JP2021188009A - Process for producing polar group-containing allyl monomer copolymer - Google Patents

Process for producing polar group-containing allyl monomer copolymer Download PDF

Info

Publication number
JP2021188009A
JP2021188009A JP2020097097A JP2020097097A JP2021188009A JP 2021188009 A JP2021188009 A JP 2021188009A JP 2020097097 A JP2020097097 A JP 2020097097A JP 2020097097 A JP2020097097 A JP 2020097097A JP 2021188009 A JP2021188009 A JP 2021188009A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituted
unsubstituted
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020097097A
Other languages
Japanese (ja)
Other versions
JP7399422B2 (en
Inventor
京子 野崎
Kyoko Nozaki
潤一 黒田
Junichi Kuroda
慎也 林
Shinya Hayashi
吉邦 奥村
Yoshikuni Okumura
正弘 上松
Masahiro Uematsu
佑輔 満重
Yusuke Mitsushige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
University of Tokyo NUC
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Japan Polyethylene Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Japan Polyethylene Corp, University of Tokyo NUC filed Critical Showa Denko KK
Priority to JP2020097097A priority Critical patent/JP7399422B2/en
Publication of JP2021188009A publication Critical patent/JP2021188009A/en
Application granted granted Critical
Publication of JP7399422B2 publication Critical patent/JP7399422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

To provide, when producing a copolymer of ethylene and an allyl monomer having a polar group using a group 10 metal complex in the periodic table as a catalyst, a process for producing the copolymer with higher catalytic activity.SOLUTION: Provided is a production process in which, using a metal complex represented by the general formula (C1) as a catalyst, ethylene, an allyl monomer having a polar group, and a 2,5-norbornadiene-like compound are copolymerized by having the ratio of the number of charged moles of allyl monomer having a polar group to the sum of the number of charged moles of ethylene and allyl monomer having a polar group 70 mole% or more.SELECTED DRAWING: None

Description

本発明は、極性基を含有するアリルモノマー共重合体の製造方法に関する。 The present invention relates to a method for producing an allyl monomer copolymer containing a polar group.

非極性モノマーであるエチレンやプロピレンなどのオレフィンと極性基を有するビニルモノマーとの共重合体は、無極性であるポリエチレンやポリプロピレンにはない機能性や特性を有しており、幅広い分野で使用されている。例えば、エチレン・ビニルアルコール共重合体(EVOH)は、エチレンモノマー構造単位とビニルアルコールモノマー構造単位からなる共重合体であり、エチレンと酢酸ビニルのラジカル共重合で得られるエチレン・酢酸ビニル共重合体をケン化することによって製造される。EVOHはその優れたガスバリア性を生かして、食品包装用途など広い分野で使用されている。 Copolymers of non-polar monomers such as ethylene and propylene with olefins and vinyl monomers having polar groups have functionality and properties not found in non-polar polyethylene and polypropylene, and are used in a wide range of fields. ing. For example, an ethylene / vinyl alcohol copolymer (EVOH) is a copolymer composed of an ethylene monomer structural unit and a vinyl alcohol monomer structural unit, and is an ethylene / vinyl acetate copolymer obtained by radical copolymerization of ethylene and vinyl acetate. Manufactured by copolymerizing. EVOH is used in a wide range of fields such as food packaging by taking advantage of its excellent gas barrier property.

一方で、酢酸アリルやアリルアルコールなどの極性基を有するアリルモノマーの重合は、通常のビニルモノマーと比べて難しく、その重合体はほとんど知られていない。その主な理由は、アリルモノマーをラジカル重合させた場合、アリル位炭素上に存在する水素原子引き抜きによるモノマーへの退化的連鎖移動反応のため、ポリマーの生長反応が極めて遅く、重合度の低いオリゴマーしか得られないためである(Chem. Rev. 58, 808 (1958);非特許文献1)。 On the other hand, the polymerization of an allyl monomer having a polar group such as allyl acetate or allyl alcohol is more difficult than that of a normal vinyl monomer, and the polymer thereof is hardly known. The main reason for this is that when an allyl monomer is radically polymerized, the polymer growth reaction is extremely slow and the degree of polymerization is low due to the degenerative chain transfer reaction to the monomer by extracting the hydrogen atom present on the allyl-position carbon. This is because it can only be obtained (Chem. Rev. 58, 808 (1958); Non-Patent Document 1).

特開2011−68881号公報(特許文献1)、国際公開第2013/168626号(特許文献2)及びJ. Am. Chem. Soc., 133, 1232 (2011)(非特許文献2)には、周期表第10族の金属錯体触媒を使用したエチレンと極性基含有アリルモノマーの配位共重合が示されており、ラジカル重合法では得られなかった極性基含有アリルモノマー共重合体の合成に成功している。 Japanese Patent Laying-Open No. 2011-68881 (Patent Document 1), International Publication No. 2013/168626 (Patent Document 2) and J. Am. Chem. Soc., 133, 1232 (2011) (Non-Patent Document 2) Coordination copolymerization of ethylene and polar group-containing allyl monomer using a metal complex catalyst of Group 10 of the periodic table has been shown, and successful synthesis of a polar group-containing allyl monomer copolymer that could not be obtained by the radical polymerization method was successfully performed. is doing.

特開2013−079347号公報(特許文献3)には、周期表第10族の金属錯体触媒を使用して、エチレンと極性基含有アリルモノマー以外の第3のモノマーとして、ジエン化合物を共重合させた例が示されている。エチレンと極性基含有アリルモノマーとの共重合で得られる重合体に比べて、より高い分子量の重合体が得られる一方で、ジエン化合物による架橋反応も進行しており、溶媒に不溶なゲル化成分が生成していた。そのため、1,2−ジクロロベンゼンを溶媒とするソックスレー抽出により、可溶ポリマーと不溶ポリマーを分離するという工程が必要であった。 In Japanese Patent Application Laid-Open No. 2013-07934 (Patent Document 3), a metal complex catalyst of Group 10 of the periodic table is used to copolymerize a diene compound as a third monomer other than ethylene and a polar group-containing allyl monomer. An example is shown. Compared to the polymer obtained by the copolymerization of ethylene and the polar group-containing allyl monomer, a polymer having a higher molecular weight can be obtained, while the cross-linking reaction with the diene compound is also proceeding, and the gelation component insoluble in the solvent is obtained. Was generated. Therefore, a step of separating the soluble polymer and the insoluble polymer by Soxhlet extraction using 1,2-dichlorobenzene as a solvent was required.

また、特開2014−159540号公報(特許文献4)及び国際公開第2016/067776号(特許文献5)には、上記文献に記載の触媒をさらに改良することで、様々な成形品に成形できるレベルの分子量の重合体を製造できるようになったことが開示されている。しかしながら、触媒コストの観点から、触媒活性及び単位触媒あたりのポリマー生産性は十分ではなく、工業化に向けて課題は残されていた。 Further, in Japanese Patent Application Laid-Open No. 2014-159540 (Patent Document 4) and International Publication No. 2016/0677776 (Patent Document 5), various molded products can be formed by further improving the catalyst described in the above documents. It is disclosed that it has become possible to produce a polymer having a molecular weight of a level. However, from the viewpoint of catalyst cost, the catalytic activity and the polymer productivity per unit catalyst are not sufficient, and there are still problems for industrialization.

特開2011−68881号公報Japanese Unexamined Patent Publication No. 2011-68881 国際公開第2013/168626号International Publication No. 2013/168626 特開2013−079347号公報Japanese Unexamined Patent Publication No. 2013-07934 特開2014−159540号公報Japanese Unexamined Patent Publication No. 2014-159540 国際公開第2016/067776号International Publication No. 2016/0677776

Chem. Rev. 58, 808 (1958)Chem. Rev. 58, 808 (1958) J. Am. Chem. Soc., 133, 1232 (2011)J. Am. Chem. Soc., 133, 1232 (2011)

本発明の課題は、エチレンと極性基を有するアリルモノマーとの共重合体を、周期表第10族金属錯体を触媒として製造するにあたり、より高い触媒活性で製造する方法を提供することにある。 An object of the present invention is to provide a method for producing a copolymer of ethylene and an allyl monomer having a polar group with higher catalytic activity when using a metal complex of Group 10 of the periodic table as a catalyst.

本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、周期表第10族金属錯体を触媒として使用し、エチレンと極性基を有するアリルモノマーに加えて、2,5−ノルボルナジエン類似化合物を共重合することにより、高い触媒活性で、種々の応用が可能な極性基を有するアリルモノマー共重合体を製造可能であることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have used a Group 10 metal complex in the periodic table as a catalyst, and in addition to ethylene and an allyl monomer having a polar group, 2,5-norbornadiene. We have found that by copolymerizing similar compounds, it is possible to produce an allyl monomer copolymer having a polar group capable of various applications with high catalytic activity, and have completed the present invention.

すなわち、本発明は以下の[1]〜[7]の共重合体の製造方法に関する。
[1]
一般式(C1)

Figure 2021188009
(式中、Mは周期表第10族の元素を表し、Xはリン原子(P)又は砒素原子(As)を表し、Yは、炭素原子数6〜30の置換若しくは無置換のアリーレン基、炭素原子数1〜20の置換若しくは無置換のアルキレン基、炭素原子数3〜30の置換若しくは無置換のシクロアルキレン基、置換若しくは無置換のイミノ基(−NH−)、オキシ基(−O−)、又は置換若しくは無置換のシリレン基(−SiH−)から選ばれる2価の基を表す。Rは、水素原子、ハロゲン原子、炭素原子数1〜30の炭化水素基、ハロゲン原子で置換された炭素原子数1〜30の炭化水素基、炭素原子数1〜10のアルコキシ基で置換された炭素原子数2〜30の炭化水素基、炭素原子数6〜20のアリールオキシ基で置換された炭素原子数7〜30の炭化水素基、炭素原子数2〜10のアミド基で置換された炭素原子数3〜30の炭化水素基、炭素原子数1〜30のアルコキシ基、炭素原子数6〜30のアリールオキシ基、及び炭素原子数2〜10のアシロキシ基からなる群より選ばれる置換基を表す。R及びRはそれぞれ独立して、アルコキシ基、アリールオキシ基、シリル基、アミノ基、又はハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基を表し、RとRは結合して環構造を形成してもよい。Lは電子供与性配位子を表し、RとLが環形成してもよい。qは0、1/2、1又は2である。)で示される金属錯体を触媒として使用し、エチレン、
一般式(1)
Figure 2021188009
(式中、Rは、水酸基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のアリールオキシ基、炭素原子数2〜10のアシル基、炭素原子数2〜10のエステル基(オキシカルボニル基;R−O−(C=O)−、Rは有機基)、炭素原子数2〜10のアシロキシ基、アミノ基、炭素原子数1〜12の置換アミノ基、炭素原子数2〜12の置換又は無置換のアミド基、炭素原子数5〜10の置換又は無置換のピリジル基、炭素原子数4〜10の置換又は無置換のピロリジル基、炭素原子数5〜10の置換又は無置換のピペリジル基、炭素原子数4〜10の置換又は無置換のヒドロフリル基、炭素原子数4〜10の置換又は無置換のイミダゾリル基、メルカプト基、炭素原子数1〜10のアルキルチオ基、炭素原子数6〜10のアリールチオ基、エポキシ基、及びハロゲン原子からなる群より選ばれる置換基を表す。)で示される極性基を有するアリルモノマー、
及び一般式(2)
Figure 2021188009
(式中、R、R、及びRは、それぞれ独立して、水素原子又は炭素原子数1〜3のアルキル基を表し、それぞれ同じであっても、異なっていてもよい。)で示される2,5−ノルボルナジエン類似化合物を、
エチレンと一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の和に対する一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の割合を70モル%以上として共重合することを特徴とする極性基含有アリルモノマー共重合体の製造方法。
[2]
得られる共重合体がゲル化していないことを特徴とする[1]に記載の共重合体の製造方法。
[3]
一般式(C1)中のYが、置換若しくは無置換の1,2−フェニレン基又は置換若しくは無置換のメチレン基である[1]又は[2]のいずれかに記載の共重合体の製造方法。
[4]
一般式(C1)中のR及びRが、いずれも炭素原子数3〜20のアルキル基又は炭素原子数5〜20のシクロアルキル基である[1]〜[3]のいずれかに記載の共重合体の製造方法。
[5]
一般式(C1)中のR及びRが、イソプロピル基、t−ブチル基、2−メチル−2−ペンチル基、2,3,3−トリメチル−2−ブチル基、又はメンチル基から選択される[1]〜[4]のいずれかに記載の共重合体の製造方法。
[6]
一般式(2)で示される2,5−ノルボルナジエン類似化合物が、無置換の2,5−ノルボルナジエン(一般式(2)中のR、R、及びRがいずれも水素原子)である[1]〜[5]のいずれかに記載の共重合体の製造方法。
[7]
一般式(1)で示される極性基を有するアリルモノマーが酢酸アリル(一般式(1)中のRがアセトキシ基(CHC(=O)−O−))である[1]〜[6]のいずれかに記載の共重合体の製造方法。 That is, the present invention relates to the following methods for producing the copolymers [1] to [7].
[1]
General formula (C1)
Figure 2021188009
(In the formula, M represents an element of Group 10 of the periodic table, X represents a phosphorus atom (P) or an arsenic atom (As), and Y represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Substituent or unsubstituted alkylene group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkylene group having 3 to 30 carbon atoms, substituted or unsubstituted imino group (-NH-), oxy group (-O-). ), or a substituted or unsubstituted silylene group (-SiH 2 - is .R 5 representing a divalent group selected from) a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 30 carbon atoms, a halogen atom Substituted with a hydrocarbon group having 1 to 30 carbon atoms, a hydrocarbon group having 2 to 30 carbon atoms substituted with an alkoxy group having 1 to 10 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. A hydrocarbon group having 7 to 30 carbon atoms, a hydrocarbon group having 3 to 30 carbon atoms substituted with an amide group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and a carbon atom number Represents a substituent selected from the group consisting of an aryloxy group of 6 to 30 and an acyloxy group having 2 to 10 carbon atoms. R 6 and R 7 independently represent an alkoxy group, an aryloxy group, a silyl group, and the like. It represents an amino group or a hydrocarbon group having 1 to 120 carbon atoms which may be substituted with one or more groups selected from a halogen atom, an alkoxy group and an aryloxy group, and R 6 and R 7 are bonded to each other. may also form a ring .L represents an electron-donating ligand, represented by R 5 and L are mAY ring formed .q is 0 / 2,1 or 2.) Using a metal complex as a catalyst, ethylene,
General formula (1)
Figure 2021188009
(In the formula, R 1 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 10 carbon atoms, and an ester group having 2 to 10 carbon atoms. (Oxycarbonyl group; RO- (C = O)-, R is an organic group), an acyloxy group having 2 to 10 carbon atoms, an amino group, a substituted amino group having 1 to 12 carbon atoms, and 2 carbon atoms. ~ 12 substituted or unsubstituted amide group, substituted or unsubstituted pyridyl group having 5 to 10 carbon atoms, substituted or unsubstituted pyrrolidyl group having 4 to 10 carbon atoms, substitution or substitution of 5 to 10 carbon atoms Unsubstituted piperidyl group, substituted or unsubstituted hydrofuryl group having 4 to 10 carbon atoms, substituted or unsubstituted imidazolyl group having 4 to 10 carbon atoms, mercapto group, alkylthio group having 1 to 10 carbon atoms, carbon An allyl monomer having a polar group represented by (representing a substituent selected from the group consisting of an arylthio group having 6 to 10 atoms, an epoxy group, and a halogen atom).
And general formula (2)
Figure 2021188009
(In the formula, R 2 , R 3 , and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same or different from each other.) The 2,5-norbornadiene-like compound shown,
The ratio of the number of moles of the allyl monomer having a polar group represented by the general formula (1) to the sum of the number of moles of ethylene and the allyl monomer having a polar group represented by the general formula (1) is 70 mol% or more. A method for producing a polar group-containing allyl monomer copolymer, which comprises copolymerizing as a copolymer.
[2]
The method for producing a copolymer according to [1], wherein the obtained copolymer is not gelled.
[3]
The method for producing a copolymer according to any one of [1] or [2], wherein Y in the general formula (C1) is a substituted or unsubstituted 1,2-phenylene group or a substituted or unsubstituted methylene group. ..
[4]
Described in any one of [1] to [3], wherein R 6 and R 7 in the general formula (C1) are both alkyl groups having 3 to 20 carbon atoms or cycloalkyl groups having 5 to 20 carbon atoms. Method for producing a copolymer of.
[5]
R 6 and R 7 in the general formula (C1) are selected from an isopropyl group, a t-butyl group, a 2-methyl-2-pentyl group, a 2,3,3-trimethyl-2-butyl group, or a menthyl group. The method for producing a copolymer according to any one of [1] to [4].
[6]
2,5-norbornadiene analogous compound represented by the general formula (2) is, is unsubstituted 2,5-norbornadiene (general formula (R 2 in 2), R 3, and R 4 both are hydrogen atom) The method for producing a copolymer according to any one of [1] to [5].
[7]
Allyl monomers allyl acetate having a polar group represented by the general formula (1) (R 1 in the formula (1) is an acetoxy group (CH 3 C (= O) -O-)) [1] ~ [ 6] The method for producing a copolymer according to any one of.

極性基を有するアリルモノマー共重合体を高い触媒活性で製造できるようになり、低い製造コストが実現可能となる。 An allyl monomer copolymer having a polar group can be produced with high catalytic activity, and a low production cost can be realized.

[触媒]
(金属錯体の構造)
一実施形態で使用する周期表第10族金属錯体からなる触媒の構造は、一般式(C1)で示される。

Figure 2021188009
[catalyst]
(Structure of metal complex)
The structure of the catalyst composed of the Group 10 metal complex of the periodic table used in one embodiment is represented by the general formula (C1).
Figure 2021188009

式中、Mは周期表第10族の元素を表し、Xはリン原子(P)又は砒素原子(As)を表し、Yは、炭素原子数6〜30の置換若しくは無置換のアリーレン基、炭素原子数1〜20の置換若しくは無置換のアルキレン基、炭素原子数3〜30の置換若しくは無置換のシクロアルキレン基、置換若しくは無置換のイミノ基(−NH−)、オキシ基(−O−)、又は置換若しくは無置換のシリレン基(−SiH−)から選ばれる2価の基を表す。Rは、水素原子、ハロゲン原子、炭素原子数1〜30の炭化水素基、ハロゲン原子で置換された炭素原子数1〜30の炭化水素基、炭素原子数1〜10のアルコキシ基で置換された炭素原子数2〜30の炭化水素基、炭素原子数6〜20のアリールオキシ基で置換された炭素原子数7〜30の炭化水素基、炭素原子数2〜10のアミド基で置換された炭素原子数3〜30の炭化水素基、炭素原子数1〜30のアルコキシ基、炭素原子数6〜30のアリールオキシ基、及び炭素原子数2〜10のアシロキシ基からなる群より選ばれる置換基を表す。R及びRはそれぞれ独立して、アルコキシ基、アリールオキシ基、シリル基、アミノ基、又はハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基を表し、RとRは結合して環構造を形成してもよい。Lは電子供与性配位子を表し、RとLが環形成してもよい。qは0、1/2、1又は2である。 In the formula, M represents an element of Group 10 of the periodic table, X represents a phosphorus atom (P) or an arsenic atom (As), and Y represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms and carbon. Substituent or unsubstituted alkylene group having 1 to 20 atoms, substituted or unsubstituted cycloalkylene group having 3 to 30 carbon atoms, substituted or unsubstituted imino group (-NH-), oxy group (-O-) , Or a divalent group selected from substituted or unsubstituted silylene groups (-SiH 2-). R 5 is a hydrogen atom, a halogen atom, substituted with a hydrocarbon group, a hydrocarbon group having 1 to 30 carbon atoms which is substituted with a halogen atom, an alkoxy group having 1 to 10 carbon atoms having 1 to 30 carbon atoms It was substituted with a hydrocarbon group having 2 to 30 carbon atoms, a hydrocarbon group having 7 to 30 carbon atoms substituted with an aryloxy group having 6 to 20 carbon atoms, and an amide group having 2 to 10 carbon atoms. Substituent selected from the group consisting of a hydrocarbon group having 3 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and an acyloxy group having 2 to 10 carbon atoms. Represents. Each of R 6 and R 7 may be independently substituted with one or more groups selected from an alkoxy group, an aryloxy group, a silyl group, an amino group, or a halogen atom, an alkoxy group and an aryloxy group. It represents a hydrocarbon group having 1 to 120 atoms, and R 6 and R 7 may be bonded to form a ring structure. L represents an electron donor ligand, R 5 and L may be ring formation. q is 0, 1/2, 1 or 2.

なお、本明細書では、「炭化水素」は飽和、不飽和の脂肪族炭化水素、芳香族炭化水素を含む。 In the present specification, "hydrocarbon" includes saturated and unsaturated aliphatic hydrocarbons and aromatic hydrocarbons.

以下、一般式(C1)の構造について説明する。 Hereinafter, the structure of the general formula (C1) will be described.

Mは周期表第10族の元素を表す。周期表第10族の元素としては、Ni、Pd、及びPtが挙げられるが、触媒活性及び得られる重合体の分子量の観点からNi及びPdが好ましく、Pdがより好ましい。 M represents an element of Group 10 of the periodic table. Examples of the elements of Group 10 of the periodic table include Ni, Pd, and Pt, but Ni and Pd are preferable, and Pd is more preferable, from the viewpoint of catalytic activity and the molecular weight of the obtained polymer.

Xはリン原子(P)又は砒素原子(As)であり、中心金属Mに2電子配位している。Xとしては、入手容易性及び触媒コストの面からPが好ましい。 X is a phosphorus atom (P) or an arsenic atom (As), and has a two-electron coordination with the central metal M. As X, P is preferable from the viewpoint of availability and catalyst cost.

Yは、炭素原子数6〜30の置換若しくは無置換のアリーレン基、炭素原子数1〜20の置換若しくは無置換のアルキレン基、炭素原子数3〜30の置換若しくは無置換のシクロアルキレン基、置換若しくは無置換のイミノ基(−NH−)、オキシ基(−O−)、又は置換若しくは無置換のシリレン基(−SiH−)から選ばれる2価の基を表す。 Y is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 30 carbon atoms, or a substituent. Alternatively, it represents a divalent group selected from an unsubstituted imino group (-NH-), an oxy group (-O-), or a substituted or unsubstituted silylene group (-SiH 2-).

炭素原子数6〜30の無置換のアリーレン基の例として、1,2−フェニレン基、1,2−ナフチレン基、2,3−ナフチレン基、1,8−ナフチレン基などが挙げられ、原料入手の容易さ及び触媒合成の容易さから、1,2−フェニレン基及び1,2−ナフチレン基が好ましい。 Examples of the unsubstituted arylene group having 6 to 30 carbon atoms include 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, 1,8-naphthylene group and the like, and raw materials are obtained. 1,2-Phenylene group and 1,2-naphthylene group are preferable because of the ease of the above and the ease of catalyst synthesis.

上記の無置換アリーレン基に1つ又は複数の置換基が存在していてもよい。置換基としては、炭素原子数1〜4のアルキル基、炭素原子数6〜20の芳香族炭化水素基、炭素原子数7〜10のアルコキシフェニル基、ナフチル基、アントラセニル基、炭素原子数1〜4のアルコキシ基、アリールオキシ基、置換又は無置換のアミノ基、シリル基、ハロゲン原子、及びフルオロアルキル基が好ましい。置換基の具体例としては、メチル基、エチル基、1−プロピル基、イソプロピル基、1−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基;2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2,3−ジメトキシフェニル基、2,4−ジメトキシフェニル基、2,5−ジメトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3,6−ジメトキシフェニル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、t−ブトキシ基;フェノキシ基;アミノ基、モノメチルアミノ基、モノエチルアミノ基、モノ(n−プロピル)アミノ基、モノ(イソプロピル)アミノ基、モノ(n−ブチル)アミノ基、モノ(イソブチル)アミノ基、モノ(sec−ブチル)アミノ基、モノ(t−ブチル)アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ(n−プロピル)アミノ基、ジイソプロピルアミノ基、ジ(n−ブチル)アミノ基、ジ(イソブチル)アミノ基、ジ(sec−ブチル)アミノ基、ジ(t−ブチル)アミノ基、モノフェニルアミノ基、モノベンジルアミノ基;トリメチルシリル基、トリエチルシリル基、トリ(n−プロピル)シリル基、トリ(イソプロピル)シリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基;フルオロ基、ブロモ基、クロロ基、ヨード基;トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基などが挙げられる。なお、置換基が複数存在する場合、同じであっても異なっていてもよい。 One or more substituents may be present in the above-mentioned unsubstituted arylene group. Substituents include an alkyl group having 1 to 4 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an alkoxyphenyl group having 7 to 10 carbon atoms, a naphthyl group, an anthracenyl group, and 1 to 1 carbon atoms. A alkoxy group, an aryloxy group, a substituted or unsubstituted amino group, a silyl group, a halogen atom, and a fluoroalkyl group of 4 are preferable. Specific examples of the substituent include methyl group, ethyl group, 1-propyl group, isopropyl group, 1-butyl group, isobutyl group, sec-butyl group, t-butyl group; phenyl group, 1-naphthyl group, 2-. Naftyl group, 1-anthrasenyl group, 2-anthrasenyl group, 9-anthrasenyl group; 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2,3-dimethoxyphenyl group, 2,4-dimethoxyphenyl Group, 2,5-dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,6-dimethoxyphenyl group; methoxy group, ethoxy group, propoxy group , Isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, t-butoxy group; phenoxy group; amino group, monomethylamino group, monoethylamino group, mono (n-propyl) amino group, mono (isopropyl) amino Group, mono (n-butyl) amino group, mono (isobutyl) amino group, mono (sec-butyl) amino group, mono (t-butyl) amino group, dimethylamino group, diethylamino group, di (n-propyl) amino Group, diisopropylamino group, di (n-butyl) amino group, di (isobutyl) amino group, di (sec-butyl) amino group, di (t-butyl) amino group, monophenylamino group, monobenzylamino group; Trimethylsilyl group, triethylsilyl group, tri (n-propyl) silyl group, tri (isopropyl) silyl group, t-butyldimethylsilyl group, t-butyldiphenylsilyl group; fluoro group, bromo group, chloro group, iodine group; tri Fluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, nonafluorobutyl group and the like can be mentioned. When a plurality of substituents are present, they may be the same or different.

炭素原子数1〜20の無置換のアルキレン基としては、炭素原子数1〜10のアルキレン基が好ましい。炭素原子数1〜20の無置換のアルキレン基の具体例としては、メチレン基、1,2−エチレン基、ジメチルメチレン基、ジエチルメチレン基、モノメチルメチレン基、モノエチルメチレン基、1−メチル−1,2−エチレン基、1−エチル−1,2−エチレン基、1,2−ジメチル−1,2−エチレン基、1,2−ジエチル−1,2−エチレン基、1,1−ジメチル−1,2−エチレン基、1,1−ジエチル−1,2−エチレン基、1,1,2−トリメチル−1,2−エチレン基、1,1,2−トリエチル−1,2−エチレン基、1,1,2,2−テトラメチル−1,2−エチレン基、1,1,2,2−テトラエチル−1,2−エチレン基などが挙げられる。原料入手の容易さ及び触媒合成の容易さから、メチレン基、及びエチレン基が好ましい。 As the unsubstituted alkylene group having 1 to 20 carbon atoms, an alkylene group having 1 to 10 carbon atoms is preferable. Specific examples of the unsubstituted alkylene group having 1 to 20 carbon atoms include a methylene group, a 1,2-ethylene group, a dimethylmethylene group, a diethylmethylene group, a monomethylmethylene group, a monoethylmethylene group, and 1-methyl-1. , 2-ethylene group, 1-ethyl-1,2-ethylene group, 1,2-dimethyl-1,2-ethylene group, 1,2-diethyl-1,2-ethylene group, 1,1-dimethyl-1 , 2-ethylene group, 1,1-diethyl-1,2-ethylene group, 1,1,2-trimethyl-1,2-ethylene group, 1,1,2-triethyl-1,2-ethylene group, 1 , 1,2,2-tetramethyl-1,2-ethylene group, 1,1,2,2-tetraethyl-1,2-ethylene group and the like. A methylene group and an ethylene group are preferable from the viewpoint of easy availability of raw materials and easy catalyst synthesis.

上記の無置換のアルキレン基に1つ又は複数の置換基が存在していてもよい。置換基としてはアリール基、アルコキシ基、アルコキシフェニル基、アリールオキシ基、シリル基、オキソ基(=O)などが挙げられる。 One or more substituents may be present in the above-mentioned unsubstituted alkylene group. Examples of the substituent include an aryl group, an alkoxy group, an alkoxyphenyl group, an aryloxy group, a silyl group, an oxo group (= O) and the like.

置換基を有する炭素原子数1〜20のアルキレン基の具体例としては、ジフェニルメチレン基、モノフェニルメチレン基、モノ(トリメチルシリル)メチレン基、ジ(トリメチルシリル)メチレン基、ジ(2−メトキシフェニル)メチレン基、モノ(2−メトキシフェニル)メチレン基、ジ(3−メトキシフェニル)メチレン基、モノ(3−メトキシフェニル)メチレン基、ジ(4−メトキシフェニル)メチレン基、モノ(4−メトキシフェニル)メチレン基、ジ(2,6−ジメトキシフェニル)メチレン基、モノ(2,6−ジメトキシフェニル)メチレン基、ジ(2,5−ジメトキシフェニル)メチレン基、モノ(2,5−ジメトキシフェニル)メチレン基、ジ(2,4−ジメトキシフェニル)メチレン基、モノ(2,4−ジメトキシフェニル)メチレン基、ジ(2,3−ジメトキシフェニル)メチレン基、モノ(2,3−ジメトキシフェニル)メチレン基、ジ(3,5−ジメトキシフェニル)メチレン基、モノ(3,5−ジメトキシフェニル)メチレン基、ジ(2,4,6−トリメトキシフェニル)メチレン基、モノ(2,4,6−トリメトキシフェニル)メチレン基、ジ(2,4,6−トリメチルフェニル)メチレン基、モノ(2,4,6−トリメチルフェニル)メチレン基、ジ(2−イソプロピルフェニル)メチレン基、モノ(2−イソプロピルフェニル)メチレン基、ジ(2,6−ジイソプロピルフェニル)メチレン基、モノ(2,6−ジイソプロピルフェニル)メチレン基、ジ(1−ナフチル)メチレン基、モノ(1−ナフチル)メチレン基、ジ(2−ナフチル)メチレン基、モノ(2−ナフチル)メチレン基、ジメトキシメチレン基、ジエトキシメチレン基、ジプロポキシメチレン基、ジイソプロポキシメチレン基、モノフェノキシメチレン基、ジフェノキシメチレン基、1,2−エタンジオキシメチレン基、1,3−プロパンジオキシメチレン基、1−フェニル−1,2−エチレン基、1,2−ジフェニル−1,2−エチレン基、1,1,2−トリフェニル−1,2−エチレン基、1,1,2,2−テトラフェニル−1,2−エチレン基、カルボニル基(−C(=O)−)などが挙げられる。 Specific examples of the alkylene group having a substituent and having 1 to 20 carbon atoms include a diphenylmethylene group, a monophenylmethylene group, a mono (trimethylsilyl) methylene group, a di (trimethylsilyl) methylene group, and a di (2-methoxyphenyl) methylene. Group, mono (2-methoxyphenyl) methylene group, di (3-methoxyphenyl) methylene group, mono (3-methoxyphenyl) methylene group, di (4-methoxyphenyl) methylene group, mono (4-methoxyphenyl) methylene Group, di (2,6-dimethoxyphenyl) methylene group, mono (2,6-dimethoxyphenyl) methylene group, di (2,5-dimethoxyphenyl) methylene group, mono (2,5-dimethoxyphenyl) methylene group, Di (2,4-dimethoxyphenyl) methylene group, mono (2,4-dimethoxyphenyl) methylene group, di (2,3-dimethoxyphenyl) methylene group, mono (2,3-dimethoxyphenyl) methylene group, di ( 3,5-dimethoxyphenyl) methylene group, mono (3,5-dimethoxyphenyl) methylene group, di (2,4,6-trimethoxyphenyl) methylene group, mono (2,4,6-trimethoxyphenyl) methylene Group, di (2,4,6-trimethylphenyl) methylene group, mono (2,4,6-trimethylphenyl) methylene group, di (2-isopropylphenyl) methylene group, mono (2-isopropylphenyl) methylene group, Di (2,6-diisopropylphenyl) methylene group, mono (2,6-diisopropylphenyl) methylene group, di (1-naphthyl) methylene group, mono (1-naphthyl) methylene group, di (2-naphthyl) methylene group , Mono (2-naphthyl) methylene group, dimethoxymethylene group, diethoxymethylene group, dipropoximethylene group, diisopropoximethylene group, monophenoximethylene group, diphenoxymethylene group, 1,2-ethanedioxymethylene group, 1,3-Propanedioxymethylene group, 1-phenyl-1,2-ethylene group, 1,2-diphenyl-1,2-ethylene group, 1,1,2-triphenyl-1,2-ethylene group, Examples thereof include 1,1,2,2-tetraphenyl-1,2-ethylene group and carbonyl group (-C (= O)-).

炭素原子数1〜20の置換又は無置換のアルキレン基としては、原料入手の容易さ及び触媒合成の容易さから、メチレン基、モノメチルメチレン基、ジメチルメチレン基、モノフェニルメチレン基、及びジフェニルメチレン基が好ましい。 Substituted or unsubstituted alkylene groups having 1 to 20 carbon atoms include methylene groups, monomethylmethylene groups, dimethylmethylene groups, monophenylmethylene groups, and diphenylmethylene groups because of the ease of obtaining raw materials and synthesizing catalysts. Is preferable.

炭素原子数3〜30の無置換のシクロアルキレン基の例として、cis−シクロプロパン−1,2−イル基、trans−シクロプロパン−1,2−イル基、cis−シクロブタン−1,2−イル基、trans−シクロブタン−1,2−イル基、cis−シクロペンタン−1,2−イル基、trans−シクロペンタン−1,2−イル基、cis−シクロヘキサン−1,2−イル基、trans−シクロヘキサン−1,2−イル基、cis−シクロヘプタン−1,2−イル基、trans−シクロヘプタン−1,2−イル基、cis−シクロオクタン−1,2−イル基、trans−シクロオクタン−1,2−イル基などが挙げられる。原料入手の容易さ及び触媒合成の容易さから、cis−シクロペンタン−1,2−イル基、trans−シクロペンタン−1,2−イル基、cis−シクロヘキサン−1,2−イル基、及びtrans−シクロヘキサン−1,2−イル基が好ましい。 Examples of unsubstituted cycloalkylene groups having 3 to 30 carbon atoms are cis-cyclopropane-1,2-yl group, trans-cyclopropane-1,2-yl group, and cis-cyclobutane-1,2-yl group. Group, trans-cyclobutane-1,2-yl group, cis-cyclopentane-1,2-yl group, trans-cyclopentane-1,2-yl group, cis-cyclohexane-1,2-yl group, trans- Cyclohexane-1,2-yl group, cis-cycloheptane-1,2-yl group, trans-cycloheptane-1,2-yl group, cis-cyclooctane-1,2-yl group, trans-cyclooctane- Examples include 1,2-yl groups. Due to the ease of obtaining raw materials and synthesizing catalysts, cis-cyclopentane-1,2-yl group, trans-cyclopentane-1,2-yl group, cis-cyclohexane-1,2-yl group, and trans -Cyclohexane-1,2-yl group is preferred.

上記の無置換シクロアルキレン基に1つ又は複数の置換基が存在していてもよい。置換基の具体例は、無置換アリーレン基に置換基が存在する場合の置換基の上記具体例と同様である。置換基が複数存在する場合、互いに同じであっても異なっていてもよい。 One or more substituents may be present in the above-mentioned unsubstituted cycloalkylene group. The specific example of the substituent is the same as the above-mentioned specific example of the substituent when the substituent is present in the unsubstituted arylene group. When a plurality of substituents are present, they may be the same or different from each other.

置換又は無置換のイミノ基(−NH−)における置換基としては、炭素原子数1〜5のアルキル基、炭素原子数2〜10のアルコキシカルボニル基、炭素原子数6〜20の、アルキル基又はアルコキシ基を有していてもよいアリール基、炭素原子数6〜20のアラルキル基、及びシリル基が挙げられる。 Substituents in the substituted or unsubstituted imino group (-NH-) include an alkyl group having 1 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an alkyl group having 6 to 20 carbon atoms, or an alkyl group. Examples thereof include an aryl group which may have an alkoxy group, an aralkyl group having 6 to 20 carbon atoms, and a silyl group.

置換又は無置換のイミノ基(−NH−)の具体例として、イミノ基、N−メチルイミノ基、N−エチルイミノ基、N−(n−プロピル)イミノ基、N−イソプロピルイミノ基、N−(n−ブチル)イミノ基、N−(sec−ブチル)イミノ基、N−(t−ブチル)イミノ基、N−ベンジルイミノ基、N−フェニルイミノ基、N−トリメチルシリルイミノ基、N−(2−メトキシフェニル)イミノ基、N−(3−メトキシフェニル)イミノ基、N−(4−メトキシフェニル)イミノ基、N−(2,6−ジメトキシフェニル)イミノ基、N−(2,5−ジメトキシフェニル)イミノ基、N−(2,4−ジメトキシフェニル)イミノ基、N−(2,3−ジメトキシフェニル)イミノ基、N−(3,5−ジメトキシフェニル)イミノ基、N−(2,4,6−トリメトキシフェニル)イミノ基、N−(2,4,6−トリメチルフェニル)イミノ基、N−(1−ナフチル)イミノ基、N−(2−ナフチル)イミノ基、N−(t−ブトキシカルボニル)イミノ基などが挙げられる。 Specific examples of the substituted or unsubstituted imino group (-NH-) include an imino group, an N-methylimino group, an N-ethylimino group, an N- (n-propyl) imino group, an N-isopropylimino group, and an N- (n). -Butyl) imino group, N- (sec-butyl) imino group, N- (t-butyl) imino group, N-benzylimino group, N-phenylimino group, N-trimethylsilylimino group, N- (2-methoxy) Phenyl) imino group, N- (3-methoxyphenyl) imino group, N- (4-methoxyphenyl) imino group, N- (2,6-dimethoxyphenyl) imino group, N- (2,5-dimethoxyphenyl) Imino group, N- (2,4-dimethoxyphenyl) imino group, N- (2,3-dimethoxyphenyl) imino group, N- (3,5-dimethoxyphenyl) imino group, N- (2,4,6) -Trimethoxyphenyl) imino group, N- (2,4,6-trimethylphenyl) imino group, N- (1-naphthyl) imino group, N- (2-naphthyl) imino group, N- (t-butoxycarbonyl) ) Examples include imino groups.

触媒合成の容易さから、イミノ基、N−メチルイミノ基、N−ベンジルイミノ基、及びN−(t−ブトキシカルボニル)イミノ基が好ましい。 From the viewpoint of ease of catalyst synthesis, an imino group, an N-methylimino group, an N-benzylimino group, and an N- (t-butoxycarbonyl) imino group are preferable.

置換又は無置換のシリレン基(−SiH−)の例として、シリレン基、ジメチルシリレン基、ジエチルシリレン基、モノメチルシリレン基、モノエチルシリレン基、ジフェニルシリレン基、モノフェニルシリレン基、モノ(トリメチルシリル)シリレン基、ジ(トリメチルシリル)シリレン基、ジ(2−メトキシフェニル)シリレン基、モノ(2−メトキシフェニル)シリレン基、ジ(3−メトキシフェニル)シリレン基、モノ(3−メトキシフェニル)シリレン基、ジ(4−メトキシフェニル)シリレン基、モノ(4−メトキシフェニル)シリレン基、ジ(2,6−ジメトキシフェニル)シリレン基、モノ(2,6−ジメトキシフェニル)シリレン基、ジ(2,5−ジメトキシフェニル)シリレン基、モノ(2,5−ジメトキシフェニル)シリレン基、ジ(2,4−ジメトキシフェニル)シリレン基、モノ(2,4−ジメトキシフェニル)シリレン基、ジ(2,3−ジメトキシフェニル)シリレン基、モノ(2,3−ジメトキシフェニル)シリレン基、ジ(3,5−ジメトキシフェニル)シリレン基、モノ(3,5−ジメトキシフェニル)シリレン基、ジ(2,4,6−トリメトキシフェニル)シリレン基、モノ(2,4,6−トリメトキシフェニル)シリレン基、ジ(2,4,6−トリメチルフェニル)シリレン基、モノ(2,4,6−トリメチルフェニル)シリレン基、ジ(2−イソプロピルフェニル)シリレン基、モノ(2−イソプロピルフェニル)シリレン基、ジ(2,6−ジイソプロピルフェニル)シリレン基、モノ(2,6−ジイソプロピルフェニル)シリレン基、ジ(1−ナフチル)シリレン基、モノ(1−ナフチル)シリレン基、ジ(2−ナフチル)シリレン基、モノ(2−ナフチル)シリレン基、ジメトキシシリレン基、ジエトキシシリレン基、ジプロポキシシリレン基、ジイソプロポキシシリレン基、1,2−エタンジオキシシリレン基、1,3−プロパンジオキシシリレン基などが挙げられる。触媒合成の容易さから、シリレン基、モノメチルシリレン基、ジメチルシリレン基、モノフェニルシリレン基、及びジフェニルシリレン基が好ましい。 As an example of a substituted or unsubstituted silylene group (-SiH 2- ), a silylene group, a dimethylsilylene group, a diethylsilylene group, a monomethylcyrylene group, a monoethylsilylene group, a diphenylcyrylene group, a monophenyltylylene group, a mono (trimethylsilyl) Silylen group, di (trimethylsilyl) silylene group, di (2-methoxyphenyl) silylene group, mono (2-methoxyphenyl) silylene group, di (3-methoxyphenyl) silylene group, mono (3-methoxyphenyl) silylene group, Di (4-methoxyphenyl) silylene group, mono (4-methoxyphenyl) silylene group, di (2,6-dimethoxyphenyl) silylene group, mono (2,6-dimethoxyphenyl) silylene group, di (2,5-) Dimethoxyphenyl) silylene group, mono (2,5-dimethoxyphenyl) silylene group, di (2,4-dimethoxyphenyl) silylene group, mono (2,4-dimethoxyphenyl) silylene group, di (2,3-dimethoxyphenyl) ) Silylen group, mono (2,3-dimethoxyphenyl) silylene group, di (3,5-dimethoxyphenyl) silylene group, mono (3,5-dimethoxyphenyl) silylene group, di (2,4,6-trimethoxy) Phenyl) silylene group, mono (2,4,6-trimethoxyphenyl) silylene group, di (2,4,6-trimethylphenyl) silylene group, mono (2,4,6-trimethylphenyl) silylene group, di ( 2-isopropylphenyl) silylene group, mono (2-isopropylphenyl) silylene group, di (2,6-diisopropylphenyl) silylene group, mono (2,6-diisopropylphenyl) silylene group, di (1-naphthyl) silylene group , Mono (1-naphthyl) silylene group, di (2-naphthyl) silylene group, mono (2-naphthyl) silylene group, dimethoxycilylene group, diethoxycilylene group, dipropoxycilylene group, diisopropoxycilylene group, 1, Examples thereof include a 2-ethanedioxysilylene group and a 1,3-propanedioxysilylene group. From the viewpoint of ease of catalyst synthesis, a silylene group, a monomethylsilylene group, a dimethylsilylene group, a monophenylcilylene group, and a diphenylcilylene group are preferable.

これらのYとして好ましい群のうち、特に好ましくは、置換若しくは無置換の1,2−フェニレン基又は置換若しくは無置換のメチレン基である Among these groups preferred as Y, a substituted or unsubstituted 1,2-phenylene group or a substituted or unsubstituted methylene group is particularly preferable.

は、水素原子、ハロゲン原子、炭素原子数1〜30の炭化水素基、ハロゲン原子で置換された炭素原子数1〜30の炭化水素基、炭素原子数1〜10のアルコキシ基で置換された炭素原子数2〜30の炭化水素基、炭素原子数6〜20のアリールオキシ基で置換された炭素原子数7〜30の炭化水素基、炭素原子数2〜10のアミド基で置換された炭素原子数3〜30の炭化水素基、炭素原子数1〜30のアルコキシ基、炭素原子数6〜30のアリールオキシ基、及び炭素原子数2〜10のアシロキシ基からなる群より選ばれる置換基を表す。 R 5 is a hydrogen atom, a halogen atom, substituted with a hydrocarbon group, a hydrocarbon group having 1 to 30 carbon atoms which is substituted with a halogen atom, an alkoxy group having 1 to 10 carbon atoms having 1 to 30 carbon atoms It was substituted with a hydrocarbon group having 2 to 30 carbon atoms, a hydrocarbon group having 7 to 30 carbon atoms substituted with an aryloxy group having 6 to 20 carbon atoms, and an amide group having 2 to 10 carbon atoms. Substituent selected from the group consisting of a hydrocarbon group having 3 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and an acyloxy group having 2 to 10 carbon atoms. Represents.

が表すハロゲン原子の好ましい具体例は、フッ素、塩素、及び臭素である。これらの中では塩素が好ましい。 Preferred specific examples of the halogen atom represented by R 5 are fluorine, chlorine, and bromine. Of these, chlorine is preferred.

が表す炭素原子数1〜30の炭化水素基は、好ましくは炭素原子数1〜20の炭化水素基であり、アルキル基、シクロアルキル基、アリール基又はアラルキル基である。好ましい具体例は、メチル基、エチル基、1−プロピル基、1−ブチル基、1−ペンチル基、1−ヘキシル基、1−ヘプチル基、1−オクチル基、1−ノニル基、1−デシル基、t−ブチル基、トリシクロヘキシルメチル基、1,1−ジメチル−2−フェニルエチル基、イソプロピル基、1,1−ジメチルプロピル基、1,1,2−トリメチルプロピル基、1,1−ジエチルプロピル基、1−フェニル−2−プロピル基、イソブチル基、1,1−ジメチルブチル基、2−ペンチル基、3−ペンチル基、2−ヘキシル基、3−ヘキシル基、2−エチルヘキシル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、2−プロピルヘプチル基、2−オクチル基、3−ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、1−アダマンチル基、2−アダマンチル基、エキソ−ノルボルニル基、エンド−ノルボニル基、2−ビシクロ[2.2.2]オクチル基、ノピニル基、デカヒドロナフチル基、メンチル基、ネオメンチル基、ネオペンチル基、5−デシル基、フェニル基、ナフチル基、アントラセニル基、フルオレニル基、トリル基、キシリル基、ベンジル基、4−エチルフェニル基などが挙げられる。これらの中で、さらに好ましくは、メチル基、又はベンジル基であり、特に好ましくはメチル基である。 The hydrocarbon group having 1 to 30 carbon atoms represented by R 5 is preferably a hydrocarbon group having 1 to 20 carbon atoms, and is an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group. Preferred specific examples are methyl group, ethyl group, 1-propyl group, 1-butyl group, 1-pentyl group, 1-hexyl group, 1-heptyl group, 1-octyl group, 1-nonyl group and 1-decyl group. , T-butyl group, tricyclohexylmethyl group, 1,1-dimethyl-2-phenylethyl group, isopropyl group, 1,1-dimethylpropyl group, 1,1,2-trimethylpropyl group, 1,1-diethylpropyl Group, 1-phenyl-2-propyl group, isobutyl group, 1,1-dimethylbutyl group, 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2-ethylhexyl group, 2-heptyl Group, 3-Heptyl Group, 4-Heptyl Group, 2-propylHeptyl Group, 2-Octyl Group, 3-Nonyl Group, Cyclopropyl Group, Cyclobutyl Group, Cyclopentyl Group, Methylcyclopentyl Group, Cyclohexyl Group, Methylcyclohexyl Group, Cyclo Propyl group, cyclooctyl group, cyclododecyl group, 1-adamantyl group, 2-adamantyl group, exo-norbornyl group, endo-norbonyl group, 2-bicyclo [2.2.2] octyl group, nopinyl group, decahydronaphthyl Examples thereof include a group, a mentyl group, a neomentyl group, a neopentyl group, a 5-decyl group, a phenyl group, a naphthyl group, an anthrasenyl group, a fluorenyl group, a trill group, a xylyl group, a benzyl group and a 4-ethylphenyl group. Among these, a methyl group or a benzyl group is more preferable, and a methyl group is particularly preferable.

が表すハロゲン原子で置換された炭素原子数1〜30の炭化水素基は、好ましくは前述の炭素原子数1〜30の炭化水素基をフッ素、塩素又は臭素で置換した基であり、好ましい具体例として、トリフルオロメチル基、及びペンタフルオロフェニル基が挙げられる。 Hydrocarbon group having 1 to 30 carbon atoms which is substituted by halogen atoms contained in R 5 represents is preferably a substituted hydrocarbon group described above having 1 to 30 carbon atoms fluorine, chlorine or bromine radical, preferably Specific examples include a trifluoromethyl group and a pentafluorophenyl group.

が表す炭素原子数1〜10のアルコキシ基で置換された炭素原子数2〜30の炭化水素基は、好ましくは前述の炭素原子数1〜30の炭化水素基をメトキシ基、エトキシ基、イソプロポキシ基、1−プロポキシ基、1−ブトキシ基、又はt−ブトキシ基で置換した基である。さらに好ましくはメトキシ基又はエトキシ基で置換された炭素原子数2〜6の炭化水素基である。具体的には、1−(メトキシメチル)エチル基、1−(エトキシメチル)エチル基、1−(メトキシエチル)エチル基、1−(エトキシエチル)エチル基、ジ(メトキシメチル)メチル基、及びジ(エトキシメチル)メチル基が挙げられる。特に好ましくは、1−(メトキシメチル)エチル基、又は1−(エトキシメチル)エチル基である。 Hydrocarbon group having 2 to 30 carbon atoms substituted with an alkoxy group having 1 to 10 carbon atoms which R 5 represents preferably above methoxy groups a hydrocarbon group having 1 to 30 carbon atoms, an ethoxy group, A group substituted with an isopropoxy group, a 1-propoxy group, a 1-butoxy group, or a t-butoxy group. More preferably, it is a hydrocarbon group having 2 to 6 carbon atoms substituted with a methoxy group or an ethoxy group. Specifically, 1- (methoxymethyl) ethyl group, 1- (ethoxymethyl) ethyl group, 1- (methoxyethyl) ethyl group, 1- (ethoxyethyl) ethyl group, di (methoxymethyl) methyl group, and Di (ethoxymethyl) methyl group is mentioned. Particularly preferred is a 1- (methoxymethyl) ethyl group or a 1- (ethoxymethyl) ethyl group.

が表す炭素原子数6〜20のアリールオキシ基で置換された炭素原子数7〜30の炭化水素基は、好ましくは、前述の炭素原子数1〜30の炭化水素基をフェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、2,6−ジメチルフェノキシ基、又は2,6−ジ−t−ブチルフェノキシ基で置換した基である。さらに好ましくはフェノキシ基又は2,6−ジメチルフェノキシ基で置換された炭素原子数7〜12の炭化水素基であり、特に好ましくは、1−(フェノキシメチル)エチル基、又は1−(2,6−ジメチルフェノキシメチル)エチル基である。 Hydrocarbon group having 7 to 30 carbon atoms which is substituted with an aryloxy group having 6 to 20 carbon atoms contained in R 5 represents preferably a phenoxy group and a hydrocarbon group having 1 to 30 carbon atoms described above, 4 -A group substituted with a methylphenoxy group, a 4-methoxyphenoxy group, a 2,6-dimethylphenoxy group, or a 2,6-di-t-butylphenoxy group. A hydrocarbon group having 7 to 12 carbon atoms substituted with a phenoxy group or a 2,6-dimethylphenoxy group is more preferable, and a 1- (phenoxymethyl) ethyl group or 1- (2,6) is particularly preferable. -Dimethylphenoxymethyl) Ethyl group.

が表す炭素原子数2〜10のアミド基(R−(C=O)NH−、Rは有機基)で置換された炭素原子数3〜30の炭化水素基は、好ましくは、前述の炭素原子数1〜30の炭化水素基をアセトアミド基、プロピオニルアミノ基、ブチリルアミノ基、イソブチリルアミノ基、バレリルアミノ基、イソバレリルアミノ基、ピバロイルアミノ基、又はベンゾイルアミノ基で置換した置換基である。さらに好ましくは2−アセトアミドフェニル基、2−プロピオニルアミノフェニル基、2−バレリルアミノフェニル基、又は2−ベンゾイルアミノフェニル基であり、特に好ましくは、2−アセトアミドフェニル基である。 A hydrocarbon group having 3 to 30 carbon atoms substituted with an amide group having 2 to 10 carbon atoms represented by R 5 (R- (C = O) NH-, where R is an organic group) is preferably described above. It is a substituent in which a hydrocarbon group having 1 to 30 carbon atoms is substituted with an acetamide group, a propionylamino group, a butyrylamino group, an isobutylylamino group, a valerylamino group, an isovalerylamino group, a pivaloylamino group, or a benzoylamino group. .. A 2-acetamidophenyl group, a 2-propionylaminophenyl group, a 2-valerylaminophenyl group, or a 2-benzoylaminophenyl group is more preferable, and a 2-acetamidophenyl group is particularly preferable.

がアミド基で置換された炭化水素基である場合には、電子供与性配位子Lを別途使用せずとも、アミド基のカルボニル酸素がMに配位して環構造を形成することができる。即ち、RがLを兼ねることができる。この場合をRとLが環形成しているという。具体的には、2−アセトアミドフェニル基、2−プロピオニルアミノフェニル基、2−バレリルアミノフェニル基、及び2−ベンゾイルアミノフェニル基の場合が相当する。2−アセトアミドフェニル基の場合を下記化学式に示す。

Figure 2021188009
When R 5 is a hydrocarbon group substituted with an amide group, the carbonyl oxygen of the amide group coordinates with M to form a ring structure without using an electron-donating ligand L separately. Can be done. That is, R 5 can also serve as L. The case that R 5 and L are ring formation. Specifically, it corresponds to the case of 2-acetamidophenyl group, 2-propionylaminophenyl group, 2-valerylaminophenyl group, and 2-benzoylaminophenyl group. The case of 2-acetamide phenyl group is shown in the following chemical formula.
Figure 2021188009

が表す炭素原子数1〜30のアルコキシ基は、好ましくは炭素原子数1〜6のアルコキシ基であり、好ましい具体例は、メトキシ基、エトキシ基、イソプロポキシ基、1−プロポキシ基、1−ブトキシ基、及びt−ブトキシ基である。これらの中で、さらに好ましくは、メトキシ基、エトキシ基、又はイソプロポキシ基であり、特に好ましくは、メトキシ基である。 The alkoxy group having 1 to 30 carbon atoms represented by R 5 is preferably an alkoxy group having 1 to 6 carbon atoms, and preferred specific examples thereof are a methoxy group, an ethoxy group, an isopropoxy group, a 1-propoxy group and 1 -Butoxy group and t-butoxy group. Among these, a methoxy group, an ethoxy group, or an isopropoxy group is more preferable, and a methoxy group is particularly preferable.

が表す炭素原子数6〜30のアリールオキシ基は、好ましくは炭素原子数6〜12のアリールオキシ基であり、好ましい具体例は、フェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、2,6−ジメチルフェノキシ基、及び2,6−ジ−t−ブチルフェノキシ基である。これらの中で、さらに好ましくは、フェノキシ基、又は2,6−ジメチルフェノキシ基であり、特に好ましくは、フェノキシ基である。 The aryloxy group having 6 to 30 carbon atoms represented by R 5 is preferably an aryloxy group having 6 to 12 carbon atoms, and preferred specific examples are a phenoxy group, a 4-methylphenoxy group, and a 4-methoxyphenoxy group. , 2,6-Dimethylphenoxy group, and 2,6-di-t-butylphenoxy group. Among these, a phenoxy group or a 2,6-dimethylphenoxy group is more preferable, and a phenoxy group is particularly preferable.

が表す炭素原子数2〜10のアシロキシ基は、好ましくは炭素原子数2〜8のアシロキシ基であり、好ましい具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、及びベンゾイルオキシ基が挙げられる。これらの中で、さらに好ましくは、アセトキシ基、プロピオニルオキシ基、又はベンゾイルオキシ基であり、特に好ましくは、アセトキシ基、又はプロピオニルオキシ基である。 The acyloxy group having 2 to 10 carbon atoms represented by R 5 is preferably an acyloxy group having 2 to 8 carbon atoms, and preferred specific examples thereof include an acetoxy group, a propionyloxy group, a butyryloxy group, and an isobutyryloxy group. , Valeryloxy group, isovaleryloxy group, pivaloyloxy group, and benzoyloxy group. Among these, an acetoxy group, a propionyloxy group, or a benzoyloxy group is more preferable, and an acetoxy group or a propionyloxy group is particularly preferable.

これらのRとして好ましい群のうち、さらに好ましくは、炭素原子数1〜20の炭化水素基、炭素原子数1〜30のアルコキシ基、炭素原子数2〜10のアミド基で置換された炭素原子数3〜30の炭化水素基、又は炭素原子数2〜10のアシロキシ基であり、特に好ましくは、メチル基、ベンジル基、メトキシ基、2−アセトアミドフェニル基、又はアセトキシ基である。 Among the preferred groups as these R 5, more preferably, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a carbon atom substituted with an amide group having 2 to 10 carbon atoms It is a hydrocarbon group having a number of 3 to 30 or an acyloxy group having 2 to 10 carbon atoms, and is particularly preferably a methyl group, a benzyl group, a methoxy group, a 2-acetamidophenyl group, or an acetoxy group.

及びRはそれぞれ独立して、アルコキシ基、アリールオキシ基、シリル基、アミノ基、又はハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基を表す。 Each of R 6 and R 7 may be independently substituted with one or more groups selected from an alkoxy group, an aryloxy group, a silyl group, an amino group, or a halogen atom, an alkoxy group and an aryloxy group. Represents a hydrocarbon group having 1 to 120 atoms.

及びRが表すアルコキシ基としては、炭素原子数1〜20のものが好ましく、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基などが挙げられる。 The alkoxy group represented by R 6 and R 7 is preferably one having 1 to 20 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group.

及びRが表すアリールオキシ基としては、炭素原子数6〜24のものが好ましく、フェノキシ基などが挙げられる。 As the aryloxy group represented by R 6 and R 7 , those having 6 to 24 carbon atoms are preferable, and examples thereof include a phenoxy group.

及びRが表すシリル基としてはトリメチルシリル基、トリエチルシリル基、トリ(n−プロピル)シリル基、トリ(イソプロピル)シリル基などが挙げられ、アミノ基としてはアミノ基、モノメチルアミノ基、ジメチルアミノ基、モノエチルアミノ基、ジエチルアミノ基などが挙げられる。 Examples of the silyl group represented by R 6 and R 7 include a trimethyl silyl group, a triethyl silyl group, a tri (n-propyl) silyl group, a tri (isopropyl) silyl group and the like, and examples of the amino group include an amino group, a monomethyl amino group and a dimethyl group. Examples thereof include an amino group, a monoethylamino group and a diethylamino group.

及びRが表すハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基における炭化水素基としては、アルキル基(鎖状アルキル基、シクロアルキル基、及び橋架けシクロアルキル基を含む)、及びアリール基(フェニル基、ナフチル基など)が挙げられ、炭素原子数3〜20のアルキル基が好ましい。置換基としてのハロゲン原子としてはフッ素原子が好ましい。置換基としてのアルコキシ基、及びアリールオキシ基はそれぞれ、前記R及びRが表すアルコキシ基、及びアリールオキシ基と同様のものが好ましい。 The hydrocarbon group in the hydrocarbon group having 1 to 120 carbon atoms which may be substituted with one or more groups selected from the halogen atom, alkoxy group and aryloxy group represented by R 6 and R 7 is an alkyl group. Examples thereof include (including a chain alkyl group, a cycloalkyl group, and a bridging cycloalkyl group) and an aryl group (phenyl group, naphthyl group, etc.), and an alkyl group having 3 to 20 carbon atoms is preferable. A fluorine atom is preferable as the halogen atom as a substituent. The alkoxy group and the aryloxy group as the substituent are preferably the same as the alkoxy group and the aryloxy group represented by R 6 and R 7, respectively.

及びRが表すハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、2−ペンチル基、3−ペンチル基、ネオペンチル基、n−ヘキシル基、2−ヘキシル基、3−ヘキシル基、n−ヘプチル基、2−ヘプチル基、3−ヘプチル基、4−ヘプチル基、2−メチル−4−ヘプチル基、2,6−ジメチル−4−ヘプチル基、3−メチル−4−ヘプチル基、2−メチル−2−ブチル基、2−メチル−2−ペンチル基、2−メチル−3−ペンチル基、2,3,3−トリメチル−2−ブチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1−アダマンチル基、2−アダマンチル基、メンチル基(メンチル基、ネオメンチル基、イソメンチル基、ネオイソメンチル基はメンチル基と総称される。)、トリフルオロメチル基、ベンジル基、2’−メトキシベンジル基、3’−メトキシベンジル基、4’−メトキシベンジル基、4’−トリフルオロメチルベンジル基、9−フルオレニル基、2,7−ジメチル−9−フルオレニル基、2,7−ジエチル−9−フルオレニル基、2,7−ジ−n−プロピル−9−フルオレニル基、2,7−ジイソプロピル−9−フルオレニル基、2,7−ジ−n−ブチル−9−フルオレニル基、2,7−ジイソブチル−9−フルオレニル基、2,7−ジ−sec−ブチル−9−フルオレニル基、2,7−ジ−t−ブチル−9−フルオレニル基、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2,6−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,6−トリメチルフェニル基、2−イソプロピルフェニル基、3−イソプロピルフェニル基、4−イソプロピルフェニル基、2,6−ジイソプロピルフェニル基、3,5−ジイソプロピルフェニル基、2,4,6−トリイソプロピルフェニル基、2−t−ブチルフェニル基、2−シクロヘキシルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2,6−ジメトキシフェニル基、3,5−ジメトキシフェニル基、2,4,6−トリメトキシフェニル基、4−フルオロフェニル基、ペンタフルオロフェニル基、4−トリフルオロメチルフェニル基、3,5−ビス(トリフルオロメチル)フェニル基、1−ナフチル基、2−ナフチル基、2−フリル基、2−ビフェニル基、2’,6’−ジメトキシ−2−ビフェニル基、2’−メチル−2−ビフェニル基、2’,4’,6’−トリイソプロピル−2−ビフェニル基などが挙げられる。 Specific examples of the hydrocarbon group having 1 to 120 carbon atoms which may be substituted with one or more groups selected from the halogen atom, alkoxy group and aryloxy group represented by R 6 and R 7 include a methyl group. Ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, 2-pentyl group, 3-pentyl group, neopentyl group, n-hexyl Group, 2-hexyl group, 3-hexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group, 4-heptyl group, 2-methyl-4-heptyl group, 2,6-dimethyl-4-heptyl Group, 3-methyl-4-heptyl group, 2-methyl-2-butyl group, 2-methyl-2-pentyl group, 2-methyl-3-pentyl group, 2,3,3-trimethyl-2-butyl group , Cyclopropyl group, Cyclobutyl group, Cyclopentyl group, Cyclohexyl group, Cycloheptyl group, Cyclooctyl group, 1-adamantyl group, 2-adamantyl group, Mentyl group (mentyl group, neomentyl group, isomentyl group, neoisomentyl group is menthyl) Groups are collectively referred to as groups.), Trifluoromethyl group, benzyl group, 2'-methoxybenzyl group, 3'-methoxybenzyl group, 4'-methoxybenzyl group, 4'-trifluoromethylbenzyl group, 9-fluorenyl group. , 2,7-dimethyl-9-fluorenyl group, 2,7-diethyl-9-fluorenyl group, 2,7-di-n-propyl-9-fluorenyl group, 2,7-diisopropyl-9-fluorenyl group, 2, , 7-di-n-butyl-9-fluorenyl group, 2,7-diisobutyl-9-fluorenyl group, 2,7-di-sec-butyl-9-fluorenyl group, 2,7-di-t-butyl- 9-Fluorenyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,6-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,6-trimethylphenyl Group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-diisopropylphenyl group, 2,4,6-triisopropylphenyl group, 2-t -Butylphenyl group, 2-cyclohexylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2,6-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 2,4,6 -Trimethoxyfe Nyl group, 4-fluorophenyl group, pentafluorophenyl group, 4-trifluoromethylphenyl group, 3,5-bis (trifluoromethyl) phenyl group, 1-naphthyl group, 2-naphthyl group, 2-furyl group, Examples thereof include 2-biphenyl group, 2', 6'-dimethoxy-2-biphenyl group, 2'-methyl-2-biphenyl group, 2', 4', 6'-triisopropyl-2-biphenyl group and the like.

触媒活性及び得られる共重合体の分子量の観点から、R及びRはいずれも炭素原子数3〜20のアルキル基又は炭素原子数5〜20のシクロアルキル基であることが好ましく、イソプロピル基、t−ブチル基、4−ヘプチル基、2,6−ジメチル−4−ヘプチル基、2−メチル−2−ブチル基、2−メチル−2−ペンチル基、2,3,3−トリメチル−2−ブチル基、シクロヘキシル基、1−アダマンチル基、2−アダマンチル基又はメンチル基であることがより好ましく、イソプロピル基、t−ブチル基、2−メチル−2−ペンチル基、2,3,3−トリメチル−2−ブチル基、又はメンチル基であることが特に好ましい。RとRは同じでも、異なっていてもよい。RとRは結合して環構造を形成してもよい。 From the viewpoint of catalytic activity and the molecular weight of the obtained copolymer, both R 6 and R 7 are preferably an alkyl group having 3 to 20 carbon atoms or a cycloalkyl group having 5 to 20 carbon atoms, preferably an isopropyl group. , T-Butyl group, 4-Heptyl group, 2,6-dimethyl-4-Heptyl group, 2-Methyl-2-butyl group, 2-Methyl-2-pentyl group, 2,3,3-trimethyl-2- Butyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group or menthyl group are more preferable, and isopropyl group, t-butyl group, 2-methyl-2-pentyl group, 2,3,3-trimethyl- It is particularly preferable that it is a 2-butyl group or a menthyl group. R 6 and R 7 may be the same or different. R 6 and R 7 may be combined to form a ring structure.

電子供与性配位子(L)とは、電子供与性基を有し、金属原子Mに配位して金属錯体を安定化させることのできる化合物である。前述のように、Rがアミド基で置換された炭化水素基である場合には、アミド基のカルボニル酸素がMに配位して環構造を形成することができる。即ち、RがLを兼ね、LはRと環を形成している。 The electron donating ligand (L) is a compound having an electron donating group and capable of coordinating with the metal atom M to stabilize the metal complex. As described above, when R 5 is a hydrocarbon group substituted with amide groups can be carbonyl oxygen of the amide group to form a ring structure coordinated to M. That is, R 5 also serves as L, and L forms a ring with R 5.

電子供与性配位子(L)としては、硫黄原子を有するものとしてジメチルスルホキシド(DMSO)が挙げられる。窒素原子を有するものとして、アルキル基の炭素原子数1〜10のトリアルキルアミン、アルキル基の炭素原子数1〜10のジアルキルアミン、ピリジン、2,6−ジメチルピリジン(2,6−ルチジン)、アニリン、2,6−ジメチルアニリン、2,6−ジイソプロピルアニリン、N,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)、4−(N,N−ジメチルアミノ)ピリジン(DMAP)、アセトニトリル、ベンゾニトリル、キノリン、2−メチルキノリンなどが挙げられる。酸素原子を有するものとして、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタンなどが挙げられる。金属錯体の安定性及び触媒活性の観点から、ジメチルスルホキシド(DMSO)、ピリジン、2,6−ジメチルピリジン(2,6−ルチジン)、及びN,N,N’,N’−テトラメチルエチレンジアミン(TMEDA)が好ましく、ジメチルスルホキシド(DMSO)、及び2,6−ジメチルピリジン(2,6−ルチジン)がより好ましい。 Examples of the electron donating ligand (L) include dimethyl sulfoxide (DMSO) as having a sulfur atom. As those having a nitrogen atom, a trialkylamine having 1 to 10 carbon atoms of an alkyl group, a dialkylamine having 1 to 10 carbon atoms of an alkyl group, pyridine, 2,6-dimethylpyridine (2,6-lutidine), Aniline, 2,6-dimethylaniline, 2,6-diisopropylaniline, N, N, N', N'-tetramethylethylenediamine (TMEDA), 4- (N, N-dimethylamino) pyridine (DMAP), acetonitrile, Examples thereof include benzonitrile, quinoline and 2-methylquinoline. Examples of those having an oxygen atom include diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane and the like. From the standpoint of stability and catalytic activity of the metal complex, dimethyl sulfoxide (DMSO), pyridine, 2,6-dimethylpyridine (2,6-lutidine), and N, N, N', N'-tetramethylethylenediamine (TMEDA). ) Is preferred, and dimethyl sulfoxide (DMSO) and 2,6-dimethylpyridine (2,6-lutidine) are more preferred.

qは0、1/2、1又は2である。 q is 0, 1/2, 1 or 2.

一般式(C1)の金属錯体を単離する場合、予め電子供与性配位子(L)を配位させて安定化させたものを用いることもできる。この場合、qは1/2、1又は2となる。qが1/2とは一つの2価の電子供与性配位子が2つの金属錯体に配位していることを意味する。qは金属錯体触媒を安定化する意味で1/2又は1が好ましい。なお、qが0の場合は配位子がないことを意味する。 When isolating the metal complex of the general formula (C1), one obtained by coordinating and stabilizing the electron-donating ligand (L) in advance can also be used. In this case, q is 1/2, 1 or 2. When q is 1/2, it means that one divalent electron donating ligand is coordinated to two metal complexes. q is preferably 1/2 or 1 in the sense of stabilizing the metal complex catalyst. When q is 0, it means that there is no ligand.

[金属錯体の製造方法]
一般式(C1)で示される触媒である金属錯体は、公知の文献(例えば、J. Am. Chem. Soc. 2012, 134, 8802)に記載の方法と同様の方法で、合成することができる。すなわち、0価又は2価のMソースと一般式(C1)中の配位子と反応させる。
[Manufacturing method of metal complex]
The metal complex represented by the general formula (C1) can be synthesized by the same method as that described in known literature (for example, J. Am. Chem. Soc. 2012, 134, 8802). .. That is, a 0-valent or divalent M source is reacted with the ligand in the general formula (C1).

