JP2021189421A - 液晶表示装置及び偏光板 - Google Patents

液晶表示装置及び偏光板 Download PDF

Info

Publication number
JP2021189421A
JP2021189421A JP2020154960A JP2020154960A JP2021189421A JP 2021189421 A JP2021189421 A JP 2021189421A JP 2020154960 A JP2020154960 A JP 2020154960A JP 2020154960 A JP2020154960 A JP 2020154960A JP 2021189421 A JP2021189421 A JP 2021189421A
Authority
JP
Japan
Prior art keywords
liquid crystal
polarizing
crystal display
display device
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020154960A
Other languages
English (en)
Inventor
彰 坂井
Akira Sakai
雄一 川平
Yuichi Kawahira
雅浩 長谷川
Masahiro Hasegawa
潔 箕浦
Kiyoshi Minoura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to CN202110577730.8A priority Critical patent/CN113741084A/zh
Priority to US17/332,443 priority patent/US11604379B2/en
Publication of JP2021189421A publication Critical patent/JP2021189421A/ja
Priority to US18/106,913 priority patent/US11982896B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】正面方向のコントラストを向上可能な液晶表示装置及び偏光板を提供する。【解決手段】観察面側から順に、第一透過軸を有する第一偏光子と、液晶パネルと、第二透過軸を有する第二偏光子と、位相差板と、前記第二透過軸と平行な第三透過軸を有する第三偏光子と、第一稜線を有する第一凹凸形状部を有する第一プリズムシートと、を備え、前記第三透過軸と前記第一稜線とのなす角は、30°以上、60°以下である、液晶表示装置である。【選択図】 図1

