逆ミセル法と、反応媒体として水溶液のみを用いる方法とが、それぞれ開示されている。 Since ε-Fe 2 O 3 is obtained as a stable phase in a size on the order of nanometers, a special method is required for its production. In the above-mentioned Patent Documents 1 and 2, fine crystals of iron oxyhydroxide produced by the liquid phase method are used as a precursor, and the precursor is coated with a silicon oxide by a sol-gel method and then heat-treated. A method for producing Fe 2 O 3 is disclosed. As the liquid phase method, a reverse micelle method using an organic solvent as a reaction medium and a method using only an aqueous solution as a reaction medium are disclosed, respectively.

一方、磁気記録の分野では、再生信号レベルと粒子性ノイズの比(Carrier to Noise Ratio:C/N比)の高い磁気記録媒体の開発が行われており、記録の高密度化の為に磁気記録層を構成する磁性粒子の微細化が求められている。また、磁気記録の高密度化の為に、鉄系酸化物磁性粉中に含まれる保磁力の小さな微細粒子の存在に起因する、保磁力分布のバラツキを低減させることも求められている。 On the other hand, in the field of magnetic recording, a magnetic recording medium having a high ratio of reproduction signal level to particle noise (Carrier to Noise Ratio) is being developed, and magnetism is being developed to increase the recording density. There is a demand for miniaturization of magnetic particles constituting the recording layer. Further, in order to increase the density of magnetic recording, it is also required to reduce the variation in the coercive force distribution due to the presence of fine particles having a small coercive force contained in the iron-based oxide magnetic powder.

特許文献3には、ε−Fe23粒子またはFeサイトの一部が他の金属元素で置換されたε−Fe23粒子を含むスラリーへ、表面改質剤として4級アンモニウム塩を添加するとともに、当該スラリーのpHを11以上14以下とし、ε酸化鉄粒子を分散処理に供した後に、分級操作を実施するεタイプの鉄系酸化物磁性粉の製造方法が開示されている。そして当該文献には、当該製造方法を用いることで、粒子径が小さくかつ粒度分布および保磁力分布が狭いεタイプの鉄系酸化物の磁性粉を得ることができる旨が記載されている。 Patent Document 3, the slurry containing epsilon-Fe 2 O 3 particles or Fe some other metal elements in substituted epsilon-Fe 2 O 3 particles of sites, a quaternary ammonium salt as a surface modifier Disclosed is a method for producing an ε-type iron-based oxide magnetic powder, which is added and the pH of the slurry is set to 11 or more and 14 or less, and the ε-iron oxide particles are subjected to a dispersion treatment and then a classification operation is carried out. The document describes that by using the production method, it is possible to obtain a magnetic powder of an ε-type iron-based oxide having a small particle size and a narrow particle size distribution and coercive force distribution.

特開2008−174405号公報Japanese Unexamined Patent Publication No. 2008-174405 国際公開第2008/029861号International Publication No. 2008/029861 特開2019−175539号公報Japanese Unexamined Patent Publication No. 2019-175539

特許文献3に開示された製造方法により製造された、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉は、粒度分布が狭く、かつ、磁気記録特性に寄与しない微細粒子の含有量が少なく、その結果として保磁力分布が狭い点で優れたものであった。
しかしながら本発明者らの検討によれば、磁気記録媒体の高記録密度化の観点からは、品質上の問題点があった。
The iron-based oxide magnetic powder produced by the production method disclosed in Patent Document 3 and composed of particles of ε-iron oxide in which a part of Fe sites is replaced with other metal elements has a narrow particle size distribution and The content of fine particles that do not contribute to the magnetic recording characteristics was low, and as a result, the coercive force distribution was narrow, which was excellent.
However, according to the studies by the present inventors, there is a quality problem from the viewpoint of increasing the recording density of the magnetic recording medium.

この問題点について、具体的に説明する。
ε酸化鉄の粒子からなる鉄系酸化物磁性粉を磁気記録媒体に適用するにあたっては、粒子径が平均粒径値からかけ離れて微細な粒子の存在割合が、出来るだけ少ないことが望ましい。これは、当該微細な粒子の存在は、たとえ当該磁性粉に占める体積割合が少ないものであっても、磁気記録媒体の電磁変換特性(SNR)におけるノイズ増の要因となる為である。
This problem will be specifically described.
When applying an iron-based oxide magnetic powder composed of ε-iron oxide particles to a magnetic recording medium, it is desirable that the particle size is far from the average particle size and the abundance ratio of fine particles is as small as possible. This is because the presence of the fine particles causes an increase in noise in the electromagnetic conversion characteristics (SNR) of the magnetic recording medium even if the volume ratio to the magnetic powder is small.

そして、特許文献3に開示された製造方法により製造されたFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉は、微細粒子の含有量が十分に低減されたものとは言えず、磁気記録媒体の高記録密度化の観点からは課題を抱えているものであった。 The iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of the Fe site produced by the production method disclosed in Patent Document 3 is replaced with another metal element has a fine particle content. It cannot be said that the amount has been sufficiently reduced, and there is a problem from the viewpoint of increasing the recording density of the magnetic recording medium.

本発明は上述の状況の下で為されたものであり、その解決しようとする課題は、微細粒子の含有量が低減された、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法を提供することである。また併せて、微細粒子の含有量が低減された、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉を提供することである。 The present invention has been made under the above circumstances, and the problem to be solved is ε-oxidation in which the content of fine particles is reduced and a part of Fe sites is replaced with other metal elements. It is an object of the present invention to provide a method for producing an iron-based oxide magnetic powder composed of iron particles. At the same time, it is an object of the present invention to provide an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites is replaced with other metal elements, in which the content of fine particles is reduced.

上述の課題を解決する為、本発明者らが鋭意研究を行った結果、微細粒子を含むFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーへ、水熱処理を施すことで、当該微細粒子の含有量を低減させることが出来るという画期的な知見を得て本発明を完成させた。 As a result of diligent research by the present inventors in order to solve the above-mentioned problems, hydrothermal treatment is performed on a slurry containing ε-iron oxide particles in which a part of Fe sites containing fine particles is replaced with other metal elements. The present invention was completed with the epoch-making finding that the content of the fine particles can be reduced by applying the above.

即ち、上述の課題を解決する為の第1の発明は、
Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含む原料スラリーを水熱処理に供することを特徴とする、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法である。
第2の発明は、
前記水熱処理により、前記Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子であって透過電子顕微鏡で測定した粒子径が8nm以下である粒子の個数割合を、低減させることを特徴とする、第1の発明に記載の鉄系酸化物磁性粉の製造方法である。
第3の発明は、
前記透過電子顕微鏡で測定した粒子径が8nm以下である粒子の個数割合を、4%以下に低減することを特徴とする、第2の発明に記載の鉄系酸化物磁性粉の製造方法である。
第4の発明は、
前記水熱処理を120℃以上の温度で行うことを特徴とする、第1〜第3の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第5の発明は、
前記水熱処理を0.2MPa以上の圧力で行うことを特徴とする、第1〜第4の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第6の発明は、
前記ε酸化鉄の粒子を含む原料スラリーとして、pHが6以上14以下であるものを用いることを特徴とする、第1〜第5の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第7の発明は、
前記ε酸化鉄の粒子を含む原料スラリーとして、透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下である、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーを用いることを特徴とする、第1〜第6の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第8の発明は、
前記Feサイトの一部を置換する他の金属元素として、Gaを用いることを特徴とする、第1〜第7の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第9の発明は、
前記ε酸化鉄の粒子を含む原料スラリーへ、超音波を照射および/または金属イオンを添加した後に、水熱処理に供することを特徴とする、第1〜第8の発明のいずれかに記載の鉄系酸化物磁性粉の製造方法である。
第10の発明は、
透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下であり、粒子径が8nm以下の粒子の個数割合が4%以下であり、X線回折法により測定されるαタイプの鉄系酸化物の含有率が10%以下であることを特徴とする、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉である。
第11の発明は、
前記Feサイトの一部を置換する他の金属元素が、Gaであることを特徴とする、第10の発明に記載の鉄系酸化物磁性粉である。
That is, the first invention for solving the above-mentioned problems is
A raw material slurry containing particles of ε-iron oxide in which a part of Fe sites is substituted with other metal elements is subjected to hydrothermal treatment, and ε-oxidation in which a part of Fe sites is substituted with other metal elements. This is a method for producing an iron-based oxide magnetic powder composed of iron particles.
The second invention is
By the hydrothermal treatment, the number ratio of ε-iron oxide particles in which a part of the Fe site is replaced with another metal element and the particle size measured by a transmission electron microscope is 8 nm or less is reduced. The method for producing iron-based oxide magnetic powder according to the first invention, which comprises the above.
The third invention is
The method for producing an iron-based oxide magnetic powder according to a second invention, which comprises reducing the number ratio of particles having a particle diameter of 8 nm or less as measured by the transmission electron microscope to 4% or less. ..
The fourth invention is
The method for producing an iron-based oxide magnetic powder according to any one of the first to third inventions, which comprises performing the hydrothermal treatment at a temperature of 120 ° C. or higher.
The fifth invention is
The method for producing an iron-based oxide magnetic powder according to any one of the first to fourth inventions, which comprises performing the hydrothermal treatment at a pressure of 0.2 MPa or more.
The sixth invention is
The production of the iron-based oxide magnetic powder according to any one of the first to fifth inventions, wherein the raw material slurry containing the particles of ε-iron oxide has a pH of 6 or more and 14 or less. The method.
The seventh invention is
The raw material slurry containing the ε-iron oxide particles contains ε-iron oxide particles having an average particle diameter of 10 nm or more and 20 nm or less as measured by a transmission electron microscope, in which a part of Fe sites is replaced with other metal elements. The method for producing an iron-based oxide magnetic powder according to any one of the first to sixth inventions, which comprises using a slurry.
The eighth invention is
The method for producing an iron-based oxide magnetic powder according to any one of the first to seventh inventions, which comprises using Ga as another metal element that replaces a part of the Fe site.
The ninth invention is
The iron according to any one of the first to eighth inventions, which comprises subjecting the raw material slurry containing ε-iron oxide particles to ultrasonic heat treatment after irradiating ultrasonic waves and / or adding metal ions. This is a method for producing an oxide magnetic powder.
The tenth invention is
The average particle size measured by a transmission electron microscope is 10 nm or more and 20 nm or less, the number ratio of particles having a particle size of 8 nm or less is 4% or less, and the α-type iron-based oxide measured by the X-ray diffractometry. It is an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites is substituted with other metal elements, which is characterized by a content of 10% or less.
The eleventh invention is
The iron-based oxide magnetic powder according to the tenth invention, wherein the other metal element that replaces a part of the Fe site is Ga.

本発明に係るFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法により、微細粒子の含有量が低減されたε酸化鉄の粒子からなる鉄系酸化物磁性粉を得ることができる。 Ε Iron oxide particles having a reduced content of fine particles by a method for producing an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites according to the present invention is substituted with other metal elements. An iron-based oxide magnetic powder made of the above can be obtained.

実施例1に係る置換型ε酸化鉄粒子のTEM写真である。It is a TEM photograph of the substitution type ε iron oxide particle which concerns on Example 1. FIG. 実施例1に係る鉄系酸化物磁性粉のTEM写真である。It is a TEM photograph of the iron-based oxide magnetic powder which concerns on Example 1. FIG. 実施例4に係る鉄系酸化物磁性粉のTEM写真である。It is a TEM photograph of the iron-based oxide magnetic powder which concerns on Example 4. FIG. 実施例7に係る鉄系酸化物磁性粉のTEM写真である。It is a TEM photograph of the iron-based oxide magnetic powder which concerns on Example 7. FIG. 実施例10に係る置換型ε酸化鉄粒子のTEM写真である。It is a TEM photograph of the substitution type ε iron oxide particle which concerns on Example 10. FIG. 実施例10に係る鉄系酸化物磁性粉のTEM写真である。It is a TEM photograph of the iron-based oxide magnetic powder which concerns on Example 10.

