JP2021188969A - Measuring system and measuring method - Google Patents
Measuring system and measuring method Download PDFInfo
- Publication number
- JP2021188969A JP2021188969A JP2020092580A JP2020092580A JP2021188969A JP 2021188969 A JP2021188969 A JP 2021188969A JP 2020092580 A JP2020092580 A JP 2020092580A JP 2020092580 A JP2020092580 A JP 2020092580A JP 2021188969 A JP2021188969 A JP 2021188969A
- Authority
- JP
- Japan
- Prior art keywords
- lid
- electromagnetic wave
- housing
- central axis
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 24
- 230000000149 penetrating effect Effects 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229910001141 Ductile iron Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本発明は、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することが可能な測定システムおよび測定方法に関する。 The present invention relates to a measuring system and a measuring method capable of evaluating electromagnetic wave passing characteristics of a wide variety of lids including lids for underground structures.
近年、地下構造物内に設置された電波を発生させる装置(例えば、無線通信装置)と、地上に設置された電波を受信する装置(例えば、無線基地局)との間で、地下構造物用蓋を介して通信を行うことが検討されている(例えば、特許文献1、2)。
しかしながら、特許文献1、2には、地下構造物用蓋の電波通過特性を評価することは記載されていない。
In recent years, for underground structures, between a device that generates radio waves installed in an underground structure (for example, a wireless communication device) and a device that receives radio waves installed on the ground (for example, a wireless base station). Communication via a lid has been studied (for example,
However,
本発明は、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することが可能な測定システムおよび測定方法を提供する。 The present invention provides a measuring system and a measuring method capable of evaluating the electromagnetic wave passing characteristics of a wide variety of lids including lids for underground structures.
本発明の一態様は、電磁波を発生させる装置を収容するハウジングと、ハウジングに設けられた開口部と、開口部に対して着脱可能に取り付けられる蓋と、蓋の電磁波通過特性を評価するために蓋により覆われた開口部を介して通過する電磁波を測定する測定装置とを備える測定システムである。 One aspect of the present invention is to evaluate the electromagnetic wave passage characteristics of a housing that houses a device that generates electromagnetic waves, an opening provided in the housing, a lid that is detachably attached to the opening, and a lid. It is a measurement system including a measuring device for measuring an electromagnetic wave passing through an opening covered with a lid.
この測定システムでは、ハウジングに設けられた開口部に対して蓋を着脱可能に取り付けることができる。このため、蓋以外の条件(例えば、開口部およびハウジングの形状、構造、材質等)を変化させずに、蓋のみを所望の条件に変化させることができる。さらに、測定装置により、蓋により覆われた開口部を介して通過する電磁波を測定することができる。このため、蓋の形状、構造、材質等の違いに起因する開口部の覆われ方の違いも含めて、蓋の電磁波通過特性を適切に評価することができる。したがって、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することが可能な測定システムを提供することができる。 In this measurement system, the lid can be detachably attached to the opening provided in the housing. Therefore, only the lid can be changed to a desired condition without changing the conditions other than the lid (for example, the shape, structure, material, etc. of the opening and the housing). In addition, the measuring device can measure the electromagnetic waves passing through the opening covered by the lid. Therefore, it is possible to appropriately evaluate the electromagnetic wave passage characteristics of the lid, including the difference in how the opening is covered due to the difference in the shape, structure, material, and the like of the lid. Therefore, it is possible to provide a measurement system capable of evaluating the electromagnetic wave passing characteristics of a wide variety of lids including lids for underground structures.
蓋は、当該蓋の中心軸から偏心した位置を貫く貫通孔を含むものであってもよく、この場合、測定システムは、ハウジングを蓋の中心軸周りに回転させることにより、蓋の中心軸に対する貫通孔の回転角度を変化させる回転装置をさらに備えることが好ましい。
また、蓋は、当該蓋の中心軸を貫く非円形の貫通孔を含むものであってもよく、この場合も、測定システムは、ハウジングを蓋の中心軸周りに回転させることにより、蓋の中心軸に対する貫通孔の回転角度を変化させる回転装置をさらに備えることが好ましい。
この回転装置によれば、ハウジングを、ハウジングの中心軸周りではなく、蓋の中心軸周りに回転させることにより、ハウジングに設けられた開口部の位置関係の影響を受けることなく、蓋の中心軸に対する貫通孔の回転角度(位置、向き)を任意に変化させることができる。このため、貫通孔の位置や向きを蓋の中心軸周りに360度回転させた状態の電磁波を測定することができる。したがって、蓋の中心軸から偏心した貫通孔を含むタイプの蓋や、蓋の中心軸を貫く非円形の貫通孔を含むタイプの蓋であっても、貫通孔の位置や向きの違いに起因して電磁波通過特性に与える影響を適切に評価することができる。
The lid may include a through hole that penetrates a position eccentric from the central axis of the lid, in which case the measurement system rotates the housing around the central axis of the lid with respect to the central axis of the lid. It is preferable to further include a rotating device that changes the rotation angle of the through hole.