Description

本発明は、液晶表示装置及び偏光板に関する。
液晶表示装置は、通常、液晶パネル、バックライトとともに、偏光板、位相差板等の光学素子を含んで構成される。液晶表示装置は、その優れた表示特性から、モニター、プロジェクタ、携帯電話、携帯情報端末(PDA)等の電子機器に幅広く利用されている。
また、偏光板及び位相差板を用いてバックライトから放射される光の視野角特性を制御する技術が知られている。具体的には、例えば、特許文献1には、第一偏光子、複屈折層及び第二偏光子を備える光学素子であって、前記第一偏光子、前記複屈折層及び前記第二偏光子は、この順に積層され、前記第一偏光子の透過軸と、前記第二偏光子の透過軸とは、互いに平行であり、前記複屈折層の2軸性パラメータNZは、10≦NZ、又は、NZ≦−9を満たし、前記複屈折層の厚み方向位相差の絶対値|Rth|は、|Rth|≧200nmを満たす光学素子が開示されている。
特許文献2には、バックライトに利用されるプリズムシートからなる光学シートとして、サイドローブのない視野角の広い光学シートが開示されており、従来からあるプリズムシートからなる光学シートではサイドローブが発生することが説明されている。
国際公開第2012/090769号 特開2008−3232号公報
液晶表示装置は、一般にコントラスト(CR)が低く、特に暗い画像を表示したときに黒が黒く感じられないという点で改善の余地がある。
この理由は、以下のとおりである。液晶表示装置に含まれる液晶パネルは、視野角依存性を持つ偏光板を使用しているため、黒表示状態を斜め方向から観察すると光漏れが発生する。加えて、バックライト(BL)の輝度を高めるために使用されるプリズムシートも視野角特性が悪く(例えば、特許文献2の段落[0027−0037]及び図2、3参照)、特定の斜め方向の輝度が特異に上昇する傾向(輝度プロファイルにサイドローブがあるという言い方をする)があり、偏光板の視野角特性の悪さと相まって、光漏れの原因となる。
図51〜53を用いて、より具体的に説明する。図51は、比較形態1に係る液晶表示装置の断面模式図である。図52は、比較形態1に係る液晶表示装置のバックライト視野角の測定結果を示すコンター図である。図53は、比較形態1に係る液晶表示装置の視野角特性の測定結果を示すコンター図であり、上段は、白輝度視野角を、中段は、黒輝度視野角を、下段は、コントラスト視野角を、それぞれ示す。
なお、本明細書中、白輝度及び黒輝度は、それぞれ、白表示時の輝度及び黒表示時の輝度を意味し、白色度は、白表示の色度を意味し、白輝度視野角、黒輝度視野角、コントラスト視野角、及び、バックライト視野角は、それぞれ、白表示時の輝度の視野角特性、黒表示時の輝度の視野角特性、コントラストの視野角特性、及び、バックライトの輝度の視野角特性を意味する。
図51に示すように、比較形態1に係る液晶表示装置101は、観察面側から順に、吸収型偏光板である第一偏光板111と、液晶パネル120と、吸収型偏光板であり、第一偏光板111とクロスニコルに配置された第二偏光板112と、反射型偏光板であり、第二偏光板112とパラレルニコルに配置された第三偏光板113と、凹凸形状部の稜線が互いに直交する2枚のプリズムシートを含むバックライト140と、を備えている。このため、図52に示すように、バックライト140の輝度プロファイルにはサイドローブが発生する。また、図53に示すように、プリズムシートのサイドローブ、及び/又は、偏光板111〜113の視野角特性の悪さ、に起因する光漏れが斜め方向で発生する。斜め方向で光漏れが発生し、液晶パネルへ斜めに入射する光量が増加すると、正面方向におけるコントラストが悪化する。
図54を用いて、その理由を説明する。図54は、液晶パネル内における斜め入射光の散乱を示す断面模式図である。図54中の(1)に示すように、まず、第二偏光板112を透過して液晶パネル120へ斜めに入射する斜め入射光が、位相差板132や液晶層123で楕円偏光に変調される。その後、(2)に示すように、液晶パネル120の一対の基板121、122や液晶層123での散乱により進行方向を法線方向に変える(散乱前後で偏光状態は殆ど変化しない)。そして、(3)に示すように、楕円偏光のまま位相差板131及び第一偏光板111を透過するため、楕円率に応じて光漏れとして観測される。したがって、正面方向におけるコントラストが悪化することになる。
特許文献1は、偏光板及び位相差板を用いてバックライトから放射される光の視野角特性を制御する技術を開示しているが、上述のプリズムシートのサイドローブに起因する斜め方向での光漏れ対策については何ら開示も示唆もしておらず、正面方向のコントラストを更に向上するという点で工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、正面方向のコントラストを向上可能な液晶表示装置及び偏光板を提供することを目的とするものである。
(1)本発明の一実施形態は、観察面側から順に、第一透過軸を有する第一偏光子と、液晶パネルと、第二透過軸を有する第二偏光子と、位相差板と、前記第二透過軸と平行な第三透過軸を有する第三偏光子と、第一稜線を有する第一凹凸形状部を有する第一プリズムシートと、を備え、前記第三透過軸と前記第一稜線とのなす角は、30°以上、60°以下である、液晶表示装置。
(2)また、本発明のある実施形態は、上記(1)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm未満である、液晶表示装置。
(3)また、本発明のある実施形態は、上記(2)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、120nm以上である、液晶表示装置。
(4)また、本発明のある実施形態は、上記(1)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm以上である、液晶表示装置。
(5)また、本発明のある実施形態は、上記(4)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、600nm以下である、液晶表示装置。
(6)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)又は(5)の構成に加え、前記位相差板は、逆波長分散特性を有する、液晶表示装置。
(7)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)、(5)又は(6)の構成に加え、前記位相差板の2軸性パラメータNZは、0.9≦NZ<10を満たす、液晶表示装置。
(8)また、本発明のある実施形態は、上記(7)の構成に加え、前記位相差板の面内遅相軸は、前記第二透過軸と平行であるか、又は、直交する、液晶表示装置。
(9)また、本発明のある実施形態は、上記(7)の構成に加え、前記位相差板の面内遅相軸と前記第二透過軸とのなす角は、30°以上、60°以下である、液晶表示装置。
(10)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)、(5)又は(6)の構成に加え、前記位相差板の2軸性パラメータNZは、10≦NZを満たす、液晶表示装置。
(11)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)又は(10)の構成に加え、前記位相差板を複数備える、液晶表示装置。
(12)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)又は(11)の構成に加え、前記第二偏光子及び前記第一プリズムシートの間に設けられた拡散層を更に備える、液晶表示装置。
(13)また、本発明のある実施形態は、上記(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)又は(12)の構成に加え、前記第一偏光子及び前記液晶パネルの間、及び、前記液晶パネル及び前記第二偏光子の間の少なくとも一方に設けられた視野角補償フィルムを更に備える、液晶表示装置。
(14)本発明の一実施形態は、観察面側から順に、第一透過軸を有する第一偏光子と、液晶パネルと、第二透過軸を有する第二偏光子と、位相差板と、前記第二透過軸と平行でない第三透過軸を有する第三偏光子と、第一稜線を有する第一凹凸形状部を有する第一プリズムシートと、を備え、前記第一稜線は、前記第二透過軸と前記第三透過軸とがなす角を二等分する方位に対して−15°以上、+15°以下の角度をなす、液晶表示装置。
(15)また、本発明のある実施形態は、上記(14)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm未満である、液晶表示装置。
(16)また、本発明のある実施形態は、上記(15)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、120nm以上である、液晶表示装置。
(17)また、本発明のある実施形態は、上記(14)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm以上である、液晶表示装置。
(18)また、本発明のある実施形態は、上記(17)の構成に加え、前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、600nm以下である、液晶表示装置。
(19)また、本発明のある実施形態は、上記(14)、(15)、(16)、(17)又は(18)の構成に加え、前記位相差板は、逆波長分散特性を有する、液晶表示装置。
(20)また、本発明のある実施形態は、上記(14)、(15)、(16)、(17)、(18)又は(19)の構成に加え、前記位相差板を複数備え、前記複数の位相差板は、2軸性パラメータNZが0.9≦NZ<10を満たす位相差板と、2軸性パラメータNZが10≦NZを満たす位相差板と、を含み、0.9≦NZ<10を満たす前記位相差板の面内遅相軸は、前記第二透過軸と前記第三透過軸とがなす角を二等分する方位に対して−5°以上、+5°以下の角度をなす、液晶表示装置。
(21)また、本発明のある実施形態は、上記(14)、(15)、(16)、(17)、(18)、(19)又は(20)の構成に加え、前記第二偏光子及び前記第一プリズムシートの間に設けられた拡散層を更に備える、液晶表示装置。
(22)また、本発明のある実施形態は、上記(14)、(15)、(16)、(17)、(18)、(19)、(20)又は(21)の構成に加え、前記第一偏光子及び前記液晶パネルの間、及び、前記液晶パネル及び前記第二偏光子の間の少なくとも一方に設けられた視野角補償フィルムを更に備える、液晶表示装置。
(23)本発明の一実施形態は、透過軸が互いに平行な一対の偏光子と、前記一対の偏光子の間に設けられた位相差板と、前記一対の偏光子の間と、前記一対の偏光子の一方の前記位相差板と反対側との少なくとも一方に設けられた拡散層と、を備える、偏光板。
(24)また、本発明のある実施形態は、上記(23)の構成に加え、前記位相差板は、逆波長分散特性を有する、偏光板。
(25)また、本発明のある実施形態は、上記(23)又は(24)の構成に加え、前記一対の偏光子の他方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える、偏光板。
(26)本発明の一実施形態は、透過軸が互いに平行な一対の偏光子と、前記一対の偏光子の間に設けられ、逆波長分散特性を有する位相差板と、を備える、偏光板。
(27)また、本発明のある実施形態は、上記(26)の構成に加え、前記一対の偏光子の一方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える、偏光板。
(28)また、本発明のある実施形態は、上記(23)、(24)、(25)、(26)又は(27)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm未満である、偏光板。
(29)また、本発明のある実施形態は、上記(28)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、120nm以上である、偏光板。
(30)また、本発明のある実施形態は、上記(23)、(24)、(25)、(26)又は(27)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm以上である、偏光板。
(31)また、本発明のある実施形態は、上記(30)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、600nm以下である、偏光板。
(32)また、本発明のある実施形態は、上記(23)、(24)、(25)、(26)、(27)、(28)、(29)、(30)又は(31)の構成に加え、前記位相差板の2軸性パラメータNZは、0.9≦NZ<10を満たす、偏光板。
(33)また、本発明のある実施形態は、上記(32)の構成に加え、前記位相差板の面内遅相軸は、前記一対の偏光子の一方の透過軸と平行であるか、又は、直交する、偏光板。
(34)また、本発明のある実施形態は、上記(32)の構成に加え、前記位相差板の面内遅相軸と前記一対の偏光子の一方の透過軸とのなす角は、30°以上、60°以下である、偏光板。
(35)また、本発明のある実施形態は、上記(23)、(24)、(25)、(26)、(27)、(28)、(29)、(30)又は(31)の構成に加え、前記位相差板の2軸性パラメータNZは、10≦NZを満たす、偏光板。
(36)また、本発明のある実施形態は、上記(23)、(24)、(25)、(26)、(27)、(28)、(29)、(30)、(31)、(32)、(33)、(34)又は(35)の構成に加え、前記位相差板を複数備える、偏光板。
(37)本発明の一実施形態は、透過軸が互いに平行でない一対の偏光子と、前記一対の偏光子の間に設けられた位相差板と、を備える、偏光板。
(38)また、本発明のある実施形態は、上記(37)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm未満である、偏光板。
(39)また、本発明のある実施形態は、上記(38)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、120nm以上である、偏光板。
(40)また、本発明のある実施形態は、上記(37)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm以上である、偏光板。
(41)また、本発明のある実施形態は、上記(40)の構成に加え、前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、600nm以下である、偏光板。
(42)また、本発明のある実施形態は、上記(37)、(38)、(39)、(40)又は(41)の構成に加え、前記位相差板は、逆波長分散特性を有する、偏光板。
(43)また、本発明のある実施形態は、上記(37)、(38)、(39)、(40)、(41)又は(42)の構成に加え、前記位相差板を複数備え、前記複数の位相差板は、2軸性パラメータNZが0.9≦NZ<10を満たす位相差板と、2軸性パラメータNZが10≦NZを満たす位相差板と、を含み、0.9≦NZ<10を満たす前記位相差板の面内遅相軸は、前記前記一対の偏光子の透過軸が互いになす角を二等分する方位に対して−5°以上、+5°以下の角度をなす、偏光板。
(44)また、本発明のある実施形態は、上記(37)、(38)、(39)、(40)、(41)、(42)又は(43)の構成に加え、前記一対の偏光子の間と、前記一対の偏光子の一方の前記位相差板と反対側との少なくとも一方に設けられた拡散層を更に備える、偏光板。
(45)また、本発明のある実施形態は、上記(44)の構成に加え、前記一対の偏光子の他方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える、偏光板。
(44)また、本発明のある実施形態は、上記(37)、(38)、(39)、(40)、(41)、(42)又は(43)の構成に加え、前記一対の偏光子の一方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える、偏光板。
本発明によれば、正面方向のコントラストを向上可能な液晶表示装置及び偏光板を提供することができる。
実施形態1の液晶表示装置及び偏光板の構成例を示す断面模式図である。 実施形態1の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。 実施形態1の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。 実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二透過軸と直交する場合を示す。 実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二透過軸と平行である場合を示す。 NZを変化させたときの実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二吸収軸又は第二反射軸とのなす角度が90°の場合と0°の場合を示す。 実施形態1の液晶表示装置が備えるバックライトの斜視分解模式図である。 実施形態1の液晶表示装置が備えるバックライトの第一及び第二プリズムシートの斜視模式図である。 実施形態2の液晶表示装置及び偏光板の構成例を示す断面模式図である。 比較例1の液晶表示装置及び偏光板の構成を説明するための図である。 比較例1の偏光板ルーバーの透過率視野角の計算結果と、比較例1の液晶表示装置の各種特性の測定結果とを示す図である。 比較例1の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例1の液晶表示装置及び偏光板の構成を説明するための図である。 実施例1の偏光板ルーバーの透過率視野角の計算結果と、実施例1の液晶表示装置の各種特性の測定結果とを示す図である。 実施例1の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較例2の液晶表示装置の構成を説明するための図である。 比較例2の偏光板ルーバーの透過率視野角の計算結果と、比較例2の液晶表示装置の各種特性の測定結果とを示す図である。 比較例2の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例2の液晶表示装置及び偏光板の構成を説明するための図である。 実施例2の偏光板ルーバーの透過率視野角の計算結果と、実施例2の液晶表示装置の各種特性の測定結果とを示す図である。 実施例2の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例3の液晶表示装置及び偏光板の構成を説明するための図である。 実施例3の偏光板ルーバーの透過率視野角の計算結果と、実施例3の液晶表示装置の各種特性の測定結果とを示す図である。 実施例3の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較例3の液晶表示装置の構成を説明するための図である。 比較例3の偏光板ルーバーの透過率視野角の計算結果と、比較例3の液晶表示装置の各種特性の測定結果とを示す図である。 比較例3の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例4の液晶表示装置及び偏光板の構成を説明するための図である。 実施例4の偏光板ルーバーの透過率視野角の計算結果と、実施例4の液晶表示装置の各種特性の測定結果とを示す図である。 実施例4の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例5の液晶表示装置及び偏光板の構成を説明するための図である。 実施例5の偏光板ルーバーの透過率視野角の計算結果と、実施例5の液晶表示装置の各種特性の測定結果とを示す図である。 実施例5の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例6の液晶表示装置及び偏光板の構成を説明するための図である。 実施例6の偏光板ルーバーの透過率視野角の計算結果と、実施例6の液晶表示装置の各種特性の測定結果とを示す図である。 実施例6の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例7の液晶表示装置及び偏光板の構成を説明するための図である。 実施例7の偏光板ルーバーの透過率視野角の計算結果と、実施例7の液晶表示装置の各種特性の測定結果とを示す図である。 実施例7の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較例4の液晶表示装置の構成を説明するための図である。 比較例4の偏光板ルーバーの透過率視野角の計算結果と、比較例4の液晶表示装置の各種特性の測定結果とを示す図である。 比較例4の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例8の液晶表示装置及び偏光板の構成を説明するための図である。 実施例8の偏光板ルーバーの透過率視野角の計算結果と、実施例8の液晶表示装置の各種特性の測定結果とを示す図である。 実施例8の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例9の液晶表示装置及び偏光板の構成を説明するための図である。 実施例9の偏光板ルーバーの透過率視野角の計算結果と、実施例9の液晶表示装置の各種特性の測定結果とを示す図である。 実施例9の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例10の液晶表示装置及び偏光板の構成を説明するための図である。 実施例10の偏光板ルーバーの透過率視野角の計算結果と、実施例10の液晶表示装置の各種特性の測定結果とを示す図である。 実施例10の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較例5の液晶表示装置の構成を説明するための図である。 比較例5の偏光板ルーバーの透過率視野角の計算結果と、比較例5の液晶表示装置の各種特性の測定結果とを示す図である。 比較例5の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例11の液晶表示装置及び偏光板の構成を説明するための図である。 実施例11の偏光板ルーバーの透過率視野角の計算結果と、実施例11の液晶表示装置の各種特性の測定結果とを示す図である。 実施例11の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例11〜15の偏光板ルーバーについて、透過率視野角特性の計算結果に基づく極角60°の透過率の方位角依存性を示したグラフである。 比較例6の液晶表示装置の構成を説明するための図である。 比較例6の偏光板ルーバーの透過率視野角の計算結果と、比較例6の液晶表示装置の各種特性の測定結果とを示す図である。 比較例6の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例12の液晶表示装置及び偏光板の構成を説明するための図である。 実施例12の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例13の液晶表示装置及び偏光板の構成を説明するための図である。 実施例13の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例14の液晶表示装置及び偏光板の構成を説明するための図である。 実施例14の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例15の液晶表示装置及び偏光板の構成を説明するための図である。 実施例15の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例16の液晶表示装置及び偏光板の構成を説明するための図である。 実施例16の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例16の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例17の液晶表示装置及び偏光板の構成を説明するための図である。 実施例17の偏光板ルーバーの透過率視野角の計算結果を示す図である。 実施例17の液晶表示装置の視野角特性の測定結果を示すコンター図である。 極角を変化させたときの実施形態1に係る偏光板ルーバーの方位45°における透過率の変化を計算した結果を示すグラフであり、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計の絶対値が0nm〜700nmまでの場合を示す。 図33の計算に用いた偏光板ルーバーの構成を示す斜視分解模式図である。 実施形態3の液晶表示装置及び偏光板の構成例を示す断面模式図である。 実施形態3の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。 実施形態3の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。 実施形態4の液晶表示装置及び偏光板の構成例を示す断面模式図である。 実施形態5の液晶表示装置及び偏光板の構成例を示す断面模式図である。 実施形態5の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。 実施形態5の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。 実施形態6の液晶表示装置及び偏光板の構成例を示す断面模式図である。 比較例101の液晶表示装置の構成を説明するための図である。 比較例101の偏光板ルーバーの透過率視野角の計算結果と、比較例101の液晶表示装置の各種特性の測定結果とを示す図である。 比較例101の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例101の液晶表示装置及び偏光板の構成を説明するための図である。 実施例101の偏光板ルーバーの透過率視野角の計算結果と、実施例101の液晶表示装置の各種特性の測定結果とを示す図である。 実施例101の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例103の液晶表示装置及び偏光板の構成を説明するための図である。 実施例103の偏光板ルーバーの透過率視野角の計算結果と、実施例103の液晶表示装置の各種特性の測定結果とを示す図である。 実施例103の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例109の液晶表示装置及び偏光板の構成を説明するための図である。 実施例109の偏光板ルーバーの透過率視野角の計算結果と、実施例109の液晶表示装置の各種特性の測定結果とを示す図である。 実施例109の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較例201の液晶表示装置の構成を説明するための図である。 比較例201の偏光板ルーバーの透過率視野角の計算結果と、比較例201の液晶表示装置の各種特性の測定結果とを示す図である。 比較例201の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例201の液晶表示装置及び偏光板の構成を説明するための図である。 実施例201の偏光板ルーバーの透過率視野角の計算結果と、実施例201の液晶表示装置の各種特性の測定結果とを示す図である。 実施例201の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例203の液晶表示装置及び偏光板の構成を説明するための図である。 実施例203の偏光板ルーバーの透過率視野角の計算結果と、実施例203の液晶表示装置の各種特性の測定結果とを示す図である。 実施例203の液晶表示装置の視野角特性の測定結果を示すコンター図である。 実施例209の液晶表示装置及び偏光板の構成を説明するための図である。 実施例209の偏光板ルーバーの透過率視野角の計算結果と、実施例209の液晶表示装置の各種特性の測定結果とを示す図である。 実施例209の液晶表示装置の視野角特性の測定結果を示すコンター図である。 比較形態1に係る液晶表示装置の断面模式図である。 比較形態1に係る液晶表示装置のバックライト視野角の測定結果を示すコンター図である。 比較形態1に係る液晶表示装置の視野角特性の測定結果を示すコンター図であり、上段は、白輝度視野角を、中段は、黒輝度視野角を、下段は、コントラスト視野角を、それぞれ示す。 液晶パネル内における斜め入射光の散乱を示す断面模式図である。
[用語の定義]
本明細書において、偏光子は、無偏光(自然光)、部分偏光又は偏光から、特定方向にのみ振動する偏光(直線偏光)を取り出す機能を有するものを意味し、円偏光子(円偏光板)とは区別される。特に断りのない限り、本明細書中で「偏光子」というときは保護フィルムを含まず、偏光機能を有する素子だけを指す。吸収型偏光子とは、特定方向に振動する光を吸収し、それに垂直な方向に振動する偏光(直線偏光)を透過する機能を有するものである。反射型偏光子とは、特定方向に振動する光を反射し、それに垂直な方向に振動する偏光(直線偏光)を透過する機能を有するものである。
本明細書中、面内位相差Rは、R=(ns−nf)dで定義される。また、厚み方向位相差Rthは、Rth=(nz−(nx+ny)/2)dで定義される。そして、Nz係数(2軸性パラメータ)は、NZ=(ns−nz)/(ns−nf)で定義される。nsはnx、nyのうち大きい方を、nfは小さい方を指す。また、nx及びnyは、複屈折層(位相差板と液晶パネルを含む)の面内方向の主屈折率を示し、nzは、面外方向、すなわち、複屈折層の面に対して垂直方向の主屈折率を示し、dは、複屈折層の厚みを示す。