本発明に係る、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法は、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリー(本発明において「原料スラリー」と記載する場合がある。)を水熱処理に供することを特徴とする。当該水熱処理は120℃以上の温度で行うことが好ましく、0.2MPa以上の圧力で行うことが好ましく、原料スラリーとしてpHが6以上14以下であるものを用いることが好ましく、原料スラリーとして、透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下であり、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーを用いることが好ましく、当該原料スラリーに超音波を照射した後に、水熱処理に供することが好ましい。
また本発明は、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉であって、透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下であり、置換型ε酸化鉄の所定の粒子個数における粒子径が8nm以下の微細粒子の個数割合(本発明において、置換型ε酸化鉄の所定の粒子個数における微細粒子の個数の割合を、単に「個数割合」と記載する場合がある。)が好ましくは4%以下であり、X線回折法により測定されるαタイプの鉄系酸化物の含有率が10%以下であることを特徴とするものに係る。そして、Feサイトの一部を置換する金属元素をGaとしても良いものである。
In the method for producing an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe site is replaced with another metal element according to the present invention, a part of Fe site is replaced with another metal element. It is characterized in that a slurry containing particles of ε-iron oxide (may be referred to as “raw material slurry” in the present invention) is subjected to hydrothermal treatment. The hydrothermal treatment is preferably performed at a temperature of 120 ° C. or higher, preferably at a pressure of 0.2 MPa or higher, preferably a raw material slurry having a pH of 6 or more and 14 or less, and permeated as a raw material slurry. It is preferable to use a slurry having an average particle diameter of 10 nm or more and 20 nm or less measured by an electron microscope and containing ε-iron oxide particles in which a part of Fe sites is replaced with another metal element, and ultrasonic waves are used as the raw material slurry. It is preferable to subject the particles to hydrothermal treatment after irradiation.
Further, the present invention is an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites is replaced with other metal elements, and the average particle diameter measured by a transmission electron microscope is 10 nm or more and 20 nm or less. The ratio of the number of fine particles having a particle size of 8 nm or less to the predetermined number of particles of the substituted iron oxide (in the present invention, the ratio of the number of fine particles to the predetermined number of particles of the substituted iron oxide) is simply used. It may be described as "number ratio"), preferably 4% or less, and the content of α-type iron oxide measured by the X-ray diffractometry is 10% or less. Related to things. The metal element that replaces a part of the Fe site may be Ga.

以下、本発明について[鉄系酸化物磁性粉の製造方法]、[鉄系酸化物磁性粉]の順で、詳細に説明するが、「Feサイトの一部が他の金属元素で置換されたε酸化鉄」を「置換型ε酸化鉄」と、「Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子」を「置換型ε酸化鉄粒子」と記載する場合がある。 Hereinafter, the present invention will be described in detail in the order of [method for producing iron-based oxide magnetic powder] and [iron-based oxide magnetic powder]. "Ε iron oxide" may be described as "replacement type ε iron oxide", and "particles of ε iron oxide in which a part of Fe site is replaced with another metal element" may be described as "replacement type ε iron oxide particles". ..

[鉄系酸化物磁性粉の製造方法]
本発明に係る鉄系酸化物磁性粉の製造方法について、1.原料スラリーの製造、2.原料スラリーへの前処理、3.原料スラリーへの水熱処理、の順で詳細に説明する。
[Manufacturing method of iron-based oxide magnetic powder]
Regarding the method for producing an iron-based oxide magnetic powder according to the present invention, 1. Manufacture of raw material slurry, 2. Pretreatment to raw material slurry, 3. Hydrothermal treatment of the raw material slurry will be described in detail in this order.

1.原料スラリーの製造
まず初めに、原料スラリーとして、置換型ε酸化鉄粒子を含むスラリーを準備する。ここで、当該原料スラリーに置換型ε酸化鉄粒子が含まれていることで、後述する水熱処理後に本発明に係る置換型ε酸化鉄粒子を得ることが出来る。
1. 1. Production of Raw Material Slurry First, as a raw material slurry, a slurry containing substituted ε-iron oxide particles is prepared. Here, since the raw material slurry contains the substituted ε-iron oxide particles, the substituted ε-iron oxide particles according to the present invention can be obtained after the hydrothermal treatment described later.

置換型ε酸化鉄粒子を準備する方法としては、ε酸化鉄の粒子からなる鉄系酸化物磁性粉に係る公知の製造方法を用いることが出来る。当該公知の製造方法としては、例えば、特開2019−175539号公報、特開2017−024981号公報が例示される。 As a method for preparing the substituted ε-iron oxide particles, a known production method for iron-based oxide magnetic powder composed of ε-iron oxide particles can be used. Examples of the known production method include Japanese Patent Application Laid-Open No. 2019-175539 and Japanese Patent Application Laid-Open No. 2017-024981.

上述した公知の製造方法で得られた置換型ε酸化鉄粒子と溶媒とを混合することで、原料スラリーが得られる。ここで、溶媒は水とすることが好ましい。
尚、特開2017−024981号公報のシリコン酸化物被覆除去工程(0041)段落に記載されているように、シリコン酸化物で被覆された置換型ε酸化鉄粒子を含むスラリーを強アルカリの水溶液中に浸漬し攪拌することにより、置換型ε酸化鉄粒子からシリコン酸化物を溶解除去する。その後に、置換型ε酸化鉄粒子は限外濾過膜等を通過出来ず、シリコン酸化物の溶解物や強アルカリを構成する不要イオンは限外濾過膜等を通過出来る性質を利用し、置換型ε酸化鉄粒子を含むスラリーを水洗して、シリコン酸化物の溶解物や不要イオンを除去することにより、原料スラリーを得ることとしてもよい。
A raw material slurry can be obtained by mixing the substituted ε-iron oxide particles obtained by the above-mentioned known production method with a solvent. Here, the solvent is preferably water.
As described in the paragraph of the silicon oxide coating removing step (0041) of JP-A-2017-024981, a slurry containing substituted ε-iron oxide particles coated with silicon oxide is contained in a strong alkaline aqueous solution. The silicon oxide is dissolved and removed from the substituted iron oxide particles by immersing in and stirring the iron oxide particles. After that, the substituted iron oxide particles cannot pass through the ultrafiltration membrane, etc., and the unnecessary ions constituting the dissolved silicon oxide and the strong alkali can pass through the ultrafiltration membrane, etc., and are substituted type. The raw material slurry may be obtained by washing the slurry containing the ε-iron oxide particles with water to remove the dissolved substances of the silicon oxide and unnecessary ions.

原料スラリーに含まれる置換型ε酸化鉄粒子の組成および粒度については、特に限定されず、最終的に得たい鉄系酸化物磁性粉の組成、粒度に合わせて調整すればよい。また、原料スラリー中の置換型ε酸化鉄粒子の濃度も特に制約はなく、通常は0.1〜10質量%程度とすればよい。 The composition and particle size of the substituted ε-iron oxide particles contained in the raw material slurry are not particularly limited, and may be adjusted according to the composition and particle size of the iron-based oxide magnetic powder to be finally obtained. Further, the concentration of the substituted ε-iron oxide particles in the raw material slurry is not particularly limited, and may be usually about 0.1 to 10% by mass.

ここで、本発明の製造方法を適用することが可能な置換型ε酸化鉄粒子の組成について説明する。
(1)一般式ε−CzFe2-z3(ここでCは、In、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
(2)一般式ε−AxyFe2-x-y3(ここでAは、Co、Ni、Mn、Znから選択される1種以上の2価の金属元素、BはTi、Snから選択される1種以上の4価の金属元素)で表されるもの。
(3)一般式ε−AxzFe2-x-z3(ここでAは、Co、Ni、Mn、Znから選択される1種以上の2価の金属元素、Cは、In、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
(4)一般式ε−ByzFe2-y-z3(ここでBは、Ti、Snから選択される1種以上の4価の金属元素、Cは、In、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
(5)一般式ε−AxyzFe2-x-y-z3(ここでAは、Co、Ni、Mn、Znから選択される1種以上の2価の金属元素、Bは、Ti、Snから選択される1種以上の4価の金属元素、Cは、In、Ga、Alから選択される1種以上の3価の金属元素)で表されるもの。
Here, the composition of the substituted ε-iron oxide particles to which the production method of the present invention can be applied will be described.
(1) A general formula ε-C z Fe 2-z O 3 (where C is one or more trivalent metal elements selected from In, Ga, and Al).
(2) In formula ε-A x B y Fe 2 -xy O 3 ( where A is, Co, Ni, Mn, 1 or more divalent metal element selected from Zn, B is Ti, and Sn One or more selected tetravalent metal elements).
(3) General formula ε-A x C z Fe 2-xz O 3 (where A is one or more divalent metal elements selected from Co, Ni, Mn and Zn, and C is In and Ga. , One or more trivalent metal elements selected from Al).
(4) General formula ε-B y C z Fe 2-yz O 3 (where B is one or more tetravalent metal elements selected from Ti and Sn, and C is selected from In, Ga and Al. It is represented by one or more trivalent metal elements).
(5) the general formula ε-A x B y C z Fe 2-xyz O 3 ( where A, Co, Ni, Mn, 1 or more divalent metal element selected from Zn, B is, Ti , One or more tetravalent metal elements selected from Sn, C is one or more trivalent metal elements selected from In, Ga, Al).

尚、上記(1)〜(5)で説明した各一般式における置換量x、yおよびzは、0<x<1、0<y<1、0<z<1の範囲において任意の量とすることができる。そして、置換量x、yおよびzを調整することにより、保磁力を所望の値に調整することが可能である。 The substitution amounts x, y and z in each of the general formulas described in (1) to (5) above are arbitrary quantities in the range of 0 <x <1, 0 <y <1, 0 <z <1. can do. Then, the coercive force can be adjusted to a desired value by adjusting the substitution amounts x, y and z.

本発明に係る鉄系酸化物磁性粉の製造方法により製造された置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉には、その製造上、生成が不可避的な不純物である異相が混在する場合がある。異相は主としてαタイプの鉄系酸化物である。そして、本発明に係る製造方法により得られる置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉において、αタイプの鉄系酸化物の含有は許容されるが、その含有量は抑制されていることが好ましい。尚、αタイプの鉄系酸化物とは、α−FeおよびFeサイトの一部が他の金属元素で置換されたα−Feの総称である(本発明において、αタイプの鉄系酸化物を「α相」と記載する場合がある。)。 The iron-based oxide magnetic powder composed of substituted ε-iron oxide particles produced by the method for producing iron-based oxide magnetic powder according to the present invention contains different phases, which are impurities that are inevitably produced in the production thereof. In some cases. The heterogeneous phase is mainly α-type iron-based oxides. In the iron-based oxide magnetic powder composed of substituted ε-iron oxide particles obtained by the production method according to the present invention, the content of α-type iron-based oxide is permitted, but the content thereof is suppressed. Is preferable. Note that the alpha-type iron-based oxide, in alpha-Fe 2 portion of O 3 and Fe site is a generic term for have been alpha-Fe 2 O 3 replaced by another metal element (present invention, alpha type The iron-based oxide of is sometimes referred to as "α phase").

原料スラリーは、後述する水熱処理後に得られる鉄系酸化物磁性粉におけるα相の含有率増加を抑制する観点から、pHを6以上14以下とすることが好ましい。
原料スラリーのpHを6以上とすることにより、得られる鉄系酸化物磁性粉のα相の含有率を抑制することが出来る。また原料スラリーのpHが14以下とすることで、α相の含有率増加の抑制効果が頭打ちとなることを回避出来ると共に、アルカリ剤の薬品コストの上昇も回避出来、好ましいからである。
The pH of the raw material slurry is preferably 6 or more and 14 or less from the viewpoint of suppressing an increase in the α phase content in the iron-based oxide magnetic powder obtained after the hydrothermal treatment described later.
By setting the pH of the raw material slurry to 6 or more, the α phase content of the obtained iron-based oxide magnetic powder can be suppressed. Further, by setting the pH of the raw material slurry to 14 or less, it is possible to prevent the effect of suppressing the increase in the α phase content from reaching a plateau, and it is possible to avoid an increase in the chemical cost of the alkaline agent, which is preferable.

原料スラリーとして所望のpH範囲のものが得られない場合は、当該スラリーへ酸やアルカリ等を添加することにより、pHを所望の範囲に調整して原料スラリーとして用いてもよい。添加する酸としては硫酸、硝酸、塩酸および酢酸のような無機酸を用いることができ、添加するアルカリとしては水酸化ナトリウム等のアルカリ金属の水酸化物、水酸化カルシウム等のアルカリ土類金属の水酸化物およびアンモニア等の無機アルカリを用いることが出来る。 If a raw material slurry having a desired pH range cannot be obtained, the pH may be adjusted to a desired range and used as the raw material slurry by adding an acid, an alkali or the like to the slurry. Inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and acetic acid can be used as the acid to be added, and alkali metal hydroxides such as sodium hydroxide and alkaline earth metals such as calcium hydroxide can be added as alkalis. Inorganic alkalis such as hydroxides and ammonia can be used.

