JP2021186840A - Temperature/reaction force measuring device and temperature/reaction force measuring method - Google Patents

Temperature/reaction force measuring device and temperature/reaction force measuring method Download PDF

Info

Publication number
JP2021186840A
JP2021186840A JP2020096082A JP2020096082A JP2021186840A JP 2021186840 A JP2021186840 A JP 2021186840A JP 2020096082 A JP2020096082 A JP 2020096082A JP 2020096082 A JP2020096082 A JP 2020096082A JP 2021186840 A JP2021186840 A JP 2021186840A
Authority
JP
Japan
Prior art keywords
temperature
reaction force
molten pool
probe
measuring probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020096082A
Other languages
Japanese (ja)
Inventor
大輔 阿部
Daisuke Abe
文夫 松坂
Fumio Matsuzaka
邦崇 真崎
Kunitaka Masaki
直輝 遠藤
Naoki Endo
善郎 山田
Yoshiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IHI Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical IHI Corp
Priority to JP2020096082A priority Critical patent/JP2021186840A/en
Publication of JP2021186840A publication Critical patent/JP2021186840A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a temperature/reaction force measuring device and a temperature/reaction force measuring method, capable of estimating the molten state of a molten pool, and as a result, capable of contributing to training of welders and automatic welding using a robot.SOLUTION: A temperature/reaction force measuring device includes a temperature measuring probe 2, a linear motor 5 for inserting the tip of the temperature measuring probe 2 into a molten pool Wp, a temperature measuring part 4 for measuring a temperature of the molten pool Wp through the temperature measuring probe 2, and a reaction force measuring part 6 for measuring reaction force received by the temperature measuring probe 2 from the molten pool Wp, when inserting the tip of the temperature measuring probe 2 into the molten pool Wp.SELECTED DRAWING: Figure 1

Description

本発明は、溶接、例えば、非消耗電極を用いた溶接において溶融池の温度及び反力を計測するのに用いる温度・反力計測装置及び温度・反力計測方法に関するものである。 The present invention relates to a temperature / reaction force measuring device and a temperature / reaction force measuring method used for measuring the temperature and reaction force of a molten pool in welding, for example, welding using a non-consumable electrode.

上記したような非消耗電極を用いる溶接、例えば、TIG溶接では、シールドガスを供給しつつタングステン電極からティグアークを発生させて被溶接物を溶融し、これで生じる溶融池に溶加材を挿入しながら接合するようにしている。 In welding using non-consumable electrodes as described above, for example, in TIG welding, a TIG arc is generated from the tungsten electrode while supplying a shield gas to melt the workpiece, and the filler metal is inserted into the molten pool generated by this. I try to join them.

このTIG溶接は、ティグアークが安定していてヒュームやスパッタやスラグが少ないので、突合せ溶接やすみ肉溶接の場合には、形状の整った品質良好な溶接ビードを得ることができる。この非消耗電極を用いたTIG溶接装置については、例えば、非特許文献1に詳しく記載されている。 In this TIG welding, the TIG arc is stable and there are few fume, spatter, and slag. Therefore, in the case of butt welding and fillet welding, it is possible to obtain a well-shaped and good quality weld bead. A TIG welding apparatus using this non-consumable electrode is described in detail in, for example, Non-Patent Document 1.

このようなTIG溶接では、形状の整った品質良好な溶接ビードを得ることができるものの、溶融池内における溶加材の溶け込み速度よりも速く溶加材を挿入してしまうと、溶加材が未溶融状態で溶融池内に残存して溶接欠陥となる。 In such TIG welding, a well-shaped and good-quality weld bead can be obtained, but if the filler metal is inserted at a speed faster than the penetration rate of the filler metal in the molten pool, the filler metal is not obtained. It remains in the molten pool in the molten state and becomes a welding defect.

また、TIG溶接によって被溶接物の裏面まで貫通する溶接を行う場合には、いわゆる裏波溶接を行う場合には、被溶接物の裏面側から受ける粘性及び表面張力による反力に応じた適切な速度で溶加材を溶融池に挿入する必要があるが、この溶加材の挿入速度が適切でないと、被溶接物の裏面が溶け落ちる溶接欠陥が発生する。 Further, in the case of performing welding that penetrates to the back surface of the work piece by TIG welding, and in the case of so-called back wave welding, it is appropriate according to the viscosity received from the back side of the work piece and the reaction force due to surface tension. It is necessary to insert the filler metal into the molten pool at a high speed, but if the insertion speed of the filler metal is not appropriate, welding defects will occur in which the back surface of the workpiece melts down.

これらの溶接欠陥の発生を防ぐためには、溶融池内で生じている現象を把握することが重要であるが、溶融池内の現象は、被溶接物の材質や厚さに応じた熱容量により変化するうえ、シールドガスに覆われて目視では確認することができない。 In order to prevent the occurrence of these welding defects, it is important to understand the phenomenon occurring in the molten pool, but the phenomenon in the molten pool changes depending on the heat capacity according to the material and thickness of the work piece. , It is covered with shield gas and cannot be visually confirmed.

したがって、溶接士は溶融池に溶加材を送り込むときの手の感覚で得られる溶融池の溶け具合によって、溶加材の適正な送り込み速度を決めているが、このような、溶接士の感覚に頼った溶接技術は伝承することが難しく、様々な材料に対応し得る溶接士を育成することは非常に困難である。 Therefore, the welder determines the appropriate feeding speed of the filler metal by the melting condition of the molten metal obtained by the feeling of the hand when feeding the filler metal into the molten pool. Welding technology that relies on is difficult to hand down, and it is very difficult to train welders who can handle various materials.

加えて、例えば、ロボットによる自動化を試みようとしても、溶融池に対する適正な溶加材の送り込み速度が不明確である以上、施工条件の選定が困難であった。 In addition, for example, even if an attempt is made to automate by a robot, it is difficult to select the construction conditions because the appropriate feeding speed of the filler metal to the molten pool is unclear.

上記したような、溶加材の適正送り込み速度を決めるのに不可欠な溶融池の溶け具合を溶接士の感覚に頼らずに知るためには、溶融池から溶加材を通して受ける反力に加えて、溶融池の温度を測定する必要がある。 In order to know the melting condition of the molten pool, which is indispensable for determining the proper feeding speed of the filler metal as described above, without relying on the sense of the welder, in addition to the reaction force received from the molten pool through the filler metal. , It is necessary to measure the temperature of the molten pool.

従来において、上記した溶融池のような高温の溶融金属の温度を測るためのものとしては、例えば、測温用二重被覆光ファイバが知られている。
この測温用二重被覆光ファイバは、光ファイバの外周に金属製の保護管を設け、さらにこの保護管の外周に測定対象金属の温度よりも融点の高い粒子を添加物として含有する断熱材を設けて成っており、このように二重被覆構造を採用することで、高温から保護しつつ溶融金属に光ファイバを挿入することができるようになっている(特許文献1参照)。
Conventionally, for example, a double-coated optical fiber for temperature measurement is known for measuring the temperature of a high-temperature molten metal such as the above-mentioned molten pool.
This double-coated optical fiber for temperature measurement is provided with a metal protective tube on the outer periphery of the optical fiber, and further, a heat insulating material containing particles having a melting point higher than the temperature of the metal to be measured as an additive on the outer periphery of the protective tube. By adopting the double coating structure in this way, it is possible to insert the optical fiber into the molten metal while protecting it from high temperature (see Patent Document 1).

また、この測温用二重被覆光ファイバと同じく、高温の溶融金属の温度を測るのに用いられる光ファイバによる高温液体の測温装置が知られている。
この光ファイバによる高温液体の測温装置は、溶湯を保持する炉に設けられる装置であって、一方の端部が溶湯に接する測温ノズルと、予めドラムに巻き込まれた金属管被覆光ファイバの一端を測温ノズルの他方の端部から挿通させて炉内の溶湯中に断続的に送り出し、溶湯中に送り出さない時期に、金属管被覆光ファイバを供給方向の前後に振動させる光ファイバ供給装置と、測温ノズルに対してノズル詰り防止ガスを送給するノズル詰りガス供給装置と、金属管被覆光ファイバの他端に接続され、溶湯の温度を計測する放射温度計とを有している(特許文献2参照)。
Further, like this double-coated optical fiber for temperature measurement, a high-temperature liquid temperature measuring device using an optical fiber used for measuring the temperature of a high-temperature molten metal is known.
The temperature measuring device for high-temperature liquid using this optical fiber is a device installed in a furnace that holds the molten metal, and has a temperature measuring nozzle whose one end is in contact with the molten metal and a metal tube-coated optical fiber that is previously wound in a drum. An optical fiber supply device that inserts one end from the other end of the temperature measuring nozzle and intermittently sends it into the molten metal in the furnace, and vibrates the metal tube-coated optical fiber back and forth in the supply direction when it is not sent into the molten metal. It has a nozzle clogging gas supply device that supplies nozzle clogging prevention gas to the temperature measuring nozzle, and a radiation thermometer that is connected to the other end of the metal tube coated optical fiber and measures the temperature of the molten metal. (See Patent Document 2).

さらに、非特許文献2には、溶接の母材に微細な横孔を設けて、この横孔に光ファイバを挿通して先端が開先面から突出する状態で固定した後、開先面に対して溶接を行って光ファイバの周囲を覆う溶接金属からの熱放射を光ファイバ先端から取り込んで高熱源通過時から凝固中の温度を連続測定する溶接金属の温度計測方法が開示されている。 Further, in Non-Patent Document 2, a fine horizontal hole is provided in the welding base material, an optical fiber is inserted through the horizontal hole, and the tip is fixed in a state of protruding from the groove surface, and then the groove surface is formed. On the other hand, a method for measuring the temperature of a weld metal by performing welding and taking in heat radiation from the weld metal covering the periphery of the optical fiber from the tip of the optical fiber and continuously measuring the temperature during solidification from the time of passing through a high heat source is disclosed.

特開平07−151918号公報Japanese Unexamined Patent Publication No. 07-151918 特開平08−005465号公報Japanese Unexamined Patent Publication No. 08-005465

「溶接・接合便覧」,第2版,社団法人 溶接学会編,平成15年2月25日発行,第237頁〜第251頁"Welding / Joining Handbook", 2nd Edition, Japan Welding Society, published on February 25, 2003, pp. 237-251 上野泰弘、石井伸治、山中善吉、「放射率の補正が不要な浸漬型光ファイバ温度計による溶接金属の温度計測」Yasuhiro Ueno, Shinji Ishii, Yoshikichi Yamanaka, "Temperature measurement of weld metal by immersion type optical fiber thermometer that does not require emissivity correction"

上記した特許文献1に記載された測温用二重被覆光ファイバでは、光ファイバの外周に金属製の保護管及び断熱材を設けているので、溶融金属の温度を正確に測定することができるものの、溶融金属の溶け具合を把握することはできない。 In the double-coated optical fiber for temperature measurement described in Patent Document 1 described above, since a metal protective tube and a heat insulating material are provided on the outer periphery of the optical fiber, the temperature of the molten metal can be accurately measured. However, it is not possible to grasp the melting condition of the molten metal.

また、特許文献2に記載された光ファイバによる高温液体の測温装置も、炉内の溶湯温度の連続した測温を行うことはできるが、炉内の溶湯の溶け具合を把握することは想定していない。 Further, the temperature measuring device for high-temperature liquid using an optical fiber described in Patent Document 2 can also continuously measure the temperature of the molten metal in the furnace, but it is assumed that the melting condition of the molten metal in the furnace can be grasped. Not done.

さらに、上記した非特許文献2に記載された溶接金属の温度計測方法では、事前に微細な横孔を溶接の母材に設けて光ファイバを挿通しておく必要があるうえ、開先面における溶接金属の高熱源通過時から凝固中の温度を測定することができるものの、高熱源とともに移動する溶融池に追従して連続的に温度を測定することはできず、その結果、溶接金属の溶け具合を知ることは困難である。 Further, in the method for measuring the temperature of the weld metal described in Non-Patent Document 2 described above, it is necessary to provide a fine lateral hole in the welding base material in advance and insert the optical fiber, and the groove surface has a groove surface. Although it is possible to measure the temperature during solidification from the time the weld metal passes through the high heat source, it is not possible to continuously measure the temperature following the molten pool moving with the high heat source, and as a result, the weld metal melts. It is difficult to know the condition.

つまり、上記した測温用二重被覆光ファイバ,光ファイバによる高温液体の測温装置及び溶接金属の温度計測方法において、いずれも高温の金属の温度を計測することが可能であるが、溶接金属の溶け具合である溶接金属から受ける反力及び温度を連続して取得することはできず、この問題を解決することが従来の課題であった。 That is, in the above-mentioned double-coated optical fiber for temperature measurement, the temperature measuring device for high-temperature liquid using optical fiber, and the temperature measuring method for weld metal, it is possible to measure the temperature of high-temperature metal, but the weld metal. It is not possible to continuously obtain the reaction force and temperature received from the weld metal, which is the degree of melting of the metal, and it has been a conventional problem to solve this problem.

本発明は、上記したような従来の課題を解決するためになされたもので、溶融池の温度データ及び反力データを連続的に取得して解析することで、溶融池に対する適正な溶加材の送り込み速度の選定が可能となり、その結果、溶接士の育成及びロボットを用いた自動溶接化に貢献することができる温度・反力計測装置及び温度・反力計測方法を提供することを目的としている。 The present invention has been made to solve the above-mentioned conventional problems, and by continuously acquiring and analyzing the temperature data and reaction force data of the molten pool, an appropriate filler metal for the molten pool. As a result, the purpose is to provide a temperature / reaction force measuring device and a temperature / reaction force measuring method that can contribute to the training of welders and automatic welding using robots. There is.

本発明の第1の態様は、溶接を行う際の溶融池の温度及び反力を計測する温度・反力計測装置であって、温度計測用プローブと、前記温度計測用プローブの先端を溶融池に挿入する駆動部と、前記温度計測用プローブを介して溶融池温度を計測する温度計測部と、前記温度計測用プローブの先端を溶融池に挿入した際に該温度計測用プローブが溶融池から受ける反力を計測する反力計測部と、を備えた構成としている。 The first aspect of the present invention is a temperature / reaction force measuring device that measures the temperature and reaction force of the molten pool during welding, and the temperature measuring probe and the tip of the temperature measuring probe are connected to the molten pool. When the tip of the temperature measuring probe is inserted into the molten pool, the temperature measuring probe is released from the molten pool. It is equipped with a reaction force measuring unit that measures the reaction force received.

本発明の第1の態様に係る温度・反力計測装置では、駆動部によって温度計測用プローブの先端を溶融池に挿入することで、温度計測部による溶融池の温度データの計測及び反力計測部による溶融池の反力データの計測を連続的に行い得る。 In the temperature / reaction force measuring device according to the first aspect of the present invention, the tip of the temperature measuring probe is inserted into the molten pool by the driving unit, so that the temperature measuring unit measures the temperature data of the molten pool and measures the reaction force. The reaction force data of the molten pool can be continuously measured by the unit.

したがって、本発明の第1の態様に係る温度・反力計測装置で連続的に取得した温度データ及び反力データを解析することで、溶融池の溶融状態の推定が可能となり、これにより溶融池に対する適正な溶加材の送り込み速度を選定し得ることとなる。
つまり、溶接士の感覚を重視した溶接技術に頼る必要がほとんどなくなるので、溶接士の育成及びロボットを用いた自動溶接化に大いに寄与することとなる。
Therefore, by analyzing the temperature data and the reaction force data continuously acquired by the temperature / reaction force measuring device according to the first aspect of the present invention, it is possible to estimate the molten state of the molten pool, whereby the molten pool can be estimated. It is possible to select an appropriate filler feed rate for the above.
In other words, since it is almost unnecessary to rely on welding technology that emphasizes the sense of the welder, it will greatly contribute to the training of welders and automatic welding using robots.

加えて、例えば、融点や高温強度が互いに異なる鉄鋼材料とNi基合金との異種金属同士の接合に際して、本発明の第1の態様に係る温度・反力計測装置を用いて溶融池の温度データ及び反力データを計測すれば、これらのデータの解析から推定される溶融池の溶融状態を基にして適正な溶加材の送り込み速度を選定し得ることとなる。 In addition, for example, when joining dissimilar metals of a Ni-based alloy and a steel material having different melting points and high-temperature strengths, temperature data of a molten pool using the temperature / reaction force measuring device according to the first aspect of the present invention. And by measuring the reaction force data, it is possible to select an appropriate filler feed rate based on the molten state of the molten pool estimated from the analysis of these data.

本発明の第2の態様は、前記温度計測用プローブが光ファイバである構成としている。 In the second aspect of the present invention, the temperature measuring probe is an optical fiber.

本発明の第3の態様は、前記温度計測用プローブが光ファイバ及び該光ファイバの少なくとも先端部を覆う被覆体から成っている構成としている。 In the third aspect of the present invention, the temperature measuring probe is composed of an optical fiber and a covering body covering at least the tip of the optical fiber.

本発明の第4の態様において、前記温度計測用プローブの前記被覆体は円筒形状を成し、該円筒形状を成す被覆体の中空部分に前記光ファイバの先端部が挿入されている構成としている。 In the fourth aspect of the present invention, the covering body of the temperature measuring probe has a cylindrical shape, and the tip portion of the optical fiber is inserted into the hollow portion of the covering body forming the cylindrical shape. ..

本発明の第5の態様において、前記温度計測用プローブの前記被覆体は溶加材である構成としている。 In the fifth aspect of the present invention, the covering body of the temperature measuring probe is configured to be a filler metal.

本発明の第6の態様は、前記温度計測部で計測した溶融池の温度データ及び前記反力計測部で計測した溶融池の反力データを取得して保存するデータロガーを備えている構成としている。 A sixth aspect of the present invention includes a data logger that acquires and stores the temperature data of the molten pool measured by the temperature measuring unit and the reaction force data of the molten pool measured by the reaction force measuring unit. There is.

一方、本発明の第7の態様は、溶接を行う際の溶融池の温度及び反力を計測する温度・反力計測方法であって、温度計測用プローブの先端を溶融池に挿入して、溶融池温度を計測すると共に前記温度計測用プローブが溶融池から受ける反力を計測する構成としている。 On the other hand, the seventh aspect of the present invention is a temperature / reaction force measuring method for measuring the temperature and reaction force of the molten pool during welding, in which the tip of a temperature measuring probe is inserted into the molten pool. The configuration is such that the temperature of the molten pool is measured and the reaction force received by the temperature measuring probe from the molten pool is measured.

本発明に係る温度・反力計測装置及び温度・反力計測方法によれば、溶融池の温度データ及び反力データを連続的に取得して解析することで、溶融池に対する適正な溶加材の送り込み速度の選定が可能となり、その結果、溶接士の育成及びロボットを用いた自動溶接化に貢献することができるという非常に優れた効果がもたらされる。 According to the temperature / reaction force measuring device and the temperature / reaction force measuring method according to the present invention, the appropriate filler metal for the molten pool is obtained by continuously acquiring and analyzing the temperature data and the reaction force data of the molten pool. It is possible to select the feed rate, and as a result, it is possible to contribute to the training of welders and automatic welding using a robot, which is a very excellent effect.

本発明の一実施形態に係る温度・反力計測装置の全体斜視説明図である。It is an overall perspective explanatory view of the temperature / reaction force measuring apparatus which concerns on one Embodiment of this invention. 図1の温度・反力計測装置によって溶融池の計測を行った際の計測結果を示すグラフである。It is a graph which shows the measurement result when the molten metal was measured by the temperature / reaction force measuring apparatus of FIG. 本発明の他の実施形態に係る温度・反力計測装置の要部を拡大して示す拡大部分斜視説明図(a)及び本発明のさらに他の実施形態に係る温度・反力計測装置の要部を拡大して示す拡大部分斜視説明図(b)である。An enlarged partial perspective explanatory view (a) showing an enlarged main part of the temperature / reaction force measuring device according to another embodiment of the present invention and a key point of the temperature / reaction force measuring device according to still another embodiment of the present invention. It is an enlarged partial perspective explanatory view (b) which shows the part enlarged.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る温度・反力計測装置を示しており、この実施形態では、熱源が非消耗電極を用いるTIG溶接である場合を例に挙げて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a temperature / reaction force measuring device according to an embodiment of the present invention, and in this embodiment, a case where the heat source is TIG welding using a non-consumable electrode will be described as an example.

図1に示すように、この温度・反力計測装置1は、溶接トーチTの先端部に位置するタングステン電極(非消耗電極)Taを用いて溶接を行う際に試験片Wに生じる溶融池Wpの温度及び反力を計測するのに用いる計測装置である。 As shown in FIG. 1, in this temperature / reaction force measuring device 1, the molten pool Wp generated in the test piece W when welding is performed using the tungsten electrode (non-consumable electrode) Ta located at the tip of the welding torch T. It is a measuring device used to measure the temperature and reaction force of.

すなわち、この温度・反力計測装置1は、先端が溶融池Wpに挿入される温度計測用プローブ2と、この温度計測用プローブ2を支持するスタンド3と、温度計測用プローブ2を介して溶融池Wpの温度を計測する温度計測部4を備えている。 That is, the temperature / reaction force measuring device 1 melts via the temperature measuring probe 2 whose tip is inserted into the molten pool Wp, the stand 3 that supports the temperature measuring probe 2, and the temperature measuring probe 2. It is provided with a temperature measuring unit 4 for measuring the temperature of the pond Wp.

この実施形態において、温度計測用プローブ2は、図1の拡大楕円内に示すように、温度計測用の光ファイバ21と、円管状を成すステンレス鋼製の被覆体22(先端部以外は仮想線で示す)を具備しており、この被覆体22の中空部分に光ファイバ21の先端部を挿入することで、光ファイバ21を溶接の熱から保護するようにしている。この際、光ファイバ21は金属管で被覆してあり、高い剛性及び耐熱性の双方を有するものとしてある。
この温度計測用プローブ2における光ファイバ21の基端は温度計測部4に接続させてあり、温度計測部4では、光ファイバ21を通して伝達される溶融池Wpの輝度から温度を計測するようになっている。
In this embodiment, as shown in the enlarged ellipse of FIG. 1, the temperature measuring probe 2 includes an optical fiber 21 for temperature measuring and a cylindrical stainless steel covering 22 (virtual lines other than the tip portion). The optical fiber 21 is protected from the heat of welding by inserting the tip of the optical fiber 21 into the hollow portion of the covering body 22. At this time, the optical fiber 21 is covered with a metal tube and has both high rigidity and heat resistance.
The base end of the optical fiber 21 in the temperature measuring probe 2 is connected to the temperature measuring unit 4, and the temperature measuring unit 4 measures the temperature from the brightness of the molten pool Wp transmitted through the optical fiber 21. ing.

この温度計測用プローブ2を支持するスタンド3は、基礎Eに設置されたレール31と、このレール31上に移動可能に配置されたベース32と、このベース32上に配置された支柱33と、この支柱33の上端部に水平軸34を介して回動可能に取り付けられたアーム35を具備している。図示例のスタンド3において、アーム35を支持する水平軸34は、支柱33にその長手方向に沿って形成した位置調整用の溝33aの適宜位置で固定可能となっている。 The stand 3 that supports the temperature measuring probe 2 includes a rail 31 installed on the foundation E, a base 32 movably arranged on the rail 31, and a support column 33 arranged on the base 32. An arm 35 rotatably attached to the upper end of the support column 33 via a horizontal shaft 34 is provided. In the stand 3 of the illustrated example, the horizontal shaft 34 that supports the arm 35 can be fixed to the support column 33 at an appropriate position of the position adjusting groove 33a formed along the longitudinal direction thereof.

この場合、スタンド3のアーム35における基端部上面にはリニアモータ(駆動部)5が取り付けられており、さらにアーム35の上面には、その長手方向に沿う溝36が形成されている。そして、温度計測用プローブ2は、アーム35の溝36に沿って摺動するリニアモータ5の可動板51上に固定されている。 In this case, a linear motor (driving unit) 5 is attached to the upper surface of the base end portion of the arm 35 of the stand 3, and a groove 36 along the longitudinal direction thereof is formed on the upper surface of the arm 35. The temperature measuring probe 2 is fixed on the movable plate 51 of the linear motor 5 that slides along the groove 36 of the arm 35.

つまり、アーム35に固定された温度計測用プローブ2の先端が溶融池Wpを向くようにしてアーム35を支柱33の適宜位置に適宜角度で固定したうえで、リニアモータ5の可動板51を動作させることによって、温度計測用プローブ2の先端を溶融池Wpに挿入することができるようになっている。 That is, the movable plate 51 of the linear motor 5 is operated after fixing the arm 35 at an appropriate position of the support column 33 at an appropriate angle so that the tip of the temperature measuring probe 2 fixed to the arm 35 faces the molten pool Wp. By doing so, the tip of the temperature measuring probe 2 can be inserted into the molten pool Wp.

また、この温度・反力計測装置1は、温度計測用プローブ2の先端を溶融池Wpに挿入した際に、この温度計測用プローブ2が溶融池Wpから受ける反力を計測する反力計測部6を備えている。 Further, the temperature / reaction force measuring device 1 is a reaction force measuring unit that measures the reaction force that the temperature measuring probe 2 receives from the molten pool Wp when the tip of the temperature measuring probe 2 is inserted into the molten pool Wp. 6 is provided.

この実施形態において、温度計測用プローブ2が溶融池Wpから受ける反力をリニアモータ5に内蔵された伸縮棒式ロードセルで検出して電気信号に変換するようになっており、反力計測部6では、電気ケーブル7を介して伝達される伸縮棒式ロードセルからの電気信号に基づいて、温度計測用プローブ2が溶融池Wpから受ける反力を取得するようになっている。 In this embodiment, the reaction force received by the temperature measuring probe 2 from the molten pool Wp is detected by the telescopic rod type load cell built in the linear motor 5 and converted into an electric signal, and the reaction force measuring unit 6 Then, the reaction force received by the temperature measuring probe 2 from the molten pool Wp is acquired based on the electric signal from the telescopic rod type load cell transmitted via the electric cable 7.

加えて、この反力計測部6は、温度計測用プローブ2の先端を溶融池Wpに所定の周期で挿入するべく、リニアモータ5の可動板51の往復動作(図1に矢印で示す)をコントロールするようになっている。 In addition, the reaction force measuring unit 6 performs a reciprocating operation (indicated by an arrow in FIG. 1) of the movable plate 51 of the linear motor 5 in order to insert the tip of the temperature measuring probe 2 into the molten pool Wp at a predetermined cycle. It is designed to be controlled.

さらに、この温度・反力計測装置1は、温度計測部4で計測した溶融池Wpの温度データ及び反力計測部6で計測した溶融池Wpの反力データを取得して保存するデータロガー8を備えており、計測後のデータ解析は、データロガー8にサンプリング周期を合わせて保存されている温度データ及び反力データに基づいて行われる。 Further, the temperature / reaction force measuring device 1 acquires and stores the temperature data of the molten pool Wp measured by the temperature measuring unit 4 and the reaction force data of the molten pool Wp measured by the reaction force measuring unit 6. The data analysis after the measurement is performed based on the temperature data and the reaction force data stored in the data logger 8 in accordance with the sampling period.

上記した構成の温度・反力計測装置1によって、TIG溶接によって試験片Wに生じる溶融池Wpの温度及び反力を計測するに際しては、まず、溶接トーチTのタングステン電極Taの下方に試験片Wをセットする。 When measuring the temperature and reaction force of the molten pool Wp generated in the test piece W by TIG welding by the temperature / reaction force measuring device 1 having the above configuration, first, the test piece W is below the tungsten electrode Ta of the welding torch T. To set.

次いで、スタンド3のベース32をレール31に対して移動させて支柱33を溶接トーチT近傍に位置させると共に、アーム35に固定された温度計測用プローブ2の先端が溶接トーチTの下方(溶融池Wp想定位置)を向くようにしてアーム35を支柱33の適宜位置に適宜角度で固定する。 Next, the base 32 of the stand 3 is moved with respect to the rail 31 to position the support column 33 in the vicinity of the welding torch T, and the tip of the temperature measuring probe 2 fixed to the arm 35 is below the welding torch T (melting pond). The arm 35 is fixed at an appropriate position of the support column 33 at an appropriate angle so as to face the Wp assumed position).

この後、TIG溶接を開始し、タングステン電極Taから発生するティグアークで試験片Wを溶融して、試験片Wに溶融池Wpを生じさせる。
この状態において、反力計測部6からの指令によってリニアモータ5の可動板51を往復動作させることで、温度計測用プローブ2の先端を溶融池Wpに挿入する。
After that, TIG welding is started, and the test piece W is melted by the TIG arc generated from the tungsten electrode Ta to generate a molten pool Wp in the test piece W.
In this state, the tip of the temperature measuring probe 2 is inserted into the molten pool Wp by reciprocating the movable plate 51 of the linear motor 5 in response to a command from the reaction force measuring unit 6.

この温度計測用プローブ2の溶融池Wpに対する挿入により、温度計測部4において、温度計測用プローブ2の光ファイバ21を通して伝達される溶融池Wpの輝度に基づいて溶融池Wpの温度が連続的に計測される。 By inserting the temperature measuring probe 2 into the molten pool Wp, the temperature of the molten pool Wp is continuously increased in the temperature measuring unit 4 based on the brightness of the molten pool Wp transmitted through the optical fiber 21 of the temperature measuring probe 2. It is measured.

一方、反力計測部6では、電気ケーブル7を介して伝達されるリニアモータ5に内蔵された伸縮棒式ロードセルからの電気信号に基づいて、温度計測用プローブ2、特に温度計測用プローブ2の円管状を成すステンレス鋼製の被覆体22が溶融池Wpから受ける反力が連続的に計測される。 On the other hand, in the reaction force measuring unit 6, the temperature measuring probe 2, particularly the temperature measuring probe 2, is based on the electric signal from the telescopic rod type load cell built in the linear motor 5 transmitted via the electric cable 7. The reaction force received from the molten pool Wp by the stainless steel covering 22 forming a circular tube is continuously measured.

この際、温度計測部4で計測された溶融池Wpの温度データ及び反力計測部6で計測された溶融池Wpの反力データは、データロガー8にサンプリング周期を合わせて保存される。 At this time, the temperature data of the molten pool Wp measured by the temperature measuring unit 4 and the reaction force data of the molten pool Wp measured by the reaction force measuring unit 6 are stored in the data logger 8 at the same sampling period.

ここで、データロガー8にサンプリング周期を合わせて保存されている溶融池Wpの温度データ及び反力データの一例を図2に示す。 Here, FIG. 2 shows an example of temperature data and reaction force data of the molten pool Wp stored in the data logger 8 at the same sampling period.

図2のグラフにおいて、時刻約2.4秒の時点で温度計測用プローブ2の先端が溶融池Wpに入り始め、時刻2.45〜2.5秒の間に温度計測用プローブ2の先端が溶融池Wpの底(2mm程度の位置P)に達した様子が判る。この間、温度計測用プローブ2は、その先端が溶融池Wpに入り始めた時点から反力Fを受け始め、溶融池Wpの底では約2.5Nの反力Fを受けていることが判る。さらに、温度計測用プローブ2の先端が溶融池Wpの底に達した時点で、計測温度Tempが僅かに下がっていることが判る。なお、この計測では、温度計測用プローブ2の先端が溶融池Wpの底に達した時点で挿入前の状態に戻る(反転する)ように設定しているので、温度計測用プローブ2の反転後は溶融池Wpから受ける反力Fは減少している。 In the graph of FIG. 2, the tip of the temperature measuring probe 2 starts to enter the molten pool Wp at about 2.4 seconds, and the tip of the temperature measuring probe 2 starts to enter the molten pool Wp between 2.45 and 2.5 seconds. It can be seen that the position P) of about 2 mm has been reached. During this time, it can be seen that the temperature measuring probe 2 starts to receive the reaction force F from the time when the tip thereof starts to enter the molten pool Wp, and receives the reaction force F of about 2.5 N at the bottom of the molten pool Wp. Further, it can be seen that the measured temperature Temp is slightly lowered when the tip of the temperature measuring probe 2 reaches the bottom of the molten pool Wp. In this measurement, when the tip of the temperature measuring probe 2 reaches the bottom of the molten pool Wp, it is set to return to the state before insertion (reverse), so that after the temperature measurement probe 2 is inverted. The reaction force F received from the molten pool Wp is decreasing.

そして、図2に示したデータロガー8にサンプリング周期を合わせて保存されている溶融池Wpの温度データ及び反力データを解析すれば、溶融池Wpの溶融状態の推定が可能となり、これにより溶融池Wpに対する適正な溶加材の送り込み速度を選定し得ることとなる。 Then, by analyzing the temperature data and reaction force data of the molten pool Wp stored in the data logger 8 shown in FIG. 2 at the same sampling period, it is possible to estimate the molten state of the molten pool Wp, thereby melting. It is possible to select an appropriate filler feed rate for the pond Wp.

したがって、溶接士の感覚を重視した溶接技術に頼る必要がほとんどなくなるので、溶接士の育成及びロボットを用いた自動溶接化に大いに寄与することとなる。 Therefore, there is almost no need to rely on welding technology that emphasizes the sense of the welder, which greatly contributes to the training of welders and the automatic welding using robots.

加えて、例えば、高温強度が高いIN100(登録商標)のようなNi基合金と、低合金鋼との、いわゆる異種金属同士をTIG溶接によって接合するに際して、この実施態様に係る温度・反力計測装置1を用いて溶融池Wpの温度データ及び反力データを計測すれば、これらのデータの解析から推定される溶融池Wpの溶融状態を基にして適正な溶加材の送り込み速度を選定し得ることとなる。 In addition, for example, when joining so-called dissimilar metals such as IN100 (registered trademark) having high high temperature strength and low alloy steel by TIG welding, temperature / reaction force measurement according to this embodiment is performed. If the temperature data and reaction force data of the molten pool Wp are measured using the apparatus 1, the appropriate filler metal feeding speed is selected based on the molten state of the molten pool Wp estimated from the analysis of these data. You will get it.

上記した実施形態では、温度・反力計測装置1の温度計測用プローブ2が、円管状を成すステンレス鋼製の被覆体22の中空部分に光ファイバ21の先端部を挿入して成るものとしていることから、光ファイバ21が溶接の熱から受ける影響を少なく抑えることができる。 In the above-described embodiment, the temperature measuring probe 2 of the temperature / reaction force measuring device 1 is formed by inserting the tip portion of the optical fiber 21 into the hollow portion of the stainless steel covering body 22 forming a circular tube. Therefore, the influence of the heat of welding on the optical fiber 21 can be suppressed to a small extent.

なお、温度・反力計測装置1の温度計測用プローブ2は、必ずしも円管状を成す被覆体22の中空部分に光ファイバ21の先端部を挿入して成る構成である必要はない。 The temperature measuring probe 2 of the temperature / reaction force measuring device 1 does not necessarily have to have a configuration in which the tip end portion of the optical fiber 21 is inserted into the hollow portion of the covering body 22 forming a circular tube.

他の構成として、図3(a)に示すように、可動板51に単独で固定される光ファイバ21自体が温度計測用プローブ2Aであってもよく、この場合には、被覆体22を必要としない分だけコストの削減を実現できる。 As another configuration, as shown in FIG. 3A, the optical fiber 21 itself fixed to the movable plate 51 may be the temperature measuring probe 2A, and in this case, the covering body 22 is required. Cost reduction can be realized by the amount that is not.

さらに他の構成として、図3(b)に示すように、温度計測用プローブ2Bの被覆体22Bが可動板51上の光ファイバ21の少なくとも先端部を覆う略半割筒体形状を成していてもよく、この場合には、光ファイバ21が溶接の熱から受ける影響を少なく抑えつつ、被覆体22Bの材料を減らし得る分だけコストの削減を実現できる。 As yet another configuration, as shown in FIG. 3B, the covering body 22B of the temperature measuring probe 2B has a substantially half-split cylinder shape covering at least the tip of the optical fiber 21 on the movable plate 51. In this case, the cost can be reduced by the amount that the material of the covering body 22B can be reduced while suppressing the influence of the heat of welding on the optical fiber 21 to be small.

さらに他の構成として、図示はしないが、例えば、溶加材を用いるTIG溶接において、温度計測用プローブの被覆体として円管状に形成した溶加材を採用し、この円管状の溶加材の中空部分に光ファイバを通すことで、溶加材が温度計測用プローブを兼ねるようにしてもよい。 As yet another configuration, although not shown, for example, in TIG welding using a filler material, a filler metal formed in a circular tubular shape is adopted as a covering body of a probe for temperature measurement, and the filler metal having a circular tubular shape is used. By passing an optical fiber through the hollow portion, the filler metal may also serve as a temperature measuring probe.

また、温度計測用プローブ2の円管状を成す被覆体22に、ステンレス鋼に替えて試験片Wと同じ材質のものを採用してもよく、このように、被覆体として溶加材や試験片Wと同じ材質のものを採用した場合には、溶融金属に異物が混ざるのを防ぐことができ、その結果、より実際の溶接に近い状態で、温度・反力を計測することができる。 Further, the covering body 22 forming the circular tubular shape of the probe 2 for temperature measurement may be made of the same material as the test piece W instead of stainless steel. In this way, the filler metal or the test piece may be used as the covering body. When a material made of the same material as W is used, it is possible to prevent foreign matter from being mixed with the molten metal, and as a result, the temperature and reaction force can be measured in a state closer to actual welding.

さらに他の構成として、図示はしないが、温度計測用プローブをシース熱電対から構成することも可能である。 As yet another configuration, although not shown, the temperature measuring probe can be configured from a sheathed thermocouple.

また、上記した実施形態では、温度・反力計測装置1によって、TIG溶接によって試験片Wに生じる溶融池の温度及び反力を計測する場合を示したが、TIG溶接であることに限定されることはなく、プラズマ溶接であってもよい。 Further, in the above-described embodiment, the case where the temperature / reaction force measuring device 1 measures the temperature and reaction force of the molten pool generated in the test piece W by TIG welding is shown, but is limited to TIG welding. It may be plasma welding.

本発明に係る温度・反力計測装置及び温度・反力計測方法の構成は、上記した実施形態に限られるものではなく、発明の趣旨を逸脱しない範囲で種々変形可能である。 The configuration of the temperature / reaction force measuring device and the temperature / reaction force measuring method according to the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the invention.

1 温度・反力計測装置
2,2A,2B 温度計測用プローブ
4 温度計測部
5 リニアモータ(駆動部)
6 反力計測部
8 データロガー
21 光ファイバ
22,22B 被覆体
Ta タングステン電極(非消耗電極)
Wp 溶融池
1 Temperature / reaction force measuring device 2, 2A, 2B Temperature measuring probe 4 Temperature measuring unit 5 Linear motor (driving unit)
6 Reaction force measuring unit 8 Data logger 21 Optical fiber 22,22B Cover Ta Tungsten electrode (non-consumable electrode)
Wp melting pond

Claims (7)

溶接を行う際の溶融池の温度及び反力を計測する温度・反力計測装置であって、
温度計測用プローブと、
前記温度計測用プローブの先端を溶融池に挿入する駆動部と、
前記温度計測用プローブを介して溶融池温度を計測する温度計測部と、
前記温度計測用プローブの先端を溶融池に挿入した際に該温度計測用プローブが溶融池から受ける反力を計測する反力計測部と、
を備えた温度・反力計測装置。
It is a temperature / reaction force measuring device that measures the temperature and reaction force of the molten pool during welding.
A probe for temperature measurement and
A drive unit that inserts the tip of the temperature measurement probe into the molten pool,
A temperature measuring unit that measures the temperature of the molten pool via the temperature measuring probe,
A reaction force measuring unit that measures the reaction force that the temperature measuring probe receives from the molten pool when the tip of the temperature measuring probe is inserted into the molten pool.
A temperature / reaction force measuring device equipped with.
前記温度計測用プローブが光ファイバである請求項1に記載の温度・反力計測装置。 The temperature / reaction force measuring device according to claim 1, wherein the temperature measuring probe is an optical fiber. 前記温度計測用プローブが光ファイバ及び該光ファイバの少なくとも先端部を覆う被覆体から成っている請求項1に記載の温度・反力計測装置。 The temperature / reaction force measuring device according to claim 1, wherein the temperature measuring probe comprises an optical fiber and a covering body covering at least the tip of the optical fiber. 前記温度計測用プローブの前記被覆体は円筒形状を成し、該円筒形状を成す被覆体の中空部分に前記光ファイバの先端部が挿入されている請求項3に記載の温度・反力計測装置。 The temperature / reaction force measuring apparatus according to claim 3, wherein the covering body of the temperature measuring probe has a cylindrical shape, and the tip end portion of the optical fiber is inserted into a hollow portion of the covering body forming the cylindrical shape. .. 前記温度計測用プローブの前記被覆体は溶加材である請求項3又は4に記載の温度・反力計測装置。 The temperature / reaction force measuring device according to claim 3 or 4, wherein the covering body of the temperature measuring probe is a filler metal. 前記温度計測部で計測した溶融池の温度データ及び前記反力計測部で計測した溶融池の反力データを取得して保存するデータロガーを備えている請求項1〜5のいずれか一つの項に記載の温度・反力計測装置。 One of claims 1 to 5, further comprising a data logger that acquires and stores the temperature data of the molten pool measured by the temperature measuring unit and the reaction force data of the molten pool measured by the reaction force measuring unit. The temperature / reaction force measuring device described in. 溶接を行う際の溶融池の温度及び反力を計測する温度・反力計測方法であって、
温度計測用プローブの先端を溶融池に挿入して、溶融池温度を計測すると共に前記温度計測用プローブが溶融池から受ける反力を計測する温度・反力計測方法。
It is a temperature / reaction force measurement method that measures the temperature and reaction force of the molten pool during welding.
A temperature / reaction force measuring method in which the tip of a temperature measuring probe is inserted into a molten pool to measure the temperature of the molten pool and the reaction force received by the temperature measuring probe from the molten pool.
JP2020096082A 2020-06-02 2020-06-02 Temperature/reaction force measuring device and temperature/reaction force measuring method Pending JP2021186840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020096082A JP2021186840A (en) 2020-06-02 2020-06-02 Temperature/reaction force measuring device and temperature/reaction force measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020096082A JP2021186840A (en) 2020-06-02 2020-06-02 Temperature/reaction force measuring device and temperature/reaction force measuring method

Publications (1)

Publication Number Publication Date
JP2021186840A true JP2021186840A (en) 2021-12-13

Family

ID=78850948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020096082A Pending JP2021186840A (en) 2020-06-02 2020-06-02 Temperature/reaction force measuring device and temperature/reaction force measuring method

Country Status (1)

Country Link
JP (1) JP2021186840A (en)

Similar Documents

Publication Publication Date Title
KR102094156B1 (en) Welding device
JPWO2010021094A1 (en) Composite welding method and composite welding apparatus
ATE388784T1 (en) TIG WELDING OR SOLDERING PROCESS WITH METAL TRANSFER THROUGH A LIQUID METAL BRIDGE
US20100193571A1 (en) Inert gas tube and contact tube of an apparatus for improved narrow-gap welding
US20100193476A1 (en) Inert gas tube and contact tube of an apparatus for improved narrow-gap welding
US20120018405A1 (en) Protective gas tube and contact tube of a device for improved narrow-gap welding
Guest Depositing Ni-WC wear resistant overlays with hot-wire assist technology
US11161191B2 (en) Process and apparatus for welding workpiece having heat sensitive material
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
US7180030B2 (en) Method for rating and/or ranking welding electrodes
US8319138B2 (en) Inert gas tube and contact tube of an apparatus for improved narrow-gap welding
Rampaul Pipe welding procedures
JP2021186840A (en) Temperature/reaction force measuring device and temperature/reaction force measuring method
Kazi et al. A review on various welding techniques
Pitrun et al. Diffusible hydrogen content in rutile flux-cored arc welds as a function of the welding parameters
Dhobale et al. Review on effect of heat input on tensile strength of butt weld joint using MIG welding
JP6792196B2 (en) Welding equipment and welding method
Sönmez et al. Investigation of mechanical and microstructural properties of S 235 JR (ST 37-2) steels welded joints with FCAW
JP2002028784A (en) Method and equipment for consumable electrode type arc welding
JP5157270B2 (en) Non-consumable electrode type automatic welding equipment
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
US11020813B2 (en) Systems, methods, and apparatus to reduce cast in a welding wire
JP3943380B2 (en) Arc welding control method and arc welding apparatus
Elahe Design of welding fixture for sample parts and user manual for Motoma XRC welding robot
US3795781A (en) Process for electroslag welding of circumferential joints

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240327