WO2015156096A1 - Wireless communication structure and wireless communication method - Google Patents

Wireless communication structure and wireless communication method Download PDF

Info

Publication number
WO2015156096A1
WO2015156096A1 PCT/JP2015/058251 JP2015058251W WO2015156096A1 WO 2015156096 A1 WO2015156096 A1 WO 2015156096A1 JP 2015058251 W JP2015058251 W JP 2015058251W WO 2015156096 A1 WO2015156096 A1 WO 2015156096A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
wireless communication
antenna
conductor layer
support member
Prior art date
Application number
PCT/JP2015/058251
Other languages
French (fr)
Japanese (ja)
Inventor
高英 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016512645A priority Critical patent/JPWO2015156096A1/en
Publication of WO2015156096A1 publication Critical patent/WO2015156096A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/02Manhole shafts or other inspection chambers; Snow-filling openings; accessories
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/04Adaptation for subterranean or subaqueous use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/22Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element
    • H01Q19/24Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of a single substantially straight conductive element the primary active element being centre-fed and substantially straight, e.g. H-antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation

Definitions

  • the present invention relates to a wireless communication structure and a wireless communication method including an antenna device installed in an underground space such as a manhole or a handhole.
  • Patent Document 1 discloses a technique in which a sensor for measuring a flow rate is installed in a valve of a water pipe installed in a manhole, and a signal detected by the sensor is transmitted using a wireless device. .
  • Patent Document 1 describes a wireless device installed inside a manhole and an antenna that is connected to a manhole cover connector and protrudes to the ground, with a communication vehicle equipped with a wireless device. It is described that wireless communication is performed between them.
  • Patent Document 2 discloses a technique for performing wireless communication between a radio device arranged inside a manhole and a radio device arranged on the ground. In this technique, radio waves emitted from a radio device inside a manhole are reflected by a reflector provided on the back side of the manhole cover, and are emitted directly to the ground without passing through the manhole cover. Thereby, the signal level of the radio signal transmitted to the ground side can be increased.
  • JP 2001-156514 A Japanese Patent No. 4943391
  • the method described in Patent Document 2 is said to be capable of emitting radio waves to the ground using a reflector without using a manhole cover.
  • this is impossible in principle when considered based on Snell's law.
  • the refractive index of the ground layer is higher than the refractive index of the ground layer.
  • the refractive index becomes smaller.
  • the radio wave that reaches the boundary surface between the ground layer (asphalt or concrete) and the ground (air) has a small incident angle on the boundary surface.
  • the radio wave incident on the ground layer is not totally emitted to the ground because it is totally reflected to the inside (underground) side of the ground layer at the boundary surface with the ground. Therefore, the method described in Patent Document 2 cannot actually perform wireless communication.
  • an object of the present invention is to provide a wireless communication structure and a wireless communication method capable of efficiently radiating radio waves from the inside of the underground space to the ground without performing special processing on the lid member and the frame member.
  • a wireless communication structure includes a support member attached to an opening provided on the ground, a lid member supported by the support member and capable of opening and closing the opening, and a lower part of the opening.
  • An antenna device disposed inside the located underground space and a communication device connected to the antenna device are provided.
  • the antenna device is arranged such that the principal axis of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the support member, or the boundary between the outer peripheral edge of the support member and the ground.
  • the ground in this invention has pointed out the ground layer, it has also indicated the floor surface in the room interior of a building.
  • the wireless communication method according to the present invention is disposed in an underground space having a support member attached to an opening provided on the ground and a lid member supported by the support member and capable of opening and closing the opening.
  • a wireless communication method using an antenna device wherein the antenna device is arranged so that the principal axis of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the support member, or the boundary between the outer peripheral edge of the support member and the ground. The process to do is included.
  • FIG. 1 is a schematic diagram of a wireless communication structure according to the first embodiment.
  • FIG. 2 is a perspective view of a state in which the wireless communication structure of the first embodiment is applied to a handhole.
  • 3A and 3B are cross-sectional views illustrating a state in which the wireless communication structure of the first embodiment is applied to a handhole.
  • the wireless communication structure 1 of the present embodiment is a frame member 12 as a support member attached to an opening 11a provided in the ground layer 11 that is the ground. And a lid member 13 supported by the frame member 12 and capable of opening and closing the opening 11a.
  • the wireless communication structure 1 is disposed inside the underground space 10 located below the opening 11a, and inside the underground space 10, and is electrically or optically connected to the antenna device 15.
  • the antenna device 15 has a radiation beam principal axis X between the inner peripheral surface of the underground space 10 and the frame member 12 or between the outer peripheral edge of the frame member 12 and the ground surface layer 11. It is arranged to pass through the boundary.
  • the main axis X of the radiation beam is a boundary between the frame member 12 and the surface layer 11 around the frame member 12, and passes through a boundary adjacent to the inner peripheral surface of the underground space 10. Is arranged.
  • the antenna device 15 is arranged so that the principal axis X of the radiation beam passes through the boundary between the outer peripheral edge of the flange portion of the frame member 12 and the surface layer 11 around the frame member 12.
  • the main axis X of the radiation beam is referred to as passing through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • the main axis X of the radiation beam is the central axis of the main beam of the radio wave emitted by the antenna device 15.
  • An inner peripheral surface of the underground space 10 corresponds to an outer peripheral surface of an underground container 18 described later.
  • the antenna device 15 is arranged so that the principal axis X of the radiation beam does not refract inside the underground space 10, that is, passes only the medium in the underground space 10, and then passes through the boundary described above.
  • the underground space 10 is, for example, a manhole or a handhole, and is formed across a ground layer 11 made of concrete or asphalt and an underground 14 made of earth and sand.
  • the underground space 10 has a cylindrical underground container 18 made of, for example, concrete.
  • the underground container 18 is disposed in the ground 14 and has an upper end connected to the surface layer 11.
  • the frame member 12 and the lid member 13 are formed of a metal material such as cast iron.
  • the lid member 13 is detachably attached to the frame member 12.
  • the shape of the opening 11a may be either circular or rectangular, and the frame member 12 and the lid member 13 are formed in a shape corresponding to the shape of the opening 11a.
  • the lid member and the frame member may be connected to each other so as to be opened and closed via a hinge, and this does not limit the shapes and structures of the lid member and the frame member.
  • the lid member is not limited to the structure supported by the frame member, and may of course be supported by a support member having a shape other than the frame shape.
  • a predetermined valve such as a water stop valve 20 provided in the pipe 19
  • a sensor (not shown) for detecting the operation state of the water stop valve 20, etc.
  • the underground space 10 includes a work space for workers to perform work.
  • the sensor is electrically or optically connected to the communication device 16.
  • this embodiment was applied to the underground space 10 provided under the surface layer 11 as the ground, it may be applied to, for example, an underground space provided under the floor surface inside the building. Of course.
  • the antenna device 15 includes an antenna substrate 21 having an antenna element that transmits and receives radio waves, a reflector 22 that reflects radio waves emitted from the antenna substrate 21 toward the antenna substrate 21, and the antenna substrate 21 and the reflector 22. And a through jig 23 as a connecting member for connecting the two.
  • the antenna device 15 also includes an angle adjustment mechanism 25 for adjusting the direction of the principal axis X of the radiation beam emitted from the antenna substrate 21.
  • the antenna substrate 21 includes an antenna element 21a and a dielectric material 21b.
  • the antenna element 21a has a conductor layer composed of two linear patterns provided on both surfaces of the dielectric material 21b. A half-wave dipole antenna is formed using these two linear patterns.
  • the dielectric material 21b functions as a support member for the half-wave dipole antenna and contributes to the miniaturization of the half-wave dipole antenna due to the wavelength shortening effect of the dielectric.
  • the reflection plate 22 includes a first conductor layer 22a and a second conductor layer 22b, and a dielectric material 22c inserted between the first conductor layer 22a and the second conductor layer 22b.
  • the first conductor layer 22a has a predetermined metal pattern that is a plurality of conductors formed at regular intervals in the in-plane direction of the first conductor layer 22a.
  • the metal patterns are periodically arranged at a narrower interval than the operating wavelength of the antenna element 21a (the wavelength of the radio wave emitted by the antenna element 21a).
  • a ground plane as a conductor is constituted by a uniform metal pattern formed over the entire in-plane direction of the second conductive layer 22b.
  • the penetration jig 23 is a jig for penetrating and fixing both the antenna substrate 21 and the reflection plate 22 and is formed of a non-metallic material such as wood or plastic.
  • the antenna apparatus 15 in this embodiment has the 1st conductor layer 22a, and sets the space
  • 5A to 5E are schematic views for explaining the operation principle of the reflection plate 22 of the antenna device 15 according to the first embodiment.
  • FIG. 5A shows a situation in which radio waves are incident from the left side in the figure in the configuration in which only the second conductor layer 22b is present alone on the reflection plate 22.
  • FIG. 5A When FIG. 5A is represented by an equivalent circuit, as shown in FIG. 5B, it is represented as a transmission line that has a characteristic impedance Z 0 and is a short-circuit termination.
  • the radio wave incident on the reflecting plate 22 is reflected with the phase reversed by 180 °.
  • the antenna substrate is generally installed at a location spaced by a quarter of the operating wavelength of the antenna element with respect to the reflection plate, thereby using the reflected wave from the reflection plate, Directivity can be strengthened forward of the antenna substrate.
  • FIG. 5C when a dielectric material is filled between the first conductive layer 22a and the second conductive layer 22b of the reflector 22 and a predetermined condition is satisfied, When a radio wave is incident from the left side, the phase of the reflected wave can be made the same as that of the incident wave without shifting the phase of the reflected wave at a predetermined frequency.
  • this state is represented by an equivalent circuit, it is as shown in FIG. 5D.
  • a capacitor formed by the first conductor layer 22a is inserted with a shunt in the middle of the transmission line that is a short-circuit termination.
  • the transmission line is divided into two transmission lines having characteristic impedance Z 0 and characteristic impedance Z d with the capacitor as a boundary.
  • the transmission line is short-circuited end, if it is possible to inductive state by combining the transmission line is the characteristic impedance Z d, it is possible to cause parallel resonance together with a capacitor.
  • the reflecting plate 22 can be made close to high impedance, and the reactance component can be made close to zero. Therefore, as shown in FIG. 5E, when viewed from the incident wave, a transmission line of characteristic impedance Z 0 is regarded as a state which is the end open, the reflected wave becomes due free end reflection.
  • the antenna substrate can intensify the directivity even when the antenna substrate is theoretically installed with no gap between the antenna substrate and the reflecting plate.
  • the dielectric loss in the reflector cannot be ignored, so the desired frequency adjusted to a frequency slightly shifted from the resonance frequency Is used.
  • Such a state of the reflecting plate is referred to as a reactive impedance surface (Reactive Impedance Surface).
  • Reactive Impedance Surface reactive impedance surface
  • the distance between the antenna substrate and the reflecting plate cannot be made zero, but can be set sufficiently shorter than a quarter of the operating wavelength of the antenna element.
  • the antenna device 15 as a whole can be thinned.
  • the degree of freedom regarding the installation of the antenna device 15 when the antenna device 15 is installed inside the underground space 10 can be improved.
  • the penetrating jig 23 is provided so as to penetrate the antenna substrate 21 and the reflection plate 22, and connects and fixes the antenna substrate 21 and the reflection plate 22.
  • a plurality of penetration jigs 23 are arranged at the corners of the antenna substrate 21 and the reflection plate 22 as necessary.
  • the angle adjustment mechanism 25 includes a rotation shaft 25 a that rotatably supports the antenna substrate 21 and the reflection plate 22, and a support member 25 b that supports the rotation shaft 25 a.
  • the angle adjustment mechanism 25 is configured to incline the main surface of the antenna substrate 21 with respect to the vertical direction so that the main axis X of the radiation beam radiated from the antenna element 21 a passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • the angle ⁇ is configured to be adjustable. By adjusting the antenna substrate 21 to a predetermined inclination angle ⁇ , the radio wave emitted from the antenna element 21 a is sent toward the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • the radio wave radiated from the antenna element 21a to the reflecting plate 22 side is also reflected by the reflecting plate 22 to the antenna element 21a side, and then toward the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • Sent Since radio waves are transmitted to the boundary between the inner peripheral surface of the underground space 10 and the frame member 12, diffracted waves are generated at the boundary portion, so that the radio waves can be efficiently emitted from the surface layer 11 toward the ground.
  • the communication apparatus 16 transmits / receives the information containing the detection signal sent from the sensor between the communication apparatuses arrange
  • the orientation of the antenna substrate is set so that the principal axis X of the radiation beam passes outside the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • the radio wave emitted from the antenna element 21 a is totally reflected by the metal lid member 13 or the frame member 12. , Will not be released to the ground.
  • the refractive index of each medium increases in the order of the ground (air), the surface layer 11 (asphalt), the underground container 18 (concrete), and the underground 14 (earth and sand).
  • the propagation direction of the radio wave is directed from the inside of the underground space 10 to the surface layer 11 or the underground container 18, no radio wave is emitted to the ground according to Snell's law at any incident angle. That is, in this case, the only way to emit radio waves to the ground is to direct the principal axis X of the radiation beam so as to pass through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • 6A and 6B show the directivity results of the antenna device 15 obtained by electromagnetic field analysis.
  • the dipole antenna formed by the antenna element 21a of the antenna device 15 is horizontally installed so as to correspond to horizontal polarization.
  • the orientation of the antenna device 15 is adjusted so that the principal axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • the orientation of the antenna device 15 is adjusted so that the principal axis X of the radiation beam including the reflected wave reflected by the reflecting plate 22 passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
  • FIG. 6B shows a change in the gain of the antenna device 15 with respect to the inclination angle ⁇ shown in FIG. 6A.
  • the antenna device 15 is arranged so that the principal axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. Can generate a diffracted wave and efficiently emit radio waves from the surface layer 11 to the ground. As a result, the wireless communication structure 1 can satisfactorily transmit and receive information between the antenna device 15 arranged in the underground space and the ground communication device. Further, the reflector 22 in the antenna device 15 is uniform over the first conductor layer 22a having conductors periodically arranged in the in-plane direction at intervals shorter than the operating wavelength of the antenna element 21a, and in the entire in-plane direction. And a second conductor layer 22b provided with a simple ground plane. Thereby, the thickness of the antenna device 15 can be reduced, and the antenna device 12 can be installed in the underground space 10 in a space-saving manner.
  • the configuration of the antenna substrate and the reflector included in the antenna device is different from the first embodiment.
  • the configuration other than the antenna device is the same as that of the first embodiment, and therefore only the antenna device will be described.
  • the same constituent members as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • FIG. 7 is a schematic diagram for explaining the antenna device according to the second embodiment.
  • the antenna device 50 according to the second embodiment includes an antenna substrate 51 and a reflection plate 52.
  • the reflection plate 52 has a first conductor layer 52a and a second conductor layer 52b.
  • the first conductor layer 52a is included in the dielectric material 52c.
  • the dielectric material 52 c including the first conductor layer 52 a is formed so as to fill a space between the second conductor layer 52 b and the antenna substrate 51.
  • the antenna substrate 51 and the reflection plate 52 can be connected and fixed by the dielectric material 52c. For this reason, unlike the first embodiment, it is not necessary to use the penetration jig 23 for connecting the antenna substrate 21 and the reflection plate 22, and the configuration of the antenna device 50 can be simplified.
  • FIG. 8 is a schematic diagram of an antenna device according to the third embodiment.
  • the antenna device 60 according to the third embodiment includes an antenna substrate 61, a reflecting plate 62, and a penetrating jig 63 that connects the antenna substrate 61 and the reflecting plate 62.
  • the reflecting plate 62 has a first conductor layer 62a and a second conductor layer 62b.
  • the first conductor layer 62a has a metal pattern formed at periodic intervals on a dielectric material 62c formed in a plate shape, and is supported by the dielectric material 62c.
  • the second conductor layer 62b is formed in a plate shape, and is disposed at a predetermined interval with respect to the dielectric material 62c.
  • FIG. 9 is a schematic diagram of an antenna device according to the fourth embodiment. As shown in FIG. 9, the antenna device 70 according to the fourth embodiment is covered with a casing 71 formed of a radio wave transmissive material and disposed inside the casing 70. As a result, the antenna device 70 can be protected from being submerged or corroded.
  • the underground space to which the wireless communication structure according to the present invention is applied is not limited to a manhole where workers enter and exit.
  • the present invention may be applied to hand holes having underground boxes buried in the ground for pipe or cable connection work and protection of connection portions, and other underground spaces.
  • the present invention may be applied to an underfloor space inside a building.
  • wireless communication structure which concerns on this invention was applied to the underground space which has a frame member and a cover member, it may be applied to the underground space which is not provided with the frame member.
  • the antenna device is arranged so that the main axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the lid member.
  • Appendix 1 A support member attached to an opening provided in the ground; A lid member supported by the support member and capable of opening and closing the opening; An antenna device disposed in an underground space located below the opening; A communication device connected to the antenna device, The antenna device is arranged such that a principal axis of a radiation beam passes through a boundary between an inner peripheral surface of the underground space and the support member, or a boundary between an outer peripheral edge of the support member and the ground. Construction.
  • Appendix 2 The wireless communication structure according to appendix 1, wherein the antenna device is arranged such that a principal axis of the radiation beam passes through the boundary without being refracted inside the underground space.
  • the antenna device includes an antenna element that emits radio waves, and a reflector that is disposed at a distance from the antenna element and reflects the radio waves emitted from the antenna element toward the antenna element.
  • the wireless communication structure according to 1 or 2.
  • the reflector has a first conductor layer and a second conductor layer arranged in order from the antenna element side, The first conductor layer has a plurality of conductors formed at regular intervals in the in-plane direction of the first conductor layer, The wireless communication structure according to appendix 3, wherein the second conductor layer has a conductor that is uniformly formed over the entire in-plane direction of the second conductive layer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Sewage (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

This wireless communication structure (1) is provided with: a support member (12) attached to an opening (11a) provided to the ground surface (11); a lid member (13) that can open/close the opening (11a) and is supported by a support member (12); an antenna device (15) disposed inside an underground space (10) positioned below the opening (11a); and a communication device (16) connected to the antenna device (15). The antenna device (15) is disposed in a manner such that the primary axis (X) of a radiating beam passes through the boundary of the support member (12) and the inner peripheral surface of the underground space (10), or the boundary of the ground surface (11) and the outer peripheral edge of the support member (12).