The lid may also include a non-circular through hole that penetrates the central axis of the lid, again the measurement system by rotating the housing around the central axis of the lid to center the lid. It is more preferable to further include a rotating device that changes the rotation angle of the through hole with respect to the shaft.
According to this rotating device, by rotating the housing around the central axis of the lid instead of around the central axis of the housing, the central axis of the lid is not affected by the positional relationship of the openings provided in the housing. The rotation angle (position, orientation) of the through hole can be arbitrarily changed. Therefore, it is possible to measure the electromagnetic wave in a state where the position and orientation of the through hole are rotated 360 degrees around the central axis of the lid. Therefore, even if the type of lid contains a through hole eccentric from the central axis of the lid or the type of lid contains a non-circular through hole that penetrates the central axis of the lid, it is caused by the difference in the position and orientation of the through hole. It is possible to appropriately evaluate the effect on the electromagnetic wave passage characteristics.
ハウジングは、開口部を有する導電性の蓋受け部材を含み、蓋受け部材は、蓋を取り付ける蓋取り付け部を含むものであってもよい。蓋を導電性の蓋受け部材に取り付けることにより、蓋受け部材を通過する電磁波の影響を低減し易くなるため、蓋そのものの電磁波通過特性を精度よく評価しやすい。 The housing may include a conductive lid receiving member having an opening, and the lid receiving member may include a lid mounting portion to which the lid is attached. By attaching the lid to the conductive lid receiving member, it becomes easy to reduce the influence of the electromagnetic wave passing through the lid receiving member, so that it is easy to accurately evaluate the electromagnetic wave passing characteristic of the lid itself.
ハウジングは、導電性の蓋受け部材を位置調整可能に支持する誘電性の位置調整部材と、位置調整部材の内壁または外壁に配置された電磁波シールド材とを含むものであってもよい。蓋の取付け位置(例えば、蓋の高さ等)の違いに起因して電磁波通過特性に与える影響を簡易な構成で評価することができる。 The housing may include a dielectric position adjusting member that supports the conductive lid receiving member in a position adjustable manner, and an electromagnetic wave shielding material arranged on the inner wall or the outer wall of the position adjusting member. It is possible to evaluate the influence on the electromagnetic wave passing characteristics due to the difference in the mounting position of the lid (for example, the height of the lid) with a simple configuration.
ハウジングは、開口部を有する誘電性の蓋受け部材と、蓋受け部材の内壁または外壁に配置された電磁波シールド材とを含むものであってもよい。蓋受け部材の内壁または外壁に電磁波シールド材を配置することにより、蓋受け部材を通過する電磁波の影響を低減し易くなるため、蓋そのものの電磁波通過特性を簡易な構成で評価しやすい。 The housing may include a dielectric lid receiving member having an opening and an electromagnetic wave shielding material arranged on an inner wall or an outer wall of the lid receiving member. By arranging the electromagnetic wave shielding material on the inner wall or the outer wall of the lid receiving member, it becomes easy to reduce the influence of the electromagnetic wave passing through the lid receiving member, so that the electromagnetic wave passing characteristic of the lid itself can be easily evaluated with a simple configuration.
本発明の他の態様は、電磁波を発生させる装置を収容するハウジングに設けられた開口部に対して蓋を着脱可能に取り付けることと、蓋の電磁波通過特性を評価するために蓋により覆われた開口部を介して通過する電磁波を測定することとを備える測定方法である。 Another aspect of the present invention is to detachably attach a lid to an opening provided in a housing accommodating a device that generates electromagnetic waves, and to be covered with a lid to evaluate the electromagnetic wave passage characteristics of the lid. It is a measurement method including measuring an electromagnetic wave passing through an opening.