尚、本発明においてpHの値は、JIS Z8802に基づき、ガラス電極を用いて測定したものであり、pH標準液として測定するpH領域に応じた適切な緩衝液を用いて校正したpH計により測定されたものである。また、本発明に記載のpHは、温度補償電極により補償されたpH計の示す測定値を、反応温度条件下で直接読み取った値である。 In the present invention, the pH value is measured using a glass electrode based on JIS Z8802, and is measured by a pH meter calibrated using an appropriate buffer solution according to the pH range to be measured as a pH standard solution. It was done. Further, the pH described in the present invention is a value obtained by directly reading the measured value indicated by the pH meter compensated by the temperature compensating electrode under the reaction temperature condition.

2.原料スラリーへの前処理
「1.原料スラリーの製造」で準備した原料スラリーへ、超音波照射および/または金属イオン添加のような前処理を行うことで、「前処理後スラリー」とすることも好ましい構成である。
2. 2. Pretreatment of raw material slurry The raw material slurry prepared in "1. Production of raw material slurry" may be treated as "pretreatment post-treatment slurry" by performing pretreatment such as ultrasonic irradiation and / or addition of metal ions. This is a preferred configuration.

原料スラリーへの超音波照射は、公知の超音波分散機により実施することができる。原料スラリーへ超音波を照射した後に水熱処理をすることにより、超音波照射をしない場合と比べて、得られる鉄系酸化物磁性粉における微細粒子の含有量をより低減させることが出来る。 Ultrasonic irradiation of the raw material slurry can be carried out by a known ultrasonic disperser. By performing the hydrothermal treatment after irradiating the raw material slurry with ultrasonic waves, the content of fine particles in the obtained iron-based oxide magnetic powder can be further reduced as compared with the case where the raw material slurry is not irradiated with ultrasonic waves.

原料スラリーへの金属イオン添加は、硝酸第二鉄や硝酸ガリウム等の水溶性金属塩を原料スラリーに添加することにより実施出来る。
尤も、添加する水溶性金属塩の金属元素の種類および各元素の添加割合については、原料スラリーに含まれる置換型ε酸化鉄粒子の化学組成に合わせても良いが、原料スラリーに含まれる置換型ε酸化鉄粒子の化学組成に合わせずに、上記「1.原料スラリーの製造」の(1)〜(5)で説明した、各一般式における置換量の範囲において金属元素の種類および各元素の添加割合を設定しても良い。また、置換金属元素を添加せずに、硫酸第二鉄等の水溶性鉄塩のみを添加してもよい。ここで、金属イオンの添加量は、原料スラリー中の金属イオンの合計濃度が0.1mol/kg以下となる量とすることが好ましい。そして、鉄イオンとしてFe3+イオンを含むことが好ましい。また、添加する水溶性金属塩のアニオン種は、硫酸イオン、硝酸イオン、塩化物イオン、酢酸イオンのような無機酸に含まれるアニオン種を用いることが出来る。
The addition of metal ions to the raw material slurry can be carried out by adding a water-soluble metal salt such as ferric nitrate or gallium nitrate to the raw material slurry.
However, the type of metal element of the water-soluble metal salt to be added and the addition ratio of each element may be adjusted to the chemical composition of the substituted ε iron oxide particles contained in the raw material slurry, but the substituted type contained in the raw material slurry may be used. The type of metal element and each element within the range of the substitution amount in each general formula described in (1) to (5) of "1. Production of raw material slurry" above, regardless of the chemical composition of the ε iron oxide particles. The addition ratio may be set. Further, only a water-soluble iron salt such as ferric sulfate may be added without adding the substituted metal element. Here, the amount of metal ions added is preferably such that the total concentration of metal ions in the raw material slurry is 0.1 mol / kg or less. And it is preferable to contain Fe 3+ ions as iron ions. Further, as the anion species of the water-soluble metal salt to be added, an anion species contained in an inorganic acid such as sulfate ion, nitrate ion, chloride ion and acetate ion can be used.

3.原料スラリーへの水熱処理
水熱処理とは、処理対象物を100℃超の高温かつ高圧の熱水中で保持する処理のことである。
本発明に係る製造方法において水熱処理を実施することにより、原料スラリーまたは前処理後の原料スラリーに含まれる置換型ε酸化鉄の微細粒子の個数割合を低減させることが出来る。当該微細粒子の個数割合を低減出来る理由は明らかではないが、発明者らは以下のようなメカニズムを推定している。
3. 3. Hydrothermal treatment of raw material slurry Hydrothermal treatment is a process of holding an object to be treated in hot water at a high temperature of more than 100 ° C. and high pressure.
By carrying out hydrothermal treatment in the production method according to the present invention, it is possible to reduce the number ratio of fine particles of substituted ε-iron oxide contained in the raw material slurry or the raw material slurry after the pretreatment. The reason why the number ratio of the fine particles can be reduced is not clear, but the inventors have estimated the following mechanism.

置換型ε酸化鉄の粒子が高温高圧の熱水に曝されることで、置換型ε酸化鉄粒子の溶解再析出反応が起こる。この溶解再析出反応により、原料スラリー中の置換型ε酸化鉄の微細粒子が溶解し、より大きな粒径の置換型ε酸化鉄粒子の周りに再析出する。以上のようなメカニズムにより、微細粒子の含有量が低減するものと考えられる。このような溶解再析出の現象は一般に、オストワルド成長として知られている。
以下に、本発明に係る水熱処理の温度、圧力、時間等の具体的な態様について述べる。
Exposure of the substituted iron oxide particles to hot water at high temperature and high pressure causes a dissolution-reprecipitation reaction of the substituted iron oxide particles. By this dissolution reprecipitation reaction, the fine particles of the substituted iron oxide in the raw material slurry are dissolved and reprecipitated around the substituted ε iron oxide particles having a larger particle size. It is considered that the content of fine particles is reduced by the above mechanism. Such a phenomenon of dissolution and reprecipitation is generally known as Ostwald ripening.
Hereinafter, specific aspects such as temperature, pressure, and time of the hydrothermal treatment according to the present invention will be described.

水熱処理の温度は、本発明の目的である置換型ε酸化鉄の微細粒子の個数割合を低減させる効果を得る為、120℃以上とすることが好ましく、170℃以上がより好ましい。また、原料スラリーとして、粒子径8nm以下粒子の個数割合が20%以上といった微細粒子の個数割合が多いものを用いる場合には、微細粒子の個数割合低減の十分な効果を担保する観点から、水熱処理の温度を280℃以上とすることが好ましい。
一方、得られる鉄系酸化物磁性粉におけるα相の個数割合を抑制する観点から、温度を450℃以下とすることが好ましく、380℃以下とすることがより好ましい。
水熱処理の圧力は、本発明の目的である置換型ε酸化鉄の微細粒子の個数割合を低減させる効果を得る為、0.2MPa以上とすることが好ましく、10MPa以上とすることがより好ましい。一方、水熱処理圧力の上限については特に限定されないが、設備コストの観点から圧力を600MPa以下とすればよく、100MPa以下としてもよい。
水熱処理の時間は、本発明の目的である置換型ε酸化鉄の微細粒子の個数割合を低減させる効果を得る為、1分間以上とすることが好ましい。一方、水熱処理時間の上限については特に限定されないが、生産コストの観点から時間を600分間以下とすればよく、100分間以下としてもよい。
以上の操作により、本発明に係るFeサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法により、微細粒子の個数割合が低減されたε酸化鉄の粒子からなる鉄系酸化物磁性粉を、分級操作を行わずとも得ることができた。
尤も、所望により、当該水熱処理前に予備的な分級操作を実施することは好ましい構成である。また所望により、当該水熱処理を、複数回繰り返して実施することも好ましい構成である。
The temperature of the hydrothermal treatment is preferably 120 ° C. or higher, more preferably 170 ° C. or higher, in order to obtain the effect of reducing the number ratio of fine particles of substituted ε-iron oxide, which is the object of the present invention. Further, when a raw material slurry having a large number ratio of fine particles such as 20% or more of particles having a particle diameter of 8 nm or less is used, water is used from the viewpoint of ensuring a sufficient effect of reducing the number ratio of fine particles. The heat treatment temperature is preferably 280 ° C. or higher.
On the other hand, from the viewpoint of suppressing the number ratio of α phase in the obtained iron-based oxide magnetic powder, the temperature is preferably 450 ° C. or lower, and more preferably 380 ° C. or lower.
The pressure of the hydrothermal treatment is preferably 0.2 MPa or more, and more preferably 10 MPa or more, in order to obtain the effect of reducing the number ratio of fine particles of the substituted iron oxide, which is the object of the present invention. On the other hand, the upper limit of the hydrothermal treatment pressure is not particularly limited, but the pressure may be 600 MPa or less, or 100 MPa or less, from the viewpoint of equipment cost.
The time of the hydrothermal treatment is preferably 1 minute or more in order to obtain the effect of reducing the number ratio of fine particles of substituted ε-iron oxide, which is the object of the present invention. On the other hand, the upper limit of the hydrothermal treatment time is not particularly limited, but from the viewpoint of production cost, the time may be 600 minutes or less, or 100 minutes or less.
By the above operation, the ratio of the number of fine particles was reduced by the method for producing an iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites according to the present invention was replaced with other metal elements. An iron-based oxide magnetic powder composed of ε-iron oxide particles could be obtained without performing a classification operation.
However, if desired, it is a preferable configuration to carry out a preliminary classification operation before the hydrothermal treatment. Further, if desired, it is also preferable to repeat the hydrothermal treatment a plurality of times.

[鉄系酸化物磁性粉]
以上説明した本発明に係る鉄系酸化物磁性粉の製造方法により、原料スラリーまたは前処理後の原料スラリーへ、上述した水熱処理を実施することで、微細粒子の個数割合が低減された置換型ε酸化鉄粒子を含むスラリーが得られる。得られたスラリーを公知の方法により固液分離して固形分を回収した後に乾燥することで、微細粒子の個数割合が低減された鉄系酸化物磁性粉が得られる。
本発明に係る製造方法で得られた鉄系酸化物磁性粉の態様について、1.TEM粒子径、2.結晶構造、3.α相の含有率、4.組成、の順で詳細に説明する。
[Iron-based oxide magnetic powder]
By the above-described method for producing an iron-based oxide magnetic powder according to the present invention, the raw material slurry or the raw material slurry after pretreatment is subjected to the above-mentioned hydrothermal treatment, whereby the number ratio of fine particles is reduced. A slurry containing ε iron oxide particles is obtained. By solid-liquid separation of the obtained slurry by a known method, recovery of the solid content, and then drying, an iron-based oxide magnetic powder having a reduced number ratio of fine particles can be obtained.
Regarding the aspect of the iron-based oxide magnetic powder obtained by the production method according to the present invention, 1. TEM particle size, 2. Crystal structure, 3. α phase content, 4. The composition will be described in detail in this order.

1.TEM粒子径
後述する後工程において、磁気記録媒体用途の鉄系酸化物磁性粉を製造するとき、得られる鉄系酸化物磁性粉の保磁力をある程度高くし、かつ磁気記録媒体の優れた電磁変換特性を得る為に、本発明に係る鉄系酸化物磁性粉を構成する置換型ε酸化鉄粒子は、透過電子顕微鏡で測定した平均粒子径(本発明において「TEM平均粒子径」と記載する場合がある。)が10nm以上20nm以下であることが好ましい。
尚、本発明において粒子径とは、透過電子顕微鏡で輪郭が観察される最小単位の粒子(一次粒子)の粒子径を指す。
1. 1. TEM particle size In the post-process described later, when iron-based oxide magnetic powder for magnetic recording media is produced, the coercive force of the obtained iron-based oxide magnetic powder is increased to some extent, and excellent electromagnetic conversion of the magnetic recording medium is performed. In order to obtain the characteristics, the substituted iron oxide particles constituting the iron-based oxide magnetic powder according to the present invention have an average particle size measured by a transmission electron microscope (when described as "TEM average particle size" in the present invention. ) Is preferably 10 nm or more and 20 nm or less.
In the present invention, the particle size refers to the particle size of the smallest unit of particles (primary particles) whose contour is observed with a transmission electron microscope.