0価のMソースについては、パラジウムソースとして、トリス(ジベンジリデンアセトン)ジパラジウムが挙げられ、ニッケルソースとして、テトラカルボニルニッケル(0):Ni(CO)、及びビス(1,5−シクロオクタジエン)ニッケルが挙げられる。 As for the 0-valent M source, tris (dibenzylideneacetone) dipalladium can be mentioned as a palladium source, and tetracarbonyl nickel (0): Ni (CO) 4 and bis (1,5-cycloocta) can be mentioned as nickel sources. Dien) Nickel is mentioned.

2価のMソースについては、パラジウムソースとして、(1,5−シクロオクタジエン)(メチル)塩化パラジウム、塩化パラジウム、酢酸パラジウム、ビス(アセトニトリル)ジクロロパラジウム:PdCl(CHCN)、ビス(ベンゾニトリル)ジクロロパラジウム:PdCl(PhCN)、(N,N,N’,N’−テトラメチルエチレンジアミン)ジクロロパラジウム(II):PdCl(TMEDA)、(N,N,N’,N’−テトラメチルエチレンジアミン)ジメチルパラジウム(II):PdMe(TMEDA)、ビス(アセチルアセトナト)パラジウム(II):Pd(acac)(acac=アセチルアセトナト)、及びトリフルオロメタンスルホン酸パラジウム(II):Pd(OSOCFが挙げられ、ニッケルソースとして、(アリル)塩化ニッケル、(アリル)臭化ニッケル、塩化ニッケル、酢酸ニッケル、ビス(アセチルアセトナト)ニッケル(II):Ni(acac)、(1,2−ジメトキシエタン)ジクロロニッケル(II):NiCl(DME)、及びトリフルオロメタンスルホン酸ニッケル(II):Ni(OSOCFが挙げられる。 For the divalent M source, as the palladium source, (1,5-cyclooctadiene) (methyl) palladium chloride, palladium chloride, palladium acetate, bis (nitrile) dichloropalladium: PdCl 2 (CH 3 CN) 2 , bis (Benzonitrile) Dichloropalladium: PdCl 2 (PhCN) 2 , (N, N, N', N'-tetramethylethylenediamine) Dichloropalladium (II): PdCl 2 (TMEDA), (N, N, N', N '-Tetramethylethylenediamine) dimethylpalladium (II): PdMe 2 (TMEDA), bis (acetylacetonato) palladium (II): Pd (acac) 2 (acac = acetylacetonato), and palladium trifluoromethanesulfonate (II). ): Pd (OSO 2 CF 3 ) 2 and examples of the nickel source include (allyl) nickel chloride, (allyl) brominated nickel, nickel chloride, nickel acetate, bis (acetylacetonato) nickel (II): Ni ( Acac) 2 , (1,2-dimethoxyethane) dichloronickel (II): NiCl 2 (DME), and nickel trifluoromethanesulfonate (II): Ni (OSO 2 CF 3 ) 2 .

一般式(C1)で示される金属錯体は、単離して使用することができるが、錯体を単離することなくMを含む金属ソースと配位子前駆体を反応系中で接触させて、これをそのまま(in situ)重合に供することもできる。特に一般式(C1)中のRが水素原子の場合、0価のMを含む金属ソースと配位子とを反応させた後、錯体を単離することなくそのまま重合に供することが好ましい。 The metal complex represented by the general formula (C1) can be isolated and used, but the metal source containing M and the ligand precursor are brought into contact with each other in the reaction system without isolating the complex. Can also be subjected to in situ polymerization. In particular, when R 5 in the general formula (C1) is a hydrogen atom, it is preferable that the metal source containing 0-valent M is reacted with the ligand and then subjected to the polymerization as it is without isolating the complex.

一般式(C1)におけるMソース(M)と配位子(C1配位子)との比率((C1配位子)/M)は、モル基準で、0.5〜2.0の範囲から選択することが好ましく、1.0〜1.5の範囲で選択することがより好ましい。 The ratio ((C1 ligand) / M) of the M source (M) and the ligand (C1 ligand) in the general formula (C1) is in the range of 0.5 to 2.0 on a molar basis. It is preferable to select it, and it is more preferable to select it in the range of 1.0 to 1.5.

一般式(C1)で示される金属錯体は、担体に担持させて重合に使用することもできる。担体は、特に限定されないが、シリカゲル、アルミナなどの無機担体、ポリスチレン、ポリエチレン、ポリプロピレンなどの有機担体などを挙げることができる。金属錯体の担持法としては、金属錯体の溶液を担体に含浸させて乾燥する物理的な吸着方法、金属錯体と担体とを化学的に結合させて担持する方法などが挙げられる。 The metal complex represented by the general formula (C1) can also be supported on a carrier and used for polymerization. The carrier is not particularly limited, and examples thereof include an inorganic carrier such as silica gel and alumina, and an organic carrier such as polystyrene, polyethylene and polypropylene. Examples of the method for supporting the metal complex include a physical adsorption method in which a carrier is impregnated with a solution of the metal complex and dried, and a method in which the metal complex and the carrier are chemically bonded and supported.

[モノマー]
一実施形態の共重合体の製造方法において、エチレンと共重合させる極性基を有するアリルモノマーは、一般式(1)

Figure 2021188009
で示される。 [monomer]
In the method for producing a copolymer of one embodiment, the allyl monomer having a polar group to be copolymerized with ethylene is a general formula (1).
Figure 2021188009
Indicated by.

式中、Rは、水酸基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のアリールオキシ基、炭素原子数2〜10のアシル基、炭素原子数2〜10のエステル基、炭素原子数2〜10のアシロキシ基、アミノ基、炭素原子数1〜12の置換アミノ基、炭素原子数2〜12の置換又は無置換のアミド基、炭素原子数5〜10の置換又は無置換のピリジル基、炭素原子数4〜10の置換又は無置換のピロリジル基、炭素原子数5〜10の置換又は無置換のピペリジル基、炭素原子数4〜10の置換又は無置換のヒドロフリル基、炭素原子数4〜10の置換又は無置換のイミダゾリル基、メルカプト基、炭素原子数1〜10のアルキルチオ基、炭素原子数6〜10のアリールチオ基、エポキシ基、及びハロゲン原子からなる群より選ばれる置換基を表す。 In the formula, R 1 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 10 carbon atoms, and an ester group having 2 to 10 carbon atoms. Asyloxy group with 2 to 10 carbon atoms, amino group, substituted amino group with 1 to 12 carbon atoms, substituted or unsubstituted amide group with 2 to 12 carbon atoms, substituted or unsubstituted group with 5 to 10 carbon atoms Pyridyl group, substituted or unsubstituted pyrrolidyl group having 4 to 10 carbon atoms, substituted or unsubstituted piperidyl group having 5 to 10 carbon atoms, substituted or unsubstituted hydrofuryl group having 4 to 10 carbon atoms, carbon Substitution selected from the group consisting of a substituted or unsubstituted imidazolyl group having 4 to 10 atoms, a mercapto group, an alkylthio group having 1 to 10 carbon atoms, an arylthio group having 6 to 10 carbon atoms, an epoxy group, and a halogen atom. Represents a group.

炭素原子数1〜10のアルコキシ基であるRは、好ましくは、炭素原子数1〜4のアルコキシ基であり、好ましい具体例としては、メトキシ基、エトキシ基、イソプロポキシ基、1−プロポキシ基、1−ブトキシ基、及びt−ブトキシ基が挙げられる。これらの中で、さらに好ましくは、メトキシ基、エトキシ基、又はイソプロポキシ基であり、特に好ましくは、メトキシ基である。 R 1 , which is an alkoxy group having 1 to 10 carbon atoms, is preferably an alkoxy group having 1 to 4 carbon atoms, and preferred specific examples thereof include a methoxy group, an ethoxy group, an isopropoxy group, and a 1-propoxy group. , 1-butoxy group, and t-butoxy group. Among these, a methoxy group, an ethoxy group, or an isopropoxy group is more preferable, and a methoxy group is particularly preferable.

炭素原子数6〜20のアリールオキシ基であるRは、好ましくは、炭素原子数6〜12のアリールオキシ基であり、好ましい具体例としては、フェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、2,6−ジメチルフェノキシ基、3,5−ジ−t−ブチルフェノキシ基、及び2,6−ジ−t−ブチルフェノキシ基が挙げられる。これらの中で、さらに好ましくは、フェノキシ基、3,5−ジ−t−ブチルフェノキシ基、又は2,6−ジメチルフェノキシ基であり、特に好ましくは、フェノキシ基、又は3,5−ジ−t−ブチルフェノキシ基である。 R 1 , which is an aryloxy group having 6 to 20 carbon atoms, is preferably an aryloxy group having 6 to 12 carbon atoms, and preferred specific examples thereof include a phenoxy group, a 4-methylphenoxy group, and 4-methoxy. Examples thereof include a phenoxy group, a 2,6-dimethylphenoxy group, a 3,5-di-t-butylphenoxy group, and a 2,6-di-t-butylphenoxy group. Among these, a phenoxy group, a 3,5-di-t-butylphenoxy group, or a 2,6-dimethylphenoxy group is more preferable, and a phenoxy group or a 3,5-di-t is particularly preferable. -Butyl phenoxy group.

炭素原子数2〜10のアシル基であるRは、好ましくは、炭素原子数2〜8のアシル基であり、好ましい具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、及びベンゾイル基が挙げられる。これらの中で、さらに好ましくは、アセチル基、ピバロイル基、又はベンゾイル基であり、特に好ましくは、ベンゾイル基である。 R 1 , which is an acyl group having 2 to 10 carbon atoms, is preferably an acyl group having 2 to 8 carbon atoms, and preferred specific examples thereof include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. , Isovaleryl group, pivaloyl group, and benzoyl group. Among these, an acetyl group, a pivaloyl group, or a benzoyl group is more preferable, and a benzoyl group is particularly preferable.

炭素原子数2〜10のエステル基(オキシカルボニル基;R−O−(C=O)−、Rは有機基)であるRは、好ましくは、炭素原子数2〜8のエステル基であり、好ましい具体例としては、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、n−ブトキシカルボニル基、t−ブトキシカルボニル基、(4−ヒドロキシブトキシ)カルボニル基、(4−グリシジルブトキシ)カルボニル基、及びフェノキシカルボニル基が挙げられる。これらの中で、さらに好ましくは、メトキシカルボニル基、エトキシカルボニル基、又は(4−ヒドロキシブトキシ)カルボニル基であり、特に好ましくは、メトキシカルボニル基である。 R 1 , which is an ester group having 2 to 10 carbon atoms (oxycarbonyl group; RO- (C = O)-, R is an organic group), is preferably an ester group having 2 to 8 carbon atoms. Preferred specific examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, an isopropoxycarbonyl group, an n-butoxycarbonyl group, a t-butoxycarbonyl group, a (4-hydroxybutoxy) carbonyl group, and (4-hydroxybutoxy). A glycidyl butoxy) carbonyl group and a phenoxycarbonyl group can be mentioned. Among these, a methoxycarbonyl group, an ethoxycarbonyl group, or a (4-hydroxybutoxy) carbonyl group is more preferable, and a methoxycarbonyl group is particularly preferable.

炭素原子数2〜10のアシロキシ基であるRは、好ましくは、炭素原子数2〜8のアシロキシ基であり、好ましい具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、及びトリフルオロアセトキシ基が挙げられる。これらの中で、さらに好ましくは、アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基、又はトリフルオロアセトキシ基であり、特に好ましくは、アセトキシ基、又はプロピオニルオキシ基である。 R 1 , which is an acyloxy group having 2 to 10 carbon atoms, is preferably an acyloxy group having 2 to 8 carbon atoms, and preferred specific examples thereof include an acetoxy group, a propionyloxy group, a butyryloxy group, and an isobutyryloxy. Examples include a group, a valeryloxy group, an isovaleryloxy group, a pivaloyloxy group, a benzoyloxy group, and a trifluoroacetoxy group. Among these, an acetoxy group, a propionyloxy group, a benzoyloxy group, or a trifluoroacetoxy group is more preferable, and an acetoxy group or a propionyloxy group is particularly preferable.

炭素原子数1〜12の置換アミノ基であるRの好ましい具体例としては、モノメチルアミノ基、ジメチルアミノ基、モノエチルアミノ基、ジエチルアミノ基、モノイソプロピルアミノ基、ジイソプロピルアミノ基、モノフェニルアミノ基、ジフェニルアミノ基、ビス(トリメチルシリル)アミノ基、及びモルホリニル基が挙げられる。これらの中で、さらに好ましくは、ジメチルアミノ基、又はジフェニルアミノ基である。 Preferred specific examples of R 1 which is a substituted amino group having 1 to 12 carbon atoms include a monomethylamino group, a dimethylamino group, a monoethylamino group, a diethylamino group, a monoisopropylamino group, a diisopropylamino group and a monophenylamino group. , Diphenylamino group, bis (trimethylsilyl) amino group, and morpholinyl group. Among these, a dimethylamino group or a diphenylamino group is more preferable.

炭素原子数2〜12の置換又は無置換のアミド基(R−(C=O)NH−、Rは有機基)であるRの好ましい具体例としては、アセトアミド基、プロピオニルアミノ基、ブチリルアミノ基、イソブチリルアミノ基、バレリルアミノ基、イソバレリルアミノ基、ピバロイルアミノ基、及びベンゾイルアミノ基が挙げられる。これらの中で、さらに好ましくは、アセトアミド基、プロピオニルアミノ基、又はベンゾイルアミノ基であり、特に好ましくは、アセトアミド基である。 Preferred specific examples of R 1 , which is a substituted or unsubstituted amide group having 2 to 12 carbon atoms (R- (C = O) NH-, R is an organic group), are an acetamide group, a propionylamino group, and a butyrylamino group. , Isobutyrylamino group, Valerylamino group, Isovalerylamino group, Pivaloylamino group, and Benzoylamino group. Among these, an acetamide group, a propionylamino group, or a benzoylamino group is more preferable, and an acetamide group is particularly preferable.

炭素原子数5〜10の置換又は無置換のピリジル基であるRの好ましい具体例としては、2−ピリジル基、3−ピリジル基、2−(3−メチル)ピリジル基、2−(4−メチル)ピリジル基、3−(2−メチル)ピリジル基、3−(4−メチル)ピリジル基、2−(4−クロロメチル)ピリジル基、及び3−(4−クロロメチル)ピリジル基が挙げられる。これらの中で、さらに好ましくは、2−ピリジル基、3−ピリジル基、又は2−(4−メチル)ピリジル基であり、特に好ましくは、2−ピリジル基である。 Preferred specific examples of R 1 , which is a substituted or unsubstituted pyridyl group having 5 to 10 carbon atoms, are 2-pyridyl group, 3-pyridyl group, 2- (3-methyl) pyridyl group, 2- (4- (4-methyl) pyridyl group. Examples thereof include a methyl) pyridyl group, a 3- (2-methyl) pyridyl group, a 3- (4-methyl) pyridyl group, a 2- (4-chloromethyl) pyridyl group, and a 3- (4-chloromethyl) pyridyl group. .. Among these, a 2-pyridyl group, a 3-pyridyl group, or a 2- (4-methyl) pyridyl group is more preferable, and a 2-pyridyl group is particularly preferable.

炭素原子数4〜10の置換又は無置換のピロリジル基であるRの好ましい具体例としては、2−ピロリジル基、3−ピロリジル基、2−(1−メチル)ピロリジル基、2−(1−ブチル)ピロリジル基、2−(1−シクロペンテニル)ピロリジル基、2−(4−メトキシカルボニル)ピロリジル基、及び2−(5−メトキシカルボニル)ピロリジル基が挙げられる。これらの中で、さらに好ましくは、2−ピロリジル基、3−ピロリジル基、2−(1−メチル)ピロリジル基、又は2−(5−メトキシカルボニル)ピロリジル基であり、特に好ましくは、2−ピロリジル基である。 Preferred specific examples of R 1 , which is a substituted or unsubstituted pyrrolidyl group having 4 to 10 carbon atoms, are 2-pyrrolidyl group, 3-pyrrolidyl group, 2- (1-methyl) pyrrolidyl group, 2- (1-). Examples thereof include a butyl) pyrrolidyl group, a 2- (1-cyclopentenyl) pyrrolidyl group, a 2- (4-methoxycarbonyl) pyrrolidyl group, and a 2- (5-methoxycarbonyl) pyrrolidyl group. Among these, a 2-pyrrolidyl group, a 3-pyrrolidyl group, a 2- (1-methyl) pyrrolidyl group, or a 2- (5-methoxycarbonyl) pyrrolidyl group is more preferable, and 2-pyrrolidyl is particularly preferable. It is a group.

炭素原子数5〜10の置換又は無置換のピペリジル基であるRの好ましい具体例としては、2−ピペリジル基、3−ピペリジル基、2−(1,2,3,6−テトラヒドロ)ピリジル基、2−(1−メチル)ピペリジル基、2−(1−エチル)ピペリジル基、2−(4−メチル)ピペリジル基、2−(5−メチル)ピペリジル基、及び2−(6−メチル)ピペリジル基が挙げられる。これらの中で、さらに好ましくは、2−ピペリジル基、3−ピペリジル基、2−(1,2,3,6−テトラヒドロ)ピリジル基、又は2−(6−メチル)ピペリジル基であり、特に好ましくは、2−ピペリジル基、又は2−(1,2,3,6−テトラヒドロ)ピリジル基である。本開示の「ピペリジル基」は、非芳香族不飽和結合を有するもの、例えば2−(1,2,3,6−テトラヒドロ)ピリジル基も包含する。 Preferred specific examples of R 1 , which is a substituted or unsubstituted piperidyl group having 5 to 10 carbon atoms, are 2-piperidyl group, 3-piperidyl group, and 2- (1,2,3,6-tetrahydro) pyridyl group. , 2- (1-Methyl) piperidyl group, 2- (1-ethyl) piperidyl group, 2- (4-methyl) piperidyl group, 2- (5-methyl) piperidyl group, and 2- (6-methyl) piperidyl The group is mentioned. Among these, a 2-piperidyl group, a 3-piperidyl group, a 2- (1,2,3,6-tetrahydro) pyridyl group, or a 2- (6-methyl) piperidyl group is more preferable, and a 2- (6-methyl) piperidyl group is particularly preferable. Is a 2-piperidyl group or a 2- (1,2,3,6-tetrahydro) pyridyl group. The "piperidyl group" of the present disclosure also includes those having a non-aromatic unsaturated bond, for example, a 2- (1,2,3,6-tetrahydro) pyridyl group.

炭素原子数4〜10の置換又は無置換のヒドロフリル基であるRの好ましい具体例としては、2−テトラヒドロフリル基、3−テトラヒドロフリル基、2−(5−メチル)テトラヒドロフリル基、2−(5−イソプロピル)テトラヒドロフリル基、2−(5−エチル)テトラヒドロフリル基、2−(5−メトキシ)テトラヒドロフリル基、2−(5−アセチル)テトラヒドロフリル基、及び2−(4,5−ベンゾ)テトラヒドロフリル基が挙げられる。これらの中で、さらに好ましくは、2−テトラヒドロフリル基、3−テトラヒドロフリル基、2−(5−メチル)テトラヒドロフリル基、2−(5−イソプロピル)テトラヒドロフリル基、又は2−(4,5−ベンゾ)テトラヒドロフリル基であり、特に好ましくは、2−テトラヒドロフリル基、2−(5−メチル)テトラヒドロフリル基、又は2−(5−イソプロピル)テトラヒドロフリル基である。 Preferred specific examples of R 1 , which is a substituted or unsubstituted hydrofuryl group having 4 to 10 carbon atoms, are 2-tetrahydrofuryl group, 3-tetrahydrofuryl group, 2- (5-methyl) tetrahydrofuryl group, 2-. (5-Isopropyl) tetrahydrofuryl group, 2- (5-ethyl) tetrahydrofuryl group, 2- (5-methoxy) tetrahydrofuryl group, 2- (5-acetyl) tetrahydrofuryl group, and 2- (4,5-) Benzo) Tetrahydrofuryl group is mentioned. Among these, more preferably, a 2-tetrahydrofuryl group, a 3-tetrahydrofuryl group, a 2- (5-methyl) tetrahydrofuryl group, a 2- (5-isopropyl) tetrahydrofuryl group, or a 2- (4,5) group. -Benzo) tetrahydrofuryl group, particularly preferably 2-tetrahydrofuryl group, 2- (5-methyl) tetrahydrofuryl group, or 2- (5-isopropyl) tetrahydrofuryl group.

炭素原子数4〜10の置換又は無置換のイミダゾリル基であるRの好ましい具体例としては、2−イミダゾリル基、2−(1−メチル)イミダゾリル基、2−(1−ベンジル)イミダゾリル基、2−(1−アセチル)イミダゾリル基、2−(4,5−ベンゾ)イミダゾリル基、及び2−(1−メチル−4,5−ベンゾ)イミダゾリル基が挙げられる。これらの中で、さらに好ましくは、2−イミダゾリル基、2−(1−メチル)イミダゾリル基、又は2−(4,5−ベンゾ)イミダゾリル基であり、特に好ましくは、2−(1−メチル)イミダゾリル基、又は2−(4,5−ベンゾ)イミダゾリル基である。 Preferred specific examples of R 1 , which is a substituted or unsubstituted imidazolyl group having 4 to 10 carbon atoms, include 2-imidazolyl group, 2- (1-methyl) imidazolyl group, 2- (1-benzyl) imidazolyl group, and the like. Examples thereof include 2- (1-acetyl) imidazolyl group, 2- (4,5-benzo) imidazolyl group, and 2- (1-methyl-4,5-benzo) imidazolyl group. Among these, a 2-imidazolyl group, a 2- (1-methyl) imidazolyl group, or a 2- (4,5-benzo) imidazolyl group is more preferable, and a 2- (1-methyl) group is particularly preferable. It is an imidazolyl group or a 2- (4,5-benzo) imidazolyl group.

炭素原子数1〜10のアルキルチオ基であるRの好ましい具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、及びt−ブチルチオ基が挙げられる。炭素原子数6〜10のアリールチオ基であるRの好ましい具体例としては、フェニルチオ基が挙げられる。これらの中で、さらに好ましくは、メチルチオ基、t−ブチルチオ基、又はフェニルチオ基であり、特に好ましくは、メチルチオ基、又はフェニルチオ基である。 Preferred specific examples of R 1 which is an alkylthio group having 1 to 10 carbon atoms include a methylthio group, an ethylthio group, a propylthio group, and a t-butylthio group. A preferable specific example of R 1 , which is an arylthio group having 6 to 10 carbon atoms, is a phenylthio group. Among these, a methylthio group, a t-butylthio group, or a phenylthio group is more preferable, and a methylthio group or a phenylthio group is particularly preferable.

ハロゲン原子であるRの好ましい具体例としては、フッ素、塩素、及び臭素が挙げられる。これらの中で、さらに好ましくは塩素又は臭素である。 Preferred specific examples of R 1 which is a halogen atom include fluorine, chlorine, and bromine. Of these, chlorine or bromine is more preferred.

これらのRとして好ましい群のうち、さらに好ましくは、水酸基、炭素原子数1〜10のアルコキシ基、炭素原子数2〜10のエステル基、炭素原子数2〜10のアシロキシ基、又はハロゲン原子であり、より好ましくは炭素原子数2〜10のアシロキシ基である。一般式(1)で表される好ましい極性基を有するアリルモノマーの具体例としては、酢酸アリル、トルフルオロ酢酸アリル、安息香酸アリル、アリルアルコール、アリルメチルエーテル、臭化アリル、塩化アリルなどが挙げられ、酢酸アリル(一般式(1)中のRがアセトキシ基(CHC(=O)−O−))が特に好ましい。 Among these preferable groups as R 1 , a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an ester group having 2 to 10 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, or a halogen atom are more preferable. Yes, more preferably an acyloxy group having 2 to 10 carbon atoms. Specific examples of the allyl monomer having a preferable polar group represented by the general formula (1) include allyl acetate, allyl tolfluoroacetate, allyl benzoate, allyl alcohol, allyl methyl ether, allyl bromide, allyl chloride and the like. , Allyl acetate (R 1 in the general formula (1) is an acetoxy group (CH 3 C (= O) -O-)) is particularly preferable.