測定することは、蓋の中心軸から偏心した位置を貫く貫通孔の中心軸に対する回転角度が変化するようにハウジングを中心軸周りに回転させながら電磁波を測定することを含むこと、または蓋の中心軸を貫く非円形の貫通孔の中心軸に対する回転角度が変化するようにハウジングを中心軸周りに回転させながら電磁波を測定することを含むことが好ましい。 Measuring involves measuring electromagnetic waves while rotating the housing around the central axis so that the angle of rotation of the through hole through the eccentric position from the central axis of the lid changes with respect to the central axis. It is preferable to include measuring the electromagnetic wave while rotating the housing around the central axis so that the rotation angle of the non-circular through hole penetrating the axis with respect to the central axis changes.
本発明によれば、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することができる。 According to the present invention, it is possible to evaluate the electromagnetic wave passage characteristics of a wide variety of lids including lids for underground structures.
以下、図面を参照しつつ本発明の実施の形態を説明する。
ここで、本願明細書でいう「蓋」とは、下水道における地下埋設物,地下構造施設等と地上とを通じる開口部を閉塞するマンホール蓋,大型鉄蓋,汚水桝蓋、電力・通信の分野における地下施設機器や地下ケーブル等を保護する開閉可能な共同溝用鉄蓋,送電用鉄蓋,配電用鉄蓋、上水道やガス配管における路面下の埋設導管およびその付属機器と地上とを結ぶ開閉扉としての機能を有する消火栓蓋,制水弁蓋,仕切弁蓋,空気弁蓋,ガス配管用蓋,量水器蓋等(総称して「地下構造物用蓋」という。)のほか、雨水桝や側溝を覆うグレーチング(格子)などの蓋を含む。
また、本願明細書でいう「電磁波」とは、放射線、光、電波等の電界と磁界が互いに影響し合いながら空間を伝達するエネルギーの波のことをいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Here, the term "closure" as used herein refers to the fields of underground buried objects in sewers, manhole lids that block openings through underground structural facilities, etc. and the ground, large iron lids, sewage basin lids, and power / communication fields. Openable and closable iron lids for common grooves to protect underground facility equipment and underground cables, power transmission iron lids, power distribution iron lids, buried conduits under the road surface in waterworks and gas pipes, and opening and closing connecting their accessories to the ground. In addition to fire extinguishing plug lids, water control valve lids, sluice valve lids, air valve lids, gas piping lids, water meter lids, etc. (collectively referred to as "underground structure lids") that function as doors, rainwater Includes lids such as grating (lattice) that cover the boxes and side grooves.
Further, the "electromagnetic wave" as used herein means a wave of energy transmitted through space while electric and magnetic fields such as radiation, light, and radio waves affect each other.