Description

無線通信構造及び無線通信方法Wireless communication structure and wireless communication method
 本発明は、マンホールやハンドホール等の地下空間に設置されるアンテナ装置を備える無線通信構造及び無線通信方法に関する。 The present invention relates to a wireless communication structure and a wireless communication method including an antenna device installed in an underground space such as a manhole or a handhole.
 道路の地下には、上下水道管、ガス管、電力ケーブル、光ファイバーケーブル等の各種の地下埋設物が配置されている。これらの地下埋設物の多くは、マンホールから容易にアクセスでき、作業員が地上から管理しやすいように構成されている。近年では管理作業の効率化を図るために、マンホールの内部に測定装置と無線機を設置して、無人で地下埋設物の状態を測定し、その測定情報を地上に設置された無線機へ伝送する管理方法が知られている。また、このような管理を行うための無線通信方法も提案されている。
 例えば特許文献1には、マンホールの内部に設置された水道管のバルブに、流量を測定するセンサを設置し、センサによって検出された信号を、無線装置を用いて送信する技術が開示されている。具体的には、特許文献1には、マンホール内部に設置された無線装置と、マンホール蓋のコネクタに接続されて、地上に突出されたアンテナとを用いて、無線機を搭載した通信車両との間で無線通信を行うことが記載されている。
 また、特許文献2には、マンホール内部に配置された無線機と、地上に配置された無線機との間で無線通信を行う技術が開示されている。この技術では、マンホール内部の無線機から照射される電波が、マンホール蓋の裏面側に設けられた反射板によって反射され、マンホール蓋を介さずに直接地表へと放出される。これによって、地上側に伝達される無線信号の信号レベルを高めることができるとされている。
Various underground objects such as water and sewage pipes, gas pipes, power cables, and optical fiber cables are arranged in the basement of the road. Many of these underground structures are easily accessible from manholes and are designed to be easily managed by workers from the ground. In recent years, in order to improve the efficiency of management work, a measuring device and a wireless device are installed inside the manhole to measure the state of underground objects unattended and transmit the measurement information to a wireless device installed on the ground. Management methods are known. A wireless communication method for performing such management has also been proposed.
For example, Patent Document 1 discloses a technique in which a sensor for measuring a flow rate is installed in a valve of a water pipe installed in a manhole, and a signal detected by the sensor is transmitted using a wireless device. . Specifically, Patent Document 1 describes a wireless device installed inside a manhole and an antenna that is connected to a manhole cover connector and protrudes to the ground, with a communication vehicle equipped with a wireless device. It is described that wireless communication is performed between them.
Patent Document 2 discloses a technique for performing wireless communication between a radio device arranged inside a manhole and a radio device arranged on the ground. In this technique, radio waves emitted from a radio device inside a manhole are reflected by a reflector provided on the back side of the manhole cover, and are emitted directly to the ground without passing through the manhole cover. Thereby, the signal level of the radio signal transmitted to the ground side can be increased.
特開2001-156514号公報JP 2001-156514 A 特許第4943391号公報Japanese Patent No. 4943391
 上述したように、特許文献1に記載の技術では、無線通信を行うときに、アンテナは、マンホール蓋から地上に突出するように一時的にマンホール蓋に取り付けられる。しかしながら、特許文献1に記載された技術を、自動車等の交通量が多い場所で利用する場合、マンホールから地上に突出されたアンテナが自動車等と接触する恐れがある。そのため、この技術には、常時、アンテナを設置させた状態で使用することが困難である、という不都合がある。さらに、アンテナを設置するためには、マンホール蓋にコネクタを実装する必要があるため、マンホール蓋に複雑な機械加工を施す必要がある。
 また、特許文献2に記載された方法は、反射板を用いてマンホール蓋を介さずに電波を地上へ放出させることが可能であるとされている。しかしながら、実際には、スネルの法則に基づいて考えると、そのようなことは原理的に不可能である。つまり、アスファルトまたはコンクリートからなる地表層に、マンホールの内部から電波を入射させた場合、地表層に入射した電波が、地上に出射されるときに、地表層の屈折率よりも、地上における空気の屈折率が小さくなる。そのため、地表層(アスファルトまたはコンクリート)と地上(空気)との境界面に到達した電波は、境界面への入射角度が小さくなる。このため、地表層に入射した電波は、地上との境界面において地表層の内部(地中)側へと全反射されるため、地上に放出されることがない。したがって、特許文献2に記載された方法では、現実的に無線通信を行うことができない。
As described above, in the technique described in Patent Document 1, when performing wireless communication, the antenna is temporarily attached to the manhole cover so as to protrude from the manhole cover to the ground. However, when the technique described in Patent Document 1 is used in a place where there is a large amount of traffic such as an automobile, an antenna protruding from the manhole to the ground may come into contact with the automobile or the like. Therefore, this technique has a disadvantage that it is difficult to use the antenna with the antenna installed at all times. Furthermore, since it is necessary to mount a connector on the manhole cover in order to install the antenna, it is necessary to perform complicated machining on the manhole cover.
In addition, the method described in Patent Document 2 is said to be capable of emitting radio waves to the ground using a reflector without using a manhole cover. However, in practice, this is impossible in principle when considered based on Snell's law. In other words, when radio waves are incident on the ground layer made of asphalt or concrete from the inside of the manhole, when the radio waves incident on the ground layer are emitted to the ground, the refractive index of the ground layer is higher than the refractive index of the ground layer. The refractive index becomes smaller. For this reason, the radio wave that reaches the boundary surface between the ground layer (asphalt or concrete) and the ground (air) has a small incident angle on the boundary surface. For this reason, the radio wave incident on the ground layer is not totally emitted to the ground because it is totally reflected to the inside (underground) side of the ground layer at the boundary surface with the ground. Therefore, the method described in Patent Document 2 cannot actually perform wireless communication.
 そこで、本発明は、蓋部材及び枠部材に特殊な加工を行うことなく、地下空間の内部から地上へ電波を効率的に放射することができる無線通信構造及び無線通信方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a wireless communication structure and a wireless communication method capable of efficiently radiating radio waves from the inside of the underground space to the ground without performing special processing on the lid member and the frame member. And
 上述した目的を達成するため、本発明に係る無線通信構造は、地面に設けられた開口に取り付けられた支持部材と、支持部材に支持されて開口を開閉可能な蓋部材と、開口の下方に位置する地下空間の内部に配置されたアンテナ装置と、アンテナ装置に接続された通信装置と、を備えている。アンテナ装置は、放射ビームの主軸が、地下空間の内周面と支持部材との境界、又は支持部材の外周縁と地面との境界を通るように配置されている。
 なお、本発明における地面は、地表層を指しているが、建物の室内の床面も含めて指している。
In order to achieve the above-described object, a wireless communication structure according to the present invention includes a support member attached to an opening provided on the ground, a lid member supported by the support member and capable of opening and closing the opening, and a lower part of the opening. An antenna device disposed inside the located underground space and a communication device connected to the antenna device are provided. The antenna device is arranged such that the principal axis of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the support member, or the boundary between the outer peripheral edge of the support member and the ground.
In addition, although the ground in this invention has pointed out the ground layer, it has also indicated the floor surface in the room interior of a building.
 また、本発明に係る無線通信方法は、地面に設けられた開口に取り付けられた支持部材と、支持部材に支持されて開口を開閉可能な蓋部材と、を有する地下空間の内部に配置されたアンテナ装置を用いる無線通信方法であって、放射ビームの主軸が、地下空間の内周面と支持部材との境界、又は支持部材の外周縁と地面との境界を通るように、アンテナ装置を配置する工程を含んでいる。 In addition, the wireless communication method according to the present invention is disposed in an underground space having a support member attached to an opening provided on the ground and a lid member supported by the support member and capable of opening and closing the opening. A wireless communication method using an antenna device, wherein the antenna device is arranged so that the principal axis of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the support member, or the boundary between the outer peripheral edge of the support member and the ground. The process to do is included.
 本発明によれば、蓋部材及び支持部材に特殊な加工を行うことなく、地下空間の内部から地上へ電波を効率的に放射することができる。 According to the present invention, it is possible to efficiently radiate radio waves from the inside of the underground space to the ground without performing special processing on the lid member and the support member.