上述したように、置換型ε酸化鉄粒子の透過電子顕微鏡で測定した平均粒子径が小さくなり過ぎると、磁気特性向上に寄与しない微細粒子の存在割合が増大し、磁性粉単位重量あたりの磁気特性が劣化する。そこで、TEM平均粒子径は10nm以上であることが好ましい。
一方、TEM平均粒子径が20nm以下、さらに好ましくは18nm以下であることにより、鉄系酸化物磁性粉を磁気記録媒体に用いた際の電磁変換特性を向上させることが出来る。
As described above, if the average particle size of the substituted iron oxide particles measured by the transmission electron microscope becomes too small, the abundance ratio of fine particles that do not contribute to the improvement of magnetic characteristics increases, and the magnetic characteristics per unit weight of the magnetic powder. Deteriorates. Therefore, the TEM average particle size is preferably 10 nm or more.
On the other hand, when the TEM average particle size is 20 nm or less, more preferably 18 nm or less, the electromagnetic conversion characteristics when the iron-based oxide magnetic powder is used as a magnetic recording medium can be improved.

本発明に係る鉄系酸化物磁性粉は、置換型ε酸化鉄の所定の粒子個数におけるTEM粒子径が8nm以下である置換型ε酸化鉄の微細粒子の個数割合が4%以下であることが好ましい。これは、TEM粒子径が8nm以下の置換型ε酸化鉄の微細粒子は保磁力が低い為、磁気記録媒体中に存在しても磁気記録が出来ない粒子であることに加え、磁気記録媒体の電磁変換特性においてノイズ成分の増に繋がりうる粒子であることによる。
尚、上述した置換型ε酸化鉄の所定の粒子個数とは200個以上のことである。
In the iron-based oxide magnetic powder according to the present invention, the ratio of the number of fine particles of substituted ε-iron oxide having a TEM particle size of 8 nm or less to a predetermined number of particles of substituted ε-iron oxide is 4% or less. preferable. This is because the fine particles of substituted ε-iron oxide having a TEM particle diameter of 8 nm or less have a low coercive force, so that they cannot be magnetically recorded even if they exist in a magnetic recording medium. This is because the particles can lead to an increase in the noise component in the electromagnetic conversion characteristics.
The predetermined number of particles of the above-mentioned substituted ε-iron oxide is 200 or more.

従って、置換型ε酸化鉄の所定の粒子個数におけるTEM粒子径が8nm以下の置換型ε酸化鉄の微細粒子の個数割合は出来るだけ少ないことが好ましい。本発明に係る鉄系酸化物磁性粉においては、このTEM粒子径が8nm以下である置換型ε酸化鉄の微細粒子の個数割合が、4%以下であることが好ましい。これは、当該鉄系酸化物磁性粉を磁気記録媒体に用いた際の電磁変換特性におけるノイズ成分量を、従来の鉄系酸化物磁性粉を用いた場合よりも低減させることが出来るからである。 Therefore, it is preferable that the ratio of the number of fine particles of the substituted ε-iron oxide having a TEM particle diameter of 8 nm or less to the predetermined number of particles of the substituted ε-iron oxide is as small as possible. In the iron-based oxide magnetic powder according to the present invention, the number ratio of fine particles of substituted ε-iron oxide having a TEM particle size of 8 nm or less is preferably 4% or less. This is because the amount of noise component in the electromagnetic conversion characteristics when the iron-based oxide magnetic powder is used as a magnetic recording medium can be reduced as compared with the case where the conventional iron-based oxide magnetic powder is used. ..

2.結晶構造
本発明に係る鉄系酸化物磁性粉がε酸化鉄の結晶構造を有するものであることは、X線回折法(XRD)、高速電子回折法(HEED)等を用いて確認することが出来る。
2. 2. Crystal structure It can be confirmed by using X-ray diffraction method (XRD), high-speed electron diffraction method (HEED), etc. that the iron-based oxide magnetic powder according to the present invention has a crystal structure of ε-iron oxide. I can.

3.α相の含有率
上述したように、本発明の製造方法により得られる鉄系酸化物磁性粉は、α相を含有する場合がある。そして、本発明に係る鉄系酸化物磁性粉を磁気記録媒体に適用するにあたっては、鉄系酸化物磁性粉中の異相の含有割合をできるだけ低減することが好ましい。具体的には、鉄系酸化物磁性粉中の異相の含有割合をX線回折法のリートベルト解析により測定した場合、α相の含有率が10%以下であることが好ましい。
3. 3. α-phase content As described above, the iron-based oxide magnetic powder obtained by the production method of the present invention may contain an α-phase. When applying the iron-based oxide magnetic powder according to the present invention to a magnetic recording medium, it is preferable to reduce the content ratio of the heterogeneous phase in the iron-based oxide magnetic powder as much as possible. Specifically, when the content ratio of the heterogeneous phase in the iron-based oxide magnetic powder is measured by Rietveld analysis by the X-ray diffraction method, the content ratio of the α phase is preferably 10% or less.

4.組成
本発明に係る鉄系酸化物磁性粉の組成は、水熱処理の前処理として金属イオン添加を行わなかった場合には、原料として準備した置換型ε酸化鉄と同じ組成となる。
一方、水熱処理の前処理として金属イオン添加を行った場合、当該添加された金属イオンは、全て鉄系酸化物粒子に酸化物として取り込まれるため、最終的に得られる鉄系酸化物磁性粉の組成は、原料として準備した置換型ε酸化鉄と、添加した金属イオンとをあわせた組成となる。
4. Composition The composition of the iron-based oxide magnetic powder according to the present invention is the same as that of the substituted iron oxide prepared as a raw material when the metal ion is not added as a pretreatment for the hydrothermal treatment.
On the other hand, when metal ions are added as a pretreatment for hydrothermal treatment, all the added metal ions are taken into the iron-based oxide particles as oxides, so that the iron-based oxide magnetic powder finally obtained The composition is a combination of the substituted iron oxide prepared as a raw material and the added metal ion.

以下、実施例を参照しながら本発明を具体的に説明する。尚、本発明は当該実施例に限定されるものではない。
まず、本発明に係る製造法により得られた置換型ε酸化鉄粒子や、置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉の評価方法、評価装置について、1.TEM測定、2.平均粒子径、粒度分布測定、3.X線回折法(XRD)による結晶性評価、4.磁気ヒステリシス曲線(B−H曲線)測定、5.化学組成分析、の順で説明する。
Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to the embodiment.
First, regarding the evaluation method and evaluation apparatus for the substituted ε-iron oxide particles obtained by the production method according to the present invention and the iron-based oxide magnetic powder composed of the substituted ε-iron oxide particles, 1. TEM measurement, 2. Average particle size, particle size distribution measurement, 3. Crystallinity evaluation by X-ray diffraction method (XRD), 4. 3. Magnetic hysteresis curve (BH curve) measurement. Chemical composition analysis will be explained in this order.

1.TEM観察
TEM観察には日本電子株式会社製JEM−1011を使用した。置換型ε酸化鉄粒子の観察については、倍率100,000倍で撮影したTEM写真を用いた(シリコン酸化物被覆を除去後のものを使用した。)。
1. 1. TEM observation JEM-1011 manufactured by JEOL Ltd. was used for TEM observation. For the observation of the substituted ε-iron oxide particles, a TEM photograph taken at a magnification of 100,000 times was used (the one after removing the silicon oxide coating was used).

2.平均粒子径、粒度分布測定
置換型ε酸化鉄粒子のTEM平均粒子径および粒度分布の評価には、デジタイズを使用した。画像処理ソフトウェアとして、Mac−View Ver.4.0を使用した。この画像処理ソフトウェアを使用した場合、ある粒子の粒子径は、その粒子に外接する長方形のうち、面積が最小となる長方形の長辺の長さとして算出される。個数については200個を測定した。
2. 2. Measurement of average particle size and particle size distribution Digitization was used to evaluate the TEM average particle size and particle size distribution of the substituted iron oxide particles. Mac-View Ver.4.0 was used as the image processing software. When this image processing software is used, the particle size of a certain particle is calculated as the length of the long side of the rectangle having the smallest area among the rectangles circumscribing the particle. As for the number, 200 pieces were measured.

このとき、TEM写真に映っている粒子のうち、測定する粒子の選定基準は次のとおりとした。
(1)粒子の一部が写真の視野の外にはみだしている粒子は測定しない。
(2)輪郭がはっきりしており、孤立して存在している粒子は測定する。
(3)平均的な粒子形状から外れている場合でも、独立しており単独粒子として測定が可能な粒子は測定する。
(4)粒子同士に重なりがあるが、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定する。
(5)重なり合っている粒子で、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
以上の(1)〜(5)の基準で選定された粒子の粒子径の個数平均値を算出し、鉄酸化物磁性粉のTEM観察による平均粒子径とした。また、「選定された粒子の粒子径の標準偏差」を「選択された粒子の粒子径の個数平均値(=平均粒子径)」で除した値を算出して、鉄酸化物磁性粉のTEM観察による粒子径の変動係数とした。また、選択された粒子の個数に対する、選定された粒子のうち粒子径が8nm以下の粒子の個数割合を百分率で算出して、8nm以下の粒子割合とし、選定された粒子のうち粒子径が20nm以上の粒子の個数割合を百分率で算出して、20nm以上の粒子割合とした。
At this time, among the particles shown in the TEM photograph, the selection criteria of the particles to be measured were as follows.
(1) Particles in which a part of the particles protrudes out of the field of view of the photograph are not measured.
(2) Particles that have a clear outline and exist in isolation are measured.
(3) Even if the particle shape deviates from the average particle shape, the particles that are independent and can be measured as single particles are measured.
(4) For particles in which the particles overlap each other, but the boundary between the two is clear and the shape of the entire particle can be determined, each particle is measured as a single particle.
(5) Particles that overlap and whose boundaries are not clear and whose overall shape is unknown are not measured as the shape of the particles cannot be determined.
The average number of particle sizes of the particles selected according to the above criteria (1) to (5) was calculated and used as the average particle size by TEM observation of the iron oxide magnetic powder. Further, the value obtained by dividing the "standard deviation of the particle size of the selected particles" by the "number average value (= average particle size) of the particle size of the selected particles" is calculated, and the TEM of the iron oxide magnetic powder is calculated. The coefficient of variation of the particle size by observation was used. Further, the ratio of the number of particles having a particle diameter of 8 nm or less to the number of selected particles is calculated as a percentage to obtain a particle ratio of 8 nm or less, and the particle diameter of the selected particles is 20 nm. The number ratio of the above particles was calculated as a percentage to obtain a particle ratio of 20 nm or more.

3.X線回折法(XRD)による結晶性評価
得られた試料を、粉末X線回折(XRD:リガク社製試料水平型多目的X線回折装置Ultima IV、線源CuKα線、電圧40kV、電流40mA、2θ=10°以上70°以下)に供した。得られた回折パターンについて、統合粉末X線解析ソフトウェア(PDXL2:リガク社製)を用いICSD(無機結晶構造データベース)のNo.173025:Iron(III)Oxide−Epsilon、No.82134:Hematiteをもとにしてリートベルト解析による評価を行い、結晶構造およびα相の含有率を確認した。
3. 3. Crystalline evaluation by X-ray diffraction method (XRD) Powder X-ray diffraction (XRD: Rigaku sample horizontal multipurpose X-ray diffractometer Ultima IV, source CuKα ray, voltage 40 kV, current 40 mA, 2θ = 10 ° or more and 70 ° or less). The obtained diffraction pattern was based on ICSD (Inorganic Crystal Structure Database) No. 173025: Iron (III) Oxide-Epsilon, No. 82134: Hematite using integrated powder X-ray analysis software (PDXL2: manufactured by Rigaku Co., Ltd.). The crystal structure and α-phase content were confirmed by evaluation by Rietveld analysis.