図1に、本発明の第1実施形態である測定システム10の概要を示している。
測定システム10は、電磁波を発生させる装置(電磁波発生装置)11を収容するハウジング12と、ハウジング12に設けられた開口部13と、開口部13に対して着脱可能に取り付けられる蓋14と、蓋14の電磁波通過特性を評価するために蓋14により覆われた開口部13を介して通過する電磁波を測定する測定装置15とを備えている。
この測定システム10は、外部の環境による電磁波の影響を受けにくい空間内(例えば、奥行7m、幅3m、高さ3mの壁全面に電磁波シールドを施した室内)に設置されている。
FIG. 1 shows an outline of the
The
The
ハウジング12内に収容される電磁波発生装置11は、一定の周波数間隔(1MHz、5MHzまたは10MHz)で、1MHzから6GHzまでの周波数帯域の電磁波を発生させるバッテリー駆動の電磁波発生器(図示省略)と、当該電磁波を放射するダイポールアンテナ(図示省略)とを備えている。
The
ハウジング12は、上部に円形の開口部13を設けた箱型であり、導電性の材質よりなる。また、開口部13は蓋取り付け部12−1を含む。本実施形態においてハウジング12は架台(机)16の上に設置されている。
The
蓋14は、円形であって蓋14を貫く貫通孔を含まないタイプのものであり、その材質は球状黒鉛鋳鉄である。
The
測定装置15は、蓋14の電磁波通過特性を評価するために蓋14により覆われた開口部13を介して通過する電磁波を測定する。本実施形態において測定装置15は、ハウジング12の外で、蓋の中心軸Cから3m(図1中の符号LL1)離れた位置に、高さを変更可能に配置されている。また、開口部13と測定装置15の間には電磁波吸収体18が配置されている。
The
以上の通り、本実施形態の測定システム10では、ハウジング12に設けられた蓋取り付け部12−1に蓋14を着脱可能に取り付けることができる。このため、蓋14以外の条件(例えば、開口部13およびハウジング12の形状、構造、材質等)を変化させずに、蓋14のみを所望の条件に変化させることができる。さらに、測定装置15により、蓋14により覆われた開口部13を介して通過する電磁波を測定することができる。
このため、蓋14の形状、構造、材質等の違いに起因する開口部13の覆われ方の違いも含めて、蓋14の電磁波通過特性を適切に評価することができる。したがって、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することが可能となる。
なお、本願明細書でいう「電磁波通過特性」とは、測定装置15により測定される、蓋14により覆われたハウジング12の開口部13を介して通過する電磁波について、周波数や測定装置15の位置の違いや、蓋の形状、構造、材質等の違いに起因する開口部13の覆われ方の違いによって変化する電界強度等を定量的に測定した特有の性質をいう。
As described above, in the
Therefore, the electromagnetic wave passage characteristics of the
The "electromagnetic wave passing characteristic" referred to in the present specification refers to the frequency and the position of the
本実施形態ではハウジング12を導電性としたが、ハウジング12は誘電性(例えば、プラスチック)とすることもできる。この場合、例えば図2に示すように、誘電性のハウジング12の内壁に電磁波シールド材12c(例えば、アルミニウム板)を配置することが好ましい。なお、ハウジング12の内壁は、側壁の内面12−2と底壁の内面12−3とを含む。これにより、誘電性のハウジング12を通過する電磁波の影響を低減し易くなるため、蓋14そのものの電磁波通過特性を簡易な構成で評価しやすくなる。
なお、電磁波シールド材12cは、誘電性のハウジング12の外壁に配置してもよい。なお、ハウジング12の外壁は、側壁の外面12−4と底壁の外面12−5とを含む。
また、本実施形態ではハウジング12の上部に開口部13を設けたが、開口部13はハウジング12の側部に設けることもできる。
また、本実施形態ではハウジング12に円形の開口部13を設けたが、例えば、開口部13は四角形等の角形とすることもでき、また、ハウジング12を箱型ではなく、例えば、筒型とすることもできる。
また、ハウジング12の上部を、開口部13と蓋取り付け部12−1とを有する蓋受け部材とすることもできる。
In this embodiment, the
The electromagnetic
Further, although the
Further, in the present embodiment, the
Further, the upper portion of the
図3に、本発明の第2実施形態である測定システム10Aの概要を示している。
測定システム10Aは、電磁波発生装置11を収容するハウジング12Aと、ハウジング12Aに設けられた開口部13Aと、開口部13Aに対して着脱可能に取り付けられる蓋14Aと、蓋14Aの電磁波通過特性を評価するために蓋14Aにより覆われた開口部13Aを介して通過する電磁波を測定する測定装置15と、回転装置17とを備えている。