本明細書において、複屈折層の波長分散特性を示す指標として、波長550nmでの面内位相差Rに対する波長450nmでの面内位相差Rの比率であるR450/R550と、波長550nmでの面内位相差Rに対する波長650nmでの面内位相差Rの比率であるR650/R550とを用いる。
なお、本明細書中で主屈折率、位相差、Nz係数等の光学パラメータの測定波長は、特に断りのない限り550nmとする。
本明細書において、複屈折層とは、光学的異方性を有する層のことであり、位相差板と液晶パネルを包含する概念である。複屈折層は、面内位相差Rと、厚み方向位相差Rthの絶対値とのいずれか一方が10nm以上の値を有するものを意味し、好ましくは、20nm以上の値を有するものを意味する。
本明細書中、等方性フィルムとは、面内位相差Rと、厚み方向位相差Rthの絶対値とのいずれもが10nm以下の値を有するものを意味し、好ましくは、5nm以下の値を有するものを意味する。
本明細書中、観察面側とは、液晶表示装置の画面(表示面)に対してより近い側を意味し、背面側とは、液晶表示装置の画面(表示面)に対してより遠い側を意味する。
本明細書中、極角θとは、対象となる方向(例えば測定方向)と、液晶パネルの画面の法線方向とのなす角度を意味する。方位φとは、対象となる方向を液晶パネルの画面上に射影したときの方向を意味し、基準となる方位との間のなす角度(方位角)で表現される。ここで、基準となる方位(φ=0°)は、液晶パネルの画面の水平右方向に設定される。角度及び方位角は、反時計回りを正の角度、時計回りを負の角度とする。反時計回り及び時計回りは、いずれも液晶パネルの画面を観察面側(正面)から見たときの回転方向を表す。また、角度は、液晶パネルを平面視した状態で測定された値を表し、2つの直線(軸、方向及び稜線を含む)が互いに直交するとは、液晶パネルを平面視した状態で直交することを意味する。
本明細書において、軸方位とは、特に断りのない限り偏光子の吸収軸(反射軸)、又は、位相差板の遅相軸の方位を意味する。
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
<実施形態1>
図1は、実施形態1の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置1は、透過型の液晶表示装置であり、図1に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、第二偏光子12、第一位相差板31a、第三偏光子13、及びバックライト(BL)40を積層して得られた液晶表示装置である。また、本実施形態の偏光板51は、第二偏光子12、第一位相差板31a、及び第三偏光子13をこの順に積層して得られた偏光板である。すなわち、偏光板51は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた第一位相差板31aとを備えている。
図2は、実施形態1の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。本実施形態の液晶表示装置1は、図2に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、第二偏光子12、第一位相差板31b、第二位相差板32b、第三偏光子13、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板51は、第二偏光子12、第一位相差板31b、第二位相差板32b、及び第三偏光子13をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板51は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた第一位相差板31b及び第二位相差板32bとを備えていてもよい。
図3は、実施形態1の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。本実施形態の液晶表示装置1は、図3に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、第三偏光子13、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板51は、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、及び第三偏光子13をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板51は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた第一位相差板31c、第二位相差板32c及び第三位相差板33cとを備えていてもよい。
偏光板51は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
以下、第一位相差板31a、31b、31c、第二位相差板32b、32c及び第三位相差板33cを特に区別せずに説明する場合は、位相差板30と表記して説明する。
第一偏光子11は、第一透過軸と、第一透過軸と直交する第一吸収軸又は第一反射軸とを有し、第二偏光子12は、第二透過軸と、第二透過軸と直交する第二吸収軸又は第二反射軸とを有し、第三偏光子13は、第三透過軸と、第三透過軸と直交する第三吸収軸又は第三反射軸とを有する。
第二偏光子12及び第三偏光子13は、パラレルニコルに配置される。すなわち、第二偏光子12の第二透過軸(又は第二吸収軸若しくは第二反射軸)及び第三偏光子13の第三透過軸(又は第三吸収軸若しくは第三反射軸)は、平行である。より詳細には、0°±10°の範囲内(好適には0°±5°の範囲内)の角度をなす。
液晶表示装置1は、偏光板51を備え、観察面側から順に、第二透過軸を有する第二偏光子12と、位相差板30と、第二透過軸と平行な第三透過軸を有する第三偏光子13と、を備えることから、バックライト40からの出射光の分布を、法線方向と、第二透過軸方向(第三透過軸方向)と、第二吸収軸又は第二反射軸方向(第三吸収軸又は第三反射軸方向)とに選択的に集中させるようなコリメーションができる(十字型の配光分布)。一方、方位45°、135°、225°及び315°に代表されるその他の斜め方向、すなわち第二透過軸方向(第三透過軸方向)に対して略45°の角度をなす方向からの入射に対しては、位相差板30が第三偏光子13通過後の偏光状態を変化させるため、低い透過率が観測される。
第二偏光子12、位相差板30及び第三偏光子13の組み合わせは、光学的なルーバーとして機能するので、以下では偏光板ルーバーと呼ぶ。
バックライト40は、観察面側から背面側に向かって順に、第一稜線を有する第一凹凸形状部を有する第一プリズムシート41と、第一稜線と直交する第二稜線を有する第二凹凸形状部を有する第二プリズムシート42と、拡散シート43と、導光板及び光源を含む光源ユニット44とを備える。
このため、第一稜線及び第二稜線が延在する方位と直交するそれぞれの方位では、サイドローブによる輝度上昇が起こる。
そこで、本実施形態では、第三偏光子13の第三透過軸と、第一プリズムシート41の第一稜線とのなす角(第二偏光子12の第三透過軸と、第一プリズムシート41の第一稜線とのなす角)は、30°以上、60°以下(好適には40°以上、50°以下、より好適には43°以上47°以下、更に好適には実質的に45°)に設定されている。これにより、偏光板ルーバーで減光する方位と、第一及び第二プリズムシート41及び42のサイドローブによる輝度上昇が起こる方位とを略一致させることができる。そのため、特にサイドローブによる輝度上昇が起こる方位において、液晶パネル20に斜めに入射する斜め入射光を効果的に抑制でき、その結果、図54を用いて説明したように、当該斜め入射光の散乱に起因する正面方向のコントラスト低下を低減することが可能である。すなわち、正面方向のコントラストを向上することが可能である。なお、偏光板ルーバーで減光する方位と、サイドローブによる輝度上昇が起こる方位とは、必ずしも厳密に一致していなくてもよい。
以下、液晶表示装置1について詳述する。
第一偏光子11及び第二偏光子12は、クロスニコルに配置される。すなわち、第一偏光子11の第一透過軸(又は第一吸収軸若しくは第一反射軸)及び第二偏光子12の第二透過軸(又は第二吸収軸若しくは第二反射軸)は、互いに直交する。より詳細には、90°±3°の範囲内(好適には90°±1°の範囲内)の角度をなす。
なお、第一偏光子11及び第二偏光子12は、パラレルニコルに配置されてもよいが、高コントラストを得る観点からは、クロスニコルに配置されることが好ましい。
各偏光子11、12、13としては、材料や光学的性能について特に限定されず、例えば、吸収型偏光子、反射型偏光子等を適宜用いることができる。具体的には、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体等の異方性材料を吸着配向させた吸収型偏光子の他、二種類の樹脂からなる共押出しフィルムを1軸延伸して得られる反射型偏光子(例えば、日東電工社製のAPCFや3M社製のDBEF)、金属ワイヤーの細線を周期的に配列させた反射型偏光子(所謂ワイヤーグリッド偏光子)等を適宜用いることができる。また、吸収型偏光子と反射型偏光子とを積層したものを用いることもできる。
なかでも、第一偏光子11及び第二偏光子12としては、吸収型偏光子が好適であり、第三偏光子13としては、反射型偏光子が好適である。この場合、第一偏光子11は、第一透過軸と、第一透過軸と直交する第一吸収軸とを有し、第二偏光子12は、第二透過軸と、第二透過軸と直交する第二吸収軸とを有し、第三偏光子13は、第三透過軸と、第三透過軸と直交する第三反射軸とを有する。
また、偏光板ルーバーでは、第三偏光子13を複数とし、複数の第三偏光子13を積層して用いてもよい。この場合、複数の第三偏光子13の第三透過軸は、実質的に同じ方位に設定される。
また、機械強度や耐湿熱性を確保するために、各偏光子11、12、13の観察面側及び背面側の少なくとも一方に、トリアセチルセルロース(TAC)フィルム等の保護フィルム(図示せず)がラミネートされてもよい。保護フィルムは、任意の適切な接着層(図示せず)を介して偏光子11、12、13に貼り付けられる。
また、保護フィルムが位相差板30の機能を兼ね備えてもよい。すなわち、第一位相差板31a、31b、31c、第二位相差板32b、32c及び第三位相差板33cの少なくとも一つは、TACフィルム等の保護フィルム(ただし、面内位相差Rと、厚み方向位相差Rthの絶対値とのいずれか一方が10nm以上の値を有するもの)であってもよい。
なお、本明細書において、「接着層」とは、隣り合う光学素子の面と面とを接合し、実用上充分な接着力と接着時間で一体化させるものをいう。接着層を形成する材料としては、例えば、接着剤、アンカーコート剤が挙げられる。接着層は、被着体の表面にアンカーコート層が形成され、その上に接着剤層が形成されたような、多層構造であってもよい。また、肉眼的に認知できないような薄い層であってもよい。
また、本明細書において、「粘着層」とは、「接着層」と同様に、隣り合う光学素子の面と面とを接合し、実用上充分な接着力と接着時間で一体化させるものをいうが、接着層との違いは、そのもの自体が粘り気と弾性を持つことであり、水、溶剤、熱等をきっかけとした化学変化を起こすことで接合するのではなく、常温で短時間、かつわずかな圧力を加えるだけで接合することである。また、一度接合したら剥がすことができないのが接着層であるのに対して、剥がすことができるのが粘着層でもある。粘着層を形成する材料としては、例えば、アクリル系、シリコーン系、ウレタン系等の樹脂材料や、ゴム材料が挙げられる。
第二偏光子12及び第三偏光子13の軸方位は、適宜設定することができるが、0°±10°又は90°±10°の範囲内に設定されることが好ましく、0°±5°又は90°±5°の範囲内に設定されることがより好ましく、実質的に0°又は90°に設定されることが特に好ましい。これにより、法線方向と上下左右方向で明るい表示を得ることができる。
第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、(1)400nm未満であってもよいし(好適には300nm以下)、(2)400nm以上であってもよい(好適には500nm以上)。(1)の場合、偏光板ルーバーによって斜め方向にて極端に輝度が低下するのを防止することが可能である。そのため、ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)に好適である。ただし、正面方向のコントラストの向上効果は、(2)の場合に比べ劣る結果となる。(2)の場合は、偏光板ルーバーによって斜め方向にて極端に輝度が低下し得るが、より高い正面方向のコントラストを実現することが可能である。したがって、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合に好適である。このように、本実施形態では、一般に、正面コントラスト改善効果と白輝度視野角とはトレードオフの関係にある。
上記(1)の場合、第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、120nm以上であることが好ましく、140nm以上であることがより好ましい。120nm未満であると、正面方向のコントラストの向上効果が充分には得られない可能性がある。
上記(2)の場合、第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、600nm以下であることが好ましく、550nm以下であることがより好ましい。550nmを超えると、偏光板ルーバーにもサイドローブが発生し始める可能性がある。すなわち、偏光板ルーバーで減光する方位において、極角が大きくなるにしたがって、透過率が単調に減少した後、単調に増加し、その後、再び単調に減少するという現象が発生し得る。図33は、極角を変化させたときの実施形態1に係る偏光板ルーバーの方位45°における透過率の変化を計算した結果を示すグラフであり、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計の絶対値が0nm〜700nmまでの場合を示す。図34は、図33の計算に用いた偏光板ルーバーの構成を示す斜視分解模式図である。ここでは、第二偏光子12と第三偏光子13の軸方位を90°とし、それらの間に位相差板30としてネガティブCプレートを配置し、その厚み方向位相差Rthを変化させた。図33に示すように、厚み方向位相差Rthの総計の絶対値が550nmを超えると、当該総計が増加するにしたがって偏光板ルーバーのサイドローブも徐々に増大していくことがわかる。
なお、本明細書において、第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計とは、第二偏光子12と第三偏光子13との間に位置する全ての層(フィルム)のそれぞれの厚み方向位相差Rthの総計を意味する。したがって、例えば、第二偏光子12の背面側と、第三偏光子13の観察面側との少なくとも一方に、TACフィルム等の保護フィルム(等方性フィルムであってもよい)がラミネートされている場合は、位相差板30の厚み方向位相差Rthのみならず、当該保護フィルムの厚み方向位相差Rthも合算した値となる。
位相差板30の少なくとも一つは、逆波長分散特性を有することが好ましい。これにより、斜め方向から液晶表示装置1を観察したときに表示色(特に白表示)が着色するのを抑制することが可能である。より具体的には、R450/R550は、0.80以上、0.99以下であることが好ましく、0.82以上、0.90以下であることがより好ましい。R650/R550は、1.01以上、1.20以下であることが好ましく、1.02以上、1.18以下であることがより好ましい。なお、位相差板30が複数設けられる場合は、少なくとも1枚の位相差板30が逆波長分散特性を有すれば着色抑制効果を多少なりとも得られるが、着色抑制の観点からは、第二偏光子12と第三偏光子13との間の全ての位相差板30が逆波長分散特性を有することがより好ましい。
各位相差板30の2軸性パラメータNZは、(I)0.9≦NZ<10(好適には1.5≦NZ<5.0)を満たしてもよいし、(II)10≦NZ(好適には100≦NZ)を満たしてもよいし、(III)―11<NZ≦−0.9を満たしてもよいし、(IV)NZ≦−11(好適にはNZ≦−100)を満たしてもよい。
上記(I)の場合、各位相差板30の面内遅相軸は、(I−1)第二偏光子12の第二透過軸(第三偏光子13の第三透過軸でもよい)と平行であってもよいし、(I−2)直交してもよい。すなわち、0.9≦NZ<10を満たす位相差板30の面内遅相軸は、第二偏光子12の第二透過軸と平行であってもよいし、直交してもよい。(I−1)の平行であるとは、より詳細には、0°±10°の範囲内(好適には0°±5°の範囲内)の角度をなし、(I−2)の直交するとは、より詳細には、90°±10°の範囲内(好適には90°±5°の範囲内)の角度をなす。
上記(I−1)及び(I−2)のいずれの場合であっても同様の効果が得られるが、(I−2)の場合、(I−1)の場合と同じ効果を得るためには必要な位相差が大きくなってしまう。これらの場合で必要な位相差が異なる理由については、図4A及び4Bに示すように、ポアンカレ球を使って説明可能である。図4Aは、実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二透過軸と直交する場合を示す。図4Bは、実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二透過軸と平行である場合を示す。
ポアンカレ球による考え方は、複屈折層を通して変化する偏光状態の追跡に有用な手法として結晶光学等の分野で広く知られている(例えば、高崎宏著、「結晶光学」、森北出版、1975年、p.146−163参照)。ポアンカレ球では、上半球には右周り偏光、下半球には左周り偏光が表され、赤道には直線偏光、上下両極には右円偏光及び左円偏光がそれぞれ表される。球の中心に対して対称な関係にある二つの偏光状態は、楕円率角の絶対値が等しくかつ極性が逆であることから、互いの偏光軸のなす角度が90°である一対の偏光を成している。また、ポアンカレ球上における複屈折層の効果は、複屈折層通過直前の偏光状態を表す点を、ポアンカレ球上での遅相軸(より正確に言い換えると、二つある複屈折層の固有振動モードのうち、遅い方の偏光状態を表わすポアンカレ球上での点の位置とポアンカレ球の原点Oを結ぶ線分。)を中心に(2π)×(位相差)/(波長)(単位:rad)で決定される角度だけ反時計回りに回転移動させた点に変換することである(進相軸を中心に時計回りに回転移動させても同じことである。)。斜め方向から観察した場合の回転中心と回転角度は、その観察角度での遅相軸(又は進相軸)と位相差により決定される。詳しい説明は省略するが、これらは、例えばフレネルの波面法線方程式を解き、複屈折層中の固有振動モードの振動方向と波数ベクトルを知ることで計算できる。斜め方向から観察した場合の遅相軸は、観察角度及びNZ係数に依存し、斜め方向から観察した場合の位相差は、観察角度、NZ係数及び面内位相差R(又は厚み方向位相差Rth)に依存する。
上記(I−1)の場合の偏光板ルーバーに方位45°極角60°の斜め方向から光が入射した場合を考え、バックライト40から出射した光が第三偏光子13、及び、位相差板30を透過する毎の偏光状態を表わす点P0、P1をポアンカレ球のS1−S2平面で図示すると図4Aのようになる。点Eは方位45°極角60°の斜め方向から見た場合の第二偏光子12の消光位(吸収軸方向に振動する偏光)の偏光状態を表わす点である。各偏光状態を表す点は実際にはポアンカレ球面上にあるが、それらをS1−S2平面に投影して図示している。第三偏光子13透過後の光の偏光状態を表わす点P0は、位相差板30を通過することで位相差板30のポアンカレ球上での遅相軸を表わす点R3とポアンカレ球の中心Oを結ぶ線分R3Oを回転中心として反時計周りの回転移動を受けP1に変換された後、第二偏光子12に入射する。この時、偏光状態を表わす点P1と第二偏光子12の消光位の偏光状態を表わす点Eとの距離に応じて光が透過する。より正確に言うと、その透過率はsin((1/2)×∠P1OE)に比例する。
上記(I−2)の場合の偏光板ルーバーに方位45°極角60°の斜め方向から光が入射した場合も同様に考えると図4Bのようになる。第三偏光子13を透過後の光の偏光状態を表わす点P0は、位相差板30を通過することで、位相差板30のポアンカレ球上での遅相軸を表わす点R3と、ポアンカレ球の中心Oを結ぶ線分を回転中心として反時計周りの回転移動を受けP1に変換された後、第二偏光子12に入射する。(I−2)の場合は、(法線方向から観察した場合に)位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度は0°(位相差板30の遅相軸と第二偏光子12の透過軸とのなす角度は90°)であるため、斜め視角から観察した場合にも、点R3と点Eは近くにある。そのため、線分R3Oを中心とした回転移動を行っても、点P1は点Eの近くにまで到達することができず、透過率はあまり小さくならない。一方、先に説明した(I−1)の場合は、位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度が90°(位相差板30の遅相軸と第二偏光子12の透過軸とのなす角度は0°)であるため、斜め視角から観察した場合に、点R3と点Eは離れている。そのため、線分R3Oを中心とした回転移動を行うことで点P1は点Eの近くにまで到達することができ、(I−2)の場合と比べて低透過が実現できるのである。
なお、位相差板30を方位45°、極角60°の斜め方向から観察した場合の遅相軸を表わす点R3の位置は、NZ係数に依存する。NZ係数を大きくすると、位相差板30はネガティブCプレートに近づくため、位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度が0°の場合も90°の場合も、点R3は+S1軸に接近し、1<<NZ(NZ→+∞)の極限で位相差板30は完全にネガティブCプレートとなり、点R3は+S1軸に一致する。逆に、NZ係数を小さくすると、位相差板30はポジティブCプレートに近づくため、位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度が0°の場合も90°の場合も、点R3は−S1軸に接近する。
NZ係数別に動作原理を確認するために、NZ=1、NZ=4、NZ=10、NZ=+∞の場合の偏光状態の変遷を位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度が0°の場合と90°の場合とに分けて、ポアンカレ球上に図5として図示した(NZ=+∞の場合は0°と90°の区別はないので1種類のみ。)。図5は、NZを変化させたときの実施形態1の液晶表示装置及び偏光板におけるポアンカレ球上での偏光状態の変遷を示す図であり、各位相差板の面内遅相軸が第二偏光子の第二吸収軸又は第二反射軸とのなす角度が90°の場合と0°の場合を示す。それぞれの場合でRthは−600nmに固定した。
図5に示される通り、位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とのなす角度が0°の場合は、90°の場合と比べて点P1は点Eに近づくことができないため、充分な透過率低減、ルーバー効果が得られない。特に、NZ=1の場合は回転中心軸である線分R3O上に点P0が重なるため、ルーバー効果は全く得られない。したがって、面内位相差がゼロではない位相差板30を用いる場合は、位相差板30の遅相軸と第二偏光子12の第二吸収軸又は第二反射軸とが直交(位相差板30の遅相軸と第二偏光子12の第二透過軸が平行)となるように、上記(I−1)の配置をするのがより好ましい。ただし、NZ=10の結果を見てわかるように、NZが大きくなるにつれ、位相差板30はネガティブCプレートに近づくため、直交配置でも平行配置でも充分に斜め方向における透過率を低下させ、ルーバー効果が得られるようになる。NZが10を超えるような場合は、直交配置でも平行配置でもどちらでもよい。そして、NZ=1の場合は、直交となるように配置したとしても、点P0と点R3が近すぎるため、線分R3Oを中心とした回転移動を行うことで点P1が点Eの近くにまで到達することができず、ほとんどルーバー効果が得られないこともわかる。位相差値をいかに調整したとても、点P1は(ポアンカレ球のS1−S2平面上で)線分P0P1、若しくは、その延長線上にしか存在できず、充分なルーバー効果が得られることはない。
以上の結果をまとめると、充分なルーバー効果を得るためには、(1)位相差板30の遅相軸と第二偏光子12の吸収軸は直交配置(位相差板30の遅相軸と第二偏光子12の第二透過軸は平行配置)(ただし、位相差板30において10<NZの場合は、直交でも平行でもどちらでもよい)であること、及び、(2)NZ係数はなるべく大きいこと、という条件を満たすことが好ましい。
位相差板30が複数設けられる場合(図2及び3に示した場合)であって、各位相差板30が上記(I−1)又は(I−2)の場合に該当するときは、位相差板31b及び32b、又は、31c、32c及び33cの面内遅相軸は、第二偏光子12の第二透過軸に対して同じ配置関係を有することが好ましい。すなわち、位相差板31b及び32b、又は、31c、32c及び33cは、面内遅相軸がいずれも第二透過軸と平行であるか(上記(I−1))、又は、面内遅相軸がいずれも第二透過軸と直交する(上記(I−2))ことが好ましい。
また、上記(I)の場合、(I−3)各位相差板30の面内遅相軸と、第二偏光子12の第二透過軸(第三偏光子13の第三透過軸でもよい)とのなす角は、30°以上、60°以下(好適には40°以上、50°以下、より好適には43°以上47°以下、更に好適には実質的に45°)であってもよい。
位相差板30が複数設けられる場合(図2及び3に示した場合)であって、各位相差板30が上記(I−3)の場合に該当するときは、位相差板31b及び32b、又は、31c、32c及び33cの面内遅相軸は、互いに直交することが好ましい。位相差板30が偶数枚(2nとする。ただし、nは自然数。)の場合は、n枚の位相差板30と、残りのn枚の位相差板30とを、面内遅相軸が互いに直交するように配置することが好ましい。すなわち、位相差板31b及び32bは、一方の面内遅相軸が第二透過軸に対して30°以上、60°以下の角度をなし、他方の面内遅相軸が第二透過軸に対して−60°以上、−30°以下の角度をなすことが好ましい。なお、位相差板30が偶数枚であって4枚以上の場合は、積層順は限定されない。例えば、面内遅相軸を観察面側から順に、方位45°/方位135°/方位45°/方位135°にそれぞれ配置しても、方位45°/方位45°/方位135°/方位135°にそれぞれ配置しても、方位45°/方位135°/方位135°/方位45°にそれぞれ配置しても、同じ効果が得られる。位相差板30が奇数枚の場合は、正面方向での影響をなくすために、トータルで面内位相差がゼロになるように面内遅相軸を配置することが好ましい。例えば、図3に示した3枚の場合、面内位相差Rを有する位相差板31cの面内遅相軸を方位45°に配置し、面内位相差2R(位相差板31cの2倍の面内位相差)を有する位相差板32cの面内遅相軸を方位135°に配置し、面内位相差R(位相差板31cと同じ面内位相差)を有する位相差板33cの面内遅相軸を方位45°に配置してもよい。
なお、上記(II)の場合、各位相差板30の2軸性パラメータNZの上限は、特に限定されず、+∞であってもよい。この場合、位相差板30はネガティブCプレートになる。
また、上記(IV)の場合、各位相差板30の2軸性パラメータNZの下限は、特に限定されず、(III)NZ=−∞であってよい。この場合、位相差板30はポジティブCプレートになる。
また、上記(II)及び(IV)の場合、各位相差板30は、面内位相差Rが充分小さく、面内では実質的に光学的に等方性と見なせるため、各位相差板30の面内における配置方向は特に限定されない。
位相差板30は、(A)図1に示したように、1つだけ設けられてもよいし、(B)図2又は3に示したように、複数設けられてもよい。
上記(B)の場合、複数の位相差板30は、実質的に同じもの(実質的に同じ材料及び工程で作製された実質的に同じ特性を発揮するもの)であることが好ましい。その理由は、第一に、経済合理性である。位相差板は、一般的に、ロール状に長尺で一度に大量に製造されるため、なるべく少品種にして、同じものを使用することで製造コストを抑えることができる。第二に、技術的には、同じ位相差板を使用することで、(特に複数の位相差板30が上記(I−3)に該当する場合、)製造バラつきを考慮して、面内位相差Rが完全にキャンセルされて、残留位相差がゼロになる可能性が高まるというメリットがある。
各位相差板30の材料としては特に限定されず、例えば、ポリマーフィルムを延伸したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができる。各位相差板30の形成方法としては特に限定されない。ポリマーフィルムから形成される場合、例えば、溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の位相差板30を同時に形成する方法を用いてもよい。所望の位相差が発現しさえすれば、無延伸であってもよいし、延伸が施されてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、斜め延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。また、液晶性材料から形成される場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現しさえすれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。更に、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料から形成される場合も、液晶性材料から形成される場合と同様の形成方法を用いてもよい。
0.9≦NZ<10を満たす位相差板30としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられる。
10≦NZを満たす位相差板30としては、所謂ネガティブCプレート等を適宜用いることができる。ネガティブCプレートとしては、例えば、固有複屈折が正の材料を成分として含むフィルムを縦横二軸延伸加工したもの、コレステリック(カイラルネマチック)液晶やディスコチック液晶等の液晶性材料を塗布したもの、ポリイミドやポリアミド等を含む非液晶性材料を塗布したもの等を適宜用いることができる。
―11<NZ≦−0.9を満たす位相差板30としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が負の材料としては、例えば、アクリル系樹脂及びスチレン系樹脂を含む樹脂組成物、ポリスチレン、ポリビニルナフタレン、ポリビニルビフェニル、ポリビニルピリジン、ポリメチルメタクリレート、ポリメチルアクリレート、N置換マレイミド共重合体、フルオレン骨格を有するポリカーボネート、トリアセチルセルロース(特にアセチル化度の小さいもの)等が挙げられる。
NZ≦−11満たす位相差板30としては、所謂ポジティブCプレート等を適宜用いることができる。ポジティブCプレートとしては、例えば、固有複屈折が負の材料を成分として含むフィルムを縦横二軸延伸加工したもの、ネマチック液晶等の液晶性材料を塗布したもの等を適宜用いることができる。
液晶パネル20の液晶モードは特に限定されず、液晶層中の液晶分子を基板面に垂直に配向させることで黒表示を行うものであってもよいし、液晶層中の液晶分子を基板面に平行又は垂直でも平行でもない方向に配向させることで黒表示を行うものであってもよい。また、液晶パネルの駆動形式としては、TFT方式(アクティブマトリクス方式)のほか、単純マトリクス方式(パッシブマトリクス方式)、プラズマアドレス方式等であってもよい。液晶パネルの構成としては、例えば、一方に画素電極及び共通電極が形成された一対の基板間に液晶層を狭持し、画素電極及び共通電極の間に電圧を印加して液晶層に横電界(フリンジ電界を含む)を印加することで表示を行うもの、一方に画素電極、他方に共通電極が形成された一対の基板間に液晶層を狭持し、画素電極及び共通電極の間に電圧を印加して液晶層に縦電界を印加することで表示を行うものが挙げられる。より具体的には、横電界方式としては、電圧無印加時に液晶層中の液晶分子が基板面に対して平行に配向する、FFS(Fringe Field Switching)モードやIPS(In Plane Switching)モードが挙げられ、縦電界方式としては、電圧無印加時に液晶層中の液晶分子が基板面に対して垂直に配向する、垂直配向(VA:Vertical Alignment)が挙げられる。
図6は、実施形態1の液晶表示装置が備えるバックライトの斜視分解模式図である。図7は、実施形態1の液晶表示装置が備えるバックライトの第一及び第二プリズムシートの斜視模式図である。図6に示すように、バックライト40は、観察面側から背面側に向かって順に、第一稜線41aを有する第一凹凸形状部41bを有する第一プリズムシート41と、第二稜線42aを有する第二凹凸形状部42bを有する第二プリズムシート42と、拡散シート43と、導光板44a及び光源44bを含む光源ユニット44とを備える。第一稜線41a及び第二稜線42aは、互いに直交する。より詳細には、90°±3°の範囲内(好適には90°±1°の範囲内)の角度をなす。
第一プリズムシート41及び第二プリズムシート42は、それぞれ、第一稜線41a及び第二稜線42aに直交する方位において斜め方向の光を正面方向に集光させる。図7に示すように、第一プリズムシート41及び第二プリズムシート42は、それぞれ、第一凹凸形状部41b及び第二凹凸形状部42bを支持する第一平面部41c及び第二平面部42cを更に有している。各平面部41c、42cは、観察面側及び背面側の面が平坦な構造を有する。第一凹凸形状部41b及び第二凹凸形状部42bは、それぞれ、第一平面部41c及び第二平面部42cと平行に設けられた複数の柱状構造を有し、複数の柱状構造は、長手方向が互いに平行となるように配置されている。各柱状構造は、例えば、三角柱状(三角プリズム状)であり、好ましくは、断面が凸部の頂点を挟む二辺の長さが等しい二等辺三角形である。第一稜線41a及び第二稜線42aは、それぞれ、第一凹凸形状部41b及び第二凹凸形状部42bの凸部の頂点が線状に連続したものであり、いずれも直線状である。なお、各凹凸形状部41b、42bの頂角、凸部のピッチ、凸部の高さ等は適宜設定することができる。各プリズムシート41、42としては、例えば、3M社製のBEFシリーズを用いることができる。
なお、バックライト40は、第二プリズムシート42を備えていなくてもよく、この場合、観察面側から、第一プリズムシート41、拡散シート43及び光源ユニット44がこの順に積層される。
拡散シート43は、半透明な樹脂フィルムであり、導光板44aの出光面から発せられた光を拡散させて光の指向特性を広げる。なお、拡散シート43は複数枚を設けてもよい。その場合、配置する場所は第三偏光子13と光源ユニット44との間であれば特に限定されず、任意の場所に配置してもよい。
導光板44aは、ポリカーボネート樹脂やポリメチルメタクリレート樹脂等の透明樹脂で成形された板状の光学素子であり、光を出射する出光面を観察面側に有する。導光板44aは、光源44bから導光板44a内へ入射された光を出光面全体に導光し、出光面全体から均一に光を出射する。
光源44bは、導光板44aの側面に対向するによう配置され、側面から導光板44a内へ光を入射させる。光源44bとしては、例えば、発光ダイオード(LED)を用いることができる。
なお、拡散シート43及び導光板44aのいずれか一方のみをバックライト40に設けてもよい。また、バックライト40は、上述のような光源44bが導光板44aの側方に配置されたエッジ型であってもよいし、光源44bが液晶パネル20の全面に重畳して配置された直下型としてもよい。直下型の場合、拡散シート43及び導光板44aを省略してもよい。
また、液晶表示装置1は、第二偏光子12と第三偏光子13との間に、積層された4枚以上の位相差板を備えていてもよい。その場合であっても上述の場合と同様の設計思想を適用でき、同様の効果を奏することが可能である。
<実施形態2>
本実施形態は、第三偏光子の軸方位と、位相差板の構成と、第一及び第二プリズムシートの配置方向とが異なることを除いて、実施形態1と実質的に同じであるので、重複する内容については適宜説明を省略する。また、本実施形態と実施形態1とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は適宜省略する。
図8は、実施形態2の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置2は、透過型の液晶表示装置であり、図8に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、第二偏光子12、第一位相差板51b、第二位相差板52b、第三偏光子13、及びバックライト(BL)40を積層して得られた液晶表示装置である。また、本実施形態の偏光板52は、第二偏光子12、第一位相差板51b、第二位相差板52b及び第三偏光子13をこの順に積層して得られた偏光板である。すなわち、偏光板52は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた第一位相差板51b及び第二位相差板52bとを備えている。
偏光板52は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
以下、第一位相差板51b及び第二位相差板52bを特に区別せずに説明する場合は、位相差板50と表記して説明する。
本実施形態では、第二偏光子12及び第三偏光子13は、非平行に配置される。すなわち、第二偏光子12の第二透過軸(又は第二吸収軸若しくは第二反射軸)及び第三偏光子13の第三透過軸(又は第三吸収軸若しくは第三反射軸)は、平行でない。より詳細には、20°以上、80°以下(好適には30°以上、70°以下、より好適には35°以上、65°以下)の角度をなす。
液晶表示装置2は、偏光板52を備え、観察面側から順に、第二透過軸を有する第二偏光子12と、位相差板50と、第二透過軸と非平行な第三透過軸を有する第三偏光子13と、を備えることから、バックライト40からの出射光の分布を、法線方向と、第二透過軸方向(第三透過軸方向)でも第二吸収軸又は第二反射軸方向(第三吸収軸又は第三反射軸方向)でもない方位αの斜め方向とに選択的に集中させるようなコリメーションができる(異方的な配光分布)。一方、その他の斜め方向、すなわち方位α以外の方向からの入射に対しては、位相差板50が第三偏光子13通過後の偏光状態を変化させるため、低い透過率が観測される。方位αは、位相差板50の角度及び位相差値、第三偏光子13の第三透過軸の方向、並びに、第二偏光子12の第二透過軸の設計によって異なる値となる。
本実施形態においても、第二偏光子12、位相差板50及び第三偏光子13の組み合わせは、光学的なルーバーとして機能するので、以下では偏光板ルーバーと呼ぶ。
バックライト40は、実施形態1と同様に、第一稜線を有する第一凹凸形状部を有する第一プリズムシート41と、第一稜線と直交する第二稜線を有する第二凹凸形状部を有する第二プリズムシート42とを備える。
このため、本実施形態においても、第一稜線及び第二稜線が延在する方位と直交するそれぞれの方位では、サイドローブによる輝度上昇が起こる。
そこで、本実施形態では、第一稜線が、第二透過軸及び第三透過軸がなす角を二等分する方位に対して−15°以上、+15°以下(好適には−10°以上、+10°以下)の角度をなすように、第一及び第二プリズムシート41及び42が配置されている。これにより、偏光板ルーバーで減光する方位と、第一及び第二プリズムシート41及び42のサイドローブによる輝度上昇が起こる方位の少なくとも一つとを、互いに近づける、好ましくは略一致させることができる。そのため、特にサイドローブによる輝度上昇が起こる方位において、液晶パネル20に斜めに入射する斜め入射光を効果的に抑制でき、その結果、図54を用いて説明したように、当該斜め入射光の散乱に起因する正面方向のコントラスト低下を低減することが可能である。すなわち、正面方向のコントラストを向上することが可能である。なお、偏光板ルーバーで減光する方位と、サイドローブによる輝度上昇が起こる方位の少なくとも一つとは、必ずしも厳密に一致していなくてもよい。
以下、液晶表示装置2について詳述する。
第二偏光子12及び第三偏光子13の軸方位は、適宜設定することができるが、第二偏光子12の軸方位は、0°±10°又は90°±10°の範囲内に設定されることが好ましく、0°±5°又は90°±5°の範囲内に設定されることがより好ましく、実質的に0°又は90°に設定されることが特に好ましい。これにより、法線方向と上下左右方向で明るい表示を得ることができる。
第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、(1)400nm未満であってもよいし(好適には300nm以下)、(2)400nm以上であってもよい(好適には500nm以上)。(1)の場合、偏光板ルーバーによって斜め方向にて極端に輝度が低下するのを防止することが可能である。そのため、ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)に好適である。ただし、正面方向のコントラストの向上効果は、(2)の場合に比べ劣る結果となる。(2)の場合は、偏光板ルーバーによって斜め方向にて極端に輝度が低下し得るが、より高い正面方向のコントラストを実現することが可能である。したがって、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合に好適である。このように、本実施形態でも、実施形態1と同様に、一般に、正面コントラスト改善効果と白輝度視野角とはトレードオフの関係にある。
上記(1)の場合、第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、120nm以上であることが好ましく、140nm以上であることがより好ましい。120nm未満であると、正面方向のコントラストの向上効果が充分には得られない可能性がある。
上記(2)の場合、第二偏光子12と第三偏光子13との間における厚み方向位相差Rthの総計の絶対値は、600nm以下であることが好ましく、550nm以下であることがより好ましい。550nmを超えると、実施形態1と同様に、偏光板ルーバーにもサイドローブが発生し始める可能性がある。すなわち、偏光板ルーバーで減光する方位において、極角が大きくなるにしたがって、透過率が単調に減少した後、単調に増加し、その後、再び単調に減少するという現象が発生し得る。厚み方向位相差Rthの総計の絶対値が550nmを超えると、当該総計が増加するにしたがって偏光板ルーバーのサイドローブも徐々に増大していくことがある。
第一位相差板51b及び第二位相差板52bの一方の面内位相差Rは、250nm以上、300nm以下であることが好ましい。260nm以上、290nm以下であることがより好ましい。面内位相差Rが250nm以上、300nm以下の位相差板50の面内遅相軸は、第二偏光子12の第二透過軸と第三偏光子の第三透過軸とがなす角を二等分する方位に対して−5°以上、+5°以下(より好適には−3°以上、+3°以下、特に好適には実質的に0°)の角度をなすことが好ましい。これにより、第二偏光子12の第二透過軸及び第三偏光子13の第三透過軸が非平行に配置されているにも関わらず、法線方向での透過率が低下することを防止することが可能である。
位相差板50の少なくとも一つは、逆波長分散特性を有することが好ましい。これにより、斜め方向から液晶表示装置2を観察したときに表示色(特に白表示)が着色するのを抑制することが可能である。より具体的には、R450/R550は、0.80以上、0.99以下であることが好ましく、0.82以上、0.90以下であることがより好ましい。R650/R550は、1.01以上、1.20以下であることが好ましく、1.02以上、1.18以下であることがより好ましい。なお、位相差板50が複数設けられる場合は、少なくとも1枚の位相差板50が逆波長分散特性を有すれば着色抑制効果を多少なりとも得られるが、着色抑制の観点からは、第二偏光子12と第三偏光子13との間の全ての位相差板50が逆波長分散特性を有することがより好ましい。
第一位相差板51b及び第二位相差板52bは、(I)第一位相差板51bの2軸性パラメータNZが0.9≦NZ<10(好適には1.5≦NZ<5.0)を満たし、第二位相差板52bの2軸性パラメータNZが10≦NZ(好適には100≦NZ)を満たしてもよいし、(II)第一位相差板51bの2軸性パラメータNZが10≦NZ(好適には100≦NZ)を満たし、第二位相差板52bの2軸性パラメータNZが0.9≦NZ<10(好適には1.5≦NZ<5.0)を満たしてもよいし、(III)第一位相差板51bの2軸性パラメータNZが―11<NZ≦−0.9を満たし、第二位相差板52bの2軸性パラメータNZが10≦NZ(好適には100≦NZ)を満たしてもよいし、(IV)第一位相差板51bの2軸性パラメータNZが10≦NZ(好適には100≦NZ)を満たし、第二位相差板52bの2軸性パラメータNZが―11<NZ≦−0.9を満たしてもよいし、(V)第一位相差板51bの2軸性パラメータNZが0.9≦NZ<10(好適には1.5≦NZ<5.0)を満たし、第二位相差板52bの2軸性パラメータNZがNZ≦−11(好適にはNZ≦−100)を満たしてもよいし、(VI)第一位相差板51bの2軸性パラメータNZがNZ≦−11(好適にはNZ≦−100)を満たし、第二位相差板52bの2軸性パラメータNZが0.9≦NZ<10(好適には1.5≦NZ<5.0)を満たしてもよいし、(VII)第一位相差板51bの2軸性パラメータNZが―11<NZ≦−0.9を満たし、第二位相差板52bの2軸性パラメータNZがNZ≦−11(好適にはNZ≦−100)を満たしてもよいし、(VIII)第一位相差板51bの2軸性パラメータNZがNZ≦−11(好適にはNZ≦−100)を満たし、第二位相差板52bの2軸性パラメータNZが―11<NZ≦−0.9を満たしてもよい。
上記(I)、(II)、(V)及び(VI)のいずれの場合においても、0.9≦NZ<10を満たす位相差板50の面内遅相軸は、第二偏光子12の第二透過軸と第三偏光子13の第三透過軸とがなす角を二等分する方位に対して−5°以上、+5°以下(好適には−3°以上、+3°以下、より好適には実質的に0°)の角度をなす。
上記(I)〜(VIII)のいずれの場合であっても同様の効果が得られる。
なお、上記(I)〜(IV)の場合、10≦NZを満たす位相差板50の2軸性パラメータNZの上限は、特に限定されず、+∞であってもよい。この場合、位相差板50はネガティブCプレートになる。
また、上記(V)〜(VIII)の場合、NZ≦−11を満たす位相差板50の2軸性パラメータNZの下限は、特に限定されず、−∞であってよい。この場合、位相差板50はポジティブCプレートになる。
また、上記(I)〜(VIII)の場合、10≦NZ又はNZ≦−11を満たす位相差板50は、面内位相差Rが充分小さく、面内では実質的に光学的に等方性と見なせるため、10≦NZ又はNZ≦−11を満たす位相差板50の面内における配置方向は特に限定されない。
位相差板50の材料及び形成方法としては特に限定されず、例えば、実施形態1で例示したものが挙げられる。
0.9≦NZ<10を満たす位相差板50としては、固有複屈折が正の材料を成分として含むフィルムを延伸加工したもの等を適宜用いることができる。固有複屈折が正の材料としては、例えば、実施形態1で例示したものが挙げられる。
10≦NZを満たす位相差板50としては、所謂ネガティブCプレート等を適宜用いることができる。ネガティブCプレートとしては、例えば、実施形態1で例示したものが挙げられる。
―11<NZ≦−0.9を満たす位相差板50としては、固有複屈折が負の材料を成分として含むフィルムを延伸加工したもの、固有複屈折が正の材料を成分として含むフィルムを熱収縮性フィルムの収縮力の作用下で延伸加工したもの等を適宜用いることができる。なかでも、製造方法の簡便化の観点からは、固有複屈折が負の材料を成分として含むフィルムを延伸加工したものが好ましい。固有複屈折が正の材料及び固有複屈折が負の材料としては、例えば、それぞれ、実施形態1で例示したものが挙げられる。
NZ≦−11満たす位相差板50としては、所謂ポジティブCプレート等を適宜用いることができる。ポジティブCプレートとしては、例えば、実施形態1で例示したものが挙げられる。
なお、液晶表示装置2は、第二偏光子12と第三偏光子13との間に、1枚の位相差板のみ、又は、積層された3枚以上の位相差板を備えていてもよい。その場合であっても上述の場合と同様の設計思想を適用でき、同様の効果を奏することが可能である。
<実施形態3>
本実施形態は、第一偏光子及び液晶パネルの間、及び、液晶パネル及び第二偏光子の間の少なくとも一方に視野角補償フィルムを更に備えることを除いて、実施形態1と実質的に同じであるので、重複する内容については適宜説明を省略する。また、本実施形態と実施形態1とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は適宜省略する。
図35は、実施形態3の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置3は、透過型の液晶表示装置であり、図35に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31a、第三偏光子13、及びバックライト(BL)40を積層して得られた液晶表示装置である。また、本実施形態の偏光板53は、視野角補償フィルム60、第二偏光子12、第一位相差板31a、及び第三偏光子13をこの順に積層して得られた偏光板である。すなわち、偏光板53は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60とを備えている。
図36は、実施形態3の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。本実施形態の液晶表示装置3は、図36に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31b、第二位相差板32b、第三偏光子13、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板53は、視野角補償フィルム60、第二偏光子12、第一位相差板31b、第二位相差板32b、及び第三偏光子13をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板53は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60とを備えていてもよい。
図37は、実施形態3の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。本実施形態の液晶表示装置3は、図37に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、第三偏光子13、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板53は、視野角補償フィルム60、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、及び第三偏光子13をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板53は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60とを備えていてもよい。
偏光板53は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
本実施形態の液晶表示装置3は、視野角補償フィルム60を備えることから、視野角特性を向上することが可能である。また、位相差板30を備えない場合に比べて、第二偏光子12及び第三偏光子13の軸方位での斜め方向のコントラストを向上することが可能である。
他方、位相差板30及び視野角補償フィルム60を併せ持つ本実施形態では、第二偏光子12及び第三偏光子13の軸方位から45°ずれた方位において、斜め方向のコントラストが低下してしまう可能性がある。
視野角補償フィルム60は、第二偏光子12及び第三偏光子13の軸方位から45°ずれた方位において、斜め方向のコントラストが低下してしまうことを抑制するように働く。クロスニコルに配置された一対の偏光子は、法線方向又は軸方位の斜め方向から観察した場合には、互いに直交しており、光漏れは起こらないため、高いコントラストが得られる。一方、軸方位から45°ずれた方位の斜め方向から観察した場合には、偏光軸が実質的に直交しなくなり、光漏れが起こるため、コントラストが低下してしまう。視野角補償フィルム60は、第二偏光子12を透過した後の光の偏光状態を変調し、第一偏光子11を斜めから見た時の実質的な吸収軸(又は吸収軸)に平行な方位に振動する直線偏光に変換することができるものであれば、その枚数、材料、構造等は、特に限定されないが、例えば、0<NZ<1の位相差板を1枚使用したもの、NZ≧1の位相差板とNZ≦0の位相差板を(それぞれ1枚以上)組み合わせて使用したもの等が挙げられる。視野角補償フィルム60の材料や製法については、位相差板30で説明したものと同様である。
より具体的には、例えば、面内位相差R=275nm、NZ=0.5の位相差板Aが挙げられる。この場合、位相差板A及び第二偏光子12は、この順に積層して使用され、位相差板Aの遅相軸と第二偏光子12の第二吸収軸(又は第二反射軸)とが直交するように積層される。
また、面内位相差R=140nm、NZ=1.0の位相差板Aと、面内位相差R=0nm、厚み方向位相差Rth=90nm、NZ=−∞の位相差板Bを積層したものが挙げられる。この場合、位相差板B、位相差板A及び第二偏光子12は、この順に積層して使用され、位相差板Aの遅相軸と第二偏光子12の第二吸収軸(又は第二反射軸)とが直交するように積層される。
更に、面内位相差R=115nm、NZ=1.2の位相差板Aと、面内位相差R=25nm、NZ=−3の位相差板Bを積層したものが挙げられる。この場合、位相差板B、位相差板A及び第二偏光子12は、この順に積層して使用され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子12の第二吸収軸(又は第二反射軸)と直交するように積層される。
なお、偏光板53は、視野角補償フィルム60を備えていなくてもよい。この場合、通常、まず視野角補償フィルム60が粘着層により液晶パネル20に貼付され、その後、偏光板53が粘着層により視野角補償フィルム60に貼付される。
また、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間ではなく、第一偏光子11及び液晶パネル20の間に設けられてもよい。更に、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間と、第一偏光子11及び液晶パネル20の間とにそれぞれ設けられてもよい。
<実施形態4>
本実施形態は、第一偏光子及び液晶パネルの間、及び、液晶パネル及び第二偏光子の間の少なくとも一方に、実施形態3で説明した視野角補償フィルムを更に備えることを除いて、実施形態2と実質的に同じであるので、重複する内容については適宜説明を省略する。また、本実施形態と実施形態1〜3とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は適宜省略する。
図38は、実施形態4の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置4は、図38に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板51b、第二位相差板52b、第三偏光子13、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置である。また、本実施形態の偏光板54は、視野角補償フィルム60、第二偏光子12、第一位相差板51b、第二位相差板52b、及び第三偏光子13をこの順に積層して得られた偏光板である。すなわち、偏光板54は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板50と、一方の偏光子12の位相差板50と反対側に設けられた視野角補償フィルム60とを備えている。
偏光板54は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
本実施形態の液晶表示装置4は、視野角補償フィルム60を備えることから、視野角特性を向上することが可能である。また、位相差板30を備えない場合に比べて、第二偏光子12及び第三偏光子13の軸方位での斜め方向のコントラストを向上することが可能である。
他方、位相差板30及び視野角補償フィルム60を併せ持つ本実施形態では、第二偏光子12及び第三偏光子13の軸方位から45°ずれた方位において、斜め方向のコントラストが低下してしまう可能性がある。
なお、偏光板54は、視野角補償フィルム60を備えていなくてもよい。この場合、通常、まず視野角補償フィルム60が粘着層により液晶パネル20に貼付され、その後、偏光板54が粘着層により視野角補償フィルム60に貼付される。
また、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間ではなく、第一偏光子11及び液晶パネル20の間に設けられてもよい。更に、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間と、第一偏光子11及び液晶パネル20の間とにそれぞれ設けられてもよい。
<実施形態5>
本実施形態は、第二偏光子及びバックライト40の間に拡散層を更に備えることを除いて、実施形態3と実質的に同じであるので、重複する内容については適宜説明を省略する。また、本実施形態と実施形態1、3とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は適宜省略する。
図39は、実施形態5の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置5は、透過型の液晶表示装置であり、図39に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31a、第三偏光子13、拡散層70、及びバックライト(BL)40を積層して得られた液晶表示装置である。また、本実施形態の偏光板55は、視野角補償フィルム60、第二偏光子12、第一位相差板31a、第三偏光子13、及び拡散層70をこの順に積層して得られた偏光板である。すなわち、偏光板55は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60と、他方の偏光子13の位相差板30と反対側に設けられた拡散層70とを備えている。
図40は、実施形態5の液晶表示装置及び偏光板の別の構成例を示す断面模式図である。本実施形態の液晶表示装置5は、図40に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31b、第二位相差板32b、第三偏光子13、拡散層70、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板55は、視野角補償フィルム60、第二偏光子12、第一位相差板31b、第二位相差板32b、第三偏光子13、及び拡散層70をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板55は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60と、他方の偏光子13の位相差板30と反対側に設けられた拡散層70とを備えていてもよい。
図41は、実施形態5の液晶表示装置及び偏光板の更に別の構成例を示す断面模式図である。本実施形態の液晶表示装置5は、図41に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、第三偏光子13、拡散層70、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置であってもよい。また、本実施形態の偏光板55は、視野角補償フィルム60、第二偏光子12、第一位相差板31c、第二位相差板32c、第三位相差板33c、第三偏光子13、及び拡散層70をこの順に積層して得られた偏光板であってもよい。すなわち、偏光板55は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板30と、一方の偏光子12の位相差板30と反対側に設けられた視野角補償フィルム60と、他方の偏光子13の位相差板30と反対側に設けられた拡散層70とを備えていてもよい。
偏光板55は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
本実施形態の液晶表示装置5は、位相差板30及び視野角補償フィルム60とともに、拡散層70を備えることから、第二偏光子12及び第三偏光子13の軸方位のみならず第二偏光子12及び第三偏光子13の軸方位から45°ずれた方位において、斜め方向のコントラストを向上することが可能である。すなわち、拡散層70の追加により、全方位でコントラスト向上の効果を得ることができる。
拡散層70は、バックライト40から発せられた光を拡散させて光の指向特性を広げるものである。拡散層70のヘイズは、適宜設定することができるが、例えば35%以上、75%以下であり、好ましくは45%以上、65%以下であり、より好ましくは50%以上、60%以下である。拡散層70による拡散の光学原理は、内部拡散であっても、外部拡散であってもよい。内部拡散を起こす拡散層70としては、例えば、半透明な樹脂フィルムである拡散シートが挙げられる。拡散シートは、透明な樹脂バインダー中に、それとは屈折率の異なるフィラーを混入させてフィルム状に成形したものであってもよいし、基材フィルム上に、前記のフィラー混入樹脂バインダーを塗布したものであってもよい。拡散シートは、接着層又は粘着層を介して第三偏光子13に貼り付けてもよい。外部拡散を起こす拡散層70としては、例えば、アンチグレア層(アンチグレアフィルム)が挙げられる。アンチグレア層は、前記の屈折率差のないフィラー混入樹脂バインダーにおいてフィラーの大きさや密度を調整することで、基材フィルム上に塗布した後、表面形状が凸凹になった層であってもよいし、金型を使用し、フィラーを混入させない樹脂をインプリント加工することで、表面形状が凸凹になった層であってもよい。いずれの場合も、凸凹状の表面に由来する外部拡散が得られる。アンチグレア層は、第三偏光子13上(第三偏光子13の位相差板30と反対側の表面)に形成される。
また、拡散層70は、第二偏光子12及び第三偏光子13の間に設けられてもよい。この場合、拡散層70は、第二偏光子12及び位相差板30の間と、位相差板30及び第三偏光子13の間と、隣り合う位相差板30の間との少なくとも一つの領域に配置される。また、この場合、拡散層70は、上述のように拡散シートを粘着層により偏光子12、13及び/又は位相差板30に貼り付けたものであってもよいが、粘着剤に光拡散成分(例えば粘着剤とは屈折率の異なるフィラー)を混入した拡散粘着層であることが好ましい。拡散粘着層は、工業的には、第三偏光子13と、その隣の位相差板30との間に設けられることが好ましい。
更に、拡散層70は、偏光板55に含まれていなくてもよい。この場合、拡散層70は、第三偏光子13及びバックライト40の間に独立したシート、すなわち拡散シートとして配置され、通常、偏光板55にもバックライト40にも貼り付けされていない。
なお、偏光板55は、視野角補償フィルム60を備えていなくてもよい。この場合、通常、まず視野角補償フィルム60が粘着層により液晶パネル20に貼付され、その後、偏光板55が粘着層により視野角補償フィルム60に貼付される。
また、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間ではなく、第一偏光子11及び液晶パネル20の間に設けられてもよい。更に、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間と、第一偏光子11及び液晶パネル20の間とにそれぞれ設けられてもよい。
更に、拡散層70を備える本実施形態では、バックライト40は、拡散シート43を備えていなくてもよい。
<実施形態6>
本実施形態は、第二偏光子及びバックライト40の間に、実施形態5で説明した拡散層を更に備えることを除いて、実施形態2と実質的に同じであるので、重複する内容については適宜説明を省略する。また、本実施形態と実施形態1〜5とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は適宜省略する。
図42は、実施形態6の液晶表示装置及び偏光板の構成例を示す断面模式図である。本実施形態の液晶表示装置6は、図42に示すように、観察面側から背面側に向かって順に、第一偏光子11、液晶層を含む液晶パネル20、視野角補償フィルム60、第二偏光子12、第一位相差板51b、第二位相差板52b、第三偏光子13、拡散層70、及びバックライト(BL)40を積層して得られた透過型の液晶表示装置である。また、本実施形態の偏光板56は、視野角補償フィルム60、第二偏光子12、第一位相差板51b、第二位相差板52b、第三偏光子13、及び拡散層70をこの順に積層して得られた偏光板である。すなわち、偏光板56は、一対の偏光子12及び13と、一対の偏光子12及び13の間に設けられた位相差板50と、一方の偏光子12の位相差板50と反対側に設けられた視野角補償フィルム60と、他方の偏光子13の位相差板50と反対側に設けられた拡散層70とを備えている。
偏光板56は、通常、粘着層(図示せず)により液晶パネル20に貼付されている。
本実施形態の液晶表示装置6は、位相差板30及び視野角補償フィルム60とともに、拡散層70を備えることから、第二偏光子12及び第三偏光子13の軸方位のみならず第二偏光子12及び第三偏光子13の軸方位から45°ずれた方位において、斜め方向のコントラストを向上することが可能である。すなわち、拡散層70の追加により、全方位でコントラスト向上の効果を得ることができる。
拡散層70は、実施形態5と同様に、第二偏光子12及び第三偏光子13の間に設けられてもよい。また、拡散層70は、拡散シートであってもよいし、アンチグレア層であってもよいし、拡散粘着層であってもよい。更に、拡散層70は、偏光板56に含まれていなくてもよい。
なお、偏光板56は、視野角補償フィルム60を備えていなくてもよい。この場合、通常、まず視野角補償フィルム60が粘着層により液晶パネル20に貼付され、その後、偏光板56が粘着層により視野角補償フィルム60に貼付される。
また、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間ではなく、第一偏光子11及び液晶パネル20の間に設けられてもよい。更に、視野角補償フィルム60は、液晶パネル20及び第二偏光子12の間と、第一偏光子11及び液晶パネル20の間とにそれぞれ設けられてもよい。
更に、拡散層70を備える本実施形態では、バックライト40は、拡散シート43を備えていなくてもよい。
なお、液晶表示装置1〜6においては、各位相差板30、50が単一の位相差板からなるように図示したが、各位相差板30、50は、複数の位相差板から構成された光学的に等価なものであってもよい。これにより、従来の液晶表示装置用の光学補償フィルムとして広く実用化されている大面積で安価な位相差板を使用することができる。例えば、位相差板を3枚積層することでトータルとして1つの位相差板として機能するようにしてもよい。
また、液晶表示装置1、2においては、第一偏光子11の観察面側に光拡散素子を設けなくとも、法線方向と4方向(好適には、上下左右方向)で明るい表示が得られる。ただし、これら以外の方向でも明るい表示を得るという観点からは、第一偏光子11の観察面側に光拡散素子、例えば光拡散フィルムやレンズフィルムを更に設けてもよい。液晶表示装置3〜6においても、全方位にてより明るい表示を得るため、第一偏光子11の観察面側に光拡散素子、例えば光拡散フィルムやレンズフィルムを更に設けてもよい。
また、液晶表示装置1〜6においては、位相差板30、50及び第三偏光子13は、液晶パネル20側に取り付けられているが、例えば、第三偏光子13のみ、又は、第三偏光子13及び位相差板30若しくは50がバックライト40に取り付けられていてもよい。
更に、液晶表示装置1〜6において、各部材間の少なくとも一つには空気層が設けられてもよく、例えば、第三偏光子13と第一プリズムシート41との間には、空気層が設けられてもよい。
(実施例1及び比較例1)
比較例1及び実施例1の液晶表示装置及び偏光板の構成は、それぞれ、図9−1及び10−1に示した通りである。図9−1は、比較例1の液晶表示装置及び偏光板の構成を説明するための図である。図10−1は、実施例1の液晶表示装置及び偏光板の構成を説明するための図である。各光学素子の軸方位は図に記載した。吸収型偏光子の軸は吸収軸、Cプレート以外の位相差板の軸は面内遅相軸、反射型吸収型の軸は反射軸、プリズムシートの軸は稜線が延びる方位と直交する方位(サイドローブが発生する方位)を、それぞれ示している。第一及び第二偏光子としては、ポリビニルアルコール(PVA)フィルムに二色性を有するヨウ素錯体を吸着配向させた吸収型偏光子を用いた。液晶パネルとしては、横電界方式のFFSモードの液晶パネルを使用した。第三偏光板としては、3M社製の反射型偏光子APFを用いた。比較例1の偏光板としては、第二偏光子及び第三偏光子がこの順に積層されたものを使用した。実施例1の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。バックライトとしては、LED光源、導光板、拡散シート、第二プリズムシート及び第一プリズムシートが背面側からこの順に積層されたものを使用した。第一及び第二位相差板としては、面内位相差R=140nm、厚み方向位相差Rth=−70nmのものを使用した。波長分散特性等の詳細は図に示した通りである。
比較例1及び実施例1の液晶パネルに入射するバックライト光の配光分布を把握するため、液晶パネルよりも背面側のパーツだけ、すなわち、第二偏光子から第三偏光子までの部分(偏光板ルーバー)の透過率視野角特性を計算した。なお、以下の各実施例及び各比較例においても第二偏光子から第三偏光子までの部分を偏光板ルーバーとする。結果を図9−2及び10−2に示す。図9−2は、比較例1の偏光板ルーバーの透過率視野角の計算結果と、比較例1の液晶表示装置の各種特性の測定結果とを示す図である。図10−2は、実施例1の偏光板ルーバーの透過率視野角の計算結果と、実施例1の液晶表示装置の各種特性の測定結果とを示す図である。図9−2及び10−2を見てわかる通り,実施例1の偏光板ルーバーの配光特性は略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限されることがわかる。その方位にサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、正面方向のコントラストを高める効果が期待できる。サイドローブが発生する方位は、方位135°,45°に設定した。
比較例1及び実施例1の液晶表示装置を実際に試作し、正面方向の白輝度(cd/m)、正面方向の白色度x、正面方向の白色度y、正面方向の白色度Δxy、正面方向の黒輝度(cd/m)、正面方向のコントラスト(CR)、比較例1の正面方向のコントラストに対する正面方向のコントラストの比率(正面CR改善率)、斜め方向(方位0°,極角60°)の白輝度(cd/m)、斜め方向(方位45°,極角60°)の白輝度(cd/m)、斜め方向(方位0°,極角60°)の白色度x、斜め方向(方位0°,極角60°)の白色度y、斜め方向(方位0°,極角60°)の白色度Δxy、斜め方向(方位45°,極角60°)の白色度x、斜め方向(方位45°,極角60°)の白色度y、斜め方向(方位45°,極角60°)の白色度Δxy、斜め方向(方位0°,極角60°)の黒輝度(cd/m)、斜め方向(方位45°,極角60°)の黒輝度(cd/m)、斜め方向(方位0°,極角60°)のコントラスト(CR)、比較例1の斜め方向(方位0°,極角60°)のコントラストに対する斜め方向(方位0°,極角60°)のコントラストの比率(斜めCR改善率(方位0°,極角60°))、斜め方向(方位45°,極角60°)のコントラスト(CR)、比較例1の斜め方向(方位45°,極角60°)のコントラストに対する斜め方向(方位45°,極角60°)のコントラストの比率(斜めCR改善率(方位45°,極角60°))、バックライト視野角(cd/m)、白輝度視野角(cd/m)、黒輝度視野角(cd/m)、及び、コントラスト視野角を実測した。測定結果を図9−2、9−3、10−2及び10−3に示す。図9−3は、比較例1の液晶表示装置の視野角特性の測定結果を示すコンター図である。図10−3は、実施例1の液晶表示装置の視野角特性の測定結果を示すコンター図である。
(R、Rth、Nz係数、nx、ny、nzの測定方法)
デュアル・リターダー・ローテート方式のポーラリメータ(Axometrics社製、商品名:Axo−scan)を用いて測定した。面内位相差Rは複屈折層の法線方向から実測した。主屈折率nx、ny、nz、厚み方向位相差Rth及びNz係数は、複屈折層の法線方向、法線方向から−50°〜50°傾斜した各斜め方向から位相差を測定し、公知の屈折率楕円体式のカーブフィッティングにより算出した。傾斜方位は面内遅相軸と直交する方位とした。また、nx、ny、nz、Rth及びNzは、カーブフィッティングの計算条件として与える平均屈折率=(nx+ny+nz)/3に依存するが、各複屈折層の平均屈折率を1.5に統一して計算した。実際の平均屈折率が1.5と異なる複屈折層についても平均屈折率1.5を想定して換算した。
(液晶表示装置の輝度、色度、コントラスト、視野角特性の測定方法)
視野角測定装置(ELDIM社製、商品名:EZContrast160)を用いて白表示と黒表示の輝度を測定し、その比をコントラスト(CR)とした。また、白色度(x,y)も測定した。
図9−2、9−3、10−2及び10−3に示されるように、実施例1は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、実施例1では、偏光板ルーバーを構成する位相差板として、逆波長分散特性を有し、かつ、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が400nm未満となるものを使用したため、斜め方向での白輝度の低下と黄色着色とを抑制でき、比較例1と同様の見栄えであった。
(比較例2)
比較例2の液晶表示装置の構成は、図11−1に示した通りである。図11−1は、比較例2の液晶表示装置の構成を説明するための図である。本比較例は、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)を方位110°,20°に設定したことを除いて、実施例1と同じである。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図11−2に示す。図11−2は、比較例2の偏光板ルーバーの透過率視野角の計算結果と、比較例2の液晶表示装置の各種特性の測定結果とを示す図である。図11−2に示されるように、本比較例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図11−2及び11−3に示す。図11−3は、比較例2の液晶表示装置の視野角特性の測定結果を示すコンター図である。図11−2及び11−3に示されるように、比較例2は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例1と異なり、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが一致していないため、実施例1と比べてコントラストの向上効果は小さかった。
(実施例2及び3)
実施例2及び3の液晶表示装置及び偏光板の構成は、それぞれ、図12−1及び13−1に示した通りである。図12−1は、実施例2の液晶表示装置及び偏光板の構成を説明するための図である。図13−1は、実施例3の液晶表示装置及び偏光板の構成を説明するための図である。これらの例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例2の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。実施例3の偏光板としては、第二偏光子、第一位相差板、第二位相差板、第三位相差板及び第三偏光子がこの順に積層されたものを使用した。
これらの例の偏光板ルーバーの透過率視野角特性を計算した結果を図12−2及び13−2に示す。図12−2は、実施例2の偏光板ルーバーの透過率視野角の計算結果と、実施例2の液晶表示装置の各種特性の測定結果とを示す図である。図13−2は、実施例3の偏光板ルーバーの透過率視野角の計算結果と、実施例3の液晶表示装置の各種特性の測定結果とを示す図である。図12−2及び13−2に示されるように、これらの例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
これらの例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図12−2、12−3、13−2及び13−3に示す。図12−3は、実施例2の液晶表示装置の視野角特性の測定結果を示すコンター図である。図13−3は、実施例3の液晶表示装置の視野角特性の測定結果を示すコンター図である。図12−2、12−3、13−2及び13−3に示されるように、実施例2及び実施例3は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、偏光板ルーバーを構成する位相差板として、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例1と比べて大きいものを使用したため、実施例1と比べてコントラストの向上効果は大きかった。特に、実施例3のコントラストの向上効果が大きかった。
(比較例3)
比較例3の液晶表示装置の構成は、図14−1に示した通りである。図14−1は、比較例3の液晶表示装置の構成を説明するための図である。本比較例は、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)を方位110°,20°に設定したことを除いて、実施例3と同じである。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図14−2に示す。図14−2は、比較例3の偏光板ルーバーの透過率視野角の計算結果と、比較例3の液晶表示装置の各種特性の測定結果とを示す図である。図14−2に示されるように、本比較例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図14−2及び14−3に示す。図14−3は、比較例3の液晶表示装置の視野角特性の測定結果を示すコンター図である。図14−2及び14−3に示されるように、比較例3は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例3と異なり、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが一致していないため、実施例1と比べてコントラストの向上効果は小さかった。
(実施例4)
実施例4の液晶表示装置及び偏光板の構成は、図15−1に示した通りである。図15−1は、実施例4の液晶表示装置及び偏光板の構成を説明するための図である。実施例4は、位相差板の波長分散特性が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例4の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図15−2に示す。図15−2は、実施例4の偏光板ルーバーの透過率視野角の計算結果と、実施例4の液晶表示装置の各種特性の測定結果とを示す図である。図15−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図15−2及び15−3に示す。図15−3は、実施例4の液晶表示装置の視野角特性の測定結果を示すコンター図である。図15−2及び15−3に示されるように、実施例4は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例4では、偏光板ルーバーを構成する位相差板として、フラット波長分散特性を有するものを使用したため、実施例1及び比較例1と比べて、斜め方向での白輝度の低下と黄色着色が確認された。
(実施例5及び6)
実施例5及び6の液晶表示装置及び偏光板の構成は、それぞれ、図16−1及び17−1に示した通りである。図16−1は、実施例5の液晶表示装置及び偏光板の構成を説明するための図である。図17−1は、実施例6の液晶表示装置及び偏光板の構成を説明するための図である。これらの例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例5の偏光板としては、第二偏光子、第一位相差板及び第三偏光子がこの順に積層されたものを使用した。実施例6の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。
これらの例の偏光板ルーバーの透過率視野角特性を計算した結果を図16−2及び17−2に示す。図16−2は、実施例5の偏光板ルーバーの透過率視野角の計算結果と、実施例5の液晶表示装置の各種特性の測定結果とを示す図である。図17−2は、実施例6の偏光板ルーバーの透過率視野角の計算結果と、実施例6の液晶表示装置の各種特性の測定結果とを示す図である。図16−2及び17−2に示されるように、これらの例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
これらの例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図16−2、16−3、17−2及び17−3に示す。図16−3は、実施例5の液晶表示装置の視野角特性の測定結果を示すコンター図である。図17−3は、実施例6の液晶表示装置の視野角特性の測定結果を示すコンター図である。図16−2、16−3、17−2及び17−3に示されるように、実施例5及び6は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、偏光板ルーバーを構成する位相差板として、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例1と比べて大きいものを使用したため、実施例1と比べてコントラストの向上効果は大きかった。特に、実施例6のコントラストの向上効果が大きかった。ただし、厚み方向位相差Rthの総計の絶対値が400nmを超えている実施例6は、実施例5と比べて、斜め方向での白輝度の低下と黄色着色が確認された。ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)には実施例5の液晶表示装置がより好適であると考えられる。一方、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合には実施例6の液晶表示装置がより好適であると考えられる。ただし、各実施例の液晶表示装置の用途はここに例示したものに限定されない。
(実施例7)
実施例7の液晶表示装置及び偏光板の構成は、図18−1に示した通りである。図18−1は、実施例7の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例7の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図18−2に示す。図18−2は、実施例7の偏光板ルーバーの透過率視野角の計算結果と、実施例7の液晶表示装置の各種特性の測定結果とを示す図である。図18−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図18−2及び18−3に示す。図18−3は、実施例7の液晶表示装置の視野角特性の測定結果を示すコンター図である。図18−2及び18−3に示されるように、実施例7は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。実施例7は実施例4と同じく、面内位相差が140nmの所謂λ/4板を使用しているが、2軸性パラメータNZが実施例4と比べて大きく、厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例4と比べて大きいものを使用したため、実施例4と比べてコントラストの向上効果は大きかった。
(比較例4)
比較例4の液晶表示装置の構成は、図19−1に示した通りである。図19−1は、比較例4の液晶表示装置の構成を説明するための図である。本比較例は、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)を方位110°,20°に設定したことを除いて、実施例7と同じである。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図19−2に示す。図19−2は、比較例4の偏光板ルーバーの透過率視野角の計算結果と、比較例4の液晶表示装置の各種特性の測定結果とを示す図である。図19−2に示されるように、本比較例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図19−2及び19−3に示す。図19−3は、比較例4の液晶表示装置の視野角特性の測定結果を示すコンター図である。図19−2及び19−3に示されるように、比較例4は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例7と異なり、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが一致していないため、実施例7と比べてコントラストの向上効果は小さかった。
(実施例8)
実施例8の液晶表示装置及び偏光板の構成は、図20−1に示した通りである。図20−1は、実施例8の液晶表示装置及び偏光板の構成を説明するための図である。本比較例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例7の偏光板としては、第二偏光子、第一位相差板、第二位相差板、第三偏光子及び第三偏光子がこの順に積層されたものを使用した。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図20−2に示す。図20−2は、実施例8の偏光板ルーバーの透過率視野角の計算結果と、実施例8の液晶表示装置の各種特性の測定結果とを示す図である。図20−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図20−2及び20−3に示す。図20−3は、実施例8の液晶表示装置の視野角特性の測定結果を示すコンター図である。図20−2及び20−3に示されるように、実施例8は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。実施例8は実施例4と同じく、面内位相差が140nmの所謂λ/4板を使用しているが、2軸性パラメータNZが実施例4と比べて大きく、厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例4と比べて大きいものを使用したため、実施例4と比べてコントラストの向上効果は大きかった。ただし、厚み方向位相差Rthの総計の絶対値が400nmを超えている実施例8は、実施例4、7と比べて、斜め方向での白輝度の低下と黄色着色が確認された。ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)には実施例4、7の液晶表示装置がより好適であると考えられる。一方、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合には実施例8の液晶表示装置がより好適であると考えられる。ただし、各実施例の液晶表示装置の用途はここに例示したものに限定されない。
(実施例9及び10)
実施例9及び10の液晶表示装置及び偏光板の構成は、それぞれ、図21−1及び22−1に示した通りである。図21−1は、実施例9の液晶表示装置及び偏光板の構成を説明するための図である。図22−1は、実施例10の液晶表示装置及び偏光板の構成を説明するための図である。これらの例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例9の偏光板としては、第二偏光子、第一位相差板及び第三偏光子がこの順に積層されたものを使用した。実施例10の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。
これらの例の偏光板ルーバーの透過率視野角特性を計算した結果を図21−2及び22−2に示す。図21−2は、実施例9の偏光板ルーバーの透過率視野角の計算結果と、実施例9の液晶表示装置の各種特性の測定結果とを示す図である。図22−2は、実施例10の偏光板ルーバーの透過率視野角の計算結果と、実施例10の液晶表示装置の各種特性の測定結果とを示す図である。図21−2及び22−2に示されるように、これらの例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
これらの例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図21−2、21−3、22−2及び22−3に示す。図21−3は、実施例9の液晶表示装置の視野角特性の測定結果を示すコンター図である。図22−3は、実施例10の液晶表示装置の視野角特性の測定結果を示すコンター図である。図21−2、21−3、22−2及び22−3に示されるように、実施例9及び10は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、偏光板ルーバーを構成する位相差板として、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例1と比べて大きいものを使用したため、実施例1と比べてコントラストの向上効果は大きかった。特に、実施例10のコントラストの向上効果が大きかった。ただし、厚み方向位相差Rthの総計の絶対値が400nmを超えている実施例10は、実施例9と比べて、斜め方向での白輝度の低下と黄色着色が確認された。ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)には実施例9の液晶表示装置がより好適であると考えられる。一方、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合には実施例10の液晶表示装置がより好適であると考えられる。ただし、各実施例の液晶表示装置の用途はここに例示したものに限定されない。
(比較例5)
比較例5の液晶表示装置の構成は、図23−1に示した通りである。図23−1は、比較例5の液晶表示装置の構成を説明するための図である。本比較例は、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)を方位110°,20°に設定したことを除いて、実施例9と同じである。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図23−2に示す。図23−2は、比較例5の偏光板ルーバーの透過率視野角の計算結果と、比較例5の液晶表示装置の各種特性の測定結果とを示す図である。図23−2に示されるように、本比較例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図23−2及び23−3に示す。図23−3は、比較例5の液晶表示装置の視野角特性の測定結果を示すコンター図である。図23−2及び23−3に示されるように、比較例5は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例9と異なり、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが一致していないため、実施例7と比べてコントラストの向上効果は小さかった。
(実施例11)
実施例11の液晶表示装置及び偏光板の構成は、図24−1に示した通りである。図24−1は、実施例11の液晶表示装置及び偏光板の構成を説明するための図である。実施例11は、第三偏光子の軸方位と、位相差板の構成と、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)とが異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性と、サイドローブが発生する方位とは、図中に記載したとおりである。実施例11の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。
実施例11の偏光板ルーバーの透過率視野角特性を計算した結果を図24−2に示す。図24−2は、実施例11の偏光板ルーバーの透過率視野角の計算結果と、実施例11の液晶表示装置の各種特性の測定結果とを示す図である。また、図25は、実施例11〜15の偏光板ルーバーについて、透過率視野角特性の計算結果に基づく極角60°の透過率の方位角依存性を示したグラフである。図24−2に示されるように、本実施例の偏光板ルーバーの配光特性は、異方的な配光分布を示す。また、図25に示すように、液晶パネルへの入射光が制限される方位は、方位95°,170°,275°,350°である。その方位の少なくとも一つにサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、コントラストを高める効果が期待できる。サイドローブが発生する方位は、方位110°,20°に設定した。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図24−2及び24−3に示す。図24−3は、実施例11の液晶表示装置の視野角特性の測定結果を示すコンター図である。図24−2及び24−3に示されるように、実施例11は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。プリズムシートの稜線の方位が方位45°でも方位135°でもない場合であって、かつ、第二偏光子の第二吸収軸が方位0°又は90°という通常の設計から変更できない場合であっても、実施例11のように、第二偏光子12の第二透過軸及び第三偏光子13の第三透過軸が非平行に配置されるように偏光板ルーバー設計することで、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが実質的に一致し、コントラスト改善効果が得られることがわかった。また、実施例11では、偏光板ルーバーを構成する位相差板として、逆波長分散特性を有するものを使用したため、斜め方向での白輝度の低下と黄色着色とを抑制でき、比較例1と同様の見栄えであった。
(比較例6)
比較例6の液晶表示装置の構成は、図26−1に示した通りである。図26−1は、比較例6の液晶表示装置の構成を説明するための図である。本比較例は、プリズムシートの稜線が延びる方位と直交する方位(サイドローブが発生する方位)を方位135°,45°に設定したことを除いて、実施例11と同じである。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図26−2に示す。図26−2は、比較例6の偏光板ルーバーの透過率視野角の計算結果と、比較例6の液晶表示装置の各種特性の測定結果とを示す図である。図26−2に示されるように、本比較例の偏光板ルーバーの配光特性は、実施例11と同じ異方的な配光分布を示し、実施例11と同様に方位95°,170°,275°,350°における液晶パネルへの入射光が制限される。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図26−2及び26−3に示す。図26−3は、比較例6の液晶表示装置の視野角特性の測定結果を示すコンター図である。図26−2及び26−3に示されるように、比較例6は、比較例1に比べて、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかったが、実施例11と異なり、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが一致していないため。実施例11と比べてコントラストの向上効果は小さかった。
(実施例12及び13)
実施例12及び13の液晶表示装置及び偏光板の構成は、それぞれ、図27−1及び図28−1に示した通りである。図27−1は、実施例12の液晶表示装置及び偏光板の構成を説明するための図である。図28−1は、実施例13の液晶表示装置及び偏光板の構成を説明するための図である。これらの例は、第三偏光子及び位相差板の軸方位が異なることを除いて、実施例11と同じである。各位相差板の軸方位及び特性と、サイドローブが発生する方位とは、図中に記載したとおりである。実施例12及び13の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。なお、実施例12及び13については、液晶表示装置を実際に試作していないため、シミュレーション結果のみを用いて説明する。
これらの例の偏光板ルーバーの透過率視野角特性を計算した結果を図27−2及び28−2に示す。図27−2は、実施例12の偏光板ルーバーの透過率視野角の計算結果を示す図である。図28−2は、実施例13の偏光板ルーバーの透過率視野角の計算結果を示す図である。図27−2及び28−2に示されるように、これらの例の偏光板ルーバーの配光特性は、実施例11と同様に、異方的な配光分布を示す。また、図25に示したように、液晶パネルへの入射光が制限される方位は、実施例12では方位10°,115°,190°,295°であり、実施例13では方位0°,105°,180°,285°である。各例において、その方位の少なくとも一つにサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、コントラストを高める効果が期待できる。サイドローブが発生する方位は、方位110°,20°に設定した。これらの例では、偏光板ルーバーにより減光される方位と、サイドローブが発生する方位とが、実施例11に比べて、より一致しているため、正面方向のコントラストをより向上できると考えられる。また、実施例12及び13では、偏光板ルーバーを構成する位相差板として、逆波長分散特性を有するものを使用しているため、斜め方向での白輝度の低下と黄色着色とを抑制でき、比較例1と同様の見栄えが得られると考えられる。
(実施例14)
実施例14の液晶表示装置及び偏光板の構成は、図29−1に示した通りである。図29−1は、実施例14の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、位相差板の構成が異なることを除いて、実施例11と同じである。各位相差板の軸方位及び特性と、サイドローブが発生する方位とは、図中に記載したとおりである。実施例14の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。なお、実施例14については、液晶表示装置を実際に試作していないため、シミュレーション結果のみを用いて説明する。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図29−2に示す。図29−2は、実施例14の偏光板ルーバーの透過率視野角の計算結果を示す図である。図29−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例11と同じ異方的な配光分布を示し、実施例11と同様に方位95°,170°,275°,350°における液晶パネルへの入射光が制限される。また、サイドローブが発生する方位は、実施例11と同様に方位110°,20°に設定されることから、正面方向のコントラストを向上できると考えられる。更に、偏光板ルーバーを構成する位相差板として、第二偏光子と第三偏光子との間における厚み方向位相差Rthの総計(図中、Rthトータル)の絶対値が実施例11と比べて大きいものを使用したため、実施例11と比べてコントラストの向上効果は大きくなると考えられる。また、偏光板ルーバーを構成する位相差板として、逆波長分散特性を有するものを使用しているため、斜め方向での白輝度の低下と黄色着色とを抑制でき、比較例1と同様の見栄えが得られると考えられる。
(実施例15)
実施例15の液晶表示装置及び偏光板の構成は、図30−1に示した通りである。図30−1は、実施例15の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、第一位相差板と第二位相差板の軸方位と特性を入れ替えたことを除いて、実施例11と同じである。各位相差板の軸方位及び特性と、サイドローブが発生する方位とは、図中に記載したとおりである。実施例15の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。なお、実施例15については、液晶表示装置を実際に試作していないため、シミュレーション結果のみを用いて説明する。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図30−2に示す。図30−2は、実施例15の偏光板ルーバーの透過率視野角の計算結果を示す図である。図30−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例11と同様に、異方的な配光分布を示す。また、図25に示したように、液晶パネルへの入射光が制限される方位は、方位50°,125°,230°,305°である。その方位の少なくとも一つにサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、コントラストを高める効果が期待できる。サイドローブが発生する方位は、方位110°,20°に設定した。したがって、実施例11と同様に、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが実質的に一致し、コントラスト改善効果が得られると考えられる。また、偏光板ルーバーを構成する位相差板として、逆波長分散特性を有するものを使用しているため、斜め方向での白輝度の低下と黄色着色とを抑制でき、比較例1と同様の見栄えが得られると考えられる。
(実施例16)
実施例16の液晶表示装置及び偏光板の構成は、図31−1に示した通りである。図31−1は、実施例16の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例16の偏光板としては、第二偏光子、第一位相差板及び第三偏光子がこの順に積層されたものを使用した。なお、実施例16については、液晶表示装置を実際に試作していないため、シミュレーション結果のみを用いて説明する。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図31−2に示す。図31−2は、実施例16の偏光板ルーバーの透過率視野角の計算結果を示す図である。図31−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図31−3に示す。図31−3は、実施例16の液晶表示装置の視野角特性の測定結果を示すコンター図である。図21−3及び図31−3に示されるように、厚み方向位相差Rthの絶対値が同じであれば、ネガティブCプレートの場合(実施例9)とポジティブCプレートの場合(本実施例)とで同じ結果になる。また、偏光板ルーバーにより減光される方位にサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、正面方向のコントラストを高める効果が期待できる。サイドローブが発生する方位は、方位135°,45°に設定した。したがって、実施例1、9と同様に、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが実質的に一致し、コントラスト改善効果が得られると考えられる。
(実施例17)
実施例17の液晶表示装置及び偏光板の構成は、図32−1に示した通りである。図32−1は、実施例17の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、位相差板の構成が異なることを除いて、実施例1と同じである。各位相差板の軸方位及び特性は、図中に記載したとおりである。実施例17の偏光板としては、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層されたものを使用した。なお、実施例17については、液晶表示装置を実際に試作していないため、シミュレーション結果のみを用いて説明する。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図32−2に示す。図32−2は、実施例17の偏光板ルーバーの透過率視野角の計算結果を示す図である。図32−2に示されるように、本実施例の偏光板ルーバーの配光特性は、実施例1と同じ略十字型であり、方位45°,135°,225°,315°における液晶パネルへの入射光が制限される。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測し、測定結果を図32−3に示す。図32−3は、実施例17の液晶表示装置の視野角特性の測定結果を示すコンター図である。図22−3及び図32−3に示されるように、厚み方向位相差Rthの絶対値が同じであれば、ネガティブCプレートの場合(実施例10)とポジティブCプレートの場合(本実施例)とで同じ結果になる。また、偏光板ルーバーにより減光される方位にサイドローブがくるように各プリズムシートの角度を設定すれば、液晶表示装置の斜め方向での光漏れを効果的に抑制し、正面方向のコントラストを高める効果が期待できる。サイドローブが発生する方位は、方位135°,45°に設定した。したがって、実施例1、10と同様に、偏光板ルーバーにより液晶パネルへの入射光が制限される方位とサイドローブが発生する方位とが実質的に一致し、コントラスト改善効果が得られると考えられる。特に、厚み方向位相差Rthの総計の絶対値が400nmを超えている実施例17のコントラストの向上効果は大きくなると考えられる。ただし、実施例17は、実施例16と比べて、斜め方向での白輝度の低下と黄色着色とが確認されると考えられる。ある程度の視野角が求められる汎用的な液晶表示装置(例えば、ノートPC、タブレットPC、車載ディスプレイ、スマートフォン等)には実施例16の液晶表示装置がより好適であると考えられる。一方、ヘッドマウントディスプレイ(VRディスプレイ)等の広視野角が要求されない液晶表示装置の場合や、液晶表示装置の最表面に光拡散フィルム等を設けて視野角拡大を図る場合には実施例17の液晶表示装置がより好適であると考えられる。ただし、各実施例の液晶表示装置の用途はここに例示したものに限定されない。
実施例1〜17で示したように、実施例1〜17に係る偏光板によれば、液晶表示装置の黒表示における斜め方向での光漏れを低減でき、その結果、液晶表示装置の正面方向のコントラストを向上できることがわかった。
(比較例101)
比較例101の液晶表示装置の構成は、図43−1に示した通りである。図43−1は、比較例101の液晶表示装置の構成を説明するための図である。本比較例は、液晶パネル及び第二偏光子の間に視野角補償フィルムを設けたことを除いて、比較例1と同じである。視野角補償フィルムとしては、面内位相差R=115nm、NZ=1.2の位相差板Aと、面内位相差R=25nm、NZ=−3の位相差板Bを積層したものを使用した。比較例101の偏光板としては、位相差板B、位相差板A、第二偏光子及び第三偏光子がこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図43−2に示す。図43−2は、比較例101の偏光板ルーバーの透過率視野角の計算結果と、比較例101の液晶表示装置の各種特性の測定結果とを示す図である。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図43−2及び43−3に示す。図43−3は、比較例101の液晶表示装置の視野角特性の測定結果を示すコンター図である。
なお、本比較例と、後述する実施例101、103及び109とにおいて、正面CR改善率、斜めCR改善率(方位0°,極角60°)及び斜めCR改善率(方位45°,極角60°)は、本比較例のコントラストに対する各実施例のコントラストの比率を表している。
(実施例101)
実施例101の液晶表示装置及び偏光板の構成は、図44−1に示した通りである。図44−1は、実施例101の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、液晶パネル及び第二偏光子の間に、比較例101で説明した視野角補償フィルムを設けたことを除いて、実施例1と同じである。実施例101の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板、第二位相差板及び第三偏光子がこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図44−2に示す。図44−2は、実施例101の偏光板ルーバーの透過率視野角の計算結果と、実施例101の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図44−2及び44−3に示す。図44−3は、実施例101の液晶表示装置の視野角特性の測定結果を示すコンター図である。
(実施例103)
実施例103の液晶表示装置及び偏光板の構成は、図45−1に示した通りである。図45−1は、実施例103の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、液晶パネル及び第二偏光子の間に、比較例101で説明した視野角補償フィルムを設けたことを除いて、実施例3と同じである。実施例103の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板、第二位相差板、第三位相差板及び第三偏光子がこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図45−2に示す。図45−2は、実施例103の偏光板ルーバーの透過率視野角の計算結果と、実施例103の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図45−2及び45−3に示す。図45−3は、実施例103の液晶表示装置の視野角特性の測定結果を示すコンター図である。
(実施例109)
実施例109の液晶表示装置及び偏光板の構成は、図46−1に示した通りである。図46−1は、実施例109の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、液晶パネル及び第二偏光子の間に、比較例101で説明した視野角補償フィルムを設けたことを除いて、実施例9と同じである。実施例109の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板及び第三偏光子がこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図46−2に示す。図46−2は、実施例109の偏光板ルーバーの透過率視野角の計算結果と、実施例109の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図46−2及び46−3に示す。図46−3は、実施例109の液晶表示装置の視野角特性の測定結果を示すコンター図である。
実施例101、103、109では、比較例101と比べ、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、比較例101に比べ、方位0°での斜め方向のコントラストも向上していることがわかった。一方、方位45°での斜め方向のコントラストは、比較例101に比べて、殆ど向上していないか、或いは低下していることがわかった。
(比較例201)
比較例201の液晶表示装置の構成は、図47−1に示した通りである。図47−1は、比較例201の液晶表示装置の構成を説明するための図である。本比較例は、第三偏光子のバックライト側に拡散層を設けたことを除いて、比較例101と同じである。拡散層としては、透明な樹脂バインダー中に、それとは屈折率の異なるフィラーを混入させてフィルム状に成形した拡散シートを粘着剤で第三偏光子に貼り付けたものを用いた。すなわち、比較例201の偏光板としては、面内位相差R=25nm、NZ=−3の位相差板Bと、面内位相差R=115nm、NZ=1.2の位相差板Aと、第二偏光子と、第三偏光子と、拡散シートとがこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。拡散シートのヘイズは55%に調整した。
本比較例の偏光板ルーバーの透過率視野角特性を計算した結果を図47−2に示す。図47−2は、比較例201の偏光板ルーバーの透過率視野角の計算結果と、比較例201の液晶表示装置の各種特性の測定結果とを示す図である。
本比較例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図47−2及び47−3に示す。図47−3は、比較例201の液晶表示装置の視野角特性の測定結果を示すコンター図である。
なお、本比較例と、後述する実施例201、203及び209とにおいて、正面CR改善率、斜めCR改善率(方位0°,極角60°)及び斜めCR改善率(方位45°,極角60°)は、本比較例のコントラストに対する各実施例のコントラストの比率を表している。
(実施例201)
実施例201の液晶表示装置及び偏光板の構成は、図48−1に示した通りである。図48−1は、実施例201の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、第三偏光子のバックライト側に、比較例201で説明した拡散層を設けたことを除いて、実施例101と同じである。実施例201の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板、第二位相差板、第三偏光子及び拡散シートがこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図48−2に示す。図48−2は、実施例201の偏光板ルーバーの透過率視野角の計算結果と、実施例201の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図48−2及び48−3に示す。図48−3は、実施例201の液晶表示装置の視野角特性の測定結果を示すコンター図である。
(実施例203)
実施例203の液晶表示装置及び偏光板の構成は、図49−1に示した通りである。図49−1は、実施例203の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、第三偏光子のバックライト側に、比較例201で説明した拡散層を設けたことを除いて、実施例103と同じである。実施例203の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板、第二位相差板、第三位相差板、第三偏光子及び拡散シートがこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図49−2に示す。図49−2は、実施例203の偏光板ルーバーの透過率視野角の計算結果と、実施例203の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図49−2及び49−3に示す。図49−3は、実施例203の液晶表示装置の視野角特性の測定結果を示すコンター図である。
(実施例209)
実施例209の液晶表示装置及び偏光板の構成は、図50−1に示した通りである。図50−1は、実施例209の液晶表示装置及び偏光板の構成を説明するための図である。本実施例は、第三偏光子のバックライト側に、比較例201で説明した拡散層を設けたことを除いて、実施例109と同じである。実施例209の偏光板としては、位相差板B、位相差板A、第二偏光子、第一位相差板、第三偏光子及び拡散シートがこの順に積層され、位相差板Aと位相差板Bの遅相軸が互いに平行になるように、かつ位相差板Aと位相差板Bの遅相軸が第二偏光子の第二吸収軸と直交するように積層されたものを使用した。
本実施例の偏光板ルーバーの透過率視野角特性を計算した結果を図50−2に示す。図50−2は、実施例209の偏光板ルーバーの透過率視野角の計算結果と、実施例209の液晶表示装置の各種特性の測定結果とを示す図である。
本実施例の液晶表示装置を実際に試作し、実施例1と同様にして、正面方向のコントラスト、斜め方向(方位0°,極角60°)の白輝度等を実測した。測定結果を図50−2及び50−3に示す。図50−3は、実施例209の液晶表示装置の視野角特性の測定結果を示すコンター図である。
実施例201、203、209では、比較例201と比べ、黒表示における斜め方向での光漏れが低減され、その結果、正面方向のコントラストも向上していることがわかった。また、比較例101に比べ、方位0°での斜め方向のコントラストも向上していることがわかった。更に、比較例101に比べて、方位45°での斜め方向のコントラストも向上していることがわかった。拡散層の追加により、全方位でコントラスト向上効果が得られることがわかった。
なお、拡散シートの代わりに、拡散層として、第三偏光子の位相差板と反対側に一般的な方法でアンチグレア層を形成したり、第三偏光子と第二偏光子の間に拡散粘着層を設けたりしてもよく、それらの場合であっても、実施例201、203及び209と同じ特性を発揮することができる。
また、拡散層としての拡散シートを第三偏光子13及びバックライト40の間に独立したシートとして配置してもよく、その場合であっても、実施例201、203及び209と同じ特性を発揮することができる。
1、2、3、4、5、6:液晶表示装置
11:第一偏光子
12:第二偏光子
13:第三偏光子
20:液晶パネル
30、50:位相差板
31a、31b、31c、51b:第一位相差板
32b、32c、52b:第二位相差板
33c:第三位相差板
40:バックライト
41:第一プリズムシート
41a:第一稜線
41b:第一凹凸形状部
41c:第一平面部
42:第二プリズムシート
42a:第二稜線
42b:第二凹凸形状部
42c:第二平面部
43:拡散シート
44:光源ユニット
44a:導光板
44b:光源
51、52、53、54、55、56:偏光板
60:視野角補償フィルム
70:拡散層

Claims (46)

  1. 観察面側から順に、
    第一透過軸を有する第一偏光子と、
    液晶パネルと、
    第二透過軸を有する第二偏光子と、
    位相差板と、
    前記第二透過軸と平行な第三透過軸を有する第三偏光子と、
    第一稜線を有する第一凹凸形状部を有する第一プリズムシートと、
    を備え、
    前記第三透過軸と前記第一稜線とのなす角は、30°以上、60°以下である
    ことを特徴とする液晶表示装置。
  2. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm未満である
    ことを特徴とする請求項1記載の液晶表示装置。
  3. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、120nm以上である
    ことを特徴とする請求項2記載の液晶表示装置。
  4. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm以上である
    ことを特徴とする請求項1記載の液晶表示装置。
  5. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、600nm以下である
    ことを特徴とする請求項4記載の液晶表示装置。
  6. 前記位相差板は、逆波長分散特性を有する
    ことを特徴とする請求項1〜5のいずれかに記載の液晶表示装置。
  7. 前記位相差板の2軸性パラメータNZは、0.9≦NZ<10を満たす
    ことを特徴とする請求項1〜6のいずれかに記載の液晶表示装置。
  8. 前記位相差板の面内遅相軸は、前記第二透過軸と平行であるか、又は、直交する
    ことを特徴とする請求項7記載の液晶表示装置。
  9. 前記位相差板の面内遅相軸と前記第二透過軸とのなす角は、30°以上、60°以下である
    ことを特徴とする請求項7記載の液晶表示装置。
  10. 前記位相差板の2軸性パラメータNZは、10≦NZを満たす
    ことを特徴とする請求項1〜6のいずれかに記載の液晶表示装置。
  11. 前記位相差板を複数備える
    ことを特徴とする請求項1〜10のいずれかに記載の液晶表示装置。
  12. 前記第二偏光子及び前記第一プリズムシートの間に設けられた拡散層を更に備える
    ことを特徴とする請求項1〜11のいずれかに記載の液晶表示装置。
  13. 前記第一偏光子及び前記液晶パネルの間、及び、前記液晶パネル及び前記第二偏光子の間の少なくとも一方に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項1〜12のいずれかに記載の液晶表示装置。
  14. 観察面側から順に、
    第一透過軸を有する第一偏光子と、
    液晶パネルと、
    第二透過軸を有する第二偏光子と、
    位相差板と、
    前記第二透過軸と平行でない第三透過軸を有する第三偏光子と、
    第一稜線を有する第一凹凸形状部を有する第一プリズムシートと、
    を備え、
    前記第一稜線は、前記第二透過軸と前記第三透過軸とがなす角を二等分する方位に対して−15°以上、+15°以下の角度をなす
    ことを特徴とする液晶表示装置。
  15. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm未満である
    ことを特徴とする請求項14記載の液晶表示装置。
  16. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、120nm以上である
    ことを特徴とする請求項15記載の液晶表示装置。
  17. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、400nm以上である
    ことを特徴とする請求項14記載の液晶表示装置。
  18. 前記第二偏光子と前記第三偏光子との間における厚み方向位相差の総計の絶対値は、600nm以下である
    ことを特徴とする請求項17記載の液晶表示装置。
  19. 前記位相差板は、逆波長分散特性を有する
    ことを特徴とする請求項14〜18のいずれかに記載の液晶表示装置。
  20. 前記位相差板を複数備え、
    前記複数の位相差板は、2軸性パラメータNZが0.9≦NZ<10を満たす位相差板と、2軸性パラメータNZが10≦NZを満たす位相差板と、を含み、
    0.9≦NZ<10を満たす前記位相差板の面内遅相軸は、前記第二透過軸と前記第三透過軸とがなす角を二等分する方位に対して−5°以上、+5°以下の角度をなす
    ことを特徴とする請求項14〜19のいずれかに記載の液晶表示装置。
  21. 前記第二偏光子及び前記第一プリズムシートの間に設けられた拡散層を更に備える
    ことを特徴とする請求項14〜20のいずれかに記載の液晶表示装置。
  22. 前記第一偏光子及び前記液晶パネルの間、及び、前記液晶パネル及び前記第二偏光子の間の少なくとも一方に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項14〜21のいずれかに記載の液晶表示装置。
  23. 透過軸が互いに平行な一対の偏光子と、
    前記一対の偏光子の間に設けられた位相差板と、
    前記一対の偏光子の間と、前記一対の偏光子の一方の前記位相差板と反対側との少なくとも一方に設けられた拡散層と、を備える
    ことを特徴とする偏光板。
  24. 前記位相差板は、逆波長分散特性を有する
    ことを特徴とする請求項23記載の偏光板。
  25. 前記一対の偏光子の他方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項23又は24記載の偏光板。
  26. 透過軸が互いに平行な一対の偏光子と、
    前記一対の偏光子の間に設けられ、逆波長分散特性を有する位相差板と、を備える
    ことを特徴とする偏光板。
  27. 前記一対の偏光子の一方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項26記載の偏光板。
  28. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm未満である
    ことを特徴とする請求項23〜27のいずれかに記載の偏光板。
  29. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、120nm以上である
    ことを特徴とする請求項28記載の偏光板。
  30. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm以上である
    ことを特徴とする請求項23〜27のいずれかに記載の偏光板。
  31. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、600nm以下である
    ことを特徴とする請求項30記載の偏光板。
  32. 前記位相差板の2軸性パラメータNZは、0.9≦NZ<10を満たす
    ことを特徴とする請求項23〜31のいずれかに記載の偏光板。
  33. 前記位相差板の面内遅相軸は、前記一対の偏光子の一方の透過軸と平行であるか、又は、直交する
    ことを特徴とする請求項32記載の偏光板。
  34. 前記位相差板の面内遅相軸と前記一対の偏光子の一方の透過軸とのなす角は、30°以上、60°以下である
    ことを特徴とする請求項32記載の偏光板。
  35. 前記位相差板の2軸性パラメータNZは、10≦NZを満たす
    ことを特徴とする請求項23〜31のいずれかに記載の偏光板。
  36. 前記位相差板を複数備える
    ことを特徴とする請求項23〜35のいずれかに記載の偏光板。
  37. 透過軸が互いに平行でない一対の偏光子と、
    前記一対の偏光子の間に設けられた位相差板と、を備える
    ことを特徴とする偏光板。
  38. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm未満である
    ことを特徴とする請求項37記載の偏光板。
  39. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、120nm以上である
    ことを特徴とする請求項38記載の偏光板。
  40. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、400nm以上である
    ことを特徴とする請求項37記載の偏光板。
  41. 前記一対の偏光子の間における厚み方向位相差の総計の絶対値は、600nm以下である
    ことを特徴とする請求項40記載の偏光板。
  42. 前記位相差板は、逆波長分散特性を有する
    ことを特徴とする請求項37〜41のいずれかに記載の偏光板。
  43. 前記位相差板を複数備え、
    前記複数の位相差板は、2軸性パラメータNZが0.9≦NZ<10を満たす位相差板と、2軸性パラメータNZが10≦NZを満たす位相差板と、を含み、
    0.9≦NZ<10を満たす前記位相差板の面内遅相軸は、前記前記一対の偏光子の透過軸が互いになす角を二等分する方位に対して−5°以上、+5°以下の角度をなす
    ことを特徴とする請求項37〜42のいずれかに記載の偏光板。
  44. 前記一対の偏光子の間と、前記一対の偏光子の一方の前記位相差板と反対側との少なくとも一方に設けられた拡散層を更に備える
    ことを特徴とする請求項37〜43のいずれかに記載の偏光板。
  45. 前記一対の偏光子の他方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項44記載の偏光板。
  46. 前記一対の偏光子の一方の前記位相差板と反対側に設けられた視野角補償フィルムを更に備える
    ことを特徴とする請求項37〜43のいずれかに記載の偏光板。

JP2020154960A 2020-05-29 2020-09-15 液晶表示装置及び偏光板 Pending JP2021189421A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110577730.8A CN113741084A (zh) 2020-05-29 2021-05-26 液晶显示装置及偏光板
US17/332,443 US11604379B2 (en) 2020-05-29 2021-05-27 Liquid crystal display device and polarizing plate
US18/106,913 US11982896B2 (en) 2020-05-29 2023-02-07 Liquid crystal display device and polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095061 2020-05-29
JP2020095061 2020-05-29

Publications (1)

Publication Number Publication Date
JP2021189421A true JP2021189421A (ja) 2021-12-13

Family

ID=78849506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020154960A Pending JP2021189421A (ja) 2020-05-29 2020-09-15 液晶表示装置及び偏光板

Country Status (1)

Country Link
JP (1) JP2021189421A (ja)

Similar Documents

Publication Publication Date Title
US11604379B2 (en) Liquid crystal display device and polarizing plate
US7388636B2 (en) Optical film and liquid crystal display
JP4669909B2 (ja) 液晶表示装置
JP4792545B2 (ja) 液晶表示装置
US7830480B2 (en) Liquid crystal panel, and liquid crystal display
WO2014034481A1 (ja) 液晶表示装置
WO2009125515A1 (ja) 液晶表示装置
WO2012090769A1 (ja) 光学素子、及び、液晶表示装置
US20090066886A1 (en) Liquid crystal panel, and liquid crystal display
JP5259824B2 (ja) 液晶表示装置
KR20030029472A (ko) 적층 1/4 파장판 또는 원편광판, 그를 사용한 액정 표시장치 및 그의 제조방법
US10732455B2 (en) Liquid crystal display device
WO2012133137A1 (ja) 液晶表示装置
US20100283940A1 (en) Liquid crystal display
JP2021189421A (ja) 液晶表示装置及び偏光板
US11982896B2 (en) Liquid crystal display device and polarizing plate
JP2012252085A (ja) 液晶パネルおよび液晶表示装置
US20230314868A1 (en) Liquid crystal display device
JP2019066531A (ja) 液晶モジュール
WO2012105428A1 (ja) 液晶表示装置
JP2008299290A (ja) 液晶表示装置
JP2023168875A (ja) 液晶表示装置
JP2023174469A (ja) 光学素子及び液晶表示装置
CN1825181A (zh) 偏光板
WO2012133140A1 (ja) 液晶表示装置