第1の実施形態のアンテナ装置を示す模式図である。It is a schematic diagram which shows the antenna apparatus of 1st Embodiment. 第1の実施形態の無線通信構造がハンドホールに適用された状態を示す斜視図である。It is a perspective view which shows the state by which the radio | wireless communication structure of 1st Embodiment was applied to the handhole. 第1の実施形態の無線通信構造がハンドホールに適用された状態を示す断面図である。It is sectional drawing which shows the state by which the radio | wireless communication structure of 1st Embodiment was applied to the handhole. 第1の実施形態の無線通信構造がハンドホールに適用された状態を示す断面図である。It is sectional drawing which shows the state by which the radio | wireless communication structure of 1st Embodiment was applied to the handhole. 第1の実施形態におけるアンテナ基板及び反射板の構成例を示す斜視図である。It is a perspective view which shows the structural example of the antenna board | substrate in 1st Embodiment, and a reflecting plate. 第1の実施形態におけるアンテナ基板及び反射板の構成例を示す斜視図である。It is a perspective view which shows the structural example of the antenna board | substrate in 1st Embodiment, and a reflecting plate. 第1の実施形態におけるアンテナ装置の反射板の動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the reflecting plate of the antenna device in 1st Embodiment. 第1の実施形態におけるアンテナ装置の反射板の動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the reflecting plate of the antenna device in 1st Embodiment. 第1の実施形態におけるアンテナ装置の反射板の動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the reflecting plate of the antenna device in 1st Embodiment. 第1の実施形態におけるアンテナ装置の反射板の動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the reflecting plate of the antenna device in 1st Embodiment. 第1の実施形態におけるアンテナ装置の反射板の動作原理を説明するための模式図である。It is a schematic diagram for demonstrating the operation principle of the reflecting plate of the antenna device in 1st Embodiment. 第1の実施形態におけるアンテナ装置の指向性を説明するための図である。It is a figure for demonstrating the directivity of the antenna apparatus in 1st Embodiment. 第1の実施形態におけるアンテナ装置の指向性を説明するための図である。It is a figure for demonstrating the directivity of the antenna apparatus in 1st Embodiment. 第2の実施形態におけるアンテナ装置を説明するための模式図である。It is a schematic diagram for demonstrating the antenna device in 2nd Embodiment. 第3の実施形態におけるアンテナ装置を説明するための模式図である。It is a schematic diagram for demonstrating the antenna device in 3rd Embodiment. 第4の実施形態におけるアンテナ装置を説明するための模式図である。It is a schematic diagram for demonstrating the antenna device in 4th Embodiment.
 以下、本発明の具体的な実施形態について、図面を参照して説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態の無線通信構造の模式図である。図2は、第1の実施形態の無線通信構造がハンドホールに適用された状態の斜視図である。図3A及び図3Bは、第1の実施形態の無線通信構造がハンドホールに適用された状態の断面図である。
 図1、図2、図3A、及び図3Bに示すように、本実施形態の無線通信構造1は、地面である地表層11に設けられた開口11aに取り付けられた支持部材としての枠部材12と、枠部材12に支持されて開口11aを開閉可能な蓋部材13と、を備えている。
 また、無線通信構造1は、開口11aの下方に位置する地下空間10の内部に配置されたアンテナ装置15と、地下空間10の内部に配置され、アンテナ装置15に電気的または光学的に接続された通信装置16と、を備えている。
(First embodiment)
FIG. 1 is a schematic diagram of a wireless communication structure according to the first embodiment. FIG. 2 is a perspective view of a state in which the wireless communication structure of the first embodiment is applied to a handhole. 3A and 3B are cross-sectional views illustrating a state in which the wireless communication structure of the first embodiment is applied to a handhole.
As shown in FIG. 1, FIG. 2, FIG. 3A, and FIG. 3B, the wireless communication structure 1 of the present embodiment is a frame member 12 as a support member attached to an opening 11a provided in the ground layer 11 that is the ground. And a lid member 13 supported by the frame member 12 and capable of opening and closing the opening 11a.
In addition, the wireless communication structure 1 is disposed inside the underground space 10 located below the opening 11a, and inside the underground space 10, and is electrically or optically connected to the antenna device 15. A communication device 16.
 アンテナ装置15は、図3A及び図3Bに示すように、放射ビームの主軸Xが、地下空間10の内周面と枠部材12との境界、又は枠部材12の外周縁と地表層11との境界を通るように配置されている。言い換えると、アンテナ装置15は、放射ビームの主軸Xが、枠部材12と、枠部材12の周囲の地表層11との境界であって、地下空間10の内周面に隣接する境界を通るように配置されている。あるいは、アンテナ装置15は、放射ビームの主軸Xが、枠部材12が有するフランジ部の外周縁と、枠部材12の周囲の地表層11との境界を通るように配置されている。
 この配置に関し、以下、便宜上、放射ビームの主軸Xが、地下空間10の内周面と枠部材12との境界を通る、と称する。放射ビームの主軸Xは、アンテナ装置15が発する電波のメインビームの中心軸である。地下空間10の内周面は、後述する地下容器18の外周面に対応している。
 また、アンテナ装置15は、放射ビームの主軸Xが、地下空間10の内部において屈折することなく、すなわち地下空間内10の媒質のみを通過した後に、上述の境界を通るように配置されている。
As shown in FIGS. 3A and 3B, the antenna device 15 has a radiation beam principal axis X between the inner peripheral surface of the underground space 10 and the frame member 12 or between the outer peripheral edge of the frame member 12 and the ground surface layer 11. It is arranged to pass through the boundary. In other words, in the antenna device 15, the main axis X of the radiation beam is a boundary between the frame member 12 and the surface layer 11 around the frame member 12, and passes through a boundary adjacent to the inner peripheral surface of the underground space 10. Is arranged. Alternatively, the antenna device 15 is arranged so that the principal axis X of the radiation beam passes through the boundary between the outer peripheral edge of the flange portion of the frame member 12 and the surface layer 11 around the frame member 12.
Regarding this arrangement, hereinafter, for convenience, the main axis X of the radiation beam is referred to as passing through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. The main axis X of the radiation beam is the central axis of the main beam of the radio wave emitted by the antenna device 15. An inner peripheral surface of the underground space 10 corresponds to an outer peripheral surface of an underground container 18 described later.
The antenna device 15 is arranged so that the principal axis X of the radiation beam does not refract inside the underground space 10, that is, passes only the medium in the underground space 10, and then passes through the boundary described above.
 地下空間10は、例えばマンホールまたはハンドホールであり、コンクリートまたはアスファルトからなる地表層11と、土砂からなる地中14とに跨がって形成されている。地下空間10は、例えばコンクリートからなる筒状の地下容器18を有している。地下容器18は、地中14に配置されており、上端が地表層11に連結されている。
 枠部材12及び蓋部材13は、鋳鉄等の金属材料によって形成されている。蓋部材13は、枠部材12に対して着脱自在に設けられている。また、開口11aの形状は円形及び矩形のいずれであってもよく、枠部材12及び蓋部材13が開口11aの形状に対応する形状に形成されている。
 また、変形例として、蓋部材と枠部材は、ヒンジを介して開閉可能に連結されてもよく、これは、蓋部材及び枠部材の形状及び構造を限定するものではない。また、蓋部材は、枠部材に支持される構造に限定されるものではなく、枠形状以外の他の形状の支持部材に支持されてもよいことは勿論である。
The underground space 10 is, for example, a manhole or a handhole, and is formed across a ground layer 11 made of concrete or asphalt and an underground 14 made of earth and sand. The underground space 10 has a cylindrical underground container 18 made of, for example, concrete. The underground container 18 is disposed in the ground 14 and has an upper end connected to the surface layer 11.
The frame member 12 and the lid member 13 are formed of a metal material such as cast iron. The lid member 13 is detachably attached to the frame member 12. Moreover, the shape of the opening 11a may be either circular or rectangular, and the frame member 12 and the lid member 13 are formed in a shape corresponding to the shape of the opening 11a.
As a modified example, the lid member and the frame member may be connected to each other so as to be opened and closed via a hinge, and this does not limit the shapes and structures of the lid member and the frame member. Further, the lid member is not limited to the structure supported by the frame member, and may of course be supported by a support member having a shape other than the frame shape.
 また、地下空間10の内部には、図2から図3Bに示すように、配管19に設けられた止水弁20、止水弁20の作動状態を検出するセンサ(不図示)等の所定の埋設物が設けられている。また、地下空間10は、作業員が作業を行うための作業空間を含んでいる。センサは、通信装置16と電気的または光学的に接続されている。
 なお、本実施形態は、地面としての地表層11の下に設けられた地下空間10に適用されたが、例えば建物の内部の床面の下に設けられた地下空間に適用されてもよいことは勿論である。
Further, in the underground space 10, as shown in FIGS. 2 to 3B, a predetermined valve such as a water stop valve 20 provided in the pipe 19, a sensor (not shown) for detecting the operation state of the water stop valve 20, etc. There are buried objects. The underground space 10 includes a work space for workers to perform work. The sensor is electrically or optically connected to the communication device 16.
In addition, although this embodiment was applied to the underground space 10 provided under the surface layer 11 as the ground, it may be applied to, for example, an underground space provided under the floor surface inside the building. Of course.
 アンテナ装置15は、電波を送受信するアンテナ素子を有するアンテナ基板21と、アンテナ基板21から発せられた電波をアンテナ基板21の側に向けて反射する反射板22と、アンテナ基板21と反射板22とを連結する連結部材としての貫通治具23と、を有している。
 また、アンテナ装置15は、アンテナ基板21から発せられる放射ビームの主軸Xの方向を調整するための角度調整機構25を備えている。
The antenna device 15 includes an antenna substrate 21 having an antenna element that transmits and receives radio waves, a reflector 22 that reflects radio waves emitted from the antenna substrate 21 toward the antenna substrate 21, and the antenna substrate 21 and the reflector 22. And a through jig 23 as a connecting member for connecting the two.
The antenna device 15 also includes an angle adjustment mechanism 25 for adjusting the direction of the principal axis X of the radiation beam emitted from the antenna substrate 21.
 第1の実施形態におけるアンテナ装置15について、アンテナ基板21及び反射板22の更に具体的な構造を、図4A及び図4Bを参照して説明する。図4A及び図4Bは、第1の実施形態におけるアンテナ基板21及び反射板22の構成例の斜視図である。
 図4A及び図4Bに示すように、アンテナ基板21は、アンテナ素子21a及び誘電体材料21bを有して構成されている。アンテナ素子21aは、誘電体材料21bの両面にそれぞれ設けられた2本の線状パターンからなる導体層を有している。この2本の線状パターンを用いて、半波長ダイポールアンテナが形成されている。誘電体材料21bは、半波長ダイポールアンテナの支持部材として機能すると共に、誘電体が有する波長短縮効果によって半波長ダイポールアンテナの小型化に貢献している。
 反射板22は、第1の導体層22a及び第2の導体層22bと、第1の導体層22aと第2の導体層22bとの間に挿入された誘電体材料22cと、を有している。第1の導体層22aは、第1の導体層22aの面内方向に周期的に間隔をあけて形成された複数の導体である所定の金属パターンを有している。金属パターンは、アンテナ素子21aの動作波長(アンテナ素子21aが発する電波の波長)に比べて狭い間隔で周期的に並んでいる。第2の導体層22bには、導体であるグランドプレーンが、第2の導電層22bの面内方向全体にわたって形成された均一な金属パターンによって構成されている。
 貫通治具23は、アンテナ基板21及び反射板22の両方を貫通して固定するための治具であり、例えば木材やプラスチックなどの非金属材料によって形成されている。
With respect to the antenna device 15 according to the first embodiment, a more specific structure of the antenna substrate 21 and the reflection plate 22 will be described with reference to FIGS. 4A and 4B. 4A and 4B are perspective views of configuration examples of the antenna substrate 21 and the reflection plate 22 in the first embodiment.
As shown in FIGS. 4A and 4B, the antenna substrate 21 includes an antenna element 21a and a dielectric material 21b. The antenna element 21a has a conductor layer composed of two linear patterns provided on both surfaces of the dielectric material 21b. A half-wave dipole antenna is formed using these two linear patterns. The dielectric material 21b functions as a support member for the half-wave dipole antenna and contributes to the miniaturization of the half-wave dipole antenna due to the wavelength shortening effect of the dielectric.
The reflection plate 22 includes a first conductor layer 22a and a second conductor layer 22b, and a dielectric material 22c inserted between the first conductor layer 22a and the second conductor layer 22b. Yes. The first conductor layer 22a has a predetermined metal pattern that is a plurality of conductors formed at regular intervals in the in-plane direction of the first conductor layer 22a. The metal patterns are periodically arranged at a narrower interval than the operating wavelength of the antenna element 21a (the wavelength of the radio wave emitted by the antenna element 21a). In the second conductor layer 22b, a ground plane as a conductor is constituted by a uniform metal pattern formed over the entire in-plane direction of the second conductive layer 22b.
The penetration jig 23 is a jig for penetrating and fixing both the antenna substrate 21 and the reflection plate 22 and is formed of a non-metallic material such as wood or plastic.
 そして、本実施形態におけるアンテナ装置15は、第1の導体層22aを有することで、アンテナ基板21と反射板22との間隔を、アンテナ素子21aの動作波長の4分の1以下に設定することが可能になる。この理由について、図5Aから図5Eを参照して説明する。図5Aから図5Eは、第1の実施形態におけるアンテナ装置15の反射板22の動作原理を説明するための模式図を示す。 And the antenna apparatus 15 in this embodiment has the 1st conductor layer 22a, and sets the space | interval of the antenna board | substrate 21 and the reflecting plate 22 to 1/4 or less of the operating wavelength of the antenna element 21a. Is possible. The reason for this will be described with reference to FIGS. 5A to 5E. 5A to 5E are schematic views for explaining the operation principle of the reflection plate 22 of the antenna device 15 according to the first embodiment.
 図5Aは、反射板22に第2の導体層22bだけが単体で存在している構成において、図中の左側から電波が入射する状況を示している。図5Aを等価回路で表した場合、図5Bに示すように、特性インピーダンスZを有する、短絡終端である伝送線路として表される。この構成の場合には、反射板22に入射した電波は、位相を180°反転させて反射される。このような理由から、一般にアンテナ基板は、反射板に対して、アンテナ素子の動作波長の4分の1の間隔をあけた箇所に設置されることで、反射板からの反射波を用いて、アンテナ基板の前方へと指向性を強めることができる。 FIG. 5A shows a situation in which radio waves are incident from the left side in the figure in the configuration in which only the second conductor layer 22b is present alone on the reflection plate 22. FIG. When FIG. 5A is represented by an equivalent circuit, as shown in FIG. 5B, it is represented as a transmission line that has a characteristic impedance Z 0 and is a short-circuit termination. In the case of this configuration, the radio wave incident on the reflecting plate 22 is reflected with the phase reversed by 180 °. For this reason, the antenna substrate is generally installed at a location spaced by a quarter of the operating wavelength of the antenna element with respect to the reflection plate, thereby using the reflected wave from the reflection plate, Directivity can be strengthened forward of the antenna substrate.
 一方で、図5Cに示すように、反射板22が有する第1の導電層22aと第2の導電層22bとの間に誘電体材料を満たし、所定の条件を満たした場合には、図中の左側から電波が入射したときに、所定の周波数において反射波の位相をシフトさせずに入射波と同位相にすることができる。この状態を等価回路で表した場合、図5Dに示すようになる。図5Dに示すように、反射板22において、短絡終端である伝送線路の途中に、第1の導体層22aによって形成されるキャパシタが、分路と共に挿入される。これにより、キャパシタを境界として、特性インピーダンスZと特性インピーダンスZを有する2つの伝送線路に分割される。ここで、短絡終端である伝送線路と、特性インピーダンスZである伝送線路とを合わせてインダクティブな状態にすることができれば、キャパシタと合わせて並列共振を引き起こすことができる。その結果、反射板22を高インピーダンスに近づけ、かつリアクタンス成分をゼロに近づけることができる。
 そのため、図5Eに示すように、入射波から見て、特性インピーダンスZの伝送線路は、終端開放である状態と見なせて、反射波は自由端反射によるものとなる。したがって、アンテナ基板は、理論上、アンテナ基板と反射板との間隔が無い状態で設置した場合であっても指向性を強めることができる。しかし、実際上は、電波の周波数を反射板内の共振周波数に合わせた場合には、反射板内での誘電体損失が無視できないため、共振周波数から少しずらした周波数に調整された所望の周波数が利用される。このような反射板の状態を、反応性インピーダンス表面(Reactive Impedance Surface)と呼ぶ。このような状態の場合には、アンテナ基板と反射板との間隔を、ゼロにできないものの、アンテナ素子の動作波長の4分の1に比べて十分に短く設定することができる。これにより、アンテナ装置15全体の薄型化を実現することができる。その結果、アンテナ装置15を地下空間10の内部へ設置するときの、アンテナ装置15の設置に関する自由度を向上させることができる。
On the other hand, as shown in FIG. 5C, when a dielectric material is filled between the first conductive layer 22a and the second conductive layer 22b of the reflector 22 and a predetermined condition is satisfied, When a radio wave is incident from the left side, the phase of the reflected wave can be made the same as that of the incident wave without shifting the phase of the reflected wave at a predetermined frequency. When this state is represented by an equivalent circuit, it is as shown in FIG. 5D. As shown in FIG. 5D, in the reflection plate 22, a capacitor formed by the first conductor layer 22a is inserted with a shunt in the middle of the transmission line that is a short-circuit termination. As a result, the transmission line is divided into two transmission lines having characteristic impedance Z 0 and characteristic impedance Z d with the capacitor as a boundary. Here, the transmission line is short-circuited end, if it is possible to inductive state by combining the transmission line is the characteristic impedance Z d, it is possible to cause parallel resonance together with a capacitor. As a result, the reflecting plate 22 can be made close to high impedance, and the reactance component can be made close to zero.
Therefore, as shown in FIG. 5E, when viewed from the incident wave, a transmission line of characteristic impedance Z 0 is regarded as a state which is the end open, the reflected wave becomes due free end reflection. Therefore, the antenna substrate can intensify the directivity even when the antenna substrate is theoretically installed with no gap between the antenna substrate and the reflecting plate. However, in practice, when the frequency of the radio wave is matched with the resonance frequency in the reflector, the dielectric loss in the reflector cannot be ignored, so the desired frequency adjusted to a frequency slightly shifted from the resonance frequency Is used. Such a state of the reflecting plate is referred to as a reactive impedance surface (Reactive Impedance Surface). In such a state, the distance between the antenna substrate and the reflecting plate cannot be made zero, but can be set sufficiently shorter than a quarter of the operating wavelength of the antenna element. As a result, the antenna device 15 as a whole can be thinned. As a result, the degree of freedom regarding the installation of the antenna device 15 when the antenna device 15 is installed inside the underground space 10 can be improved.
 貫通治具23は、アンテナ基板21と反射板22を貫通して設けられており、アンテナ基板21と反射板22とを連結して固定している。必要に応じて、複数の貫通治具23が、アンテナ基板21及び反射板22の角部に配置されている。 The penetrating jig 23 is provided so as to penetrate the antenna substrate 21 and the reflection plate 22, and connects and fixes the antenna substrate 21 and the reflection plate 22. A plurality of penetration jigs 23 are arranged at the corners of the antenna substrate 21 and the reflection plate 22 as necessary.
 角度調整機構25は、図1に示すように、アンテナ基板21及び反射板22を回動可能に支持する回転軸25aと、回転軸25aを支持する支持部材25bと、を有している。角度調整機構25は、アンテナ素子21aから放射される放射ビームの主軸Xが、地下空間10の内周面と枠部材12との境界を通るように、鉛直方向に対するアンテナ基板21の主面の傾斜角θを調整可能に構成されている。
 アンテナ基板21が所定の傾斜角θに調整されることで、アンテナ素子21aから発せられる電波は、地下空間10の内周面と枠部材12との境界に向かって送られる。また、アンテナ素子21aから反射板22の側へ放射される電波も、反射板22によってアンテナ素子21aの側へ反射された後、地下空間10の内周面と枠部材12との境界に向かって送られる。地下空間10の内周面と枠部材12との境界に電波が送られることによって、境界部分で回折波が生じるため、地表層11から地上に向かって電波を効率的に放出することができる。そして、通信装置16は、アンテナ装置15を介して、地上に配置された通信装置との間で、センサから送られた検出信号を含む情報の送受信を行う。
As shown in FIG. 1, the angle adjustment mechanism 25 includes a rotation shaft 25 a that rotatably supports the antenna substrate 21 and the reflection plate 22, and a support member 25 b that supports the rotation shaft 25 a. The angle adjustment mechanism 25 is configured to incline the main surface of the antenna substrate 21 with respect to the vertical direction so that the main axis X of the radiation beam radiated from the antenna element 21 a passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. The angle θ is configured to be adjustable.
By adjusting the antenna substrate 21 to a predetermined inclination angle θ, the radio wave emitted from the antenna element 21 a is sent toward the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. Further, the radio wave radiated from the antenna element 21a to the reflecting plate 22 side is also reflected by the reflecting plate 22 to the antenna element 21a side, and then toward the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. Sent. Since radio waves are transmitted to the boundary between the inner peripheral surface of the underground space 10 and the frame member 12, diffracted waves are generated at the boundary portion, so that the radio waves can be efficiently emitted from the surface layer 11 toward the ground. And the communication apparatus 16 transmits / receives the information containing the detection signal sent from the sensor between the communication apparatuses arrange | positioned on the ground via the antenna apparatus 15. FIG.
 一方で、放射ビームの主軸Xが、地下空間10の内周面と枠部材12との境界以外を通るようにアンテナ基板の向きを設定した場合について考える。例えば放射ビームの主軸Xが、蓋部材13の中央または枠部材12を通るように向けられた場合、アンテナ素子21aから発せられた電波は、金属製の蓋部材13または枠部材12で全反射され、地上に放出されることはない。また、各媒質の屈折率に関し、地上(空気)、地表層11(アスファルト)、地下容器18(コンクリート)、地中14(土砂)の順に大きくなる。電波の伝搬方向を、地下空間10の内部から地表層11または地下容器18に向けた場合には、いずれの入射角度においてもスネルの法則に従って、地上に電波が放出されない。すなわち、この場合において、電波を地上に放出させる唯一の方法は、放射ビームの主軸Xを、地下空間10の内周面と枠部材12との境界を通るように向けることである。 On the other hand, consider the case where the orientation of the antenna substrate is set so that the principal axis X of the radiation beam passes outside the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. For example, when the main axis X of the radiation beam is directed to pass through the center of the lid member 13 or the frame member 12, the radio wave emitted from the antenna element 21 a is totally reflected by the metal lid member 13 or the frame member 12. , Will not be released to the ground. Further, the refractive index of each medium increases in the order of the ground (air), the surface layer 11 (asphalt), the underground container 18 (concrete), and the underground 14 (earth and sand). When the propagation direction of the radio wave is directed from the inside of the underground space 10 to the surface layer 11 or the underground container 18, no radio wave is emitted to the ground according to Snell's law at any incident angle. That is, in this case, the only way to emit radio waves to the ground is to direct the principal axis X of the radiation beam so as to pass through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12.
 以上のように構成された実施形態の無線通信構造1において、アンテナ装置15の指向性について説明する。
 図6A及び図6Bに、電磁界解析によって得られたアンテナ装置15の指向性の結果を示す。アンテナ装置15のアンテナ素子21aが構成するダイポールアンテナは、水平偏波に対応するように水平に設置されている。また、アンテナ装置15の向きは、放射ビームの主軸Xが地下空間10の内周面と枠部材12との境界を通るように調整されている。また同様に、アンテナ装置15の向きは、反射板22によって反射された反射波を含む放射ビームの主軸Xが地下空間10の内周面と枠部材12との境界を通るように調整されている。
 このときに、地上に放出される電波に基づいて得られたアンテナ装置15の指向性の特性を、図6Bに示す。具体的には、図6Bは、図6Aに示す傾斜角θに対するアンテナ装置15の利得の変化を表している。ここで、図6Bに示すように、傾斜角θ=-35°であるときに、アンテナ装置15の指向性が形成されている。つまり、アンテナ装置15から発せられた放射ビームの主軸Xが、地下空間10の内周面と枠部材12との境界に到達したことで、境界部分で回折波が生じ、実際に地上へと電波が放出されていることが示されている。
In the wireless communication structure 1 according to the embodiment configured as described above, the directivity of the antenna device 15 will be described.
6A and 6B show the directivity results of the antenna device 15 obtained by electromagnetic field analysis. The dipole antenna formed by the antenna element 21a of the antenna device 15 is horizontally installed so as to correspond to horizontal polarization. The orientation of the antenna device 15 is adjusted so that the principal axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. Similarly, the orientation of the antenna device 15 is adjusted so that the principal axis X of the radiation beam including the reflected wave reflected by the reflecting plate 22 passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. .
At this time, the directivity characteristic of the antenna device 15 obtained based on the radio wave emitted to the ground is shown in FIG. 6B. Specifically, FIG. 6B shows a change in the gain of the antenna device 15 with respect to the inclination angle θ shown in FIG. 6A. Here, as shown in FIG. 6B, the directivity of the antenna device 15 is formed when the inclination angle θ = −35 °. That is, when the principal axis X of the radiation beam emitted from the antenna device 15 reaches the boundary between the inner peripheral surface of the underground space 10 and the frame member 12, a diffracted wave is generated at the boundary portion, and the radio wave is actually transmitted to the ground. Has been shown to be released.
 上述したように、無線通信構造1によれば、放射ビームの主軸Xが地下空間10の内周面と枠部材12との境界を通るように、アンテナ装置15が配置されることによって、境界部分で回折波を発生させ、地表層11から地上へ電波を効率良く放出することができる。その結果、無線通信構造1は、地下空間に配置されたアンテナ装置15と、地上の通信装置との間で、情報の送受信を良好に行うことができる。
 また、アンテナ装置15における反射板22は、アンテナ素子21aの動作波長に比べ短い間隔で面内方向に周期的に配置された導体を有する第1の導体層22aと、面内方向の全体にわたって均一なグランドプレーンが設けられた第2の導体層22bと、を有している。これによって、アンテナ装置15の厚みを低減し、地下空間10の内部にアンテナ装置12を省スペースで設置することができる。
As described above, according to the wireless communication structure 1, the antenna device 15 is arranged so that the principal axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space 10 and the frame member 12. Can generate a diffracted wave and efficiently emit radio waves from the surface layer 11 to the ground. As a result, the wireless communication structure 1 can satisfactorily transmit and receive information between the antenna device 15 arranged in the underground space and the ground communication device.
Further, the reflector 22 in the antenna device 15 is uniform over the first conductor layer 22a having conductors periodically arranged in the in-plane direction at intervals shorter than the operating wavelength of the antenna element 21a, and in the entire in-plane direction. And a second conductor layer 22b provided with a simple ground plane. Thereby, the thickness of the antenna device 15 can be reduced, and the antenna device 12 can be installed in the underground space 10 in a space-saving manner.
 以下、アンテナ装置が有するアンテナ基板及び反射板の構成が第1の実施形態とは異なる他の実施形態について説明する。なお、他の実施形態の無線通信構造において、アンテナ装置以外の構成は、第1の実施形態と同一であるため、アンテナ装置についてのみ説明する。また、他の実施形態において、第1の実施形態と同一の構成部材については、第1の実施形態と同一の符号を付して説明を省略する。 Hereinafter, another embodiment in which the configuration of the antenna substrate and the reflector included in the antenna device is different from the first embodiment will be described. Note that in the wireless communication structure of the other embodiment, the configuration other than the antenna device is the same as that of the first embodiment, and therefore only the antenna device will be described. In other embodiments, the same constituent members as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 (第2の実施形態)
 図7は、第2の実施形態におけるアンテナ装置を説明するための模式図である。図7に示すように、第2の実施形態におけるアンテナ装置50は、アンテナ基板51と、反射板52と、を有している。反射板52は、第1の導体層52a及び第2の導体層52bを有している。第1の導体層52aは、誘電体材料52cに含まれている。第1の導体層52aを含む誘電体材料52cは、第2の導体層52bとアンテナ基板51との間を満たすように形成されている。
 第2の実施形態におけるアンテナ装置50によれば、誘電体材料52cによってアンテナ基板51と反射板52とを連結して固定することができる。このため、第1の実施形態とは異なり、アンテナ基板21と反射板22とを連結するための貫通治具23を用いる必要がなくなり、アンテナ装置50の構成を簡素化することができる。
(Second Embodiment)
FIG. 7 is a schematic diagram for explaining the antenna device according to the second embodiment. As shown in FIG. 7, the antenna device 50 according to the second embodiment includes an antenna substrate 51 and a reflection plate 52. The reflection plate 52 has a first conductor layer 52a and a second conductor layer 52b. The first conductor layer 52a is included in the dielectric material 52c. The dielectric material 52 c including the first conductor layer 52 a is formed so as to fill a space between the second conductor layer 52 b and the antenna substrate 51.
According to the antenna device 50 in the second embodiment, the antenna substrate 51 and the reflection plate 52 can be connected and fixed by the dielectric material 52c. For this reason, unlike the first embodiment, it is not necessary to use the penetration jig 23 for connecting the antenna substrate 21 and the reflection plate 22, and the configuration of the antenna device 50 can be simplified.
 (第3の実施形態)
 図8は、第3の実施形態におけるアンテナ装置の模式図である。図8に示すように、第3の実施形態におけるアンテナ装置60は、アンテナ基板61と、反射板62と、アンテナ基板61と反射板62とを連結する貫通治具63と、を有している。反射板62は、第1の導体層62a及び第2の導体層62bを有している。
 第1の導体層62aは、板状に形成された誘電体材料62cの上に、周期的な間隔で形成された金属パターンを有しており、誘電体材料62cによって支持されている。また、第2の導体層62bは、板状に形成されており、誘電体材料62cに対して所定の間隔をあけて配置されている。この構成により、誘電体材料62cの薄型化を図ることができるため、アンテナ装置60の製造工程を簡素化することができると同時に、アンテナ装置60の軽量化を図ることもできる。
(Third embodiment)
FIG. 8 is a schematic diagram of an antenna device according to the third embodiment. As shown in FIG. 8, the antenna device 60 according to the third embodiment includes an antenna substrate 61, a reflecting plate 62, and a penetrating jig 63 that connects the antenna substrate 61 and the reflecting plate 62. . The reflecting plate 62 has a first conductor layer 62a and a second conductor layer 62b.
The first conductor layer 62a has a metal pattern formed at periodic intervals on a dielectric material 62c formed in a plate shape, and is supported by the dielectric material 62c. The second conductor layer 62b is formed in a plate shape, and is disposed at a predetermined interval with respect to the dielectric material 62c. With this configuration, since the dielectric material 62c can be thinned, the manufacturing process of the antenna device 60 can be simplified, and at the same time, the weight of the antenna device 60 can be reduced.
 (第4の実施形態)
 図9は、第4の実施形態におけるアンテナ装置の模式図である。図9に示すように、第4の実施形態におけるアンテナ装置70は、電波透過性材料によって形成された筐体71によって覆われ、筐体70の内部に配置されている。これによって、水没や腐食などからアンテナ装置70を保護することができる。
(Fourth embodiment)
FIG. 9 is a schematic diagram of an antenna device according to the fourth embodiment. As shown in FIG. 9, the antenna device 70 according to the fourth embodiment is covered with a casing 71 formed of a radio wave transmissive material and disposed inside the casing 70. As a result, the antenna device 70 can be protected from being submerged or corroded.
 なお、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、本発明に係る無線通信構造が適用される地下空間は、作業員が出入りするマンホールに限定されるものではない。本発明は、配管またはケーブルの接続工事及び接続部の保護のために地中に埋設される地中箱を有するハンドホールや、その他の地下空間へ適用されてもよいことは勿論である。また、本発明は、建物の室内の床下空間に適用されてもよい。
 また、本発明に係る無線通信構造は、枠部材と、蓋部材と、を有する地下空間に適用されたが、枠部材を備えていない地下空間に適用されてもよい。この場合には、放射ビームの主軸Xが地下空間の内周面と蓋部材との境界を通るように、アンテナ装置が配置される。
 この出願は、2014年4月10日に出願された日本出願特願2014-081232を基礎とする優先権を主張し、その開示の全てをここに取り込む。
In addition, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. For example, the underground space to which the wireless communication structure according to the present invention is applied is not limited to a manhole where workers enter and exit. Needless to say, the present invention may be applied to hand holes having underground boxes buried in the ground for pipe or cable connection work and protection of connection portions, and other underground spaces. Further, the present invention may be applied to an underfloor space inside a building.
Moreover, although the radio | wireless communication structure which concerns on this invention was applied to the underground space which has a frame member and a cover member, it may be applied to the underground space which is not provided with the frame member. In this case, the antenna device is arranged so that the main axis X of the radiation beam passes through the boundary between the inner peripheral surface of the underground space and the lid member.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2014-081232 for which it applied on April 10, 2014, and takes in those the indications of all here.
[付記1]
 地面に設けられた開口に取り付けられた支持部材と、
 前記支持部材に支持されて前記開口を開閉可能な蓋部材と、
 前記開口の下方に位置する地下空間の内部に配置されたアンテナ装置と、
 前記アンテナ装置に接続された通信装置と、を備え、
 前記アンテナ装置は、放射ビームの主軸が、前記地下空間の内周面と前記支持部材との境界、又は前記支持部材の外周縁と前記地面との境界を通るように配置されている、無線通信構造。
[付記2]
 前記アンテナ装置は、前記放射ビームの主軸が、前記地下空間の内部において屈折することなく、前記境界を通るように配置されている、付記1に記載の無線通信構造。
[付記3]
 前記アンテナ装置は、電波を発するアンテナ素子と、前記アンテナ素子に対して間隔をあけて配置され、前記アンテナ素子から発せられた電波を前記アンテナ素子の側へ反射する反射板と、を備える、付記1または2に記載の無線通信構造。
[付記4]
 前記反射板は、前記アンテナ素子の側から順に配置された第1の導体層と、第2の導体層と、を有し、
 前記第1の導体層は、該第1の導体層の面内方向に周期的に間隔をあけて形成された複数の導体を有し、
 前記第2の導体層は、該第2の導電層の面内方向全体にわたって均一に形成された導体を有する、付記3に記載の無線通信構造。
[付記5]
 前記アンテナ装置は、前記アンテナ素子と前記反射板との間隔が、前記アンテナ素子の動作波長の4分の1以下である、付記3または4に記載の無線通信構造。
[付記6]
 前記アンテナ装置は、前記アンテナ素子を支持するアンテナ基板を備える、付記3から5のいずれか1つに記載の無線通信構造。
[付記7]
 前記アンテナ装置は、前記アンテナ基板と前記反射板とを連結する連結部材を備える、付記3から6のいずれか1つに記載の無線通信構造。
[付記8]
 前記アンテナ装置は、前記第1の導体層の前記周期的な間隔が、前記アンテナ素子の動作波長よりも短い、付記4に記載の無線通信構造。
[付記9]
 前記アンテナ装置は、前記第1の導体層に当接して配置されて前記第1の導体層を支持する誘電体材料を備える、付記4に記載の無線通信構造。
[付記10]
 前記アンテナ装置は、前記第1の導体層と前記第2の導体層との間に充填された誘電体材料を備える、付記4に記載の無線通信構造。
[付記11]
 前記アンテナ装置は、前記アンテナ基板と前記反射板との間に充填された誘電体材料を備える、付記6に記載の無線通信構造。
[付記12]
 前記アンテナ装置は、電波透過性材料によって形成された、前記アンテナ素子及び前記反射板を覆う筐体を備える、付記3から11のいずれか1つに記載の無線通信構造。
[付記13]
 前記アンテナ装置は、前記放射ビームの主軸の方向を調整可能にする角度調整機構を備える、付記1から12のいずれか1つに記載の無線通信構造。
[付記14]
 地面に設けられた開口に取り付けられた支持部材と、前記支持部材に支持されて前記開口を開閉可能な蓋部材と、を有する地下空間の内部に配置されたアンテナ装置を用いる無線通信方法であって、
 放射ビームの主軸が、前記地下空間の内周面と前記支持部材との境界、又は前記支持部材の外周縁と前記地面との境界を通るように、前記アンテナ装置を配置する工程を含む、無線通信方法。
[Appendix 1]
A support member attached to an opening provided in the ground;
A lid member supported by the support member and capable of opening and closing the opening;
An antenna device disposed in an underground space located below the opening;
A communication device connected to the antenna device,
The antenna device is arranged such that a principal axis of a radiation beam passes through a boundary between an inner peripheral surface of the underground space and the support member, or a boundary between an outer peripheral edge of the support member and the ground. Construction.
[Appendix 2]
The wireless communication structure according to appendix 1, wherein the antenna device is arranged such that a principal axis of the radiation beam passes through the boundary without being refracted inside the underground space.
[Appendix 3]
The antenna device includes an antenna element that emits radio waves, and a reflector that is disposed at a distance from the antenna element and reflects the radio waves emitted from the antenna element toward the antenna element. The wireless communication structure according to 1 or 2.
[Appendix 4]
The reflector has a first conductor layer and a second conductor layer arranged in order from the antenna element side,
The first conductor layer has a plurality of conductors formed at regular intervals in the in-plane direction of the first conductor layer,
The wireless communication structure according to appendix 3, wherein the second conductor layer has a conductor that is uniformly formed over the entire in-plane direction of the second conductive layer.
[Appendix 5]
The wireless communication structure according to appendix 3 or 4, wherein the antenna device has an interval between the antenna element and the reflector that is equal to or less than a quarter of an operating wavelength of the antenna element.
[Appendix 6]
The wireless communication structure according to any one of appendices 3 to 5, wherein the antenna device includes an antenna substrate that supports the antenna element.
[Appendix 7]
The wireless communication structure according to any one of appendices 3 to 6, wherein the antenna device includes a connecting member that connects the antenna substrate and the reflecting plate.
[Appendix 8]
The wireless communication structure according to appendix 4, wherein the antenna device has the periodic interval of the first conductor layer shorter than an operating wavelength of the antenna element.
[Appendix 9]
The wireless communication structure according to appendix 4, wherein the antenna device includes a dielectric material that is disposed in contact with the first conductor layer and supports the first conductor layer.
[Appendix 10]
The wireless communication structure according to appendix 4, wherein the antenna device includes a dielectric material filled between the first conductor layer and the second conductor layer.
[Appendix 11]
The wireless communication structure according to appendix 6, wherein the antenna device includes a dielectric material filled between the antenna substrate and the reflector.
[Appendix 12]
The wireless communication structure according to any one of appendices 3 to 11, wherein the antenna device includes a housing that is formed of a radio wave transmitting material and covers the antenna element and the reflector.
[Appendix 13]
The wireless communication structure according to any one of appendices 1 to 12, wherein the antenna device includes an angle adjustment mechanism that enables adjustment of a direction of a main axis of the radiation beam.
[Appendix 14]
A wireless communication method using an antenna device disposed in an underground space having a support member attached to an opening provided on the ground and a lid member supported by the support member and capable of opening and closing the opening. And
A step of arranging the antenna device so that a principal axis of the radiation beam passes through a boundary between an inner peripheral surface of the underground space and the support member, or a boundary between an outer peripheral edge of the support member and the ground. Communication method.
 1 無線通信構造
 10 地下空間
 11 地表層
 11a 開口
 12 枠部材
 13 蓋部材
 15 アンテナ装置
 16 通信装置
 A 境界
DESCRIPTION OF SYMBOLS 1 Wireless communication structure 10 Underground space 11 Ground layer 11a Opening 12 Frame member 13 Cover member 15 Antenna apparatus 16 Communication apparatus A Boundary

Claims (10)

  1.  地面に設けられた開口に取り付けられた支持部材と、
     前記支持部材に支持されて前記開口を開閉可能な蓋部材と、
     前記開口の下方に位置する地下空間の内部に配置されたアンテナ装置と、
     前記アンテナ装置に接続された通信装置と、を備え、
     前記アンテナ装置は、放射ビームの主軸が、前記地下空間の内周面と前記支持部材との境界、又は前記支持部材の外周縁と前記地面との境界を通るように配置されている、無線通信構造。
    A support member attached to an opening provided in the ground;
    A lid member supported by the support member and capable of opening and closing the opening;
    An antenna device disposed in an underground space located below the opening;
    A communication device connected to the antenna device,
    The antenna device is arranged such that a principal axis of a radiation beam passes through a boundary between an inner peripheral surface of the underground space and the support member, or a boundary between an outer peripheral edge of the support member and the ground. Construction.
  2.  前記アンテナ装置は、電波を発するアンテナ素子と、前記アンテナ素子に対して間隔をあけて配置され、前記アンテナ素子から発せられた電波を前記アンテナ素子の側へ反射する反射板と、を備える、請求項1に記載の無線通信構造。 The antenna device includes: an antenna element that emits radio waves; and a reflector that is disposed at a distance from the antenna element and reflects the radio waves emitted from the antenna element toward the antenna element. Item 2. The wireless communication structure according to Item 1.
  3.  前記反射板は、前記アンテナ素子の側から順に配置された、第1の導体層及び第2の導体層を有し、
     前記第1の導体層は、該第1の導体層の面内方向に周期的に間隔をあけて形成された複数の導体を有し、
     前記第2の導体層は、該第2の導電層の面内方向全体にわたって均一に形成された導体を有する、請求項2に記載の無線通信構造。
    The reflector has a first conductor layer and a second conductor layer arranged in order from the antenna element side,
    The first conductor layer has a plurality of conductors formed at regular intervals in the in-plane direction of the first conductor layer,
    The wireless communication structure according to claim 2, wherein the second conductor layer has a conductor formed uniformly over the entire in-plane direction of the second conductive layer.
  4.  前記アンテナ装置は、前記アンテナ素子と前記反射板との間隔が、前記アンテナ素子の動作波長の4分の1以下である、請求項2または3に記載の無線通信構造。 The wireless communication structure according to claim 2 or 3, wherein the antenna device has an interval between the antenna element and the reflection plate that is equal to or less than a quarter of an operating wavelength of the antenna element.
  5.  前記アンテナ装置は、前記第1の導体層の前記周期的な間隔が、前記アンテナ素子の動作波長よりも短い、請求項3に記載の無線通信構造。 The wireless communication structure according to claim 3, wherein the antenna device has the periodic interval of the first conductor layer shorter than an operating wavelength of the antenna element.
  6.  前記アンテナ装置は、前記第1の導体層に当接して配置されて前記第1の導体層を支持する誘電体材料を備える、請求項3に記載の無線通信構造。 The wireless communication structure according to claim 3, wherein the antenna device includes a dielectric material that is disposed in contact with the first conductor layer and supports the first conductor layer.
  7.  前記アンテナ装置は、前記第1の導体層と前記第2の導体層との間に充填された誘電体材料を備える、請求項3に記載の無線通信構造。 The wireless communication structure according to claim 3, wherein the antenna device includes a dielectric material filled between the first conductor layer and the second conductor layer.
  8.  前記アンテナ装置は、電波透過性材料によって形成された、前記アンテナ素子及び前記反射板を覆う筐体を備える、請求項2から7のいずれか1項に記載の無線通信構造。 The wireless communication structure according to any one of claims 2 to 7, wherein the antenna device includes a housing that is formed of a radio wave transmitting material and covers the antenna element and the reflector.
  9.  前記アンテナ装置は、前記放射ビームの主軸の方向を調整可能にする角度調整機構を備える、請求項1から8のいずれか1項に記載の無線通信構造。 The wireless communication structure according to any one of claims 1 to 8, wherein the antenna device includes an angle adjustment mechanism that enables adjustment of a direction of a main axis of the radiation beam.
  10.  地面に設けられた開口に取り付けられた支持部材と、前記支持部材に支持されて前記開口を開閉可能な蓋部材と、を有する地下空間の内部に配置されたアンテナ装置を用いる無線通信方法であって、
     放射ビームの主軸が、前記地下空間の内周面と前記支持部材との境界、又は前記支持部材の外周縁と前記地面との境界を通るように前記アンテナ装置を配置する工程を含む、無線通信方法。
    A wireless communication method using an antenna device disposed in an underground space having a support member attached to an opening provided on the ground and a lid member supported by the support member and capable of opening and closing the opening. And
    Wireless communication, comprising: disposing the antenna device so that a principal axis of a radiation beam passes through a boundary between an inner peripheral surface of the underground space and the support member, or a boundary between an outer peripheral edge of the support member and the ground. Method.
PCT/JP2015/058251 2014-04-10 2015-03-19 Wireless communication structure and wireless communication method WO2015156096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016512645A JPWO2015156096A1 (en) 2014-04-10 2015-03-19 Wireless communication structure and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081232 2014-04-10
JP2014081232 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015156096A1 true WO2015156096A1 (en) 2015-10-15

Family

ID=54287677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058251 WO2015156096A1 (en) 2014-04-10 2015-03-19 Wireless communication structure and wireless communication method

Country Status (2)

Country Link
JP (1) JPWO2015156096A1 (en)
WO (1) WO2015156096A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100870A1 (en) 2019-11-22 2021-05-27 古河電気工業株式会社 Resin container and monitoring device
US11201408B2 (en) 2018-12-17 2021-12-14 Fujitsu Limited Antenna design support apparatus and antenna design support method
KR20230100936A (en) * 2021-12-29 2023-07-06 주식회사 아이엠알 Antenna structure for power system underground manhole
JP7462189B2 (en) 2021-04-07 2024-04-05 神田工業株式会社 Thin communication device equipped with directional antenna and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111108645A (en) * 2017-08-24 2020-05-05 株式会社Ntt都科摩 Antenna device, wireless base station, and antenna device housing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050899A (en) * 2008-08-25 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Radio relay device
JP2011244137A (en) * 2010-05-17 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> Antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050899A (en) * 2008-08-25 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> Radio relay device
JP2011244137A (en) * 2010-05-17 2011-12-01 Nippon Telegr & Teleph Corp <Ntt> Antenna device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201408B2 (en) 2018-12-17 2021-12-14 Fujitsu Limited Antenna design support apparatus and antenna design support method
WO2021100870A1 (en) 2019-11-22 2021-05-27 古河電気工業株式会社 Resin container and monitoring device
JP7462189B2 (en) 2021-04-07 2024-04-05 神田工業株式会社 Thin communication device equipped with directional antenna and method for manufacturing same
KR20230100936A (en) * 2021-12-29 2023-07-06 주식회사 아이엠알 Antenna structure for power system underground manhole
KR102608175B1 (en) * 2021-12-29 2023-11-30 (주)아이엠알 Antenna structure for power system underground manhole

Also Published As

Publication number Publication date
JPWO2015156096A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015156096A1 (en) Wireless communication structure and wireless communication method
Zhang et al. Directional acoustic antennas based on valley‐hall topological insulators
US9007254B2 (en) Antenna beam control elements, systems, architectures, and methods for radar, communications, and other applications
JP6324673B2 (en) Manhole cover with antenna
US20100109957A1 (en) Apparatus for measuring antenna radiation performance and method of designing the same
EP2659237A1 (en) High frequency mode generator for radar level gauge
JP6858438B2 (en) Inundation detection device, inundation detection system, and inundation detection method
US20200076457A1 (en) Open cavity system for directed amplification of acoustic signals
JPH1166484A (en) Manhole cover antenna equipment and communication system
KR102565230B1 (en) A surface wave generator for transmitting a surface wave signal while attached to a metal surface
US20070026796A1 (en) Buried radio device
JP4820807B2 (en) Wireless relay device
CA3140866A1 (en) Multiband circular polarized antenna arrangement
CN102901962B (en) Geological radar
JP4943391B2 (en) Wireless relay device
JP2006170698A (en) Device for estimating azimuth of radio station, device for estimating azimuth of radio station and emitting radio wave, and method of estimating azimuth of radio station
CN106093872B (en) Radar far field prediction method in a kind of formation of consideration Layer Near The Sea Surface face ring border influence
JP7417999B2 (en) Lid for underground structures for wireless communication
KR102045962B1 (en) Predicting system for ground deformation using ground penetrating radar
JP2021016038A (en) Antenna device and method for manufacturing manhole cover
JP4794539B2 (en) Wireless relay device
US9072002B1 (en) Method and apparatus for monitoring antenna deterioration
JP6349916B2 (en) Antenna diagnostic device
JP5619555B2 (en) Antenna device
JP5398637B2 (en) Wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776712

Country of ref document: EP

Kind code of ref document: A1