本実施形態においても測定システム10A全体が、外部の環境による電磁波の影響を受けにくい空間内に設置されている。
なお、本実施形態において電磁波発生装置11および測定装置15は、第1実施形態と同じ構成である。
FIG. 3 shows an outline of the
The
Also in this embodiment, the
In this embodiment, the
図4は、本実施形態の蓋14Aの概略平面図である。この蓋14Aは円形で、その中心軸Cから偏心した位置を貫く円弧状の貫通孔14aを複数含む雨水流入式タイプのものであり、その材質は球状黒鉛鋳鉄である。
FIG. 4 is a schematic plan view of the
本実施形態のハウジング12Aは、円形の開口部13Aを有する導電性の蓋受け部材12aを含み、この蓋受け部材12aは、蓋14Aを取り付ける蓋取り付け部12a−1を含む。なお、本実施形態において蓋受け部材12aは地下構造物用蓋を支持する円形の受枠に相当し、その材質は蓋14Aと同様に球状黒鉛鋳鉄である。すなわち、本実施形態において蓋受け部材12aは導電性である。
The
本実施形態のハウジング12Aは、蓋14Aの取付け位置(例えば、蓋14Aの高さ等)の違いに起因して電磁波通過特性に与える影響を簡易な構成で評価することができるように蓋受け部材12aを位置調整可能に支持する円筒型の位置調整部材12bと、位置調整部材12bを通過する電磁波の影響を低減し易くするため、この位置調整部材12bの内壁12b−1および下端開口部12b−2に配置された電磁波シールド材12cとを含む。
本実施形態において位置調整部材12bは、地下構造物であるマンホール(人孔)の下桝を模したもので、その材質はレジンコンクリートである。すなわち、本実施形態において位置調整部材12bは誘電性である。
電磁波シールド材12cは、例えばアルミニウム板である。なお、本実施形態では位置調整部材12bの内壁12b−1および下端開口部12b−2に電磁波シールド材12cを配置したが、位置調整部材12bの外壁12b−3および下端開口部12b−2を含む底面12b−4に電磁波シールド材12cを配置してもよい。
The
In the present embodiment, the
The electromagnetic
ハウジング12Aは回転装置17の上に設置されている。この回転装置17は、ハウジング12Aを蓋14Aの中心軸C周りに回転させることにより、中心軸Cに対する貫通孔14aの回転角度を変化させる。
なお、本実施形態において回転装置17の高さH1は800mm、位置調整部材12bの高さH2は200mm、蓋受け部材12aの高さH3は110mmである。
The
In the present embodiment, the height H1 of the
本実施形態において電磁波発生装置11は、ハウジング12Aの円筒型の位置調整部材12b内に収納されるように下端開口部12b−2の電磁波シールド材12cの上に設置されている。
In the present embodiment, the
また、本実施形態の測定システム10Aは回転装置17を備えており、この回転装置17によれば、ハウジング12Aを、ハウジング12Aの中心軸C1周りではなく、蓋14Aの中心軸C周りに回転させることにより、ハウジング12Aの形状やハウジング12Aに設けられた開口部13Aの位置関係の影響を受けることなく、蓋14Aの中心軸Cに対する各貫通孔14aの回転角度(位置)を任意に変化させることができる。このため、各貫通孔14aの位置を蓋14Aの中心軸C周りに360度回転させた状態の電磁波を測定することができる。したがって、中心軸Cから偏心した貫通孔14aを複数含むタイプの蓋14Aであっても、各貫通孔14aの位置の違いに起因して電磁波通過特性に与える影響を適切に評価することができる。
なお、本実施形態では、蓋14Aの中心軸C(開口部13Aの中心軸)、ハウジング12Aの中心軸C1および回転装置17の回転中心軸C2が全て一致しているが、蓋14Aの中心軸C(開口部13Aの中心軸)とハウジング12Aの中心軸C1とが、一致せずにずれている場合であっても測定システム10Aを適用することができる。すなわち、蓋14Aの中心軸C(開口部13Aの中心軸)と回転装置17の回転中心軸C2とが一致していれば、回転装置17によりハウジング12Aを蓋の中心軸C周りに回転させることができる。
また、本実施形態において蓋14Aは、中心軸Cから偏心した貫通孔14aを複数含むタイプであるが、蓋の中心軸Cを貫く非円形の貫通孔(例えば、C字形状やI字形状や円弧形状等)を含むタイプとすることもできる。この場合も、回転装置17の回転中心軸C2と蓋の中心軸Cを一致させ、回転装置17によりハウジング12Aを蓋の中心軸C周りに回転させることにより、貫通孔の向きの違いに起因して電磁波通過特性に与える影響を適切に評価することができる。
Further, the
In the present embodiment, the central axis C of the
Further, in the present embodiment, the
以上の通り、本実施形態の測定システム10Aにおいても、ハウジング12Aに設けられた開口部13Aに対して蓋14Aを着脱可能に取り付けることができる。このため、蓋14A以外の条件(例えば、開口部13Aおよびハウジング12Aの形状、構造、材質等)を変化させずに、蓋14Aのみを所望の条件に変化させることができる。さらに、測定装置15により、蓋14Aにより覆われた開口部13Aを介して通過する電磁波を測定することができる。