一実施形態の共重合体の製造方法において、エチレンと共重合させる一般式(1)で示される極性基を有するアリルモノマーは、2種以上を組み合わせて重合させてもよい。 In the method for producing a copolymer of one embodiment, two or more kinds of allyl monomers having a polar group represented by the general formula (1) to be copolymerized with ethylene may be polymerized in combination.

一実施形態の共重合体の製造方法では、エチレン及び一般式(1)で示される極性基を有するアリルモノマーに加えて、一般式(2)

Figure 2021188009
(式中、R、R、及びRは、それぞれ独立して、水素原子又は炭素原子数1〜3のアルキル基を表し、それぞれ同じであっても、異なっていてもよい。)
で示される2,5−ノルボルナジエン類似化合物を共重合させることを特徴とする。 In the method for producing a copolymer of one embodiment, in addition to ethylene and an allyl monomer having a polar group represented by the general formula (1), the general formula (2) is used.
Figure 2021188009
(In the formula, R 2 , R 3 , and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same or different from each other.)
It is characterized by copolymerizing a 2,5-norbornadiene analog compound represented by.

、R、及びRの炭素原子数1〜3のアルキル基としては、メチル基、エチル基、n−プロピル基、及びイソプロピル基が挙げられ、メチル基が好ましい。R、R、及びRは、水素原子又はメチル基であることがより好ましく、すべて水素原子であることがさらに好ましい。 Examples of the alkyl group having 1 to 3 carbon atoms of R 2 , R 3 and R 4 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and a methyl group is preferable. R 2 , R 3 and R 4 are more preferably hydrogen atoms or methyl groups, and even more preferably all hydrogen atoms.

一般式(2)で示される2,5−ノルボルナジエン類似化合物の好ましい具体例としては、2,5−ノルボルナジエン、7−メチル−2,5−ノルボルナジエン、7,7−ジメチル−2,5−ノルボルナジエン、1−メチルノルボルナジエン、及び1,4−ジメチルノルボルナジエンが挙げられ、特に好ましくは、2,5−ノルボルナジエンである。 Preferred specific examples of the 2,5-norbornadiene-like compound represented by the general formula (2) include 2,5-norbornadiene, 7-methyl-2,5-norbornadiene, 7,7-dimethyl-2,5-norbornadiene, and the like. 1-Methylnorbornadiene and 1,4-dimethylnorbornadiene are mentioned, and 2,5-norbornadiene is particularly preferable.

上記の2,5−ノルボルナジエン類似化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。 The above 2,5-norbornadiene analogs may be used alone or in combination of two or more.

金属錯体(C1)を触媒として使用するエチレン等のオレフィン重合では、モノマーの金属への配位と挿入の繰り返しにより重合体が生長し、連鎖移動反応により重合体が触媒から解離する。周期表第10族金属錯体を使用する重合における連鎖移動反応は、下記式に示される機構で進行することが一般的に知られている(式中、R’はポリマー鎖を表す。金属Mの配位子は省略している。)。なお、下記式では、エチレンをモノマーとして使用した重合例を記載しているが、その他オレフィンモノマーでも同様である。M−R’錯体種にエチレンが挿入して生成した錯体種において、β−ヒドリド脱離が進行することで、重合体(式中CH=CH−R’)が触媒から解離するのと同時に、ヒドリド錯体種(式中M−H)が生成し、生長反応が停止する。このヒドリド錯体種は反応性が非常に高いため、すぐにモノマーの配位・挿入反応が進行し、再重合が開始する。 In olefin polymerization of ethylene or the like using a metal complex (C1) as a catalyst, the polymer grows due to repeated coordination and insertion of the monomer into the metal, and the polymer dissociates from the catalyst by a chain transfer reaction. It is generally known that the chain transfer reaction in the polymerization using the Group 10 metal complex of the periodic table proceeds by the mechanism represented by the following formula (in the formula, R'represents the polymer chain of the metal M. The ligand is omitted.). In the following formula, a polymerization example using ethylene as a monomer is described, but the same applies to other olefin monomers. In the complex species produced by inserting ethylene into the MR'complex species, β-hydride desorption proceeds, and at the same time , the polymer (CH 2 = CH-R'in the formula) dissociates from the catalyst. , Hydride complex species (MH in the formula) are generated and the growth reaction is stopped. Since this hydride complex species has extremely high reactivity, the coordination / insertion reaction of the monomer proceeds immediately and the repolymerization starts.

Figure 2021188009
Figure 2021188009

一方で、酢酸アリルに代表される極性基を有するアリルモノマーの重合では、上記式と同様に、モノマーの金属への配位と挿入の繰り返しにより重合体生長反応が進行するが、連鎖移動反応の機構が異なることがわかってきた。極性基を有するアリルモノマーの重合における重合体生長反応及び連鎖移動反応の機構を下記式に示す(式中、R’は重合体鎖を表し、AcはCHC(=O)−基を表す。)。なお、下記式では、酢酸アリルをモノマーとして使用し、2,5−ノルボルナジエンを共存させた重合例を記載しているが、その他の一般式(1)で示される、極性基を有するアリルモノマー及び一般式(2)で示される2,5−ノルボルナジエン類似化合物でも同様である。 On the other hand, in the polymerization of an allyl monomer having a polar group represented by allyl acetate, the polymer growth reaction proceeds by repeating the coordination and insertion of the monomer to the metal as in the above formula, but the chain transfer reaction It has become clear that the mechanism is different. The mechanism of the polymer growth reaction and the chain transfer reaction in the polymerization of the allyl monomer having a polar group is shown in the following formula (in the formula, R'represents the polymer chain and Ac represents the CH 3 C (= O) -group. .). In the following formula, an example of polymerization in which allyl acetate is used as a monomer and 2,5-norbornadiene coexists is described, but other allyl monomers having a polar group represented by the general formula (1) and The same applies to the 2,5-norbornadiene-like compound represented by the general formula (2).

Figure 2021188009
Figure 2021188009

重合体中に酢酸アリルが取り込まれる場合、エチレンと同様に、酢酸アリルの金属Mへの配位及びM−R’結合への挿入反応が起こる。その後、生成した錯体種に対して、エチレン、酢酸アリル等のモノマーの配位・挿入により、重合体が生長する。一方で、M−R’錯体種に酢酸アリルが挿入して生成した錯体種に対して、次のモノマーの配位・挿入と競合して、ある確率でβ−アセトキシ脱離が進行する。これにより、重合体(式中CH=CH−CH−R’)が触媒から解離し、アセトキシ錯体種(式中M−OAc)が生成する。このアセトキシ錯体種は、ヒドリド錯体種と比べて、遥かに反応性が低いため、アセトキシ錯体種へのモノマーの配位・挿入反応による再重合開始が律速となる。反応系ではこのアセトキシ錯体種がドーマント種となるため、触媒活性が発現している触媒は、実質的には仕込み量の一部であり、触媒あたりの重合体生産性が低くなる。 When allyl acetate is incorporated into the polymer, the coordination of allyl acetate to the metal M and the insertion reaction into the M-R'bond occur, as in ethylene. Then, the polymer grows by coordinating and inserting a monomer such as ethylene or allyl acetate to the produced complex species. On the other hand, β-acetoxy desorption proceeds with a certain probability in competition with the coordination / insertion of the next monomer for the complex species produced by inserting allyl acetate into the MR'complex species. As a result, the polymer (CH 2 = CH-CH 2 -R'in the formula) is dissociated from the catalyst, and an acetoxy complex species (M-OAc in the formula) is produced. Since this acetoxy complex species has much lower reactivity than the hydride complex species, the rate-determining initiation of repolymerization by the coordination / insertion reaction of the monomer to the acetoxy complex species is the rate-determining factor. Since this acetoxy complex species is a dormant species in the reaction system, the catalyst exhibiting the catalytic activity is substantially a part of the charged amount, and the polymer productivity per catalyst is lowered.

一実施形態の共重合体の製造方法では、2,5−ノルボルナジエン類似化合物を重合系に共存させることで、ドーマント種であるアセトキシ錯体種を、2,5−ノルボルナジエン類似化合物との反応により、アルキル錯体種(式中M−R”)に迅速に変換させる。このアルキル錯体種は、上記のM−R’錯体種と同様のモノマーとの反応性を有することから、モノマーの配位・挿入反応による再重合が容易に開始する。これにより、触媒あたりの重合体生産性が大幅に改善され、触媒コスト低減化に繋がる。 In the method for producing a copolymer of one embodiment, a 2,5-norbornadiene-like compound is allowed to coexist in a polymerization system, so that an acetoxy complex species, which is a dormant species, is reacted with a 2,5-norbornadiene-like compound to make an alkyl. It is rapidly converted to a complex species (MR "in the formula). Since this alkyl complex species has the same reactivity with the monomer as the above-mentioned MR'complex species, the coordination / insertion reaction of the monomer This allows the polymer productivity per catalyst to be significantly improved, leading to a reduction in the cost of the catalyst.

共重合において、一般式(1)で示される極性基を有するアリルモノマーの総仕込み量1molに対する、一般式(2)で示される2,5−ノルボルナジエン類似化合物の総仕込み量は、1.0〜25.0mmolであることが好ましい。 In the copolymerization, the total charge amount of the 2,5-norbornadiene analog compound represented by the general formula (2) is 1.0 to 1 mol with respect to the total charge amount of 1 mol of the allyl monomer having a polar group represented by the general formula (1). It is preferably 25.0 mmol.

一実施形態の共重合体の製造方法では、エチレン、一般式(1)で示される極性基を有するアリルモノマー、一般式(2)で示される2,5−ノルボルナジエン類似化合物に加えて、第4のモノマーを用いてもよい。第4のモノマーとして、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、スチレンなどのα−オレフィン;ノルボルネン、シクロペンテン、シクロヘキセンなどの環状オレフィン;アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、ビニルエーテル、アクリロニトリル、アクロレインなどの極性基を有するオレフィンなどが挙げられる。これらは2種以上を組み合わせて重合させてもよい。ただし、第4のモノマーとしてα−オレフィンが共重合されるときは、得られる重合体中に含まれるα−オレフィンとエチレンの合計に対するα−オレフィンの比率は40mol%未満である。共重合体に含まれる第4のモノマーの含有率は5mol%未満であることが好ましい。 In the method for producing a copolymer of one embodiment, in addition to ethylene, an allyl monomer having a polar group represented by the general formula (1), and a 2,5-norbornadiene analog represented by the general formula (2), a fourth. You may use the monomer of. As the fourth monomer, α-olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-norbornene, 1-decene and styrene. Cyclic olefins such as norbornene, cyclopentene and cyclohexene; olefins having polar groups such as acrylic acid ester, methacrylic acid ester, vinyl acetate, vinyl ether, acrylonitrile and achlorine can be mentioned. These may be polymerized by combining two or more kinds. However, when the α-olefin is copolymerized as the fourth monomer, the ratio of the α-olefin to the total amount of the α-olefin and ethylene contained in the obtained polymer is less than 40 mol%. The content of the fourth monomer contained in the copolymer is preferably less than 5 mol%.

[重合方法]
一般式(C1)で示される金属錯体を触媒として使用して、エチレン、一般式(1)で示される極性基を有するアリルモノマー、及び一般式(2)で示される2,5−ノルボルナジエン類似化合物を共重合する方法は特に制限されるものではなく、一般に使用される方法で重合可能である。すなわち、溶液重合法、懸濁重合法、気相重合法などのプロセス法が可能であり、特に溶液重合法、及び懸濁重合法が好ましい。重合様式は、バッチ様式でも連続様式でも可能である。共重合は、一段重合でも、多段重合でも行うこともできる。
[Polymerization method]
Using the metal complex represented by the general formula (C1) as a catalyst, ethylene, an allyl monomer having a polar group represented by the general formula (1), and a 2,5-norbornadiene-like compound represented by the general formula (2). The method for copolymerizing the above is not particularly limited, and the copolymer can be polymerized by a generally used method. That is, process methods such as a solution polymerization method, a suspension polymerization method, and a gas phase polymerization method are possible, and a solution polymerization method and a suspension polymerization method are particularly preferable. The polymerization mode can be either a batch mode or a continuous mode. The copolymerization can be carried out by either one-stage polymerization or multi-stage polymerization.

2種類以上の一般式(C1)で示される金属錯体触媒を混合して重合反応に使用してもよい。混合して使用することで重合体の分子量、分子量分布、又は一般式(1)のモノマーに由来するモノマーユニットの含有量を制御することが可能であり、所望の用途に適した重合体を得ることができる。金属錯体触媒総量とモノマーの総量のモル比は、モノマー/金属錯体の比で、1〜10,000,000の範囲、好ましくは10〜1,000,000の範囲、より好ましくは100〜100,000の範囲が用いられる。 Two or more kinds of metal complex catalysts represented by the general formula (C1) may be mixed and used in the polymerization reaction. By mixing and using, it is possible to control the molecular weight, molecular weight distribution, or the content of the monomer unit derived from the monomer of the general formula (1), and a polymer suitable for a desired application can be obtained. be able to. The molar ratio of the total amount of the metal complex catalyst to the total amount of the monomer is in the range of 1 to 10,000,000, preferably in the range of 10 to 1,000,000, more preferably 100 to 100, in terms of the monomer / metal complex ratio. A range of 000 is used.

一実施形態の共重合体の製造方法では、上述のとおり、一般式(1)で示される極性基を有するアリルモノマーがM−R’錯体種に取り込まれた後に生成する触媒ドーマント種に対して、一般式(2)で示される2,5−ノルボルナジエン類似化合物が反応して、触媒を再度活性化させることで、触媒活性を向上させる。この触媒活性向上効果は、一般式(1)で示される極性基を有するアリルモノマーがM−R’錯体種にある程度取り込まれる重合条件、すなわち一般式(1)で示される極性基を有するアリルモノマーの仕込み量が多い重合条件ほど顕著に現れるといえる。 In the method for producing a copolymer of one embodiment, as described above, for the catalytic dormant species produced after the allyl monomer having a polar group represented by the general formula (1) is incorporated into the MR'complex species. , The 2,5-norbornadiene-like compound represented by the general formula (2) reacts to reactivate the catalyst, thereby improving the catalytic activity. This effect of improving the catalytic activity is a polymerization condition in which the allyl monomer having a polar group represented by the general formula (1) is incorporated into the MR'complex species to some extent, that is, the allyl monomer having a polar group represented by the general formula (1). It can be said that the larger the amount of the charged material, the more prominent the polymerization conditions.

ここで、エチレンと一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の和に対する一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の割合を「アリルモノマー仕込み比」と称した場合、「アリルモノマー仕込み比」は以下の数式で表すことができる。
アリルモノマー仕込み比(モル%)={一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数×100}/{エチレンの仕込みのモル数+一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数}
Here, the ratio of the number of moles of the allyl monomer having a polar group represented by the general formula (1) to the sum of the number of moles of ethylene and the allyl monomer having a polar group represented by the general formula (1) is ". When referred to as "allyl monomer charging ratio", the "allyl monomer charging ratio" can be expressed by the following formula.
Allyl monomer charging ratio (mol%) = {number of moles of allyl monomer charged having a polar group represented by the general formula (1) × 100} / {number of moles of ethylene charging + polarity represented by the general formula (1) Number of moles of allyl monomer having a group}

触媒活性向上の効果の観点から、アリルモノマー仕込み比の好ましい範囲は70モル%以上100モル%未満であり、さらに好ましい範囲は75モル%以上98モル%以下であり、特に好ましい範囲は80モル%以上95モル%以下である。 From the viewpoint of the effect of improving the catalytic activity, the preferable range of the allyl monomer charging ratio is 70 mol% or more and less than 100 mol%, the more preferable range is 75 mol% or more and 98 mol% or less, and the particularly preferable range is 80 mol%. More than 95 mol% or less.

アリルモノマー仕込み比は、重合反応が回分式、又はピストンフロー型連続式のときは総仕込み量に基づいて計算され、連続槽式のときは重合槽平均濃度に基づいて計算される。 The allyl monomer charging ratio is calculated based on the total charging amount when the polymerization reaction is a batch type or a piston flow type continuous type, and is calculated based on the average concentration in the polymerization tank when the polymerization reaction is a continuous tank type.

重合温度は、特に限定されないが、通常−30〜400℃の範囲であり、好ましくは0〜200℃であり、より好ましくは30〜150℃の範囲である。 The polymerization temperature is not particularly limited, but is usually in the range of -30 to 400 ° C, preferably 0 to 200 ° C, and more preferably 30 to 150 ° C.

エチレン圧が内部圧力の大半を占める重合圧力は、常圧から100MPaの範囲内であり、好ましくは常圧から20MPaであり、より好ましくは常圧から10MPaの範囲内である。 The polymerization pressure in which the ethylene pressure occupies most of the internal pressure is in the range of 100 MPa from the normal pressure, preferably in the range of 20 MPa from the normal pressure, and more preferably in the range of 10 MPa from the normal pressure.

重合時間は、プロセス様式、触媒の重合活性などにより適宜調整することができ、数十秒から数分の短い時間であってよく、数千時間の長い反応時間も可能である。 The polymerization time can be appropriately adjusted depending on the process mode, the polymerization activity of the catalyst, and the like, and may be as short as several tens of seconds to several minutes, and a long reaction time of several thousand hours is also possible.

重合系中の雰囲気は、触媒の活性低下を防ぐため、モノマー以外の空気、酸素、水分などが混入しないように窒素ガス、アルゴンなどの不活性ガスで満たすことが好ましい。溶液重合の場合、モノマー以外に不活性溶媒を使用することが可能である。不活性溶媒としては、特に限定されないが、イソブタン、ペンタン、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;クロロホルム、塩化メチレン、四塩化炭素、ジクロロエタン、テトラクロロエタンなどのハロゲン化脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化芳香族炭化水素;酢酸メチル、酢酸エチルなどの脂肪族エステル;安息香酸メチル、安息香酸エチルなどの芳香族エステルなどが挙げられる。 The atmosphere in the polymerization system is preferably filled with an inert gas such as nitrogen gas or argon so that air, oxygen, water and the like other than the monomer are not mixed in, in order to prevent the activity of the catalyst from decreasing. In the case of solution polymerization, it is possible to use an inert solvent other than the monomer. The inert solvent is not particularly limited, but is an aliphatic hydrocarbon such as isobutane, pentane, hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; chloroform, methylene chloride, carbon tetrachloride, dichloroethane, and the like. Halogened aliphatic hydrocarbons such as tetrachloroethane; Halogenized aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene; Aromatic esters such as methyl acetate and ethyl acetate; Fragrant esters such as methyl benzoate and ethyl benzoate And so on.

共存させる2,5−ノルボルナジエン類似化合物は、得られる共重合体中にモノマーとして取り込まれていてもよく、さらには重合体を連結させる架橋点となっていてもよい。共重合体に含まれる2,5−ノルボルナジエン類似化合物の含有率は3mol%未満であることが好ましい。2,5−ノルボルナジエン類似化合物が架橋点として共重合体を連結させる場合、得られる共重合体がゲル化していないことが好ましい。ゲル化の有無は、共重合体を良溶媒に混合したときに、共重合体が完全に溶解するか、不溶分が残存するかで判定する。具体的には実施例に記載の方法による。共重合体の分子量としては重量平均分子量Mwで1,000,000以下であることが特に好ましい。 The 2,5-norbornadiene analog compound to be coexistent may be incorporated as a monomer into the obtained copolymer, or may be a cross-linking point for linking the polymers. The content of the 2,5-norbornadiene analog compound contained in the copolymer is preferably less than 3 mol%. When the 2,5-norbornadiene analog compound links the copolymer as a cross-linking point, it is preferable that the obtained copolymer is not gelled. The presence or absence of gelation is determined by whether the copolymer is completely dissolved or the insoluble component remains when the copolymer is mixed with a good solvent. Specifically, the method described in the examples is used. The molecular weight of the copolymer is particularly preferably 1,000,000 or less in terms of weight average molecular weight Mw.

一実施形態の共重合体の製造方法では、一般式(2)で示される2,5−ノルボルナジエン類似化合物の添加方法については特に制限はなく、反応前に反応溶媒中に溶解させていても、反応開始後に添加してもよい。2,5−ノルボルナジエン類似化合物の添加方法としては、反応開始時に一括で添加する方法、反応開始後、所定の反応時間にわたって添加を行う間欠フィード法、及び連続的に添加し続ける連続フィード法が挙げられる。触媒活性、生産性の向上及びゲル化の抑制の観点からは、2,5−ノルボルナジエン類似化合物を反応開始時に一括で添加するよりも、反応時間中に少量ずつ分割して又は連続的に添加することが好ましい。 In the method for producing the copolymer of one embodiment, there is no particular limitation on the method for adding the 2,5-norbornadiene analog represented by the general formula (2), and even if it is dissolved in the reaction solvent before the reaction, it may be dissolved. It may be added after the reaction is started. Examples of the method for adding the 2,5-norbornadiene analog include a method of adding all at once at the start of the reaction, an intermittent feed method in which the compound is added over a predetermined reaction time after the start of the reaction, and a continuous feed method in which the compounds are continuously added. Be done. From the viewpoint of improving catalytic activity, productivity and suppressing gelation, 2,5-norbornadiene analogs are added in small portions or continuously during the reaction time rather than being added all at once at the start of the reaction. Is preferable.

2,5−ノルボルナジエン類似化合物の使用量は、特に制限はなく、使用する触媒と2,5−ノルボルナジエン類似化合物の反応性によって、最適な量が決定される。金属錯体触媒量と2,5−ノルボルナジエン類似化合物の総添加量のモル比は、2,5−ノルボルナジエン類似化合物/金属錯体のモル比で、好ましくは1〜2000の範囲、より好ましくは50〜1000の範囲、さらに好ましくは100〜500の範囲である。詳細には、重合の初期に2,5−ノルボルナジエン類似化合物を一括で反応系に添加する場合には、金属錯体触媒量と2,5−ノルボルナジエン類似化合物の総添加量のモル比は、2,5−ノルボルナジエン類似化合物/金属錯体の比で、好ましくは10〜1500の範囲、より好ましくは30〜1000の範囲、より好ましくは50〜300の範囲である。前記間欠フィード法又は連続フィード法の場合は、金属錯体触媒量と2,5−ノルボルナジエン類似化合物の総添加量のモル比は、2,5−ノルボルナジエン類似化合物/金属錯体の比で、好ましくは1〜2000の範囲、より好ましくは50〜1000の範囲、特に好ましくは100〜500の範囲である。 The amount of the 2,5-norbornadiene analog compound used is not particularly limited, and the optimum amount is determined by the reactivity of the catalyst used and the 2,5-norbornadiene analog compound. The molar ratio of the amount of the metal complex catalyst to the total amount of the 2,5-norbornadiene-like compound added is the molar ratio of the 2,5-norbornadiene-like compound / metal complex, preferably in the range of 1 to 2000, more preferably 50 to 1000. , More preferably in the range of 100 to 500. Specifically, when 2,5-norbornadiene analogs are collectively added to the reaction system at the initial stage of polymerization, the molar ratio of the amount of the metal complex catalyst to the total amount of the 2,5-norbornadiene analogs added is 2. The ratio of the 5-norbornadiene analog / metal complex is preferably in the range of 10 to 1500, more preferably in the range of 30 to 1000, and more preferably in the range of 50 to 300. In the case of the intermittent feed method or the continuous feed method, the molar ratio of the amount of the metal complex catalyst to the total amount of the 2,5-norbornadiene-like compound added is the ratio of the 2,5-norbornadiene-like compound / metal complex, preferably 1. It is in the range of ~ 2000, more preferably in the range of 50 to 1000, and particularly preferably in the range of 100 to 500.

2,5−ノルボルナジエン類似化合物を反応系に添加するときは、2,5−ノルボルナジエン類似化合物をそのまま単体で添加しても、有機溶媒に溶解させて添加してもよい。有機溶媒に溶解させて添加する場合、溶解させる有機溶媒としては、重合反応で使用する溶媒が好ましい。エチレンと共重合させる極性基を有するアリルモノマーが常温で液体である場合、2,5−ノルボルナジエン類似化合物をアリルモノマーに溶解させて添加してもよい。 When the 2,5-norbornadiene analog compound is added to the reaction system, the 2,5-norbornadiene analog compound may be added alone or dissolved in an organic solvent. When the solvent is dissolved in an organic solvent and added, the solvent used in the polymerization reaction is preferable as the organic solvent to be dissolved. When the allyl monomer having a polar group to be copolymerized with ethylene is liquid at room temperature, a 2,5-norbornadiene-like compound may be added by dissolving it in the allyl monomer.

以下、合成例、実施例、及び比較例を挙げて本発明をより詳細に説明するが、本発明は下記の例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to synthetic examples, examples, and comparative examples, but the present invention is not limited to the following examples.

重合体の平均分子量及びモノマーユニット含有量は、以下の方法により測定、解析し算出した。
[平均分子量]
実施例及び比較例で得た共重合体の数平均分子量及び重量平均分子量は、昭和電工(株)製AT−806MSカラム(2本直列)を備えた東ソー(株)製高温GPC装置、HLC−8121GPC/HTを用いた、ポリスチレンを分子量の標準物質とするサイズ排除クロマトグラフィー(溶媒:1,2−ジクロロベンゼン、温度:145℃)により算出した。
The average molecular weight and the monomer unit content of the polymer were measured, analyzed and calculated by the following methods.
[Average molecular weight]
The number average molecular weight and weight average molecular weight of the copolymers obtained in Examples and Comparative Examples were obtained by HLC-, a high-temperature GPC apparatus manufactured by Tosoh Corporation equipped with an AT-806MS column (two in series) manufactured by Showa Denko Corporation. It was calculated by size exclusion chromatography (solvent: 1,2-dichlorobenzene, temperature: 145 ° C.) using polystyrene as a standard substance of molecular weight using 8121 GPC / HT.

[モノマーユニット含有量]
一般式(1)で示される極性基を有するオレフィン及び2,5−ノルボルナジエン類似化合物に由来するモノマーユニットの含有率は、日本電子(株)製JNM−ECS400を使用して、溶媒として1,1,2,2−テトラクロロエタン−d2を使用した120℃におけるH−NMRによって決定した。
[Monomer unit content]
The content of the monomer unit derived from the olefin having a polar group represented by the general formula (1) and the 2,5-norbornadiene-like compound is 1,1 as a solvent using JNM-ECS400 manufactured by JEOL Ltd. , 2,2-Tetrachloroethane-d2 was determined by 1 H-NMR at 120 ° C.

[共重合体のゲル化の有無]
得られた共重合体のゲル化の有無は、以下の方法により確認を行った。撹拌子を入れたナスフラスコにトルエン(5mL)及び共重合体(0.2g)を加え、25℃で撹拌後、油浴で50℃に昇温して撹拌させた。共重合体が完全に溶解しているときはゲル化なしとし、溶け残りがある場合はゲル化ありとした。
[Presence / absence of gelation of copolymer]
The presence or absence of gelation of the obtained copolymer was confirmed by the following method. Toluene (5 mL) and a copolymer (0.2 g) were added to an eggplant flask containing a stirrer, and the mixture was stirred at 25 ° C. and then heated to 50 ° C. in an oil bath and stirred. When the copolymer was completely dissolved, it was regarded as no gelation, and when there was an undissolved residue, it was considered as gelation.

合成例1:金属錯体1の合成
特開2014−159540号公報に記載の方法を用い、下記の反応スキームに従って金属錯体1を合成した。

Figure 2021188009
Synthesis Example 1: Synthesis of Metal Complex 1 The metal complex 1 was synthesized according to the following reaction scheme using the method described in JP-A-2014-159540.
Figure 2021188009

(a)塩化メンチル(化合物1a)の合成
文献(J. Org. Chem., 17, 1116. (1952))記載の手法で、塩化メンチル(化合物1a)の合成を行った。具体的には、塩化亜鉛(77g、0.56mol)の37質量%塩酸(52mL、0.63mol)溶液に、(−)−メントール(27g、0.17mol)を加え、35℃に加熱しながら、5時間撹拌した。室温まで冷却した後、反応液にヘキサン(50mL)を加え、分液漏斗を使用して、有機層と水層を分離した。有機層は水(30mL×1回)で洗浄後、さらに濃硫酸(10mL×5回)及び水(30mL×5回)で洗浄した。有機層を硫酸マグネシウムで乾燥後、減圧濃縮を行い、塩化メンチル(化合物1a)を無色の油状物質として得た。収量は27g(収率91%)であった。
(A) Synthesis of Mentil Chloride (Compound 1a) Mentil Chloride (Compound 1a) was synthesized by the method described in the literature (J. Org. Chem., 17, 1116. (1952)). Specifically, (-)-menthol (27 g, 0.17 mol) was added to a 37 mass% hydrochloric acid (52 mL, 0.63 mol) solution of zinc chloride (77 g, 0.56 mol), and the mixture was heated to 35 ° C. The mixture was stirred for 5 hours. After cooling to room temperature, hexane (50 mL) was added to the reaction solution, and the organic layer and the aqueous layer were separated using a separating funnel. The organic layer was washed with water (30 mL × 1 time) and then with concentrated sulfuric acid (10 mL × 5 times) and water (30 mL × 5 times). The organic layer was dried over magnesium sulfate and then concentrated under reduced pressure to give mentyl chloride (Compound 1a) as a colorless oily substance. The yield was 27 g (yield 91%).

(b)塩化ジメンチルホスフィン(化合物1c)の合成
文献(Journal fur Praktische Chemie, 322, 485 (1980))記載の手法で、塩化ジメンチルホスフィン(化合物1c)の合成を行った。具体的には、アルゴンガス雰囲気下、塩化メンチル(化合物1a;2.6g、15mmol)とマグネシウム(0.63g、26mmol)をテトラヒドロフラン(THF)(30mL)中で、70℃に加熱しながら反応させて得られた塩化メンチルマグネシウム(化合物1b)の溶液を、三塩化リン(0.63mL、7.2mmol)のTHF(30mL)溶液に−78℃で加えた。室温まで昇温後、70℃に加熱しながら2時間撹拌した。溶媒を減圧留去した後、蒸留精製を行い、塩化ジメンチルホスフィン(化合物1c)を得た。収量は0.62g(収率25%)であった。
(B) Synthesis of Dimentylphosphine Chloride (Compound 1c) Dimentylphosphine chloride (Compound 1c) was synthesized by the method described in the literature (Journal fur Praktische Chemie, 322, 485 (1980)). Specifically, in an atmosphere of argon gas, menthyl chloride (Compound 1a; 2.6 g, 15 mmol) and magnesium (0.63 g, 26 mmol) are reacted in tetrahydrofuran (THF) (30 mL) while heating at 70 ° C. The resulting solution of menthyl magnesium chloride (Compound 1b) was added to a solution of phosphorus trichloride (0.63 mL, 7.2 mmol) in THF (30 mL) at −78 ° C. After raising the temperature to room temperature, the mixture was stirred for 2 hours while heating at 70 ° C. After distilling off the solvent under reduced pressure, distillation purification was carried out to obtain dimentylphosphine chloride (Compound 1c). The yield was 0.62 g (yield 25%).

31P−NMR(162MHz,THF):δ 123.9。 31 P-NMR (162 MHz, THF): δ 123.9.

(c)2−(ジメンチルホスホニオ)ベンゼンスルホナート(化合物1d)の合成
ベンゼンスルホン酸(0.18g,1.2mmol)のTHF溶液(10mL)に、n−ブチルリチウム(1.6Mヘキサン溶液,1.4mL,2.3mmol)を0℃で加え、室温で1時間撹拌した。反応容器を−78℃に冷却した後に、塩化ジメンチルホスフィン(化合物1c;0.36g,1.1mmol)を−78℃で加え、室温で15時間撹拌した。反応をトリフルオロ酢酸(0.97mL,1.3mmol)を添加して停止した後に、溶媒を減圧留去した。残渣をジクロロメタンに溶解させ、飽和塩化アンモニウム水溶液で洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、2−(ジメンチルホスホニオ)ベンゼンスルホナート(化合物1d)を白色粉末として得た。収量は0.31g(収率63%)であった。
(C) Synthesis of 2- (dimentylphosphonio) benzenesulfonate (Compound 1d) n-Butyllithium (1.6M hexane solution) in THF solution (10mL) of benzenesulfonic acid (0.18g, 1.2 mmol) , 1.4 mL, 2.3 mmol) was added at 0 ° C., and the mixture was stirred at room temperature for 1 hour. After cooling the reaction vessel to −78 ° C., dimentylphosphine chloride (Compound 1c; 0.36 g, 1.1 mmol) was added at −78 ° C., and the mixture was stirred at room temperature for 15 hours. After stopping the reaction by adding trifluoroacetic acid (0.97 mL, 1.3 mmol), the solvent was distilled off under reduced pressure. The residue was dissolved in dichloromethane and washed with saturated aqueous ammonium chloride solution. The organic layer was dried over sodium sulfate, and the solvent was evaporated under reduced pressure to give 2- (dimentylphosphonio) benzenesulfonate (Compound 1d) as a white powder. The yield was 0.31 g (yield 63%).

H−NMR(500MHz,CDCl):δ 8.27 (br s, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.59-7.52 (m, 2H), 3.54 (br s, 1H), 2.76 (br s, 1H), 2.16 (br s, 1H), 1.86-1.38 (m, 12H), 1.22-0.84 (m, 22H), 0.27 (br s, 1H);
31P{H}−NMR(162MHz,CDCl):δ 45.1 (br), -4.2 (br)。
1 1 H-NMR (500 MHz, CDCl 3 ): δ 8.27 (br s, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.59-7.52 (m, 2H), 3.54 (br s, 1H), 2.76 (br s, 1H), 2.16 (br s, 1H), 1.86-1.38 (m, 12H), 1.22-0.84 (m, 22H), 0.27 (br s, 1H);
31 P { 1 H} -NMR (162 MHz, CDCl 3 ): δ 45.1 (br), -4.2 (br).

(d)金属錯体1の合成
アルゴン雰囲気下、2−(ジメンチルホスホニオ)ベンゼンスルホナート(化合物1d;0.14g,0.30mmol)とN,N−ジイソプロピルエチルアミン(0.26mL,1.5mmol)の塩化メチレン溶液(10mL)に、(cod)PdMeCl(文献(Inorg. Chem., 1993, 32, 5769-5778)に従って合成、cod=1,5−シクロオクタジエン、0.079g,0.30mmol)を加え、室温で1時間撹拌した。溶液を濃縮した後に、残渣を塩化メチレン(10mL)に溶解させ、この溶液を、炭酸カリウム(0.42g,3.0mmol)と2,6−ルチジン(0.35mL,3.0mmol)の塩化メチレン懸濁液(2mL)に加え、室温で1時間撹拌した。この反応液をセライト(乾燥珪藻土)及びフロリジル(ケイ酸マグネシウム)でろ過した後に、溶媒を濃縮し、減圧下乾燥を行い、金属錯体1を得た。収量は0.17g(収率80%)であった。
(D) Synthesis of metal complex 1 Under an argon atmosphere, 2- (dimentylphosphonio) benzenesulfonate (Compound 1d; 0.14 g, 0.30 mmol) and N, N-diisopropylethylamine (0.26 mL, 1.5 mmol) ) In a methylene chloride solution (10 mL) according to (cod) PdMeCl (literature (Inorg. Chem., 1993, 32, 5769-5778), cod = 1,5-cyclooctadien, 0.079 g, 0.30 mmol). ) Was added, and the mixture was stirred at room temperature for 1 hour. After concentrating the solution, the residue was dissolved in methylene chloride (10 mL) and the solution was mixed with potassium carbonate (0.42 g, 3.0 mmol) and 2,6-lutidine (0.35 mL, 3.0 mmol) methylene chloride. It was added to the suspension (2 mL) and stirred at room temperature for 1 hour. This reaction solution was filtered through cerite (dried diatomaceous earth) and fluorosyl (magnesium silicate), the solvent was concentrated, and the mixture was dried under reduced pressure to obtain a metal complex 1. The yield was 0.17 g (yield 80%).

H−NMR(400MHz,CDCl):δ 8.26 (ddd, J = 7.8, 3.9, 1.4 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 3.75 (s, 1H), 3.24 (s, 3H), 3.17 (s, 3H), 2.59 (s, 1H), 2.49-2.39 (m, 2H), 2.29-2.27 (m, 1H), 2.05-1.96 (m, 1H), 1.89-1.37 (m, 12H), 1.21-1.11 (m, 2H), 0.98 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.58 (d, J = 6.6 Hz, 3H), 0.41 (d, J = 2.3 Hz, 3H), 0.08 (d, J = 6.6 Hz, 3H);
31P−NMR(162MHz,CDCl):δ 16.6。
1 H-NMR (400 MHz, CDCl 3 ): δ 8.26 (ddd, J = 7.8, 3.9, 1.4 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.56 (t, J = 7.7 Hz, 1H) ), 7.49 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 3.75 (s, 1H), 3.24 (s, 3H), 3.17 (s, 3H), 2.59 (s, 1H), 2.49-2.39 (m, 2H), 2.29-2.27 (m, 1H), 2.05-1.96 ( m, 1H), 1.89-1.37 (m, 12H), 1.21-1.11 (m, 2H), 0.98 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.2 Hz, 3H), 0.84 (d) , J = 6.6 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H), 0.58 (d, J = 6.6 Hz, 3H), 0.41 (d, J = 2.3 Hz, 3H), 0.08 (d, J) = 6.6 Hz, 3H);
31 P-NMR (162 MHz, CDCl 3 ): δ 16.6.

合成例2:金属錯体2の合成
特開2011−68881号公報に記載の方法を用い、下記の反応スキームに従って金属錯体2を合成した。

Figure 2021188009
Synthesis Example 2: Synthesis of Metal Complex 2 The metal complex 2 was synthesized according to the following reaction scheme using the method described in JP-A-2011-68881.
Figure 2021188009

(a)2−(ジイソプロピルホスホニオ)ベンゼンスルホナート(化合物2a)の合成
ベンゼンスルホン酸(21.7g,137mmol)のTHF溶液(400mL)に、n−ブチルリチウム(1.6Mヘキサン溶液,174mL,274mmol)を0℃で加え、室温で3時間撹拌した。反応容器を−78℃に冷却した後に、塩化ジイソプロピルホスフィン(19.0g,125mmol)を−78℃で加え、室温で15時間撹拌した。反応をトリフルオロ酢酸(15.6g,137mmol)を添加して停止した後に、溶媒を減圧留去した。残渣をジクロロメタンに溶解させ、飽和塩化アンモニウム水溶液で洗浄した。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、2−(ジイソプロピルホスホニオ)ベンゼンスルホナート(化合物2a)を白色粉末として得た。収量は26.8g(収率78%)であった。
(A) Synthesis of 2- (diisopropylphosphonio) benzenesulfonate (Compound 2a) n-Butyllithium (1.6M hexane solution, 174mL, 174mL) was added to a THF solution (400mL) of benzenesulfonic acid (21.7g, 137 mmol). 274 mmol) was added at 0 ° C. and the mixture was stirred at room temperature for 3 hours. After cooling the reaction vessel to −78 ° C., diisopropylphosphine chloride (19.0 g, 125 mmol) was added at −78 ° C., and the mixture was stirred at room temperature for 15 hours. The reaction was stopped by adding trifluoroacetic acid (15.6 g, 137 mmol), and then the solvent was distilled off under reduced pressure. The residue was dissolved in dichloromethane and washed with saturated aqueous ammonium chloride solution. The organic layer was dried over sodium sulfate, and the solvent was evaporated under reduced pressure to give 2- (diisopropylphosphonio) benzenesulfonate (Compound 2a) as a white powder. The yield was 26.8 g (yield 78%).

H−NMR(400MHz,CDCl):δ 1.25 (dd, J = 21.6, 7.0 Hz, 6H), 1.53 (dd, J = 21.8, 7.2 Hz, 6H), 3.45 (m, 2H), 5.42 (br d, 1JPH = 380 Hz), 7.58 (tdd, J = 7.6, 2.8, 1.1 Hz, 1H), 7.69 (ddd, J = 15.1, 7.7, 0.7 Hz, 1H), 7.83 (dd, J = 7.6, 7.6 Hz, 1H), 8.27 (dd, J = 7.5, 4.4 Hz, 1H);
13C−NMR(101MHz,CDCl):δ 19.4 (s), 24.5-27.7 (m), 114.4 (br d, J = 93 Hz), 129.1 (d, J = 8.6 Hz), 130.3 (d, J = 12.5 Hz), 134.7-137.1 (m), 150.7 (br s);
31P−NMR(162MHz,CDCl):δ 62.5 (d, 1JPH = 380 Hz) (83%), 31.0 (d, 1JPH = 460 Hz) (17%)。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 1.25 (dd, J = 21.6, 7.0 Hz, 6H), 1.53 (dd, J = 21.8, 7.2 Hz, 6H), 3.45 (m, 2H), 5.42 (br d, 1 J PH = 380 Hz), 7.58 (tdd, J = 7.6, 2.8, 1.1 Hz, 1H), 7.69 (ddd, J = 15.1, 7.7, 0.7 Hz, 1H), 7.83 (dd, J = 7.6, 7.6 Hz, 1H), 8.27 (dd, J = 7.5, 4.4 Hz, 1H);
13 C-NMR (101 MHz, CDCl 3 ): δ 19.4 (s), 24.5-27.7 (m), 114.4 (br d, J = 93 Hz), 129.1 (d, J = 8.6 Hz), 130.3 (d, J) = 12.5 Hz), 134.7-137.1 (m), 150.7 (br s);
31 P-NMR (162 MHz, CDCl 3 ): δ 62.5 (d, 1 J PH = 380 Hz) (83%), 31.0 (d, 1 J PH = 460 Hz) (17%).

(b)金属錯体2の合成
アルゴン雰囲気下、2−(ジイソプロピルホスホニオ)ベンゼンスルホナート(化合物2a;16.3g,59mmol)とN,N−ジイソプロピルエチルアミン(38.3g,296mmol)の塩化メチレン溶液(500mL)に、(cod)PdMeCl(文献(Inorg. Chem., 1993, 32, 5769-5778)に従って合成、cod=1,5−シクロオクタジエン、16.3g,62mmol)を加え、室温で2.5時間撹拌した。溶液を濃縮した後に、残渣を塩化メチレン(200mL)に溶解させ、この溶液を、炭酸カリウム(80.8g,585mmol)と2,6−ルチジン(62.7g,585mmol)の塩化メチレン懸濁液(500mL)に加え、室温で1時間撹拌した。この反応液をセライト(乾燥珪藻土)及びフロリジル(ケイ酸マグネシウム)でろ過した後に、溶媒を濃縮し、減圧下乾燥を行った。さらに、塩化メチレン/ヘキサンからの再結晶精製を行い、金属錯体2を白色結晶として得た。収量は18.9g(収率61%)であった。
(B) Synthesis of Metal Complex 2 A methylene chloride solution of 2- (diisopropylphosphonio) benzenesulfonate (Compound 2a; 16.3 g, 59 mmol) and N, N-diisopropylethylamine (38.3 g, 296 mmol) under an argon atmosphere. To (500 mL), add (cod) PdMeCl (synthesized according to the literature (Inorg. Chem., 1993, 32, 5769-5778), cod = 1,5-cyclooctadien, 16.3 g, 62 mmol) and add 2 at room temperature. . Stirred for 5 hours. After concentrating the solution, the residue was dissolved in methylene chloride (200 mL) and the solution was mixed with a suspension of potassium carbonate (80.8 g, 585 mmol) and 2,6-lutidine (62.7 g, 585 mmol) in methylene chloride (62.7 g, 585 mmol). It was added to 500 mL) and stirred at room temperature for 1 hour. This reaction solution was filtered through cerite (dried diatomaceous earth) and floridil (magnesium silicate), the solvent was concentrated, and the mixture was dried under reduced pressure. Further, recrystallization purification from methylene chloride / hexane was performed to obtain the metal complex 2 as white crystals. The yield was 18.9 g (yield 61%).

H−NMR(400MHz,CDCl):δ 0.34 (d, J = 2.3 Hz, 3H), 1.32 (ddd, J = 49.9, 16.0, 7.0 Hz, 12H), 2.58 (dt, J = 22.3, 7.2 Hz, 2H), 3.18 (s, 6H), 7.12 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.7 Hz, 2H), 8.29-8.32 (m, 1H);
13C−NMR(101MHz,CDCl):δ -10.10 (d, J = 4.8 Hz), 18.44 (s), 19.29 (d, J = 4.8 Hz), 25.91 (d, J = 25.9 Hz), 26.20 (s), 122.72 (d, J = 3.8 Hz), 124.56 (d, J = 35.5 Hz), 129.19 (t, J = 6.7 Hz), 131.03 (d, J = 1.9 Hz), 132.39 (s), 138.30 (s), 151.13 (d, J = 10.5 Hz), 159.17 (s);
31P−NMR(162MHz,CDCl):δ 34.4 (s)。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 0.34 (d, J = 2.3 Hz, 3H), 1.32 (ddd, J = 49.9, 16.0, 7.0 Hz, 12H), 2.58 (dt, J = 22.3, 7.2 Hz) , 2H), 3.18 (s, 6H), 7.12 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.58 (t) , J = 7.7 Hz, 2H), 8.29-8.32 (m, 1H);
13 C-NMR (101 MHz, CDCl 3 ): δ -10.10 (d, J = 4.8 Hz), 18.44 (s), 19.29 (d, J = 4.8 Hz), 25.91 (d, J = 25.9 Hz), 26.20 ( s), 122.72 (d, J = 3.8 Hz), 124.56 (d, J = 35.5 Hz), 129.19 (t, J = 6.7 Hz), 131.03 (d, J = 1.9 Hz), 132.39 (s), 138.30 (s) s), 151.13 (d, J = 10.5 Hz), 159.17 (s);
31 P-NMR (162 MHz, CDCl 3 ): δ 34.4 (s).

合成例3:金属錯体3の合成
下記の反応スキームに従って金属錯体3を合成した。

Figure 2021188009
Synthesis Example 3: Synthesis of metal complex 3 The metal complex 3 was synthesized according to the following reaction scheme.
Figure 2021188009

(a)メタンスルホン酸イソプロピル(化合物3b)の合成
メタンスルホン酸クロリド(化合物3a;20.0g,174.6mmol)のジクロロメタン溶液(50mL)に、2−プロパノール(10.5g,174.6mmol,1.0eq)とトリエチルアミン(44.2g,436.5mmol,2.5eq)のジクロロメタン溶液(50mL)を0℃にてゆっくりと加え、25℃で16時間撹拌した。反応液をろ過し、回収したろ液を濃縮した後、再度ジクロロメタン(50mL)に溶解させ、1M塩酸(20mL)、飽和炭酸水素ナトリウム水(20mL)、飽和食塩水(20mL)にて洗浄した。無水硫酸ナトリウムにて脱水し、ろ過した後、濃縮することにより、目的物(化合物3b)を黄色いオイルとして得た。収量は20.2g(収率84%)であった。
(A) Synthesis of isopropyl methanesulfonate (Compound 3b) 2-propanol (10.5 g, 174.6 mmol, 1) in a dichloromethane solution (50 mL) of methanesulfonic acid chloride (Compound 3a; 20.0 g, 174.6 mmol). A dichloromethane solution (50 mL) of .0 eq) and triethylamine (44.2 g, 436.5 mmol, 2.5 eq) was slowly added at 0 ° C. and stirred at 25 ° C. for 16 hours. The reaction mixture was filtered, and the recovered filtrate was concentrated, then dissolved again in dichloromethane (50 mL), and washed with 1 M hydrochloric acid (20 mL), saturated aqueous sodium hydrogen carbonate solution (20 mL), and saturated brine (20 mL). The target product (Compound 3b) was obtained as a yellow oil by dehydrating with anhydrous sodium sulfate, filtering, and then concentrating. The yield was 20.2 g (yield 84%).

H−NMR(400MHz,CDCl):δ 4.91 (m, 1H), 3.04 (s, 3H), 1.39 (s, 3H), 1.38 (s, 3H)。 1 1 H-NMR (400 MHz, CDCl 3 ): δ 4.91 (m, 1H), 3.04 (s, 3H), 1.39 (s, 3H), 1.38 (s, 3H).

(b)ジt−ブチルホスファニルメタンスルホン酸イソプロピル(化合物3c)の合成
メタンスルホン酸イソプロピル(化合物3b;6.0g,43.4mmol)のテトラヒドロフラン溶液(100mL)に、n−ブチルリチウム(2.5Mヘキサン溶液,45.6mmol,1.1eq)を0℃で加え、0℃で1時間撹拌した。反応容器を−78℃に冷却した後に、塩化ジt−ブチルホスフィン(7.8g,43.4mmol,1.0eq)を−78℃で加え、室温で16時間撹拌した。溶媒を減圧留去した後、シリカゲルクロマトグラフィー(ペンタン/酢酸エチル=20/1)で精製し、ペンタン(5mL×2回)で洗浄することにより、目的物(化合物3c)を白色粉末として得た。収量は3.6g(収率29%)であった。
(B) Synthesis of isopropyl dit-butylphosphanylmethanesulfonate (Compound 3c) n-butyllithium (2.) In a tetrahydrofuran solution (100 mL) of isopropyl methanesulfonate (Compound 3b; 6.0 g, 43.4 mmol). 5M hexane solution, 45.6 mmol, 1.1eq) was added at 0 ° C. and stirred at 0 ° C. for 1 hour. After cooling the reaction vessel to −78 ° C., dit-butylphosphine chloride (7.8 g, 43.4 mmol, 1.0 eq) was added at −78 ° C., and the mixture was stirred at room temperature for 16 hours. After distilling off the solvent under reduced pressure, the residue was purified by silica gel chromatography (pentane / ethyl acetate = 20/1) and washed with pentane (5 mL × 2 times) to obtain the desired product (compound 3c) as a white powder. .. The yield was 3.6 g (yield 29%).

H−NMR(400MHz,CDCl):δ 5.00 (m, 1H), 3.26 (br, 2H), 1.41 (d, J = 6.4 Hz, 6H), 1.19 (d, J = 12.0 Hz, 18H);
31P−NMR(162MHz,CDCl):δ 18.4。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 5.00 (m, 1H), 3.26 (br, 2H), 1.41 (d, J = 6.4 Hz, 6H), 1.19 (d, J = 12.0 Hz, 18H);
31 P-NMR (162 MHz, CDCl 3 ): δ 18.4.

(c)ジt−ブチル(チオ)ホスフィノメタンスルホン酸イソプロピル(化合物3d)の合成
ジt−ブチルホスファニルメタンスルホン酸イソプロピル(化合物3c;3.58g,12.68mmol)のTHF(テトラヒドロフラン)溶液(40mL)に、硫黄(2.5Mヘキサン溶液,2.03g,63.39mmol,5eq)を−78℃で加え、25℃で16時間撹拌し、さらに60℃で2時間撹拌した。反応液をろ過し、ろ過残渣を酢酸エチル(20mL)にて洗浄し、全ての溶液を回収して溶媒を減圧留去した。ペンタン(10mL)を加えてろ過し、減圧乾燥することにより、目的物(化合物3d)を白色粉末として得た。収量は3.5g(収率88%)であった。
(C) Synthesis of isopropyl dit-butyl (thio) phosphinomethanesulfonate (Compound 3d) A solution of isopropyl dit-butylphosphanylmethanesulfonate (Compound 3c; 3.58 g, 12.68 mmol) in THF (tetrachloride). To (40 mL), sulfur (2.5 M hexane solution, 2.03 g, 63.39 mmol, 5 eq) was added at −78 ° C., stirred at 25 ° C. for 16 hours, and further stirred at 60 ° C. for 2 hours. The reaction mixture was filtered, the filtration residue was washed with ethyl acetate (20 mL), all the solutions were recovered, and the solvent was distilled off under reduced pressure. Pentane (10 mL) was added, the mixture was filtered, and the mixture was dried under reduced pressure to obtain the desired product (Compound 3d) as a white powder. The yield was 3.5 g (yield 88%).

H−NMR(400MHz,CDCl):δ 5.16 (m, 1H), 3.80 (br, 2H), 1.46 (d, J = 6.4 Hz, 6H), 1.43 (d, J = 12.0 Hz, 18H);
31P−NMR(162MHz,CDCl):δ 74.5。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 5.16 (m, 1H), 3.80 (br, 2H), 1.46 (d, J = 6.4 Hz, 6H), 1.43 (d, J = 12.0 Hz, 18H);
31 P-NMR (162 MHz, CDCl 3 ): δ 74.5.

(d)ジt−ブチル(チオ)ホスフィノメタンスルホン酸(化合物3e)の合成
ジt−ブチル(チオ)ホスフィノメタンスルホン酸イソプロピル(化合物1d;5.5g,16.62mmol)のメタノール(40mL)、THF(20mL)及び水(5mL)の混合溶液に、水酸化ナトリウム(2.66g,66.47mmol,4eq)を加え、66℃で16時間撹拌した。この反応液から溶媒を留去して濃縮後、酢酸エチル(20mL)にて洗浄し、得られた白色粉末をエタノール(100mL)とジクロロメタン(50mL)混合溶液に懸濁させ、HCl/酢酸エチルにてpH=5に中和した。この中和液をろ過し、ろ液を濃縮後にジクロロメタンに溶解させ、不溶物をろ過により除去後、溶媒を減圧留去することにより、目的物(化合物3e)を淡黄色の粉末として得た。収量は4.2g(収率93%)であった。
(D) Synthesis of dit-butyl (thio) phosphinomethanesulfonic acid (Compound 3e) Methanol (40 mL) of dit-butyl (thio) isopropyl phosphinomethanesulfonic acid (Compound 1d; 5.5 g, 16.62 mmol) ), THF (20 mL) and water (5 mL) were added with sodium hydroxide (2.66 g, 66.47 mmol, 4 eq) and stirred at 66 ° C. for 16 hours. After distilling off the solvent from this reaction solution and concentrating it, it was washed with ethyl acetate (20 mL), and the obtained white powder was suspended in a mixed solution of ethanol (100 mL) and dichloromethane (50 mL) to make HCl / ethyl acetate. It was neutralized to pH = 5. The neutralized solution was filtered, the filtrate was concentrated and then dissolved in dichloromethane, the insoluble material was removed by filtration, and the solvent was distilled off under reduced pressure to obtain the target product (Compound 3e) as a pale yellow powder. The yield was 4.2 g (yield 93%).

H−NMR(400MHz,CDCl):δ 6.28 (br, 1H), 3.75 (d, J = 6.4 Hz, 2H), 1.41 (d, J = 16.8 Hz, 18H);
31P−NMR(162MHz,CDCl):δ 72.2。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 6.28 (br, 1H), 3.75 (d, J = 6.4 Hz, 2H), 1.41 (d, J = 16.8 Hz, 18H);
31 P-NMR (162 MHz, CDCl 3 ): δ 72.2.

(e)ジt−ブチルホスファニルメタンスルホン酸(化合物3f)の合成
RANEY(登録商標)−Ni(4.5g,52.5mmol,6.8eq)のTHF溶液(100mL)に、ジt−ブチル(チオ)ホスフィノメタンスルホン酸(化合物3e;2.1g,7.71mmol,1eq)のTHF溶液(40mL)をシリンジを用いてゆっくりと加え、室温で16時間撹拌した。この反応液にジクロロメタン(80mL)を加えてろ過し、溶媒を減圧留去した。この反応物をジクロロメタン(200mL)に懸濁し、不溶物をろ過により除去後、溶媒を減圧留去することにより、目的物(化合物3f)をピンクの粉末として得た。収量は0.8g(収率44%)であった。
(E) Synthesis of dit-butylphosphanylmethanesulfonic acid (Compound 3f) dit-butyl in a THF solution (100 mL) of RANEY®-Ni (4.5 g, 52.5 mmol, 6.8 eq). (Thio) A THF solution (40 mL) of phosphinomethanesulfonic acid (Compound 3e; 2.1 g, 7.71 mmol, 1 eq) was slowly added using a syringe and stirred at room temperature for 16 hours. Dichloromethane (80 mL) was added to this reaction solution, the mixture was filtered, and the solvent was distilled off under reduced pressure. The reaction product was suspended in dichloromethane (200 mL), the insoluble material was removed by filtration, and the solvent was distilled off under reduced pressure to obtain the desired product (Compound 3f) as a pink powder. The yield was 0.8 g (yield 44%).

H−NMR(400MHz,CDCl):δ 4.88 (br, 1H), 3.06 (d, J = 3.2 Hz, 2H), 1.17 (d, J = 11.2 Hz, 18H);
31P−NMR(162MHz,CDCl):δ 19.1。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 4.88 (br, 1H), 3.06 (d, J = 3.2 Hz, 2H), 1.17 (d, J = 11.2 Hz, 18H);
31 P-NMR (162 MHz, CDCl 3 ): δ 19.1.

(f)金属錯体3の合成
窒素雰囲気下、ジt−ブチルホスファニルメタンスルホン酸(化合物3f;0.95g,3.96mmol)とN,N−ジイソプロピルエチルアミン(3.5mL,19.8mmol)の塩化メチレン溶液(30mL)に、(cod)PdMeCl(cod=1,5−シクロオクタジエン、1.05g,3.96mmol)を加え、室温で1時間撹拌した。溶液を濃縮した後に、残渣をジクロロメタン(15mL)に溶解させ、この溶液を、炭酸カリウム(5.47g,39.6mmol)と2,6−ルチジン(4.61mL,39.8mmol)のジクロロメタン懸濁液(10mL)に加え、室温で1時間撹拌した。この反応液をセライト(乾燥珪藻土)及びフロリジル(ケイ酸マグネシウム)でろ過した後に、溶媒を濃縮し、減圧下乾燥を行った。ヘキサン(15mL×3回)で洗浄することにより、金属錯体3を得た。収量は1.2g(収率63%)であった。
(F) Synthesis of Metal Complex 3 Under a nitrogen atmosphere, dit-butylphosphanylmethanesulfonic acid (Compound 3f; 0.95 g, 3.96 mmol) and N, N-diisopropylethylamine (3.5 mL, 19.8 mmol) (Cod) PdMeCl (cod = 1,5-cyclooctadiene, 1.05 g, 3.96 mmol) was added to a methylene chloride solution (30 mL), and the mixture was stirred at room temperature for 1 hour. After concentrating the solution, the residue is dissolved in dichloromethane (15 mL) and the solution is suspended in dichloromethane with potassium carbonate (5.47 g, 39.6 mmol) and 2,6-lutidine (4.61 mL, 39.8 mmol). The mixture was added to the solution (10 mL) and stirred at room temperature for 1 hour. This reaction solution was filtered through cerite (dried diatomaceous earth) and floridil (magnesium silicate), the solvent was concentrated, and the mixture was dried under reduced pressure. The metal complex 3 was obtained by washing with hexane (15 mL × 3 times). The yield was 1.2 g (yield 63%).

H−NMR(400MHz,CDCl):δ 7.57 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.8 Hz, 2H), 3.44 (d, J = 8.2 Hz, 2H), 3.06 (s, 6H), 1.49 (d, J = 14.6 Hz, 18H), 0.54 (d, J = 1.9 Hz, 3H);
31P−NMR(162MHz,CDCl):δ 46.5。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 7.57 (t, J = 7.8 Hz, 1H), 7.11 (d, J = 7.8 Hz, 2H), 3.44 (d, J = 8.2 Hz, 2H), 3.06 ( s, 6H), 1.49 (d, J = 14.6 Hz, 18H), 0.54 (d, J = 1.9 Hz, 3H);
31 P-NMR (162 MHz, CDCl 3 ): δ 46.5.

合成例4:金属錯体4の合成

Figure 2021188009
金属錯体3合成用中間体3cの原料である塩化ジt−ブチルホスフィンを塩化ジ(2−メチル−2−ペンチル)ホスフィン(同モル数)に変えた以外は、金属錯体3の合成スキームの(a)〜(f)と同様の方法で、金属錯体4を合成した。 Synthesis Example 4: Synthesis of metal complex 4
Figure 2021188009
Except for changing dit-butylphosphine chloride, which is the raw material of the intermediate 3c for synthesizing the metal complex 3, to di (2-methyl-2-pentyl) phosphine chloride (same number of moles), the (same number of moles) of the synthesis scheme of the metal complex 3 The metal complex 4 was synthesized by the same method as in a) to (f).

H−NMR(400MHz,CDCl):δ 7.57 (t, J = 7.6 Hz, 1H), 7.11(d, J = 8.0 Hz, 2H), 3.48(d, J = 7.6 Hz, 2H), 3.07(s, 6H), 1.95-1.85(m, 4H), 1.55-1.45(m, 16H), 0.98(t, J = 7.2 Hz, 6H), 0.53(d, J = 2.0 Hz, 3H);
31P−NMR(162MHz,CDCl):δ 50.9。
1 1 H-NMR (400 MHz, CDCl 3 ): δ 7.57 (t, J = 7.6 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 3.48 (d, J = 7.6 Hz, 2H), 3.07 ( s, 6H), 1.95-1.85 (m, 4H), 1.55-1.45 (m, 16H), 0.98 (t, J = 7.2 Hz, 6H), 0.53 (d, J = 2.0 Hz, 3H);
31 P-NMR (162 MHz, CDCl 3 ): δ 50.9.

合成例5:金属錯体5の合成

Figure 2021188009
金属錯体3合成用中間体3cの原料である塩化ジt−ブチルホスフィンを塩化t−ブチル(2,3,3−トリメチル−2−ブチル)ホスフィン(同モル数)に変えた以外は、金属錯体3の合成スキームの(a)〜(f)と同様の方法で、金属錯体5を合成した。
H−NMR(400MHz,CDCl):δ 7.57 (t, J = 7.7 Hz, 1H), 7.12 (d, J = 7.7 Hz, 2H), 3.66 (dd, J = 15.2, 8.0 Hz, 1H), 3.38 (dd, J = 15.2, 9.2 Hz, 1H), 3.14(s, 3H), 3.03(s, 3H), 1.59 (d, J = 14.0 Hz, 9H), 1.55-1.30(m, 6H) , 1.40 (s, 9H) , 0.58(s, 3H);
31P−NMR(162MHz,CDCl):δ 34.4。 Synthesis Example 5: Synthesis of metal complex 5
Figure 2021188009
Metal complex 3 Metal complex except that di-t-butylphosphine chloride, which is the raw material of intermediate 3c for synthesis, was changed to t-butyl chloride (2,3,3-trimethyl-2-butyl) phosphine (same number of moles). The metal complex 5 was synthesized by the same method as in (a) to (f) of the synthesis scheme of 3.
1 1 H-NMR (400 MHz, CDCl 3 ): δ 7.57 (t, J = 7.7 Hz, 1H), 7.12 (d, J = 7.7 Hz, 2H), 3.66 (dd, J = 15.2, 8.0 Hz, 1H), 3.38 (dd, J = 15.2, 9.2 Hz, 1H), 3.14 (s, 3H), 3.03 (s, 3H), 1.59 (d, J = 14.0 Hz, 9H), 1.55-1.30 (m, 6H), 1.40 (s, 9H), 0.58 (s, 3H);
31 P-NMR (162 MHz, CDCl 3 ): δ 34.4.

[重合体の合成]
合成例で製造した各金属錯体を使用して、酢酸アリルとエチレン等の共重合反応を行った。生産性、及び触媒活性は次の式により計算した。

Figure 2021188009
Figure 2021188009
[Synthesis of polymer]
A copolymerization reaction of allyl acetate and ethylene was carried out using each metal complex produced in the synthetic example. Productivity and catalytic activity were calculated by the following formulas.
Figure 2021188009
Figure 2021188009

実施例1:金属錯体1を使用した2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合(重合体1の調製)
窒素ガス雰囲気下、一般式(1)で示されるモノマーとして酢酸アリル(150mL、1,390mmol)、及び一般式(2)で示される2,5−ノルボルナジエン類似化合物として2,5−ノルボルナジエン(184.3mg,2.0mmol)を含む500mLオートクレーブを、65℃で撹拌しながら、エチレン(0.51MPa)を充填した。オートクレーブ内に金属錯体1(13.9mg,0.020mmol)の酢酸アリル溶液(30mL)を圧送により加え、24時間撹拌した。このときのアリルモノマー仕込み比は95モル%と算出される。室温まで冷却及びエチレン脱圧後、オートクレーブ内の反応液をメタノール(500mL)に加え、共重合体を析出させた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体1を得た。収量は1.32gであった。生産性は66g/mmolと算出され、触媒活性は2.8g/(mmol・h)と算出された。重合体1の数平均分子量は31000、重量平均分子量は65000、Mw/Mnは2.1であった。共重合体中の酢酸アリル及び2,5−ノルボルナジエンの含有率について、エチレン:酢酸アリル:2,5−ノルボルナジエンのモル比は100:24.7:0.11(酢酸アリルモル分率=19.8%、2,5−ノルボルナジエンモル分率=0.09%)と決定された。重合体1はトルエンへ完全に溶解し、ゲル化はなかった。
Example 1: Copolymerization of allyl acetate and ethylene in the coexistence of 2,5-norbornadiene using metal complex 1 (preparation of polymer 1)
Under a nitrogen gas atmosphere, allyl acetate (150 mL, 1,390 mmol) as the monomer represented by the general formula (1) and 2,5-norbornadiene (184. A 500 mL autoclave containing 3 mg, 2.0 mmol) was filled with ethylene (0.51 MPa) with stirring at 65 ° C. An allyl acetate solution (30 mL) of metal complex 1 (13.9 mg, 0.020 mmol) was added to the autoclave by pressure feeding, and the mixture was stirred for 24 hours. The allyl monomer charging ratio at this time is calculated to be 95 mol%. After cooling to room temperature and depressurizing ethylene, the reaction solution in the autoclave was added to methanol (500 mL) to precipitate a copolymer. The resulting copolymer was recovered by filtration, washed with methanol, and then dried under reduced pressure to obtain polymer 1. The yield was 1.32 g. The productivity was calculated to be 66 g / mmol and the catalytic activity was calculated to be 2.8 g / (mmol · h). The number average molecular weight of the polymer 1 was 31,000, the weight average molecular weight was 65,000, and Mw / Mn was 2.1. Regarding the content of allyl acetate and 2,5-norbornadiene in the copolymer, the molar ratio of ethylene: allyl acetate: 2,5-norbornadiene is 100: 24.7: 0.11 (mole fraction of allyl acetate = 19.8). %, 2,5-Norbornadiene mole fraction = 0.09%). Polymer 1 was completely dissolved in toluene and did not gel.

比較例1:金属錯体1を使用した酢酸アリルとエチレンの共重合(比較重合体1の調製)
2,5−ノルボルナジエンを加えない点以外は実施例1と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Example 1: Copolymerization of Allyl Acetate and Ethylene Using Metal Complex 1 (Preparation of Comparative Polymer 1)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Example 1 except that 2,5-norbornadiene was not added.

比較例2:金属錯体1を使用した2−ノルボルネン共存下での酢酸アリルとエチレンの共重合(比較重合体2の調製)
2,5−ノルボルナジエンの代わりに2−ノルボルネン(188.3mg,2.0mmol)を加えた点以外は実施例1と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Example 2: Copolymerization of Allyl Acetate and Ethylene in the Coexistence of 2-Norbornene Using Metal Complex 1 (Preparation of Comparative Polymer 2)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Example 1 except that 2-norbornene (188.3 mg, 2.0 mmol) was added instead of 2,5-norbornadiene.

実施例1及び比較例1〜2の重合条件及び結果をそれぞれ表1及び表2に示す。

Figure 2021188009
The polymerization conditions and results of Examples 1 and Comparative Examples 1 and 2 are shown in Tables 1 and 2, respectively.
Figure 2021188009

Figure 2021188009
Figure 2021188009

実施例1及び比較例1より、2,5−ノルボルナジエンを共存させることで、触媒活性が向上することが判った。また、比較例2において、2,5−ノルボルナジエンと類似の骨格を有する2−ノルボルネンの添加を試みたものの、触媒活性の向上は全く見られなかった。このとき、2−ノルボルネンの重合体への取り込みも見られなかった。 From Example 1 and Comparative Example 1, it was found that the coexistence of 2,5-norbornadiene improved the catalytic activity. Further, in Comparative Example 2, although an attempt was made to add 2-norbornene having a skeleton similar to 2,5-norbornadiene, no improvement in catalytic activity was observed. At this time, no incorporation of 2-norbornene into the polymer was also observed.

実施例2:金属錯体2を使用した2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合(重合体2の調製)
窒素ガス雰囲気下、一般式(1)で示されるモノマーとして酢酸アリル(120mL、1,112mmol)、及び一般式(2)で示される2,5−ノルボルナジエン類似化合物として2,5−ノルボルナジエン(110.6mg,1.2mmol)を含む500mLオートクレーブを、65℃で撹拌しながら、エチレン(0.79MPa)を充填した。オートクレーブ内に金属錯体2(10.0mg,0.020mmol)の酢酸アリル溶液(酢酸アリル:30mL)を圧送により加え、24時間撹拌した。このときのアリルモノマー仕込み比は92.5モル%と算出される。この24時間の間、フィードポンプを使用して、2,5−ノルボルナジエンを0.25mmol/h(23.2mg/h)の速度で反応液中に追加でフィードした。室温まで冷却及びエチレン脱圧後、オートクレーブ内の反応液をメタノール(500mL)に加え、共重合体を析出させた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、重合体2を得た。収量は3.86gであった。生産性は193g/mmolと算出され、触媒活性は8.0g/(mmol・h)と算出された。重合体2の数平均分子量は6100、重量平均分子量は33000、Mw/Mnは5.5であった。共重合体中の酢酸アリル及び2,5−ノルボルナジエンの含有率について、エチレン:酢酸アリル:2,5−ノルボルナジエンのモル比は100:19.9:6.3(酢酸アリルモル分率=15.8%、2,5−ノルボルナジエンモル分率=5.00%)と決定された。重合体2はトルエンへ完全に溶解し、ゲル化はなかった。
Example 2: Copolymerization of allyl acetate and ethylene in the coexistence of 2,5-norbornadiene using the metal complex 2 (preparation of polymer 2)
Under a nitrogen gas atmosphere, allyl acetate (120 mL, 1,112 mmol) as the monomer represented by the general formula (1) and 2,5-norbornadiene (110. Norbornadiene) as the 2,5-norbornadiene-like compound represented by the general formula (2). A 500 mL autoclave containing 6 mg, 1.2 mmol) was filled with ethylene (0.79 MPa) with stirring at 65 ° C. A solution of allyl acetate (allyl acetate: 30 mL) of metal complex 2 (10.0 mg, 0.020 mmol) was added to the autoclave by pumping, and the mixture was stirred for 24 hours. The allyl monomer charging ratio at this time is calculated to be 92.5 mol%. During this 24 hour, a feed pump was used to additionally feed 2,5-norbornadiene into the reaction at a rate of 0.25 mmol / h (23.2 mg / h). After cooling to room temperature and depressurizing ethylene, the reaction solution in the autoclave was added to methanol (500 mL) to precipitate a copolymer. The resulting copolymer was recovered by filtration, washed with methanol, and then dried under reduced pressure to obtain polymer 2. The yield was 3.86 g. The productivity was calculated to be 193 g / mmol and the catalytic activity was calculated to be 8.0 g / (mmol · h). The number average molecular weight of the polymer 2 was 6100, the weight average molecular weight was 33000, and Mw / Mn was 5.5. Regarding the content of allyl acetate and 2,5-norbornadiene in the copolymer, the molar ratio of ethylene: allyl acetate: 2,5-norbornadiene is 100: 19.9: 6.3 (mole fraction of allyl acetate = 15.8). %, 2,5-Norbornadiene mole fraction = 5.00%). Polymer 2 was completely dissolved in toluene and did not gel.

比較例3:金属錯体2を使用した酢酸アリルとエチレンの共重合(比較重合体3の調製)
2,5−ノルボルナジエンを加えない点以外は実施例2と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Example 3: Copolymerization of Allyl Acetate and Ethylene Using Metal Complex 2 (Preparation of Comparative Polymer 3)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Example 2 except that 2,5-norbornadiene was not added.

比較例4:金属錯体2を使用した2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合(比較重合体4の調製)
金属錯体2を使用して、アリルモノマー仕込み比が低い条件で、2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合を行った。特開2013−079347号公報の実施例に記載の重合条件に従い、窒素ガス雰囲気下、金属錯体2(25.1mg,0.050mmol)、酢酸アリル(75mL,700mmol)、及び2,5−ノルボルナジエン(46.1mg,0.50mmol)を含む120mLオートクレーブを、80℃で撹拌しながら、エチレン(4.0MPa)を充填した。その後、80℃を維持しながら5時間撹拌を行った。このときのアリルモノマー仕込み比は67.0モル%と算出される。室温まで冷却及びエチレン脱圧後、オートクレーブ内の反応液をメタノール(500mL)に加え、共重合体を析出させた。生じた共重合体をろ過によって回収し、メタノールで洗浄した後に減圧下乾燥して、比較重合体4を得た。収量は5.10gであった。生産性は102g/mmolと算出され、触媒活性は20.0g/(mmol・h)と算出された。重合体2の数平均分子量は11000、重量平均分子量は37000、Mw/Mnは3.4であった。共重合体中の酢酸アリル及び2,5−ノルボルナジエンの含有率について、エチレン:酢酸アリル:2,5−ノルボルナジエンのモル比は100:4.3:0.28(酢酸アリルモル分率=4.1%、2,5−ノルボルナジエンモル分率=0.27%)と決定された。比較重合体4はトルエンへは完全には溶解せず、ゲル化ありと判定された。
Comparative Example 4: Copolymerization of Allyl Acetate and Ethylene in the Coexistence of 2,5-Norbornadiene Using Metal Complex 2 (Preparation of Comparative Polymer 4)
Copolymerization of allyl acetate and ethylene was carried out using the metal complex 2 in the presence of 2,5-norbornadiene under the condition that the allyl monomer charging ratio was low. Metal complex 2 (25.1 mg, 0.050 mmol), allyl acetate (75 mL, 700 mmol), and 2,5-norbornadiene (25.1 mg, 0.050 mmol), and 2,5-norbornadiene (25.1 mg, 0.050 mmol), and 2,5-norbornadiene (25.1 mg, 0.050 mmol), and 2,5-norbornadiene (75 mL, 700 mmol) under a nitrogen gas atmosphere, according to the polymerization conditions described in Examples of JP2013-079347A. A 120 mL autoclave containing 46.1 mg, 0.50 mmol) was filled with ethylene (4.0 MPa) with stirring at 80 ° C. Then, stirring was performed for 5 hours while maintaining 80 ° C. The allyl monomer charging ratio at this time is calculated to be 67.0 mol%. After cooling to room temperature and depressurizing ethylene, the reaction solution in the autoclave was added to methanol (500 mL) to precipitate a copolymer. The resulting copolymer was recovered by filtration, washed with methanol, and then dried under reduced pressure to obtain a comparative polymer 4. The yield was 5.10 g. The productivity was calculated to be 102 g / mmol and the catalytic activity was calculated to be 20.0 g / (mmol · h). The number average molecular weight of the polymer 2 was 11,000, the weight average molecular weight was 37,000, and Mw / Mn was 3.4. Regarding the content of allyl acetate and 2,5-norbornadiene in the copolymer, the molar ratio of ethylene: allyl acetate: 2,5-norbornadiene is 100: 4.3: 0.28 (mole fraction of allyl acetate = 4.1). %, 2,5-Norbornadiene mole fraction = 0.27%). The comparative polymer 4 was not completely dissolved in toluene, and it was determined that there was gelation.

比較例5:金属錯体2を使用した酢酸アリルとエチレンの共重合(比較重合体5の調製)
2,5−ノルボルナジエンを加えない点以外は比較例4と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Example 5: Copolymerization of Allyl Acetate and Ethylene Using Metal Complex 2 (Preparation of Comparative Polymer 5)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Comparative Example 4 except that 2,5-norbornadiene was not added.

実施例2及び比較例3〜5の重合条件及び結果をそれぞれ表3及び表4に示す。 The polymerization conditions and results of Example 2 and Comparative Examples 3 to 5 are shown in Tables 3 and 4, respectively.

Figure 2021188009
Figure 2021188009

Figure 2021188009
Figure 2021188009

実施例2及び比較例3より、金属錯体2を触媒として使用した場合でも、2,5−ノルボルナジエン共存による触媒活性向上の効果が見られた。また、比較例4及び比較例5より、アリルモノマー仕込み比が低い条件では、2,5−ノルボルナジエン共存による触媒活性向上効果がほとんど見られず、また重合体がゲル化することが判った。 From Example 2 and Comparative Example 3, even when the metal complex 2 was used as a catalyst, the effect of improving the catalytic activity by coexistence of 2,5-norbornadiene was observed. Further, from Comparative Examples 4 and 5, it was found that under the condition that the allyl monomer charging ratio was low, the effect of improving the catalytic activity by the coexistence of 2,5-norbornadiene was hardly observed, and the polymer gelled.

実施例3〜5:金属錯体3〜5を使用した2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合(重合体3〜5の調製)
金属錯体3〜5を使用して、エチレン圧、アリルモノマー仕込み比、2,5−ノルボルナジエンの添加量、及び反応温度を変えた以外は実施例2に記載の方法と同様に、酢酸アリルとエチレンの共重合を行った。
Examples 3-5: Copolymerization of allyl acetate and ethylene in the presence of 2,5-norbornadiene using metal complexes 3-5 (preparation of polymers 3-5)
Allyl acetate and ethylene were used in the same manner as in Example 2 except that the ethylene pressure, the allyl monomer charging ratio, the amount of 2,5-norbornadiene added, and the reaction temperature were changed using the metal complexes 3 to 5. Was copolymerized.

比較例6〜8:金属錯体3〜5を使用した酢酸アリルとエチレンの共重合(比較重合体6〜8の調製)
2,5−ノルボルナジエンを添加しないこと以外は実施例3〜5と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Examples 6 to 8: Copolymerization of allyl acetate and ethylene using metal complexes 3 to 5 (preparation of comparative polymers 6 to 8)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Examples 3 to 5 except that 2,5-norbornadiene was not added.

実施例3〜5及び比較例6〜8の重合条件及び結果をそれぞれ表5及び表6に示す。 The polymerization conditions and results of Examples 3 to 5 and Comparative Examples 6 to 8 are shown in Tables 5 and 6, respectively.

Figure 2021188009
Figure 2021188009

Figure 2021188009
Figure 2021188009

実施例3と比較例6、実施例4と比較例7、実施例5と比較例8の比較より、金属錯体3〜5を触媒として使用した場合でも、2,5−ノルボルナジエン共存による触媒活性向上の効果が見られた。さらに、金属錯体3又は金属錯体4を使用した場合、得られる重合体の分子量が増加することが判った。また、得られた重合体のトルエンへの溶解性は良好であり、ゲル化は認められなかった。 From the comparison of Example 3 and Comparative Example 6, Example 4 and Comparative Example 7, and Example 5 and Comparative Example 8, even when the metal complexes 3 to 5 are used as catalysts, the catalytic activity is improved by the coexistence of 2,5-norbornadiene. The effect of was seen. Furthermore, it was found that when the metal complex 3 or the metal complex 4 was used, the molecular weight of the obtained polymer increased. Moreover, the solubility of the obtained polymer in toluene was good, and gelation was not observed.

実施例6〜7:金属錯体3を使用した2,5−ノルボルナジエン共存下での酢酸アリルとエチレンの共重合(重合体6〜7の調製)
金属錯体3を使用し、金属錯体3の使用量(実施例7のみ)、エチレン圧、アリルモノマー仕込み比、2,5−ノルボルナジエンの添加量、及び反応温度を変えた以外は実施例2に記載の方法と同様に、酢酸アリルとエチレンの共重合を行った。
Examples 6-7: Copolymerization of allyl acetate and ethylene in the coexistence of 2,5-norbornadiene using the metal complex 3 (preparation of polymers 6-7)
Described in Example 2 except that the metal complex 3 was used and the amount of the metal complex 3 used (only in Example 7), the ethylene pressure, the allyl monomer charging ratio, the amount of 2,5-norbornadiene added, and the reaction temperature were changed. The copolymerization of allyl acetate and ethylene was carried out in the same manner as in the above method.

比較例9:金属錯体3を使用した酢酸アリルとエチレンの共重合(比較重合体9の調製)
2,5−ノルボルナジエンを添加しないこと以外は実施例6〜7と同様にして、酢酸アリルとエチレンの共重合を行った。
Comparative Example 9: Copolymerization of Allyl Acetate and Ethylene Using Metal Complex 3 (Preparation of Comparative Polymer 9)
Copolymerization of allyl acetate and ethylene was carried out in the same manner as in Examples 6 to 7 except that 2,5-norbornadiene was not added.

実施例6〜7及び比較例9の重合条件及び結果をそれぞれ表7及び表8に示す。 The polymerization conditions and results of Examples 6 to 7 and Comparative Example 9 are shown in Tables 7 and 8, respectively.

Figure 2021188009
Figure 2021188009

Figure 2021188009
Figure 2021188009

実施例6〜7と比較例9の比較より、反応温度を上げた場合でも触媒活性の向上効果が見られることが判った。 From the comparison between Examples 6 to 7 and Comparative Example 9, it was found that the effect of improving the catalytic activity can be seen even when the reaction temperature is raised.

以上の実施例及び比較例の結果から、エチレンと極性基を有するアリルモノマーとの共重合体の製造方法において、反応系にジエン化合物である2,5−ノルボルナジエン類似化合物を共存させることで、触媒の再重合を加速させ、生産性及び触媒活性を向上させることに成功した。これにより、重合体の製造コストを低減化することが可能であり、本発明が産業上有用であるといえる。 From the results of the above Examples and Comparative Examples, in the method for producing a copolymer of ethylene and an allyl monomer having a polar group, a catalyst is produced by allowing a diene compound, a 2,5-norbornadiene-like compound, to coexist in the reaction system. Succeeded in accelerating the copolymerization of ethylene and improving productivity and catalytic activity. This makes it possible to reduce the production cost of the polymer, and it can be said that the present invention is industrially useful.

Claims (7)

一般式(C1)
Figure 2021188009
(式中、Mは周期表第10族の元素を表し、Xはリン原子(P)又は砒素原子(As)を表し、Yは、炭素原子数6〜30の置換若しくは無置換のアリーレン基、炭素原子数1〜20の置換若しくは無置換のアルキレン基、炭素原子数3〜30の置換若しくは無置換のシクロアルキレン基、置換若しくは無置換のイミノ基(−NH−)、オキシ基(−O−)、又は置換若しくは無置換のシリレン基(−SiH−)から選ばれる2価の基を表す。Rは、水素原子、ハロゲン原子、炭素原子数1〜30の炭化水素基、ハロゲン原子で置換された炭素原子数1〜30の炭化水素基、炭素原子数1〜10のアルコキシ基で置換された炭素原子数2〜30の炭化水素基、炭素原子数6〜20のアリールオキシ基で置換された炭素原子数7〜30の炭化水素基、炭素原子数2〜10のアミド基で置換された炭素原子数3〜30の炭化水素基、炭素原子数1〜30のアルコキシ基、炭素原子数6〜30のアリールオキシ基、及び炭素原子数2〜10のアシロキシ基からなる群より選ばれる置換基を表す。R及びRはそれぞれ独立して、アルコキシ基、アリールオキシ基、シリル基、アミノ基、又はハロゲン原子、アルコキシ基及びアリールオキシ基から選ばれる1つ以上の基で置換されていてもよい炭素原子数1〜120の炭化水素基を表し、RとRは結合して環構造を形成してもよい。Lは電子供与性配位子を表し、RとLが環形成してもよい。qは0、1/2、1又は2である。)で示される金属錯体を触媒として使用し、エチレン、
一般式(1)
Figure 2021188009
(式中、Rは、水酸基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のアリールオキシ基、炭素原子数2〜10のアシル基、炭素原子数2〜10のエステル基(オキシカルボニル基;R−O−(C=O)−、Rは有機基)、炭素原子数2〜10のアシロキシ基、アミノ基、炭素原子数1〜12の置換アミノ基、炭素原子数2〜12の置換又は無置換のアミド基、炭素原子数5〜10の置換又は無置換のピリジル基、炭素原子数4〜10の置換又は無置換のピロリジル基、炭素原子数5〜10の置換又は無置換のピペリジル基、炭素原子数4〜10の置換又は無置換のヒドロフリル基、炭素原子数4〜10の置換又は無置換のイミダゾリル基、メルカプト基、炭素原子数1〜10のアルキルチオ基、炭素原子数6〜10のアリールチオ基、エポキシ基、及びハロゲン原子からなる群より選ばれる置換基を表す。)で示される極性基を有するアリルモノマー、
及び一般式(2)
Figure 2021188009
(式中、R、R、及びRは、それぞれ独立して、水素原子又は炭素原子数1〜3のアルキル基を表し、それぞれ同じであっても、異なっていてもよい。)で示される2,5−ノルボルナジエン類似化合物を、
エチレンと一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の和に対する一般式(1)で示される極性基を有するアリルモノマーの仕込みのモル数の割合を70モル%以上として共重合することを特徴とする極性基含有アリルモノマー共重合体の製造方法。
General formula (C1)
Figure 2021188009
(In the formula, M represents an element of Group 10 of the periodic table, X represents a phosphorus atom (P) or an arsenic atom (As), and Y represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms. Substituent or unsubstituted alkylene group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkylene group having 3 to 30 carbon atoms, substituted or unsubstituted imino group (-NH-), oxy group (-O-). ), or a substituted or unsubstituted silylene group (-SiH 2 - is .R 5 representing a divalent group selected from) a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 30 carbon atoms, a halogen atom Substituted with a hydrocarbon group having 1 to 30 carbon atoms, a hydrocarbon group having 2 to 30 carbon atoms substituted with an alkoxy group having 1 to 10 carbon atoms, and an aryloxy group having 6 to 20 carbon atoms. A hydrocarbon group having 7 to 30 carbon atoms, a hydrocarbon group having 3 to 30 carbon atoms substituted with an amide group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, and a carbon atom number Represents a substituent selected from the group consisting of an aryloxy group of 6 to 30 and an acyloxy group having 2 to 10 carbon atoms. R 6 and R 7 independently represent an alkoxy group, an aryloxy group, a silyl group, and the like. It represents an amino group or a hydrocarbon group having 1 to 120 carbon atoms which may be substituted with one or more groups selected from a halogen atom, an alkoxy group and an aryloxy group, and R 6 and R 7 are bonded to each other. may also form a ring .L represents an electron-donating ligand, represented by R 5 and L are mAY ring formed .q is 0 / 2,1 or 2.) Using a metal complex as a catalyst, ethylene,
General formula (1)
Figure 2021188009
(In the formula, R 1 is a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an acyl group having 2 to 10 carbon atoms, and an ester group having 2 to 10 carbon atoms. (Oxycarbonyl group; RO- (C = O)-, R is an organic group), an acyloxy group having 2 to 10 carbon atoms, an amino group, a substituted amino group having 1 to 12 carbon atoms, and 2 carbon atoms. ~ 12 substituted or unsubstituted amide group, substituted or unsubstituted pyridyl group having 5 to 10 carbon atoms, substituted or unsubstituted pyrrolidyl group having 4 to 10 carbon atoms, substitution or substitution of 5 to 10 carbon atoms Unsubstituted piperidyl group, substituted or unsubstituted hydrofuryl group having 4 to 10 carbon atoms, substituted or unsubstituted imidazolyl group having 4 to 10 carbon atoms, mercapto group, alkylthio group having 1 to 10 carbon atoms, carbon An allyl monomer having a polar group represented by (representing a substituent selected from the group consisting of an arylthio group having 6 to 10 atoms, an epoxy group, and a halogen atom).
And general formula (2)
Figure 2021188009
(In the formula, R 2 , R 3 , and R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and may be the same or different from each other.) The 2,5-norbornadiene-like compound shown,
The ratio of the number of moles of the allyl monomer having a polar group represented by the general formula (1) to the sum of the number of moles of ethylene and the allyl monomer having a polar group represented by the general formula (1) is 70 mol% or more. A method for producing a polar group-containing allyl monomer copolymer, which comprises copolymerizing as a copolymer.
得られる共重合体がゲル化していないことを特徴とする請求項1に記載の共重合体の製造方法。 The method for producing a copolymer according to claim 1, wherein the obtained copolymer is not gelled. 一般式(C1)中のYが、置換若しくは無置換の1,2−フェニレン基又は置換若しくは無置換のメチレン基である請求項1又は2のいずれかに記載の共重合体の製造方法。 The method for producing a copolymer according to claim 1 or 2, wherein Y in the general formula (C1) is a substituted or unsubstituted 1,2-phenylene group or a substituted or unsubstituted methylene group. 一般式(C1)中のR及びRが、いずれも炭素原子数3〜20のアルキル基又は炭素原子数5〜20のシクロアルキル基である請求項1〜3のいずれか一項に記載の共重合体の製造方法。 The invention according to any one of claims 1 to 3, wherein R 6 and R 7 in the general formula (C1) are both an alkyl group having 3 to 20 carbon atoms or a cycloalkyl group having 5 to 20 carbon atoms. Method for producing a copolymer of. 一般式(C1)中のR及びRが、イソプロピル基、t−ブチル基、2−メチル−2−ペンチル基、2,3,3−トリメチル−2−ブチル基、又はメンチル基から選択される請求項1〜4のいずれか一項に記載の共重合体の製造方法。 R 6 and R 7 in the general formula (C1) are selected from an isopropyl group, a t-butyl group, a 2-methyl-2-pentyl group, a 2,3,3-trimethyl-2-butyl group, or a menthyl group. The method for producing a copolymer according to any one of claims 1 to 4. 一般式(2)で示される2,5−ノルボルナジエン類似化合物が、無置換の2,5−ノルボルナジエン(一般式(2)中のR、R、及びRがいずれも水素原子)である請求項1〜5のいずれか一項に記載の共重合体の製造方法。 2,5-norbornadiene analogous compound represented by the general formula (2) is, is unsubstituted 2,5-norbornadiene (general formula (R 2 in 2), R 3, and R 4 both are hydrogen atom) The method for producing a copolymer according to any one of claims 1 to 5. 一般式(1)で示される極性基を有するアリルモノマーが酢酸アリル(一般式(1)中のRがアセトキシ基(CHC(=O)−O−))である請求項1〜6のいずれか一項に記載の共重合体の製造方法。 Claims 1 to 6 in which the allyl monomer having a polar group represented by the general formula (1) is allyl acetate (R 1 in the general formula (1) is an acetoxy group (CH 3 C (= O) -O-)). The method for producing a copolymer according to any one of the above.
JP2020097097A 2020-06-03 2020-06-03 Method for producing polar group-containing allyl monomer copolymer Active JP7399422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097097A JP7399422B2 (en) 2020-06-03 2020-06-03 Method for producing polar group-containing allyl monomer copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097097A JP7399422B2 (en) 2020-06-03 2020-06-03 Method for producing polar group-containing allyl monomer copolymer

Publications (2)

Publication Number Publication Date
JP2021188009A true JP2021188009A (en) 2021-12-13
JP7399422B2 JP7399422B2 (en) 2023-12-18

Family

ID=78850236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097097A Active JP7399422B2 (en) 2020-06-03 2020-06-03 Method for producing polar group-containing allyl monomer copolymer

Country Status (1)

Country Link
JP (1) JP7399422B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079347A (en) * 2011-10-05 2013-05-02 Univ Of Tokyo Polar group-containing allyl monomer terpolymer, and method for producing the same
JP2017031300A (en) * 2015-07-31 2017-02-09 国立大学法人 東京大学 ETHYLENE α-OLEFIN POLAR GROUP-CONTAINING ALLYL MONOMER TERNARY COPOLYMER AND MANUFACTURING METHOD THEREFOR
JP2019112623A (en) * 2017-12-25 2019-07-11 日本ポリエチレン株式会社 Multinary polar group-containing olefin copolymer
WO2019163442A1 (en) * 2018-02-20 2019-08-29 国立大学法人東京大学 Method for producing copolymer of polar group-containing allyl monomer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079347A (en) * 2011-10-05 2013-05-02 Univ Of Tokyo Polar group-containing allyl monomer terpolymer, and method for producing the same
JP2017031300A (en) * 2015-07-31 2017-02-09 国立大学法人 東京大学 ETHYLENE α-OLEFIN POLAR GROUP-CONTAINING ALLYL MONOMER TERNARY COPOLYMER AND MANUFACTURING METHOD THEREFOR
JP2019112623A (en) * 2017-12-25 2019-07-11 日本ポリエチレン株式会社 Multinary polar group-containing olefin copolymer
WO2019163442A1 (en) * 2018-02-20 2019-08-29 国立大学法人東京大学 Method for producing copolymer of polar group-containing allyl monomer

Also Published As

Publication number Publication date
JP7399422B2 (en) 2023-12-18

Similar Documents

Publication Publication Date Title
US11352453B2 (en) Catalyst for olefin polymerization and production method for polar group-containing olefin-based polymers
JP7158688B2 (en) Method for producing polar group-containing allyl monomer copolymer
US20180009727A1 (en) Method for olefin oligomerization
JP6616779B2 (en) Method for producing polar group-containing olefin polymer
JP2014159540A (en) Method of producing polar group-containing olefin copolymers
JP6357074B2 (en) Method for producing polar group-containing olefin polymer
JP7165368B2 (en) Olefin polymerization catalyst and method for producing polar group-containing olefin polymer
JP7399422B2 (en) Method for producing polar group-containing allyl monomer copolymer
JP7304036B2 (en) Method for producing allyl monomer copolymer having polar group
JP6858376B2 (en) Method for Producing Catalyst for Olefin Polymerization and Polar Group-Containing Olefin Polymer
WO2023037849A1 (en) Catalyst for olefin polymerization and method for producing olefin polymer
WO2023100693A1 (en) Catalyst for olefin polymerization and production method for olefin-based polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7399422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150