4.磁気ヒステリシス曲線(B−H曲線)測定
得られた鉄系酸化物磁性粉の磁気特性を以下の条件で測定した。
磁気特性測定装置として振動試料型磁力計(VSM)(東英工業社製VSM−5)を用い、印加磁場1035kA/m(13kOe)、M測定レンジ0.005A・m(5emu)、印加磁場変化速度15(kA/m・s)、時定数0.03秒、ウエイトタイム0.1秒で磁気特性を測定した。また、本測定には東英工業社製付属ソフト(Ver.2.1)を使用した。
4. Magnetic Hysteresis Curve (BH Curve) Measurement The magnetic properties of the obtained iron-based oxide magnetic powder were measured under the following conditions.
A vibrating sample magnetometer (VSM) (VSM-5 manufactured by Toei Kogyo Co., Ltd.) is used as a magnetic characteristic measuring device, and the applied magnetic field is 1035 kA / m (13 kOe), M measurement range is 0.005 A ・ m 2 (5 emu), and the applied magnetic field. The magnetic characteristics were measured at a change rate of 15 (kA / m · s), a time constant of 0.03 seconds, and a weight time of 0.1 seconds. In addition, the attached software (Ver.2.1) manufactured by Toei Kogyo Co., Ltd. was used for this measurement.

5.化学組成分析
鉄系酸化物磁性粉の化学組成分析にあたっては、アジレントテクノロジー製ICP−720ESを使用し、測定波長(nm)についてはFe;259.940nm、Ga;294.363nmにて分析を行った。
5. Chemical composition analysis In the chemical composition analysis of the iron-based oxide magnetic powder, ICP-720ES manufactured by Azilent Technology was used, and the measurement wavelength (nm) was Fe; 259.940 nm and Ga; 294.363 nm. ..

[実施例1]
(手順1)
原料溶液として、硝酸第二鉄(III)と硝酸ガリウムとの混合水溶液3000gを準備した。当原料溶液において、FeイオンとGaイオンのモル比は1.55:0.45とし、FeイオンとGaイオンとの合計モル濃度を0.50mol/kgとした。
大気雰囲気下、原料溶液を40℃とし撹拌羽根により機械的に撹拌しながら、21.75%のアンモニア水溶液275.6gを一挙添加し、2時間撹拌を続けた。
次に、溶液温度40℃の条件下で、クエン酸濃度20質量%のクエン酸溶液288.8gを、1時間かけて連続添加した後、21.75質量%のアンモニア水溶液を186.1g一挙添加した。その後、溶液温度40℃の条件下で1時間撹拌を保持し、置換元素としてGaを含むオキシ水酸化鉄の結晶を含むスラリーを製造した。
[Example 1]
(Procedure 1)
As a raw material solution, 3000 g of a mixed aqueous solution of ferric nitrate (III) and gallium nitrate was prepared. In this raw material solution, the molar ratio of Fe ion to Ga ion was 1.55: 0.45, and the total molar concentration of Fe ion and Ga ion was 0.50 mol / kg.
Under an air atmosphere, the raw material solution was set to 40 ° C., and 275.6 g of a 21.75% aqueous ammonia solution was added all at once while mechanically stirring with a stirring blade, and stirring was continued for 2 hours.
Next, under the condition of a solution temperature of 40 ° C., 288.8 g of a citric acid solution having a citric acid concentration of 20% by mass was continuously added over 1 hour, and then 186.1 g of a 21.75% by mass aqueous ammonia solution was added all at once. did. Then, stirring was maintained for 1 hour under the condition of a solution temperature of 40 ° C. to produce a slurry containing iron oxyhydroxide crystals containing Ga as a substituent.

(手順2)
その後、大気雰囲気下、手順1で得られたスラリーを40℃のまま撹拌しながら、テトラエトキシシラン(TEOS)833.7gを35分間かけて添加した。その後、約1日そのまま撹拌し続け、置換元素を含むオキシ水酸化鉄の結晶がTEOSの加水分解生成物で被覆されたスラリーを得た。そして得られたスラリーを固液分離し、分離された固形分を洗浄してケーキとして回収した。
(Procedure 2)
Then, under an atmospheric atmosphere, 833.7 g of tetraethoxysilane (TEOS) was added over 35 minutes while stirring the slurry obtained in step 1 at 40 ° C. Then, stirring was continued as it was for about 1 day to obtain a slurry in which crystals of iron oxyhydroxide containing a substituent were coated with a hydrolysis product of TEOS. Then, the obtained slurry was separated into solid and liquid, and the separated solid content was washed and recovered as a cake.

(手順3)
手順2で回収されたケーキを乾燥して乾燥粉とした後、当該乾燥粉へ、大気雰囲気の炉内で、1025℃で4時間の熱処理を施し、シリコン酸化物で被覆された置換型ε酸化鉄粒子からなる粉末を得た。
(Procedure 3)
After the cake recovered in step 2 is dried to obtain dry powder, the dry powder is heat-treated at 1025 ° C. for 4 hours in a furnace in an air atmosphere, and substituted ε-oxidation coated with silicon oxide. A powder composed of iron particles was obtained.

(手順4)
手順3で得られたシリコン酸化物で被覆された置換型ε酸化鉄粒子からなる粉末を、20質量%NaOH水溶液中へ加え、約60℃24時間撹拌して、置換型ε酸化鉄粒子表面のシリコン酸化物の除去処理を行うことで、置換型ε酸化鉄粒子を含むスラリーを得た。
(Procedure 4)
The powder composed of the substituted iron oxide particles coated with the silicon oxide obtained in step 3 is added to a 20 mass% NaOH aqueous solution and stirred at about 60 ° C. for 24 hours to prepare the surface of the substituted iron oxide particles. By removing the silicon oxide, a slurry containing substituted ε-iron oxide particles was obtained.

(手順5)
限外濾過膜を用い、手順4で得られたスラリーを、ろ液の導電率が≦10mS/mとなるまで純水により洗浄することで、置換型ε酸化鉄粒子を含む原料スラリーを得た。このとき得られた原料スラリー中には、置換型ε酸化鉄粒子が1質量%含有されていた。そして、得られた原料スラリーのpHは9であった。
(Procedure 5)
The slurry obtained in step 4 was washed with pure water until the conductivity of the filtrate became ≦ 10 mS / m using an ultrafiltration membrane to obtain a raw material slurry containing substituted ε-iron oxide particles. .. The raw material slurry obtained at this time contained 1% by mass of substituted ε-iron oxide particles. The pH of the obtained raw material slurry was 9.

以上の手順5で得られた原料スラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.3nm、粒子径8nm以下粒子の個数割合は23.0%、変動係数(CV値)は36%であった。原料スラリーに対するTEM観察とは、原料スラリーをグリッド上のコロジオン膜に滴下して付着させ、自然乾燥させた後にカーボン蒸着を施して、TEM観察に供することを指す。図1に、当該スラリーに含有されている置換型ε酸化鉄粒子のTEM写真を示す。なお、TEM写真の右下部に表示した白い横線で示す長さが100nmである(以下のTEM写真についても同様)。 TEM observation was performed on the raw material slurry obtained in the above procedure 5, and the particle size of 200 particles contained in the slurry was measured. The TEM average particle size was 11.3 nm and the particle size was 8 nm or less. The number ratio of the particles was 23.0%, and the coefficient of variation (CV value) was 36%. The TEM observation of the raw material slurry means that the raw material slurry is dropped and adhered to a collodion film on the grid, naturally dried, and then carbon-deposited to be subjected to TEM observation. FIG. 1 shows a TEM photograph of substituted ε-iron oxide particles contained in the slurry. The length indicated by the white horizontal line displayed at the lower right of the TEM photograph is 100 nm (the same applies to the following TEM photographs).

手順5で得られた原料スラリーへ、1質量%の硫酸水溶液を添加してpHを6.5に調整して置換型ε酸化鉄粒子を凝集させた後にメンブレンフィルター(孔径0.2μm)で濾過し、固形分を回収した。回収された固形分を乾燥することで、置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉を得た。得られた鉄系酸化物磁性粉に対してFeおよびGaの組成分析を実施したところ、モル比でFe:Ga=1.57:0.43であった。また、得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。 A 1% by mass aqueous sulfuric acid solution was added to the raw material slurry obtained in step 5 to adjust the pH to 6.5 to aggregate the substituted iron oxide particles, and then filtered through a membrane filter (pore size 0.2 μm). And the solid content was recovered. The recovered solid content was dried to obtain an iron-based oxide magnetic powder composed of substituted ε-iron oxide particles. When the composition analysis of Fe and Ga was carried out on the obtained iron-based oxide magnetic powder, it was found that Fe: Ga = 1.57: 0.43 in terms of molar ratio. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.

(手順6)
手順5で得られた原料スラリー4.7mLを、容量5mL密閉容器に入れ、処理温度150℃、処理時間5分間、圧力30MPaの条件で水熱処理を行うことにより、実施例1に係る置換型ε酸化鉄粒子を含むスラリーを得た。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。
(Procedure 6)
The replacement type ε according to Example 1 was placed in a closed container having a capacity of 5 mL and subjected to hydrothermal treatment under the conditions of a treatment temperature of 150 ° C., a treatment time of 5 minutes, and a pressure of 30 MPa. A slurry containing iron oxide particles was obtained.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above.

(手順7)
手順6で得られたスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.4nm、粒子径8nm以下粒子の個数割合は17.4%、変動係数(CV値)は33%であった。図2に、実施例1に係る置換型ε酸化鉄粒子のTEM写真を示す。
次に、手順6で得られたスラリーに、1質量%の硫酸水溶液を添加してpHを6.5に調整した後にメンブレンフィルター(孔径0.2μm)で濾過し、固形物を回収した後に乾燥することで実施例1に係る鉄系酸化物磁性粉を得た。
得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
得られた鉄系酸化物磁性粉の磁気特性を測定した結果を、α相の含有率の測定結果、化学組成とまとめて表に示す。尚、鉄系酸化物磁性粉の化学組成は、実施例1に係る原料スラリーに含まれる置換型ε酸化鉄粒子と同等であった。(以下の実施例2〜10についても同様)
以上説明した、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
(Procedure 7)
When TEM observation was performed on the slurry obtained in step 6 and the particle diameters of 200 particles contained in the slurry were measured, the TEM average particle diameter was 11.4 nm and the number of particles having a particle diameter of 8 nm or less. The ratio was 17.4% and the coefficient of variation (CV value) was 33%. FIG. 2 shows a TEM photograph of the substituted ε iron oxide particles according to Example 1.
Next, 1% by mass of a sulfuric acid aqueous solution was added to the slurry obtained in step 6 to adjust the pH to 6.5, filtered through a membrane filter (pore size 0.2 μm), and dried after recovering the solid matter. The iron-based oxide magnetic powder according to Example 1 was obtained.
The obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
The results of measuring the magnetic properties of the obtained iron-based oxide magnetic powder are shown in the table together with the measurement results of the α phase content and the chemical composition. The chemical composition of the iron-based oxide magnetic powder was equivalent to that of the substituted ε-iron oxide particles contained in the raw material slurry according to Example 1. (The same applies to the following Examples 2 to 10)
Table 2 shows the measurement results of the substituted ε-iron oxide particles and the iron-based oxide magnetic powder described above.

[実施例2]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー4.4mLを用い、処理温度200℃の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例2に係る置換型ε酸化鉄粒子を含むスラリー、および実施例2に係る置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例2に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は12.7nm、粒子径8nm以下粒子の個数割合は12.0%、変動係数(CV値)は32%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 2]
In step 6 of Example 1, 4.4 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and hydrothermal treatment was performed under the condition of a treatment temperature of 200 ° C. Obtained an iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to Example 2 and a substituted ε-iron oxide particles according to Example 2 by the same procedure as in Example 1.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 2, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 12.7 nm, the number ratio of particles having a particle diameter of 8 nm or less was 12.0%, and the coefficient of variation (CV value) was 32%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例3]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー4.1mLを用い、処理温度250℃の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例3に係る置換型ε酸化鉄粒子を含むスラリー、および実施例3に係る置換型ε酸化鉄粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例3に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.9nm、粒子径8nm以下粒子の個数割合は13.8%、変動係数(CV値)は28%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 3]
In step 6 of Example 1, 4.1 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and hydrothermal treatment was performed under the condition of a treatment temperature of 250 ° C. Obtained an iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to Example 3 and a substituted ε-iron oxide particles according to Example 3 by the same procedure as in Example 1.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 3, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 11.9 nm, the number ratio of particles having a particle diameter of 8 nm or less was 13.8%, and the coefficient of variation (CV value) was 28%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例4]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.8mLを用い、処理温度300℃の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例4に係る置換型ε酸化鉄粒子を含むスラリー、および実施例4に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例4に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は13.1nm、粒子径8nm以下粒子の個数割合は4.2%、変動係数(CV値)は30%であった。図3に、本実施例において得られた鉄系酸化物磁性粉のTEM写真を示す。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ3%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 4]
In step 6 of Example 1, 3.8 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and hydrothermal treatment was performed under the condition of a treatment temperature of 300 ° C. Obtained an iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to Example 4 and particles of substituted ε-iron oxide according to Example 4 by the same procedure as in Example 1. ..
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 4, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 13.1 nm, the number ratio of particles having a particle diameter of 8 nm or less was 4.2%, and the coefficient of variation (CV value) was 30%. FIG. 3 shows a TEM photograph of the iron-based oxide magnetic powder obtained in this example. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 3%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例5]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.2mLを用い、処理温度350℃の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例5に係る置換型ε酸化鉄粒子を含むスラリー、および実施例5に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例5に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は14.2nm、粒子径8nm以下粒子の個数割合は0.4%、変動係数(CV値)は28%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ5%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 5]
In step 6 of Example 1, 3.2 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and hydrothermal treatment was performed under the condition of a treatment temperature of 350 ° C. Obtained an iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to Example 5 and particles of substituted ε-iron oxide according to Example 5 by the same procedure as in Example 1. ..
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 5, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 14.2 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.4%, and the coefficient of variation (CV value) was 28%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 5%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例6]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.2mLを用い、処理温度350℃、処理時間10分間の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例6に係る置換型ε酸化鉄粒子を含むスラリー、および実施例6に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例6に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は15.4nm、粒子径8nm以下粒子の個数割合は0.4%、変動係数(CV値)は45%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ7%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 6]
In step 6 of Example 1, 3.2 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and water was used under the conditions of a treatment temperature of 350 ° C. and a treatment time of 10 minutes. An iron-based oxide composed of a slurry containing substituted ε-iron oxide particles according to Example 6 and particles of substituted ε-iron oxide according to Example 6 according to the same procedure as in Example 1 except that the heat treatment was performed. A magnetic powder was obtained.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 6, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 15.4 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.4%, and the coefficient of variation (CV value) was 45%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 7%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例7]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.2mLを用い、処理温度350℃、処理時間30分間の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例7に係る置換型ε酸化鉄粒子を含むスラリー、および実施例7に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例7に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は15.1nm、粒子径8nm以下粒子の個数割合は0.6%、変動係数(CV値)は36%であった。図4に、実施例7において得られた鉄系酸化物磁性粉のTEM写真を示す。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ8%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 7]
In step 6 of Example 1, 3.2 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and water was used under the conditions of a treatment temperature of 350 ° C. and a treatment time of 30 minutes. An iron-based oxide composed of a slurry containing substituted ε-iron oxide particles according to Example 7 and particles of substituted ε-iron oxide according to Example 7 according to the same procedure as in Example 1 except that the heat treatment was performed. A magnetic powder was obtained.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 7, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 15.1 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.6%, and the coefficient of variation (CV value) was 36%. FIG. 4 shows a TEM photograph of the iron-based oxide magnetic powder obtained in Example 7. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 8%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例8]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.2mLを用い、処理温度350℃、処理時間60分間の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例8に係る置換型ε酸化鉄粒子を含むスラリー、および実施例8に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例8に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は15.4nm、粒子径8nm以下粒子の個数割合は0.6%、変動係数(CV値)は36%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ12%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 8]
In step 6 of Example 1, 3.2 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and water was used under the conditions of a treatment temperature of 350 ° C. and a treatment time of 60 minutes. An iron-based oxide composed of a slurry containing substituted ε-iron oxide particles according to Example 8 and particles of substituted ε-iron oxide according to Example 8 according to the same procedure as in Example 1 except that the heat treatment was performed. A magnetic powder was obtained.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 8, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 15.4 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.6%, and the coefficient of variation (CV value) was 36%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 12%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例9]
実施例1の手順6において、原料スラリーとして、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリー3.2mLを用い、処理温度400℃、処理時間5分間の条件で水熱処理を実施した以外は、実施例1と同様の手順により、実施例9に係る置換型ε酸化鉄粒子を含むスラリー、および実施例9に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた実施例9に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は16.0nm、粒子径8nm以下粒子の個数割合は0.0%、変動係数(CV値)は36%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ14%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 9]
In step 6 of Example 1, 3.2 mL of the slurry containing the substituted ε-iron oxide particles obtained in Step 5 of Example 1 was used as the raw material slurry, and water was used under the conditions of a treatment temperature of 400 ° C. and a treatment time of 5 minutes. An iron-based oxide composed of a slurry containing substituted ε-iron oxide particles according to Example 9 and particles of substituted ε-iron oxide according to Example 9 according to the same procedure as in Example 1 except that the heat treatment was performed. A magnetic powder was obtained.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 9, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 16.0 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.0%, and the coefficient of variation (CV value) was 36%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 14%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[比較例1]
実施例1の手順6において、実施例1の手順5で得られた置換型ε酸化鉄粒子を含むスラリーへ、水熱処理を実施しなった以外は、実施例1と同様の手順により、比較例1に係る置換型ε酸化鉄粒子を含むスラリー、および比較例1に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例1の手順7で説明したように、得られた比較例1に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.3nm、粒子径8nm以下粒子の個数割合は23.0%、変動係数(CV値)は36%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Comparative Example 1]
Comparative Example according to the same procedure as in Example 1 except that the slurry containing the substituted ε-iron oxide particles obtained in the procedure 5 of Example 1 was not subjected to hydrothermal treatment in the procedure 6 of the first embodiment. An iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to No. 1 and particles of substituted ε-iron oxide according to Comparative Example 1 was obtained.
As described in step 7 of Example 1, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Comparative Example 1, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 11.3 nm, the number ratio of particles having a particle diameter of 8 nm or less was 23.0%, and the coefficient of variation (CV value) was 36%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the processing conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[実施例10]
(手順1)
原料溶液として、塩化第二鉄(III)と硝酸ガリウムとの混合水溶液6000gを準備した。当該原料溶液において、FeイオンとGaイオンのモル比は1.90:0.10とし、FeイオンとGaイオンの合計モル濃度は0.50mol/kgとした。
大気雰囲気中、原料溶液を40℃とし撹拌羽根により機械的に撹拌しながら、22.46%のアンモニア水溶液546.1gを一挙添加し、2時間撹拌を続けた。
次に、溶液温度40℃の条件下で、クエン酸濃度20質量%のクエン酸水溶液577.5gを、1時間かけて連続添加した後、22.46質量%のアンモニア水溶液を368.7g一挙添加した。その後、溶液温度40℃の条件下で1時間撹拌を保持し、置換元素としてGaを含むオキシ水酸化鉄の結晶を含むスラリーを製造した。
[Example 10]
(Procedure 1)
As a raw material solution, 6000 g of a mixed aqueous solution of ferric chloride (III) and gallium nitrate was prepared. In the raw material solution, the molar ratio of Fe ion to Ga ion was 1.90: 0.10, and the total molar concentration of Fe ion and Ga ion was 0.50 mol / kg.
In the air atmosphere, the raw material solution was set to 40 ° C., and 546.1 g of a 22.46% aqueous ammonia solution was added all at once while mechanically stirring with a stirring blade, and stirring was continued for 2 hours.
Next, under the condition of a solution temperature of 40 ° C., 577.5 g of a citric acid aqueous solution having a citric acid concentration of 20% by mass was continuously added over 1 hour, and then 368.7 g of a 22.46% by mass aqueous ammonia solution was added all at once. did. Then, stirring was maintained for 1 hour under the condition of a solution temperature of 40 ° C. to produce a slurry containing iron oxyhydroxide crystals containing Ga as a substituent.

(手順2)
その後、大気雰囲気中、手順1で得られたスラリーを40℃のまま撹拌しながら、テトラエトキシシラン(TEOS)1692.7gを35分間かけて添加した。その後、約1日そのまま撹拌し続け、置換元素を含むオキシ水酸化鉄の結晶がTEOSの加水分解生成物で被覆されたスラリーを得た。そして得られたスラリーを固液分離し、分離された固形分を洗浄してケーキとして回収した。
(Procedure 2)
Then, in the air atmosphere, 1692.7 g of tetraethoxysilane (TEOS) was added over 35 minutes while stirring the slurry obtained in step 1 at 40 ° C. Then, stirring was continued as it was for about 1 day to obtain a slurry in which crystals of iron oxyhydroxide containing a substituent were coated with a hydrolysis product of TEOS. Then, the obtained slurry was separated into solid and liquid, and the separated solid content was washed and recovered as a cake.

(手順3)
手順2で回収されたケーキを乾燥して乾燥粉とした後、当該乾燥粉へ、大気雰囲気の炉内で、957℃で4時間の熱処理を施し、シリコン酸化物で被覆された置換型ε酸化鉄粒子からなる粉末を得た。
(Procedure 3)
After the cake recovered in step 2 is dried to obtain dry powder, the dry powder is heat-treated at 957 ° C. for 4 hours in a furnace in an air atmosphere, and substituted ε-oxidation coated with silicon oxide. A powder composed of iron particles was obtained.

(手順4)
手順3で得られたシリコン酸化物で被覆された置換型ε酸化鉄粒子の粉末を、20質量%NaOH水溶液へ加え、60℃24時間撹拌して、置換型ε酸化鉄粒子表面のシリコン酸化物の除去処理を行うことで、置換型ε酸化鉄粒子を含むスラリーを得た。
(Procedure 4)
The powder of the substituted iron oxide particles coated with the silicon oxide obtained in step 3 is added to a 20 mass% NaOH aqueous solution and stirred at 60 ° C. for 24 hours to obtain the silicon oxide on the surface of the substituted iron oxide particles. A slurry containing substituted ε iron oxide particles was obtained by performing the removal treatment of.

(手順5)
手順4で得られたスラリーを遠心分離装置にて遠心分離処理後、上澄み液を除去し、純水を追加してスラリー化し、再度、遠心分離装置にて遠心分離処理する操作を繰り返して、手順4で得られたスラリーの上澄み液が、導電率:≦15mS/mとなるまで洗浄した。
(Procedure 5)
After centrifuging the slurry obtained in step 4 with a centrifuge, the supernatant liquid is removed, pure water is added to form a slurry, and the operation of centrifuging again with a centrifuge is repeated. The supernatant of the slurry obtained in No. 4 was washed until the conductivity was ≦ 15 mS / m.

(手順6)
次に、手順5で得られた洗浄後のスラリーへ、表面改質剤として25質量%のテトラメチルアンモニウムヒドロキシド(以下、TMAOHと称する)水溶液を添加して、表面改質剤含有スラリーを得た。TMAOH水溶液の添加量は、表面改質剤含有スラリー中のTMAOH濃度が0.065mol/kgとなる量とした。
(Procedure 6)
Next, a 25% by mass tetramethylammonium hydroxide (hereinafter referred to as TMAOH) aqueous solution as a surface modifier was added to the washed slurry obtained in step 5 to obtain a surface modifier-containing slurry. rice field. The amount of the TMAOH aqueous solution added was such that the TMAOH concentration in the slurry containing the surface modifier was 0.065 mol / kg.

(手順7)
手順6で得られた表面改質剤含有スラリー40gへ、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、以下に説明する水熱処理前の予備的分級を行った。
(Procedure 7)
The surface modifier-containing slurry 40 g obtained in step 6 was subjected to ultrasonic dispersion treatment for 1 hour with an ultrasonic cleaner (Yamato5510 manufactured by Branson (Yamato Scientific Co., Ltd.)), and then subjected to the hydrothermal treatment described below. Performed the previous preliminary classification.

超音波分散処理後の表面改質剤含有スラリー40gへ、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで30分の遠心分離処理を行い、上澄みスラリー30gを回収した。遠心分離処理における重力加速度は48000Gとした。
一方、沈殿側のスラリー10gに対して、0.065mol/kgのTMAOH水溶液30gを添加した後、再度、超音波分散を行った。そして、再度、20000rpm、48000Gで30分間の遠心分離処理および上澄みスラリー30gの回収を行った。一方、沈殿側のスラリー10gに対して、再度、0.065mol/kgのTMAOH水溶液30gを添加した。当該操作をさらに9回繰り返すことで、合計300gの上澄みスラリーを回収した。回収された300gの上澄みスラリーを混合した後、ここから40gの上澄みスラリーを分取した。
40 g of the surface modifier-containing slurry after the ultrasonic dispersion treatment is centrifuged at a rotation speed of 20000 rpm for 30 minutes using the R20A2 rotor of a centrifuge (Himac CR21GII, manufactured by Hitachi Koki Co., Ltd.), and the supernatant slurry is processed. 30 g was recovered. The gravitational acceleration in the centrifugation process was 48,000 G.
On the other hand, 30 g of a 0.065 mol / kg TMAOH aqueous solution was added to 10 g of the slurry on the precipitation side, and then ultrasonic dispersion was performed again. Then, again, centrifugation was performed at 20000 rpm and 48000 G for 30 minutes, and 30 g of the supernatant slurry was recovered. On the other hand, 30 g of a 0.065 mol / kg TMAOH aqueous solution was added again to 10 g of the slurry on the precipitation side. By repeating this operation 9 more times, a total of 300 g of the supernatant slurry was collected. After mixing the recovered 300 g of the supernatant slurry, 40 g of the supernatant slurry was separated from this.

分取した上澄みスラリー40gへ、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで60分間の遠心分離処理を行い、微粒子を含む上澄みスラリー30gを除去して、沈殿側のスラリー10gを得た。遠心分離処理における重力加速度は48000Gとした。
そして、沈殿側のスラリー10gに対して、0.065mol/kgのTMAOH水溶液30gを添加した後、再度、超音波分散を行った。そして、再度、20000rpm、48000Gで60分間の遠心分離処理を行った後、上澄みスラリー30gを除去し、沈殿側のスラリー10gを得た。当該操作をさらに9回繰り返すことで、沈殿側スラリー10gを得た。
Centrifuge 40 g of the separated supernatant slurry for 60 minutes at a rotation speed of 20000 rpm using the R20A2 rotor of a centrifuge (Himac CR21GII, manufactured by Hitachi Koki Co., Ltd.) to remove 30 g of the supernatant slurry containing fine particles. Then, 10 g of the slurry on the precipitation side was obtained. The gravitational acceleration in the centrifugation process was 48,000 G.
Then, 30 g of a 0.065 mol / kg TMAOH aqueous solution was added to 10 g of the slurry on the precipitation side, and then ultrasonic dispersion was performed again. Then, after centrifuging again at 20000 rpm and 48000 G for 60 minutes, 30 g of the supernatant slurry was removed to obtain 10 g of the slurry on the precipitation side. By repeating this operation 9 more times, 10 g of the precipitate-side slurry was obtained.

得られた沈殿側のスラリー10gへ、0.065mol/kgのTMAOH水溶液30gを添加した後に、超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った。その後、超音波分散処理後の沈殿側のスラリー40gへ、遠心分離機(日立工機株式会社製、himac CR21GII)のR20A2ローターにて、回転数20000rpmで45分の遠心分離処理を行い、上澄みスラリー30g除去し、沈殿側のスラリー10gを得た。遠心分離処理における重力加速度は48000Gとした。
一方、沈殿側のスラリー10gに対して、0.065mol/kgのTMAOH水溶液30gを添加した後、再度、超音波分散を行った。そして、再度、20000rpm、48000Gで45分間の遠心分離処理し、上澄みスラリー30g除去し、沈殿側のスラリー10gを得た。当該操作をさらに9回繰り返すことで、沈殿側スラリー10gを得た。
After adding 30 g of a 0.065 mol / kg TMAOH aqueous solution to 10 g of the obtained precipitate-side slurry, ultrasonic dispersion treatment was performed for 1 hour with an ultrasonic cleaner (Yamato5510 manufactured by Branson (Yamato Scientific Co., Ltd.)). rice field. After that, 40 g of the slurry on the settling side after the ultrasonic dispersion treatment was centrifuged at a rotation speed of 20000 rpm for 45 minutes using the R20A2 rotor of a centrifuge (Himac CR21GII manufactured by Hitachi Koki Co., Ltd.), and the supernatant slurry was performed. 30 g was removed to obtain 10 g of a slurry on the precipitation side. The gravitational acceleration in the centrifugation process was 48,000 G.
On the other hand, 30 g of a 0.065 mol / kg TMAOH aqueous solution was added to 10 g of the slurry on the precipitation side, and then ultrasonic dispersion was performed again. Then, again, centrifugation was performed at 20000 rpm and 48000 G for 45 minutes to remove 30 g of the supernatant slurry to obtain 10 g of the slurry on the precipitation side. By repeating this operation 9 more times, 10 g of the precipitate-side slurry was obtained.

得られた沈殿側スラリー10gへ、純水30gを加えて超音波洗浄機(ブランソン(ヤマト科学)社製、Yamato5510)にて1時間、超音波分散処理を行った後、1質量%の硫酸水溶液を添加してpHを6.5に調整した。pH調整後の沈殿側スラリーを遠心分離装置にて遠心分離処理後、上澄み液を除去し、純水を追加してスラリー化し、再度、遠心分離装置にて遠心分離処理する操作を繰り返して、スラリーの上澄み液が導電率:≦1mS/mとなるまで洗浄した。その後に、スラリーへ純水および20質量%NaOHを添加してpHを10に調整し、置換型ε酸化鉄粒子を含むスラリーを得た。 To 10 g of the obtained precipitate-side slurry, 30 g of pure water was added and ultrasonically dispersed with an ultrasonic cleaner (Yamato5510 manufactured by Branson (Yamato Kagaku)) for 1 hour, and then a 1% by mass aqueous sulfuric acid solution was used. Was added to adjust the pH to 6.5. After centrifuging the precipitated slurry after adjusting the pH with a centrifuge, remove the supernatant liquid, add pure water to make a slurry, and repeat the operation of centrifuging again with a centrifuge to repeat the slurry. The supernatant was washed until the conductivity was ≦ 1 mS / m. Then, pure water and 20% by mass NaOH were added to the slurry to adjust the pH to 10, and a slurry containing substituted ε-iron oxide particles was obtained.

(手順8)
手順7で得られた置換型ε酸化鉄粒子を含むスラリーへ、1質量%の硫酸水溶液を添加してpHを6.5に調整し、置換型ε酸化鉄粒子を凝集させた後にメンブレンフィルター(孔径0.2μm)で濾過し、固形分を回収した。回収した固形分を乾燥することで、鉄系酸化物磁性粉を得た。得られた鉄系酸化部磁性粉に対してFeおよびGaの組成分析を実施したところ、モル比でFe:Ga=1.92:0.08であった。また、得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
一方、手順7で得られた置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は10.9nm、粒子径8nm以下粒子の個数割合は7.8%、変動係数(CV値)は19%であった。
(Procedure 8)
A 1% by mass aqueous sulfuric acid solution was added to the slurry containing the substituted iron oxide particles obtained in step 7 to adjust the pH to 6.5, and after the substituted iron oxide particles were aggregated, a membrane filter ( The solid content was recovered by filtering with a pore size of 0.2 μm). The recovered solid content was dried to obtain an iron-based oxide magnetic powder. When the composition analysis of Fe and Ga was carried out on the obtained iron-based oxide magnetic powder, it was found that Fe: Ga = 1.92: 0.08 in terms of molar ratio. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
On the other hand, when TEM observation was performed on the slurry containing the substituted ε iron oxide particles obtained in step 7 and the particle diameters of 200 particles contained in the slurry were measured, the TEM average particle diameter was 10. The number ratio of particles having a particle size of 9.9 nm and a particle size of 8 nm or less was 7.8%, and the coefficient of variation (CV value) was 19%.

(手順9)
手順7で得られた置換型ε酸化鉄粒子を含むスラリーへ、純水と4質量%NaOH水溶液とを加え、置換型ε酸化鉄粒子の含有量が2質量%、pHが12となるように調整した。そして、調整後のスラリー4.5mLを5mL密閉容器に入れ、処理温度200℃、処理時間5分間、圧力40MPaで水熱処理を行うことにより、実施例10に係る置換型ε酸化鉄粒子のスラリーを得た。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。
(Procedure 9)
Pure water and a 4% by mass NaOH aqueous solution are added to the slurry containing the substituted iron oxide particles obtained in step 7 so that the content of the substituted iron oxide particles is 2% by mass and the pH is 12. It was adjusted. Then, 4.5 mL of the adjusted slurry is placed in a 5 mL airtight container and subjected to hydrothermal treatment at a treatment temperature of 200 ° C., a treatment time of 5 minutes, and a pressure of 40 MPa to obtain a slurry of substituted ε-iron oxide particles according to Example 10. Obtained.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above.

(手順10)
手順9で得られたスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.0nm、粒子径8nm以下粒子の個数割合は3.9%、変動係数(CV値)は19%であった。図5に、実施例10に係る置換型ε酸化鉄粒子のTEM写真を示す。
得られた実施例10に係る置換型ε酸化鉄粒子のスラリーを乾燥することで、実施例10に係る鉄系酸化物磁性粉を得た。図6に、実施例10に係る鉄系酸化物磁性粉粒子のTEM写真を示す。
得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。得られた鉄系酸化物磁性粉の磁気特性を測定した結果を、α相の含有率の測定結果、化学組成とまとめて表2に示す。
以上説明した、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
(Procedure 10)
When TEM observation was performed on the slurry obtained in step 9 and the particle diameters of 200 particles contained in the slurry were measured, the TEM average particle diameter was 11.0 nm and the number of particles having a particle diameter of 8 nm or less. The ratio was 3.9% and the coefficient of variation (CV value) was 19%. FIG. 5 shows a TEM photograph of the substituted ε iron oxide particles according to Example 10.
The obtained slurry of the substituted iron oxide particles according to Example 10 was dried to obtain an iron-based oxide magnetic powder according to Example 10. FIG. 6 shows a TEM photograph of the iron-based oxide magnetic powder particles according to Example 10.
The obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%. The results of measuring the magnetic properties of the obtained iron-based oxide magnetic powder are shown in Table 2 together with the measurement results of the α phase content and the chemical composition.
Table 2 shows the measurement results of the substituted ε-iron oxide particles and the iron-based oxide magnetic powder described above.

[実施例11]
実施例10の手順9において、実施例10の手順7で得られた置換型ε酸化鉄粒子を含むスラリーへ、純水、4質量%NaOH水溶液および硝酸第二鉄を加えて、置換型ε酸化鉄粒子の含有量が2質量%、pHが12、Fe(III)イオン濃度0.056mol/kgとなるように調整した。調整後のスラリー2.2mLを用いて、処理時間10分間で水熱処理を実施したこと以外は実施例10と同様の手順により、実施例11に係る置換型ε酸化鉄粒子を含むスラリー、および実施例11に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例10の手順10で説明したように、得られた実施例11に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は11.8nm、粒子径8nm以下粒子の個数割合は1.3%、変動係数(CV値)は15%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。尚、化学組成は、実施例10の手順7で得られたスラリーに含まれる置換型ε酸化鉄粒子と、当該スラリーに添加された硝酸鉄に含まれる鉄とが、全て固形分として回収されたものとして算出した(以下、実施例12についても同様である。)。
[Example 11]
In step 9 of Example 10, pure water, a 4% by mass NaOH aqueous solution and ferric nitrate are added to the slurry containing the substituted ε-iron oxide particles obtained in Step 7 of Example 10, and the substituted ε-oxidation is performed. The content of iron particles was adjusted to 2% by mass, the pH was 12, and the Fe (III) ion concentration was 0.056 mol / kg. The slurry containing the substituted ε-iron oxide particles according to Example 11 and the implementation were carried out by the same procedure as in Example 10 except that the hydrothermal treatment was carried out using 2.2 mL of the prepared slurry for a treatment time of 10 minutes. An iron-based oxide magnetic powder composed of particles of substituted ε-iron oxide according to Example 11 was obtained.
As described in procedure 10 of Example 10, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 11, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 11.8 nm, the number ratio of particles having a particle diameter of 8 nm or less was 1.3%, and the coefficient of variation (CV value) was 15%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder. As for the chemical composition, the substituted ε-iron oxide particles contained in the slurry obtained in step 7 of Example 10 and the iron contained in the iron nitrate added to the slurry were all recovered as solids. It was calculated as a thing (hereinafter, the same applies to Example 12).

[実施例12]
実施例10の手順9において、実施例10の手順7で得られた置換型ε酸化鉄粒子を含むスラリーへ、純水、4質量%NaOH水溶液および硝酸第二鉄を加えて、置換型ε酸化鉄粒子の含有量が2質量%、pHが12、Fe(III)イオン濃度0.056mol/kgとなるように調整し、その後超音波ホモジナイザー(装置名:ブランソン(ヤマト科学)社製、Yamato4500)にて120分間、超音波を照射した後に、得られたスラリー2.2mLを用いて、処理時間10分間の条件で水熱処理を実施したこと以外は実施例10と同様の手順により、実施例12に係る置換型ε酸化鉄粒子を含むスラリー、および実施例12に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例10の手順10で説明したように、得られた実施例12に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は12.0nm、粒子径8nm以下粒子の個数割合は0.4%、変動係数(CV値)は14%であった。また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件および水熱処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Example 12]
In step 9 of Example 10, pure water, a 4% by mass NaOH aqueous solution and ferric nitrate are added to the slurry containing the substituted ε iron oxide particles obtained in Step 7 of Example 10 to oxidize the substituted ε. Adjust so that the iron particle content is 2% by mass, the pH is 12, and the Fe (III) ion concentration is 0.056 mol / kg, and then an ultrasonic homogenizer (device name: Branson (Yamato Scientific Co., Ltd.), Yamato 4500). After irradiating with ultrasonic waves for 120 minutes, the obtained slurry was subjected to hydrothermal treatment using 2.2 mL of the obtained slurry under the condition of a treatment time of 10 minutes, according to the same procedure as in Example 10 in Example 12. An iron-based oxide magnetic powder composed of the slurry containing the substituted iron oxide particles according to the above 12 and the particles of the substituted iron oxide according to Example 12 was obtained.
As described in step 10 of Example 10, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Example 12, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 12.0 nm, the number ratio of particles having a particle diameter of 8 nm or less was 0.4%, and the coefficient of variation (CV value) was 14%. Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the treatment conditions and the hydroheat treatment conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[比較例2]
実施例10の手順9において、実施例10の手順7で得られた置換型ε酸化鉄粒子を含むスラリーへ、水熱処理を実施しなった以外は、実施例10と同様の手順により、比較例2に係る置換型ε酸化鉄粒子を含むスラリー、および比較例2に係る置換型ε酸化鉄の粒子からなる鉄系酸化物磁性粉を得た。
実施例10の手順10で説明したように、得られた比較例2に係る置換型ε酸化鉄粒子を含むスラリーに対してTEM観察を行い、当該スラリーに含有されている200個の粒子について粒子径を測定したところ、TEM平均粒子径は10.9nm、粒子径8nm以下粒子の個数割合は7.8%、変動係数(CV値)は19%であった。
また得られた鉄系酸化物磁性粉についてXRD測定を行い、α相の含有率を求めたところ0%であった。
以上説明した、原料スラリーへの処理条件を表1に記載する。また、置換型ε酸化鉄粒子および鉄系酸化物磁性粉の測定結果を表2に記載する。
[Comparative Example 2]
Comparative Example according to the same procedure as in Example 10 except that the slurry containing the substituted ε-iron oxide particles obtained in the procedure 7 of the example 10 was not subjected to hydrothermal treatment in the procedure 9 of the example 10. An iron-based oxide magnetic powder composed of a slurry containing substituted ε-iron oxide particles according to No. 2 and particles of substituted ε-iron oxide according to Comparative Example 2 was obtained.
As described in the procedure 10 of Example 10, TEM observation was performed on the obtained slurry containing the substituted ε-iron oxide particles according to Comparative Example 2, and the particles of 200 particles contained in the slurry were observed. When the diameter was measured, the TEM average particle diameter was 10.9 nm, the number ratio of particles having a particle diameter of 8 nm or less was 7.8%, and the coefficient of variation (CV value) was 19%.
Further, the obtained iron-based oxide magnetic powder was subjected to XRD measurement, and the α phase content was determined to be 0%.
Table 1 shows the processing conditions for the raw material slurry described above. Table 2 shows the measurement results of the substituted ε iron oxide particles and the iron-based oxide magnetic powder.

[比較例3]
原料スラリーとして、置換型ε酸化鉄粒子を含むスラリーに代えて、鉄の水酸化物を含むスラリーを用いた実験例である。
硝酸第二鉄(III)水溶液(Fe(III)イオン濃度0.055mol/L)に4質量%NaOH水溶液を添加してpH12に調整した液4.455mLを5mL密閉容器に入れ、処理温度200℃、処理時間10分間、圧力40MPaで水熱処理を行うことにより、比較例3に係る鉄酸化物粒子を含むスラリーを得た。
得られた比較例3に係る鉄酸化物粒子を含むスラリーを、固液分離した後に洗浄、乾燥することで、比較例3に係る鉄酸化物粉を得た。得られた鉄酸化物粉についてXRD測定を行った結果、α−Feおよびα-FeOOHの結晶構造を持つことが確認された。
以上説明した、水熱処理条件を表1に記載する。また、鉄の水酸化物粒子および鉄系酸化物粉の測定結果を表2に記載する。
[Comparative Example 3]
This is an experimental example in which a slurry containing iron hydroxide was used as the raw material slurry instead of the slurry containing substituted ε-iron oxide particles.
4.455 mL of a liquid adjusted to pH 12 by adding a 4 mass% NaOH aqueous solution to a ferric nitrate (III) nitrate aqueous solution (Fe (III) ion concentration 0.055 mol / L) was placed in a 5 mL closed container, and the treatment temperature was 200 ° C. A slurry containing the iron oxide particles according to Comparative Example 3 was obtained by performing an aqueous heat treatment at a pressure of 40 MPa for a treatment time of 10 minutes.
The obtained slurry containing the iron oxide particles according to Comparative Example 3 was washed and dried after solid-liquid separation to obtain the iron oxide powder according to Comparative Example 3. As a result of XRD measurement of the obtained iron oxide powder, it was confirmed that the obtained iron oxide powder had a crystal structure of α-Fe 2 O 3 and α-Fe OOH.
The hydrothermal treatment conditions described above are shown in Table 1. Table 2 shows the measurement results of iron hydroxide particles and iron-based oxide powder.

Figure 2021190477
Figure 2021190477
Figure 2021190477
Figure 2021190477

Claims (11)

Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含む原料スラリーを水熱処理に供することを特徴とする、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉の製造方法。 A raw material slurry containing particles of ε-iron oxide in which a part of Fe sites is substituted with other metal elements is subjected to hydrothermal treatment, and ε-oxidation in which a part of Fe sites is substituted with other metal elements. A method for producing an iron-based oxide magnetic powder composed of iron particles. 前記水熱処理により、前記Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子であって透過電子顕微鏡で測定した粒子径が8nm以下である粒子の個数割合を、低減させることを特徴とする、請求項1に記載の鉄系酸化物磁性粉の製造方法。 The hydrothermal treatment reduces the number ratio of particles of ε-iron oxide in which a part of the Fe site is replaced with another metal element and whose particle size is 8 nm or less as measured by a transmission electron microscope. The method for producing iron-based oxide magnetic powder according to claim 1. 前記透過電子顕微鏡で測定した粒子径が8nm以下である粒子の個数割合を、4%以下に低減することを特徴とする、請求項2に記載の鉄系酸化物磁性粉の製造方法。 The method for producing an iron-based oxide magnetic powder according to claim 2, wherein the ratio of the number of particles having a particle diameter of 8 nm or less measured by the transmission electron microscope is reduced to 4% or less. 前記水熱処理を120℃以上の温度で行うことを特徴とする、請求項1〜3のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The method for producing an iron-based oxide magnetic powder according to any one of claims 1 to 3, wherein the hydrothermal treatment is performed at a temperature of 120 ° C. or higher. 前記水熱処理を0.2MPa以上の圧力で行うことを特徴とする、請求項1〜4のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The method for producing an iron-based oxide magnetic powder according to any one of claims 1 to 4, wherein the hydrothermal treatment is performed at a pressure of 0.2 MPa or more. 前記ε酸化鉄の粒子を含む原料スラリーとして、pHが6以上14以下であるものを用いることを特徴とする、請求項1〜5のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The method for producing an iron-based oxide magnetic powder according to any one of claims 1 to 5, wherein the raw material slurry containing the particles of ε-iron oxide has a pH of 6 or more and 14 or less. 前記ε酸化鉄の粒子を含む原料スラリーとして、透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下である、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子を含むスラリーを用いることを特徴とする、請求項1〜6のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The raw material slurry containing the ε-iron oxide particles contains ε-iron oxide particles having an average particle diameter of 10 nm or more and 20 nm or less as measured by a transmission electron microscope, in which a part of Fe sites is replaced with other metal elements. The method for producing an iron-based oxide magnetic powder according to any one of claims 1 to 6, wherein a slurry is used. 前記Feサイトの一部を置換する他の金属元素として、Gaを用いることを特徴とする、請求項1〜7のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The method for producing an iron-based oxide magnetic powder according to any one of claims 1 to 7, wherein Ga is used as another metal element that replaces a part of the Fe site. 前記ε酸化鉄の粒子を含む原料スラリーへ、超音波を照射および/または金属イオンを添加した後に、水熱処理に供することを特徴とする、請求項1〜8のいずれかに記載の鉄系酸化物磁性粉の製造方法。 The iron-based oxidation according to any one of claims 1 to 8, wherein the raw material slurry containing the particles of ε-iron oxide is subjected to hydrothermal treatment after being irradiated with ultrasonic waves and / or added with metal ions. Method for manufacturing magnetic powder. 透過電子顕微鏡で測定した平均粒子径が10nm以上20nm以下であり、粒子径が8nm以下の粒子の個数割合が4%以下であり、X線回折法により測定されるαタイプの鉄系酸化物の含有率が10%以下であることを特徴とする、Feサイトの一部が他の金属元素で置換されたε酸化鉄の粒子からなる鉄系酸化物磁性粉。 The average particle size measured by a transmission electron microscope is 10 nm or more and 20 nm or less, the number ratio of particles having a particle size of 8 nm or less is 4% or less, and the α-type iron oxide measured by the X-ray diffractometry. An iron-based oxide magnetic powder composed of ε-iron oxide particles in which a part of Fe sites is replaced with another metal element, which is characterized by a content of 10% or less. 前記Feサイトの一部を置換する他の金属元素が、Gaであることを特徴とする、請求項10に記載の鉄系酸化物磁性粉。
The iron-based oxide magnetic powder according to claim 10, wherein the other metal element that replaces a part of the Fe site is Ga.
JP2020091704A 2020-05-26 2020-05-26 Iron-based oxide magnetic powder and manufacturing method thereof Pending JP2021190477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091704A JP2021190477A (en) 2020-05-26 2020-05-26 Iron-based oxide magnetic powder and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091704A JP2021190477A (en) 2020-05-26 2020-05-26 Iron-based oxide magnetic powder and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021190477A true JP2021190477A (en) 2021-12-13

Family

ID=78847385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091704A Pending JP2021190477A (en) 2020-05-26 2020-05-26 Iron-based oxide magnetic powder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021190477A (en)

Similar Documents

Publication Publication Date Title
JP5966064B1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
JP6010181B2 (en) Iron-based oxide magnetic particle powder, method for producing the same, paint, and magnetic recording medium
JP7033071B2 (en) Epsilon type iron oxide magnetic particles and their manufacturing method, magnetic powder composed of magnetic particles, magnetic paint and magnetic recording medium
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
JP7258622B2 (en) Iron-based oxide magnetic powder and method for producing the same
JP6106303B2 (en) Surface-modified iron-based oxide magnetic particle powder and method for producing the same
WO2016047559A1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
WO2016111224A1 (en) Iron-based oxide magnetic particle powder, method for producing same, coating, and magnetic recording medium
WO2021065936A1 (en) Iron-based oxide magnetic powder and method for manufacturing same
JP6480715B2 (en) Precursor of iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder using the same
WO2020162443A1 (en) Iron-based oxide magnetic powder and production method therefor
JP2021190477A (en) Iron-based oxide magnetic powder and manufacturing method thereof
WO2021065935A1 (en) Iron-based oxide magnetic powder and method for producing same
WO2021187329A1 (en) Method for producing iron-based oxide magnetic powder
JP2021127279A (en) Iron-based oxide magnetic powder and production method thereof
JP2022135542A (en) Method for manufacturing iron-based oxide magnetic powder
JP2022045068A (en) SUBSTITUTED ε IRON OXIDE MAGNETIC PARTICLE POWDER AND PRODUCTION METHOD OF SUBSTITUTED ε IRON OXIDE MAGNETIC PARTICLE POWDER
WO2022054571A1 (en) Dispersed iron oxide magnetic powder slurry and method for producing same
JPS63225534A (en) Production of hexagonal plate-shaped barium ferrite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240326