このため、蓋14Aの形状、構造、材質等の違いに起因する開口部13Aの覆われ方の違いも含めて、蓋14Aの電磁波通過特性を適切に評価することができる。したがって、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することが可能となる。
As described above, also in the
Therefore, the electromagnetic wave passage characteristics of the
本実施形態においてハウジング12Aは、導電性の蓋受け部材12aと誘電性の位置調整部材12bとを含む構成としたが、これに限定されるものではなく位置調整部材12bは省略することができる。ただし、この場合、図5に示すように導電性の蓋受け部材12aの下端開口部12a−2に電磁波シールド材12cを配置することが好ましい。また、蓋受け部材12aが誘電性とすることもできる。この場合、誘電性の蓋受け部材12aを通過する電磁波の影響を低減し易くするため、蓋受け部材12aの下端開口部に加え、当該蓋受け部材12aの内壁または外壁に電磁波シールド材12cを配置することが好ましい。
また、本実施形態において位置調整部材12bは誘電性で円筒型であるが、位置調整部材12bは図2に示すハウジング12のように誘電性で箱型とすることもできる。
In the present embodiment, the
Further, in the present embodiment, the
なお、蓋14、14Aならびにハウジング12、ハウジング12Aを構成する蓋受け部材12a、位置調整部材12bおよび電磁波シールド材12cの材質は、上述した実施形態に限定されるものではなく、導電性の場合、例えば、球状黒鉛鋳鉄、鉄鋼、アルミニウムなどであってもよく、誘電性の場合、例えば、レジンコンクリート、セメント、ゴム、プラスチックなどであってもよい。
The materials of the
図1〜図5に示して説明した通り、まず、電磁波を発生させる装置11を収容するハウジング12に設けられた開口部13に対して蓋14を着脱可能に取り付け、次に、測定装置15により、蓋14の電磁波通過特性を評価するために蓋14により覆われた開口部13を介して通過する電磁波を測定することにより、地下構造物用蓋等を含む多種多様な蓋の電磁波通過特性を評価することができる。
また、蓋14Aが、蓋14Aの中心軸Cから偏心した位置を貫く貫通孔14aを含む場合には、には、電磁波を測定する際に、蓋14Aの中心軸Cから偏心した位置を貫く貫通孔14aの中心軸Cに対する回転角度が変化するようにハウジング12Aを蓋14Aの中心軸C周りに回転させながら電磁波を測定することにより、蓋14Aの中心軸Cから偏心した貫通孔14aを含むタイプの蓋であっても、貫通孔14aの位置の違いに起因して電磁波通過特性に与える影響を適切に評価することができる。
また、中心軸Cを貫く非円形の貫通孔を含む場合には、電磁波を測定する際に、蓋14Aの中心軸Cを貫く非円形の貫通孔の中心軸Cに対する回転角度が変化するようにハウジング12Aを蓋14Aの中心軸C周りに回転させながら電磁波を測定することにより、蓋14Aの中心軸を貫く非円形の貫通孔を含むタイプの蓋であっても、貫通孔の向きの違いに起因して電磁波通過特性に与える影響を適切に評価することができる。
As described with reference to FIGS. 1 to 5, first, the
Further, when the
Further, when a non-circular through hole penetrating the central axis C is included, the rotation angle of the non-circular through hole penetrating the central axis C of the
図3に示した測定システム10Aにより、図4に示した蓋14Aの電磁波通過特性を評価した結果の一例を図6に示す。具体的には、測定装置15の高さを床面から150cm、電磁波発生装置11が放射する電波の周波数を920MHzとし、回転装置17を5度ピッチで360度回転させて電波の電界強度を測定し、指向特性図(360度の電界強度を示すグラフ)を作成したものである。図6の指向特性図によれば、図4に示した蓋14Aの形状においては電界強度が弱くなる角度が存在することがわかる。このように、多種多様な蓋の電磁波通過特性を評価することができる。
なお、本例では電磁波通過特性を指向特性図によって評価したが、これに限定されるものではない。
FIG. 6 shows an example of the result of evaluating the electromagnetic wave passing characteristic of the
In this example, the electromagnetic wave passage characteristics are evaluated by the directivity diagram, but the present invention is not limited to this.
10、10A 測定システム
11 電磁波を発生させる装置(電磁波発生装置)
12、12A ハウジング
12−1 蓋取り付け部
12−2 側壁の内面
12−3 底壁の内面
12−4 側壁の外面
12−5 底壁の外面
12a 蓋受け部材
12a−1 蓋取り付け部
12a−2 下端開口部
12b 位置調整部材
12b−1 内壁
12b−2 下端開口部
12b−3 外壁
12b−4 底面
12c 電磁波シールド材
13、13A 開口部
14、14A 蓋
14a 貫通孔
15 測定装置
16 架台(机)
17 回転装置
18 電磁波吸収体
C 蓋の中心軸
C1 ハウジングの中心軸
C2 回転装置の中心軸
10,
12, 12A Housing 12-1 Closure mounting part 12-2 Inner surface of side wall 12-3 Inner surface of bottom wall 12-4 Outer surface of side wall 12-5 Outer surface of
17
Claims (9)
前記ハウジングに設けられた開口部と、
前記開口部に対して着脱可能に取り付けられる蓋と、
前記蓋の電磁波通過特性を評価するために前記蓋により覆われた前記開口部を介して通過する前記電磁波を測定する測定装置とを備える、測定システム。 A housing that houses a device that generates electromagnetic waves,
The opening provided in the housing and
A lid that can be attached and detached to the opening,
A measurement system including a measuring device for measuring the electromagnetic wave passing through the opening covered with the lid in order to evaluate the electromagnetic wave passing characteristic of the lid.
当該測定システムは、前記ハウジングを前記中心軸周りに回転させることにより、前記中心軸に対する前記貫通孔の回転角度を変化させる回転装置をさらに備える、請求項1に記載の測定システム。 The lid includes a through hole that penetrates a position eccentric from the central axis of the lid.
The measuring system according to claim 1, further comprising a rotating device that changes the rotation angle of the through hole with respect to the central axis by rotating the housing around the central axis.
当該測定システムは、前記ハウジングを前記中心軸周りに回転させることにより、前記中心軸に対する前記貫通孔の回転角度を変化させる回転装置をさらに備える、請求項1に記載の測定システム。 The lid comprises a non-circular through hole that penetrates the central axis of the lid.
The measuring system according to claim 1, further comprising a rotating device that changes the rotation angle of the through hole with respect to the central axis by rotating the housing around the central axis.
前記蓋受け部材は、前記蓋を取り付ける蓋取り付け部を含む、請求項1から3のいずれか一項に記載の測定システム。 The housing comprises a conductive lid receiving member having the opening.
The measurement system according to any one of claims 1 to 3, wherein the lid receiving member includes a lid mounting portion for mounting the lid.
前記位置調整部材の内壁または外壁に配置された電磁波シールド材とを含む、請求項4に記載の測定システム。 The housing includes a dielectric position adjusting member that supports the lid receiving member in a position adjustable manner, and a dielectric position adjusting member.
The measuring system according to claim 4, further comprising an electromagnetic wave shielding material arranged on an inner wall or an outer wall of the position adjusting member.
前記蓋受け部材の内壁または外壁に配置された電磁波シールド材とを含む、請求項1から3のいずれか一項に記載の測定システム。 The housing has a dielectric lid receiving member having the opening and the housing.
The measuring system according to any one of claims 1 to 3, further comprising an electromagnetic wave shielding material arranged on an inner wall or an outer wall of the lid receiving member.
前記蓋の電磁波通過特性を評価するために前記蓋により覆われた前記開口部を介して通過する前記電磁波を測定することとを備える、測定方法。 A removable lid can be attached to the opening provided in the housing that houses the device that generates electromagnetic waves.
A measuring method comprising measuring the electromagnetic wave passing through the opening covered with the lid in order to evaluate the electromagnetic wave passing characteristic of the lid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020092580A JP7468891B2 (en) | 2020-05-27 | 2020-05-27 | Measurement system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020092580A JP7468891B2 (en) | 2020-05-27 | 2020-05-27 | Measurement system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021188969A true JP2021188969A (en) | 2021-12-13 |
JP7468891B2 JP7468891B2 (en) | 2024-04-16 |
Family
ID=78849278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020092580A Active JP7468891B2 (en) | 2020-05-27 | 2020-05-27 | Measurement system and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7468891B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08101126A (en) * | 1991-12-02 | 1996-04-16 | Dainippon Printing Co Ltd | Measuring method and device for light transmittance of light shielding material |
JP2000257103A (en) * | 1999-03-05 | 2000-09-19 | Hinode Ltd | Gully grating |
JP2000257147A (en) * | 1999-03-05 | 2000-09-19 | Hinode Ltd | Cover for rainwater inflow |
JP2002196027A (en) * | 2000-12-26 | 2002-07-10 | Fukui Prefecture | Device for evaluating shielding effect and method for measuring shielding effect |
JP2003215530A (en) * | 2002-01-21 | 2003-07-30 | National Aerospace Laboratory Of Japan | Liquid crystal optical measuring instrument and optical measuring system using the same |
US20100231438A1 (en) * | 2009-03-10 | 2010-09-16 | Magnus Ohlsson | Radar level gauge system with leakage detection |
JP2012012827A (en) * | 2010-06-30 | 2012-01-19 | Hinode Ltd | Gutter cover, installation method for the same and gutter |
JP2015055562A (en) * | 2013-09-12 | 2015-03-23 | 勝 狩野 | Radiation shield material, radioactive waste storage container, and method of producing radioactive waste storage container |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105901A (en) | 2004-10-08 | 2006-04-20 | Yokohama Rubber Co Ltd:The | Electromagnetic wave leakage measuring method for electromagnetic wave shield enclosure and electromagnetic wave leakage measuring device thereof |
-
2020
- 2020-05-27 JP JP2020092580A patent/JP7468891B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08101126A (en) * | 1991-12-02 | 1996-04-16 | Dainippon Printing Co Ltd | Measuring method and device for light transmittance of light shielding material |
JP2000257103A (en) * | 1999-03-05 | 2000-09-19 | Hinode Ltd | Gully grating |
JP2000257147A (en) * | 1999-03-05 | 2000-09-19 | Hinode Ltd | Cover for rainwater inflow |
JP2002196027A (en) * | 2000-12-26 | 2002-07-10 | Fukui Prefecture | Device for evaluating shielding effect and method for measuring shielding effect |
JP2003215530A (en) * | 2002-01-21 | 2003-07-30 | National Aerospace Laboratory Of Japan | Liquid crystal optical measuring instrument and optical measuring system using the same |
US20100231438A1 (en) * | 2009-03-10 | 2010-09-16 | Magnus Ohlsson | Radar level gauge system with leakage detection |
JP2012012827A (en) * | 2010-06-30 | 2012-01-19 | Hinode Ltd | Gutter cover, installation method for the same and gutter |
JP2015055562A (en) * | 2013-09-12 | 2015-03-23 | 勝 狩野 | Radiation shield material, radioactive waste storage container, and method of producing radioactive waste storage container |
Also Published As
Publication number | Publication date |
---|---|
JP7468891B2 (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3660978B1 (en) | Antenna device, wireless base station, and antenna device container | |
JP4275115B2 (en) | Embedded radio equipment | |
CA2408016A1 (en) | Kit and method for mounting a transmitter in subsurface meter pits | |
JP2021188969A (en) | Measuring system and measuring method | |
WO2015156096A1 (en) | Wireless communication structure and wireless communication method | |
Wang | Research on the radiation characteristics of patched leaky coaxial cable by FDTD method and mode expansion method | |
JP2010050899A (en) | Radio relay device | |
JP2021134478A (en) | Underground structure lid for wireless communication | |
US20090274313A1 (en) | Slotted Waveguide Acoustic Output Device and Method | |
JP2017195559A (en) | Manhole lid with antenna | |
KR101394071B1 (en) | Manhole | |
JPH10185649A (en) | Wireless meter inspecting device | |
CN205786872U (en) | For measuring the electromagnetic pulse diagnostic equipment of high power large-scale laser | |
Davide et al. | Measurements and numerical evaluation of the electric field in the near-zone of radio base station antennas | |
US11353489B2 (en) | Antenna performance tester | |
KR101098563B1 (en) | Idealized sound source system for the virtual acoustic source | |
EP1944825A1 (en) | Buried radio device | |
Hansen | Array realization of complex-source beam | |
Kuzmich | Mathematical Modelling of Cone Shaped Tapered Anechoic Chamber | |
Trinh et al. | Free-Field Acoustic Source Levels from Measurements conducted in a Water Tank | |
Ming | Acoustical barrier for tonal noises | |
Hansen | Inverse source problem for determining a surface impedance: Generating the field of a complex point source | |
Cappellin et al. | An accurate and efficient error predictor tool for CATR measurements | |
Jeffers | An antenna for controlling the nonfading range of broadcasting stations | |
JP2024021274A (en) | antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230906 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240328 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7468891 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |