JP6792196B2 - Welding equipment and welding method - Google Patents

Welding equipment and welding method Download PDF

Info

Publication number
JP6792196B2
JP6792196B2 JP2016217308A JP2016217308A JP6792196B2 JP 6792196 B2 JP6792196 B2 JP 6792196B2 JP 2016217308 A JP2016217308 A JP 2016217308A JP 2016217308 A JP2016217308 A JP 2016217308A JP 6792196 B2 JP6792196 B2 JP 6792196B2
Authority
JP
Japan
Prior art keywords
groove
welding
electrode
groove wall
consumable electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016217308A
Other languages
Japanese (ja)
Other versions
JP2018075583A (en
Inventor
小林 和行
和行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016217308A priority Critical patent/JP6792196B2/en
Publication of JP2018075583A publication Critical patent/JP2018075583A/en
Application granted granted Critical
Publication of JP6792196B2 publication Critical patent/JP6792196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、非消耗電極を用いた溶接装置及び溶接方法に関するものであり、一方の被溶接物及び他方の被溶接物間の溝状溶接部(溶接線)を自動的に検出して倣う機能(ロボット溶接に定義される「溶接線自動倣い」に類する機能)を有する溶接装置及び溶接方法に関するものである。 The present invention relates to a welding device and a welding method using a non-consumable electrode, and has a function of automatically detecting and imitating a groove-shaped welded portion (welding line) between one object to be welded and the other object to be welded. It relates to a welding device and a welding method having (a function similar to "weld line automatic copying" defined in robot welding).

上記した非消耗電極を用いるTIG溶接やプラズマ溶接は、アークが安定しているため、アークセンサを用いた倣い溶接の場合には、形状の整った品質良好な溶接ビードを得ることができる。 Since the arc is stable in TIG welding and plasma welding using the non-consumable electrodes described above, it is possible to obtain a well-shaped and good-quality weld bead in the case of copy welding using an arc sensor.

従来、上記した非消耗電極を用いた溶接装置(TIG溶接装置)としては、例えば特許文献1に記載されたものがある。
特許文献1に記載された開先倣い溶接装置は、先端が斜め切りされてアークを偏向可能とした電極を有する溶接トーチと、電極を軸心回りに回転させる回転機構と、溶接トーチにオシレート動作を行わせるオシレート機構と、制御部を備えている。この制御部では、AVC(Arc Voltage Control)を採用することで、溶接トーチの電極の斜め切りされた電極尖端と開先との距離(アーク長)を、一定に保つように制御している。
Conventionally, as a welding apparatus (TIG welding apparatus) using the non-consumable electrode described above, for example, there is one described in Patent Document 1.
The groove copying welding device described in Patent Document 1 has a welding torch having an electrode whose tip is cut diagonally to deflect an arc, a rotation mechanism for rotating the electrode around an axis, and an oscillating operation on the welding torch. It is equipped with an oscillating mechanism to perform the operation and a control unit. In this control unit, by adopting AVC (Arc Voltage Control), the distance (arc length) between the obliquely cut electrode tip and groove of the electrode of the welding torch is controlled to be kept constant.

この開先倣い溶接装置では、オシレート動作する溶接トーチが進む側に常に電極尖端を配置している。そして、開先における開先壁の近傍において溶接トーチの電極尖端から開先までの距離が短くなった時点で、AVCによって溶接トーチを開先から離間する方向に移動させ、溶接トーチの移動量が設定した閾値に達した時点で開先壁と認識して、溶接トーチにそれまでとは逆方向へのオシレート動作を行わせるようになっている。 In this groove copying welding device, the electrode tip is always arranged on the side where the oscillating welding torch advances. Then, when the distance from the electrode tip of the welding torch to the groove becomes short in the vicinity of the groove wall at the groove, the welding torch is moved in the direction away from the groove by AVC, and the amount of movement of the welding torch is increased. When the set threshold is reached, it is recognized as a groove wall, and the welding torch is made to perform an oscillating operation in the opposite direction to the previous one.

この開先倣い溶接装置においては、先端が斜め切りされてアークを偏向可能とした電極を用いたうえで、この電極の電極尖端がオシレート動作する溶接トーチの進行側に常に位置するようにしている。このようにすると、開先角度の小さい狭開先の倣い溶接中であったとしても、電極が開先壁に干渉するような事態の発生を回避することができる。 In this groove copying welding device, an electrode whose tip is obliquely cut so that the arc can be deflected is used, and the electrode tip of this electrode is always located on the advancing side of the welding torch that operates oscillating. By doing so, it is possible to avoid the occurrence of a situation in which the electrodes interfere with the groove wall even during copy welding of a narrow groove having a small groove angle.

特開2015−024425号公報Japanese Unexamined Patent Publication No. 2015-024425

ところが、上記した開先倣い溶接装置では、溶接により互いに接合される一方の被溶接物及び他方の被溶接物が同一の材料で且つ両者間の開先の開先角度が同じ場合を想定している。つまり、開先のいずれの開先壁も確実に認識することができるものの、一方の被溶接物及び他方の被溶接物の各融点や開先角度の違いによる濡れ性等の溶融状況が異なる場合には、開先壁として認識する位置も異なる。このように、開先壁として認識する位置が異なる場合には、電極が開先壁に近付き過ぎて接触したり、開先壁から離れすぎて溶接不良になったりしてしまう。 However, in the groove copying welding device described above, it is assumed that one object to be welded and the other object to be welded to each other by welding are made of the same material and the groove angle between the two is the same. There is. That is, although any groove wall of the groove can be reliably recognized, the melting conditions such as wettability due to the difference in the melting point and groove angle of one object to be welded and the other object to be welded are different. The position recognized as a groove wall is also different. In this way, when the positions recognized as the groove wall are different, the electrodes are too close to the groove wall to come into contact with each other, or are too far from the groove wall to cause poor welding.

本発明は、上記したような従来の課題を解決するためになされたもので、例えば、開先倣い溶接において、一対の開先壁における各溶融状況が異なる場合であったとしても、いずれの開先壁でも適正な位置で倣い溶接を行うことが可能な溶接装置及び溶接方法を提供することを目的としている。 The present invention has been made to solve the above-mentioned conventional problems. For example, in groove copying welding, even if the melting conditions of the pair of groove walls are different, any opening is made. It is an object of the present invention to provide a welding apparatus and a welding method capable of performing follow-up welding at an appropriate position even on a front wall.

本発明の第1の態様は、斜め切りされた電極尖端を有する棒状の非消耗電極と、溶接により互いに接合される一方の被溶接物及び他方の被溶接物間の溝状溶接部を横切る方向に前記非消耗電極を往復移動させると共に、該非消耗電極を長手方向に沿って往復移動させて前記溝状溶接部に接近離間させる電極駆動機構と、前記非消耗電極を軸心回りに回転させる回転機構と、前記電極駆動機構による前記非消耗電極の前記溝状溶接部を横切る方向の往復移動における進行側に前記電極尖端を配置するべく前記回転機構を制御すると共に、前記非消耗電極のAVCを行う制御部を備え、前記制御部には、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の一方の溝壁側及び他方の溝壁側のそれぞれに接近した状態で前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させる前記一方の溝壁及び他方の溝壁の各々の溶接条件と、前記非消耗電極の移動量が達することで前記非消耗電極にそれまでとは逆方向の溝壁に向かう動作を行わせる前記一方の溝壁及び他方の溝壁の各々の閾値とが設定されている構成としている。 A first aspect of the present invention is to cross a rod-shaped non-consumable electrode having a diagonally cut electrode tip and a groove-shaped welded portion between one object to be welded and the other object to be welded to each other by welding. An electrode drive mechanism that reciprocates the non-consumable electrode and reciprocates the non-consumable electrode along the longitudinal direction to approach and separate the groove-shaped welded portion, and a rotation mechanism that rotates the non-consumable electrode around the axis. The rotation mechanism is controlled so that the tip of the electrode is arranged on the traveling side in the reciprocating movement of the non-consumable electrode in the direction across the groove-shaped welded portion by the electrode drive mechanism, and AVC of the non-consumable electrode is performed. A control unit is provided, in which the non-consumable electrode moving in a direction crossing the groove-shaped welded portion is close to one groove wall side and the other groove wall side of the groove-shaped welded portion. The welding conditions of the one groove wall and the other groove wall for moving the non-consumable electrode along the longitudinal direction of the non-consumable electrode in a direction away from the groove-shaped welded portion by the AVC, and the non-consumable electrode. As a configuration in which the respective thresholds of the one groove wall and the other groove wall are set so that the non-consumable electrode moves toward the groove wall in the opposite direction when the movement amount of the electrode is reached. There is.

本発明の第2の態様は、前記一方の被溶接物及び他方の被溶接物が互いに異なる種類の金属である構成としている。 A second aspect of the present invention is such that the one work piece to be welded and the other work piece to be welded are metals of different types.

本発明の第3の態様は、前記溝状溶接部内において、前記電極駆動機構による前記非消耗電極の該溝状溶接部を横切る方向の往復移動を行い得ない場合には、前記非消耗電極の前記回転機構による回転及び前記電極駆動機構による該非消耗電極の長手方向に沿う方向の前記溝状溶接部に接近離間する往復移動のみが行われる構成としている。 A third aspect of the present invention is that when the electrode drive mechanism cannot reciprocate the non-consumable electrode in the direction across the groove-shaped weld, the non-consumable electrode Only the rotation by the rotation mechanism and the reciprocating movement by the electrode drive mechanism to approach and separate the groove-shaped welded portion in the direction along the longitudinal direction of the non-consumable electrode are performed.

本発明の第4の態様において、前記溝状溶接部の一方の溝壁及び他方の溝壁は、互いに上下の位置関係を成している、又は、上下の位置関係を成す溝壁部分をそれぞれ含んでいる構成としている。 In the fourth aspect of the present invention, one groove wall and the other groove wall of the groove-shaped welded portion have a vertical positional relationship with each other, or a groove wall portion having a vertical positional relationship, respectively. It is configured to include.

本発明の第5の態様は、前記溝状溶接部の一方の溝壁及び他方の溝壁の溝底に対する各角度が互いに異なっている構成としている。 A fifth aspect of the present invention has a configuration in which the angles of one groove wall and the other groove wall of the groove-shaped welded portion with respect to the groove bottom are different from each other.

本発明の第6の態様において、前記一方の被溶接物及び他方の被溶接物はすみ肉溶接により互いに接合され、前記溝状溶接部は前記一方の被溶接物及び他方の被溶接物間に形成される入隅部である構成としている。 In a sixth aspect of the present invention, the one work piece to be welded and the other work piece to be welded are joined to each other by fillet welding, and the groove-shaped welded portion is formed between the one work piece to be welded and the other work piece to be welded. It is configured to be the inside corner.

一方、本発明の第7の態様は、斜め切りされた棒状の電極尖端を有する非消耗電極を、溶接により互いに接合される一方の被溶接物及び他方の被溶接物間の溝状溶接部を横切る方向に往復移動させると共に該非消耗電極を長手方向に沿って往復移動させて前記溝状溶接部に接近離間させるに際して、前記非消耗電極の前記溝状溶接部を横切る方向の往復移動における進行側に前記電極尖端を配置すると共に、前記非消耗電極のAVCを行い、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の一方の溝壁に接近した段階で、該一方の溝壁に対して設定した溶接条件に基づいて前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させて、前記非消耗電極の移動量が前記一方の溝壁に設定した閾値に達したところで前記非消耗電極に前記他方の溝壁に向かう動作を行わせ、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の他方の溝壁に接近した段階で、該他方の溝壁に対して前記一方の溝壁とは別に設定した溶接条件に基づいて前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させて、前記非消耗電極の移動量が前記他方の溝壁に前記一方の溝壁とは別に設定した閾値に達したところで前記非消耗電極に前記一方の溝壁に向かう動作を行わせる構成としている。 On the other hand, a seventh aspect of the present invention is to cross a non-consumable electrode having a rod-shaped electrode tip cut diagonally across a groove-shaped welded portion between one workpiece and the other workpiece to be joined to each other by welding. When the non-consumable electrode is reciprocated in the direction and the non-consumable electrode is reciprocated along the longitudinal direction to approach and separate from the groove-shaped welded portion, the non-consumable electrode is moved to the advancing side in the reciprocating movement in the direction across the groove-shaped welded portion. When the non-consumable electrode is arranged and the non-consumable electrode is AVC, and the non-consumable electrode moving in a direction crossing the groove-shaped welded portion approaches one groove wall of the groove-shaped welded portion, the non-consumable electrode is said. Based on the welding conditions set for one groove wall, the non-consumable electrode is moved by the AVC in a direction away from the groove-shaped welded portion along the longitudinal direction of the non-consumable electrode to form the non-consumable electrode. When the amount of movement reaches the threshold value set for the one groove wall, the non-consumable electrode is made to perform an operation toward the other groove wall, and the non-consumable electrode that moves in a direction crossing the groove-shaped welded portion is said. At the stage of approaching the other groove wall of the groove-shaped welded portion, the non-consumable electrode is attached to the other groove wall by the AVC based on the welding conditions set separately from the one groove wall. The non-consumable electrode is moved along the longitudinal direction in a direction away from the groove-shaped welded portion, and when the amount of movement of the non-consumable electrode reaches a threshold set separately for the other groove wall. The consumable electrode is configured to perform an operation toward the one groove wall.

本発明に係る溶接装置によれば、例えば、開先倣い溶接において、一対の開先壁における各溶融状況が異なる場合であったとしても、いずれの開先壁でも適正な位置で倣い溶接を行うことが可能であるという非常に優れた効果がもたらされる。 According to the welding apparatus according to the present invention, for example, in groove copying welding, even if the melting conditions of the pair of groove walls are different, copying welding is performed at an appropriate position on any groove wall. It has the very good effect that it is possible.

本発明の一実施形態に係る溶接装置の概略構成説明図(a)及び溶接装置で使用する電極の他の形態例を示す拡大側面説明図(b),拡大正面説明図(c)である。It is the schematic block diagram (a) of the welding apparatus which concerns on one Embodiment of this invention, the enlarged side view (b), and the enlarged front explanatory view (c) which show the other form example of the electrode used in the welding apparatus. 図1の溶接装置により互いに異なる種類の金属である被溶接物間の開先に対して倣い溶接を行う際の電極のオシレート動作を示す開先の拡大断面説明図(a),(b)である。In the enlarged cross-sectional explanatory views (a) and (b) of the groove showing the oscillating operation of the electrode when performing follow-up welding to the groove between the objects to be welded which are different types of metals by the welding apparatus of FIG. is there. 図2(a),(b)にそれぞれ対応する開先の部分拡大平面説明図(a),(b)である。It is a partially enlarged plane explanatory view (a), (b) of the groove corresponding to FIGS. 2 (a) and 2 (b), respectively. 図1の溶接装置による開先倣い溶接のタイムチャートである。It is a time chart of groove follow-up welding by the welding apparatus of FIG. 本発明の他の実施形態に係る溶接装置により一方の被溶接物及び他方の被溶接物間の狭開先に対して倣い溶接を行う際の電極の動作を示す開先の拡大断面説明図である。An enlarged cross-sectional explanatory view of a groove showing the operation of an electrode when performing follow-up welding to a narrow groove between one object to be welded and the other object to be welded by the welding apparatus according to another embodiment of the present invention. is there. 本発明のさらに他の実施形態に係る溶接装置により一方の被溶接物及び他方の被溶接物間の横向の開先に対して倣い溶接を行う際の電極の動作を示す開先の拡大断面説明図である。Description of an enlarged cross-sectional view of a groove showing the operation of an electrode when performing follow-up welding to a lateral groove between one object to be welded and the other object to be welded by the welding apparatus according to still another embodiment of the present invention. It is a figure. 本発明のさらに他の実施形態に係る溶接装置により一方の被溶接物及び他方の被溶接物間の開先壁の各角度が互いに異なっている開先に対して倣い溶接を行う際の電極の動作を示す開先の拡大断面説明図である。An electrode for performing follow-up welding to a groove in which the angles of the groove walls between one object to be welded and the other object to be welded are different from each other by the welding apparatus according to still another embodiment of the present invention. It is an enlarged cross-sectional explanatory view of the groove which shows the operation. 本発明のさらに他の実施形態に係る溶接装置により一方の被溶接物及び他方の被溶接物を脚長が大きいすみ肉溶接により接合する際の電極の動作を示す拡大断面説明図(a),(b)である。An enlarged cross-sectional explanatory view (a), which shows the operation of the electrode when one object to be welded and the other object to be welded are joined by fillet welding having a large leg length by the welding apparatus according to still another embodiment of the present invention. b). 本発明のさらに他の実施形態に係る溶接装置により一方の被溶接物及び他方の被溶接物を脚長が小さいすみ肉溶接により接合する際の電極の動作を示す拡大断面説明図である。It is an enlarged cross-sectional explanatory view which shows the operation of the electrode when one object to be welded and the other object to be welded are joined by fillet welding with a small leg length by the welding apparatus according to still another embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。
図1〜図4は、本発明の一実施形態に係る溶接装置を示している。この実施形態では、互いに種類(融点)の異なるNi基合金鋼及びSUSの倣い溶接に本発明に係る溶接装置及び溶接方法を採用した場合を示しており、この実施形態では、下向姿勢で且つ一対の開先壁(溝壁)の各開先角度が等しい開先に対して倣い溶接を行う場合を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 show a welding apparatus according to an embodiment of the present invention. This embodiment shows a case where the welding apparatus and welding method according to the present invention are adopted for copying welding of Ni-based alloy steels and SUSs having different types (melting points), and in this embodiment, the welding device and the welding method are in a downward posture. The case where the follow-up welding is performed on the grooves having the same groove angle of the pair of groove walls (groove walls) is shown.

図1(a)に示すように、自動TIG溶接装置である倣い溶接装置1は、一方の被溶接物(Ni基合金鋼)Wn及び他方の被溶接物(SUS)Ws間の開先(溝状溶接部)Waに沿って配置されたレール2上を移動する走行部3と、この走行部3に配置された上下方向の縦ガイド4に沿って上下動する昇降部5と、この昇降部5に開先Waを横切る方向に配置された横ガイド6に沿って移動するスライダ7と、このスライダ7に支持される溶接トーチ8と、この溶接トーチ8及び被溶接物Wn,Wsに接続する溶接電源9と、制御部10を備えているほか、後述する制御部10のAVCに必要な溶接トーチ8の軸心方向の変化量を計測するための図示しないポテンショメータが備えられている。なお、倣い溶接装置1は、自動TIG溶接装置であることに限定されることはなく、プラズマ溶接装置であってもよい。 As shown in FIG. 1A, the copy welding device 1 which is an automatic TIG welding device has a groove (groove) between one object to be welded (Ni-based alloy steel) Wn and the other object to be welded (SUS) Ws. Welded portion) A traveling portion 3 that moves on a rail 2 arranged along Wa, an elevating portion 5 that moves up and down along a vertical guide 4 arranged in the vertical direction 3 and the elevating portion. The slider 7 that moves along the lateral guide 6 arranged in the direction across the groove Wa in 5, the welding torch 8 supported by the slider 7, and the welding torch 8 and the objects to be welded Wn, Ws are connected to each other. In addition to the welding power supply 9 and the control unit 10, a potential meter (not shown) for measuring the amount of change in the axial direction of the welding torch 8 required for the AVC of the control unit 10 described later is provided. The copy welding device 1 is not limited to the automatic TIG welding device, and may be a plasma welding device.

溶接トーチ8の先端部に位置する円柱状のタングステン製の電極11は、図1の拡大円内に示すように、その先端が軸心に対してθの角度をもって斜め切りされており、カット面11aの下端を電極尖端11bとしていて、アークArが真下ではなくカット面11aに沿うようにして偏向するようになっている。
なお、溶接トーチ8の先端部に配置する電極として、図1(b),(c)に示すように、先端を斜め切りしたうえでV字状にカットして成る2つのカット面11c,11cを有する電極11Aを採用してもよい。
As shown in the enlarged circle of FIG. 1, the columnar tungsten electrode 11 located at the tip of the welding torch 8 has its tip diagonally cut at an angle of θ with respect to the axis, and the cut surface 11a The lower end of the electrode tip 11b is set so that the arc Ar is deflected along the cut surface 11a instead of directly below.
As electrodes to be arranged at the tip of the welding torch 8, as shown in FIGS. 1 (b) and 1 (c), two cut surfaces 11c and 11c formed by cutting the tip diagonally and then cutting into a V shape are provided. The electrode 11A having the electrode 11A may be adopted.

ここで、先端が斜め切りされた電極11のカット面11aの軸心に対する角度θは、このカット面11aの下端に位置する電極尖端11bから発生するアークArの指向性及び集中性を考慮して設定され、30°〜60°とすることが望ましく、45°とすることがより望ましい。
なお、図1における符号12は溶接ワイヤであり、符号13はワイヤホルダである。
Here, the angle θ with respect to the axis of the cut surface 11a of the electrode 11 whose tip is cut diagonally is set in consideration of the directivity and concentration of the arc Ar generated from the electrode tip 11b located at the lower end of the cut surface 11a. It is desirable that the temperature is 30 ° to 60 °, and more preferably 45 °.
Reference numeral 12 in FIG. 1 is a welding wire, and reference numeral 13 is a wire holder.

この実施形態において、上下方向の縦ガイド4に沿って上下動する昇降部5及び横ガイド6に沿って移動するスライダ7で電極駆動機構が構成され、スライダ7には、溶接トーチ8とともに円柱状のタングステン製の電極11を軸心回りに回転させる回転機構が内蔵されている。 In this embodiment, an electrode drive mechanism is configured by an elevating portion 5 that moves up and down along a vertical guide 4 in the vertical direction and a slider 7 that moves along a horizontal guide 6, and the slider 7 has a columnar shape together with a welding torch 8. A rotation mechanism for rotating the tungsten electrode 11 around the axis is built-in.

この際、図3に示すように、先端が斜め切りされた電極11は、アークArの開先壁Wnb,Wsbへの指向性及び溶接ワイヤ12の溶融性を確保するために、開先Waに沿う方向に対して角度αで回転させておく必要があり、この回転角度αは、15°〜45°とすることが望ましく、30°とすることがより望ましい。但し、溶接ワイヤ12をアークArの位置に調整して供給し得る機構を装備することができる場合には、回転角度αを開先壁Wnb,Wsbの検出性が上がる45°〜90°にしてもよい。 At this time, as shown in FIG. 3, the electrode 11 whose tip is obliquely cut is along the groove Wa in order to ensure the directivity of the arc Ar to the groove walls Wnb and Wsb and the meltability of the welding wire 12. It is necessary to rotate the rotation angle α with respect to the direction, and the rotation angle α is preferably 15 ° to 45 °, and more preferably 30 °. However, if a mechanism capable of adjusting the welding wire 12 to the position of the arc Ar and supplying the welding wire 12 can be provided, the rotation angle α is set to 45 ° to 90 °, which increases the detectability of the groove walls Wnb and Wsb. May be good.

制御部10は、走行部3に速度指令を与えて、被溶接物Wn,Ws間の開先Waに対する溶接トーチ8の溶接速度を制御すると共に、電極駆動機構を構成する昇降部5及びスライダ7のそれぞれに指令を与えて、開先Waに沿って移動する溶接トーチ8に開先Waを横切る方向のオシレート動作を行わせるようになっている。 The control unit 10 gives a speed command to the traveling unit 3 to control the welding speed of the welding torch 8 with respect to the groove Wa between the objects to be welded Wn and Ws, and the elevating unit 5 and the slider 7 constituting the electrode drive mechanism. By giving a command to each of the above, the welding torch 8 moving along the groove Wa is made to perform an oscillating operation in the direction across the groove Wa.

また、制御部10は、図2に示すように、電極駆動機構の作動によってオシレート動作する溶接トーチ8が進む側(矢印方向側)に常に電極11の電極尖端11bを位置させるべく回転機構を制御するようになっている。 Further, as shown in FIG. 2, the control unit 10 controls the rotation mechanism so that the electrode tip 11b of the electrode 11 is always positioned on the side (arrow direction side) where the welding torch 8 oscillating by the operation of the electrode drive mechanism advances. It is designed to do.

さらに、制御部10において、開先倣いの制御には、アークArの長さ(溶接トーチ8の高さ)を一定にするAVC(Arc Voltage Control)を採用している。
このAVCは、アークArの長さによってTIG溶接やプラズマ溶接におけるアーク電圧が変化することを利用したものである。つまり、電極11の電極尖端11bと被溶接物Wn,Wsとの距離(アークArの長さ)が短くなって測定アーク電圧が基準電圧よりも低くなった時は、溶接トーチ8を上昇させてアーク電圧を大きくし、一方、電極11の電極尖端11bと被溶接物Wn,Wsとの距離が長くなって測定アーク電圧が基準電圧よりも高くなった時は、溶接トーチ8を下降させてアーク電圧を小さくすることで、溶接トーチ8の高さを一定に保つようにしている。
Further, in the control unit 10, AVC (Arc Voltage Control) that keeps the length of the arc Ar (the height of the welding torch 8) constant is adopted for the control of the groove copying.
This AVC utilizes the fact that the arc voltage in TIG welding and plasma welding changes depending on the length of the arc Ar. That is, when the distance between the electrode tip 11b of the electrode 11 and the objects Wn and Ws to be welded (the length of the arc Ar) becomes short and the measured arc voltage becomes lower than the reference voltage, the welding torch 8 is raised. When the arc voltage is increased, while the distance between the electrode tip 11b of the electrode 11 and the objects to be welded Wn, Ws becomes long and the measured arc voltage becomes higher than the reference voltage, the welding torch 8 is lowered to arc. By reducing the voltage, the height of the welding torch 8 is kept constant.

具体的には、図2(a)に示すように、オシレート動作する溶接トーチ8が開先Waにおける一方の開先壁Wnb(或いは他方の開先壁Wsb)に接近して、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから、電極尖端11bと開先壁Wnb(或いは他方の開先壁Wsb)との距離h1に転じた段階で、一方の開先壁Wnb(或いは他方の開先壁Wsb)に対して設定した溶接条件に基づいて溶接トーチ8を電極11の長手方向に沿って開先Waから離間する方向(図2(a)上方向)へ移動させるべく電極駆動機構を制御するようになっている。 Specifically, as shown in FIG. 2A, the oscillating welding torch 8 approaches one groove wall Wnb (or the other groove wall Wsb) in the groove Wa to generate an arc Ar. When the position changes from the distance h between the electrode tip 11b and the groove bottom Wc to the distance h1 between the electrode tip 11b and the groove wall Wnb (or the other groove wall Wsb), one groove wall Wnb ( Alternatively, the welding torch 8 is moved along the longitudinal direction of the electrode 11 in the direction away from the groove Wa (upward in FIG. 2A) based on the welding conditions set for the other groove wall Wsb). It is designed to control the electrode drive mechanism.

そして、この制御部10では、AVCによる溶接トーチ8の移動量が予め一方の開先壁Wnb(或いは他方の開先壁Wsb)に設定した閾値に達したところで回転機構を動作させて電極11を軸心回りに反転させて、図2(b)に示すように、溶接トーチ8にそれまでとは逆方向へのオシレート動作を行わせるべく制御するようになっている。 Then, in the control unit 10, when the amount of movement of the welding torch 8 by the AVC reaches a threshold value set in advance on one groove wall Wnb (or the other groove wall Wsb), the rotation mechanism is operated to operate the electrode 11. As shown in FIG. 2B, the welding torch 8 is controlled so as to perform an oscillating operation in the opposite direction to the previous one by reversing it around the axis.

上記一方の開先壁Wnb及び他方の開先壁Wsbに対する溶接条件及び閾値は、溶接性が保たれる範囲で開先壁検出性を最大限高め得るように各開先壁Wnb,Wsb毎に個別に設定される。ここで、溶接条件とは、溶接結果、すなわち、溶接性としての溶接品質及び施工裕度を左右する条件パラメータのことであり、一方、開先壁検出性とは開先壁Wnb,Wsbを素早くそして確実に検出する能力のことである。 The welding conditions and thresholds for the one groove wall Wnb and the other groove wall Wsb are set for each groove wall Wnb and Wsb so that the weldability can be maximized within the range where the weldability is maintained. Set individually. Here, the welding condition is a condition parameter that influences the welding result, that is, the welding quality as the weldability and the construction margin, while the groove wall detectability means that the groove walls Wnb and Wsb can be quickly detected. And it is the ability to detect reliably.

つまり、一方の開先壁Wnb及び他方の開先壁Wsbに対する溶接条件及び閾値は、優れた溶接品質を維持しつつ効率の向上も図るべく各開先壁Wnb,Wsb毎に個別に設定され、この溶接条件及び閾値が好適に設定される場合には倣い溶接が可能になり、初心者による溶接や自動化された溶接においても溶接品質が確保される。 That is, the welding conditions and thresholds for one groove wall Wnb and the other groove wall Wsb are individually set for each groove wall Wnb and Wsb in order to maintain excellent welding quality and improve efficiency. When the welding conditions and the threshold value are preferably set, the follow-up welding becomes possible, and the welding quality is ensured even in the welding by a beginner or the automated welding.

一方の開先壁Wnb及び他方の開先壁Wsbに対する溶接条件としては、電極尖端11bを有する電極11の回転角度αや、溶接電流の大きさや、アーク電圧や、溶接ワイヤ12の送給速度や、電極11の停止時間等をパラメータとして含んでいる。
なお、一方の開先壁Wnb及び他方の開先壁Wsbにおいて互いに異なる溶接条件にするには、ここに列挙したパラメータのうちのいずれか1つをパラメータとしてもよいし、すべてをパラメータとしてもよい。また、ここに列挙したパラメータ以外のパラメータを用いてもよい。
Welding conditions for one groove wall Wnb and the other groove wall Wsb include the rotation angle α of the electrode 11 having the electrode tip 11b, the magnitude of the welding current, the arc voltage, and the feeding speed of the welding wire 12. , The stop time of the electrode 11 and the like are included as parameters.
In order to make the welding conditions different from each other in one groove wall Wnb and the other groove wall Wsb, any one of the parameters listed here may be used as a parameter, or all of them may be used as parameters. .. Further, parameters other than the parameters listed here may be used.

電極11の回転角度αは、上述したように、溶接ワイヤ12をアークArの位置に調整して供給し得るのであれば90°に設定してもよい。 As described above, the rotation angle α of the electrode 11 may be set to 90 ° as long as the welding wire 12 can be adjusted to the position of the arc Ar and supplied.

溶接電流は、この実施形態のように、一方の被溶接物Wn及び他方の被溶接物Wsが互いに異種金属であり、開先壁Wnb,Wsbの開先角度が同じ場合において、一方の開先壁Wnb及び他方の開先壁Wsbのうちの溶けにくい側(この場合は他方の開先壁Wsb側)において電流値を高めて入熱を多くする。
この際、一方の開先壁Wnb及び他方の開先壁Wsbのうちの溶け易い側(この場合は一方の開先壁Wnb側)においてアーク電圧を高めたり、溶接電流値を下げたりしてもよい。但し、溶接電流値を下げる場合には、一方の開先壁Wnb及び他方の開先壁Wsbへの入熱が減らないように、ワイヤ送給速度を下げる必要がある。また、アークArの長さの調整には、これと比例するアーク電圧を用いる。
The welding current is such that when one workpiece Wn and the other workpiece Ws are dissimilar metals to each other and the groove angles of the groove walls Wnb and Wsb are the same as in this embodiment, one groove is used. The current value is increased on the hard-to-melt side (in this case, the other groove wall Wsb side) of the wall Wnb and the other groove wall Wsb to increase heat input.
At this time, even if the arc voltage is increased or the welding current value is decreased on the easily meltable side (in this case, the one groove wall Wnb side) of one groove wall Wnb and the other groove wall Wsb. Good. However, when lowering the welding current value, it is necessary to lower the wire feeding speed so that the heat input to one groove wall Wnb and the other groove wall Wsb is not reduced. Further, an arc voltage proportional to this is used to adjust the length of the arc Ar.

ワイヤ送給速度は、この実施形態のように、一方の被溶接物Wn及び他方の被溶接物Wsが互いに異種金属であり、開先壁Wnb,Wsbの開先角度が同じ場合において、いずれの開先壁Wnb,Wsbで等しく設定し、開先壁Wnb,Wsbの開先角度が異なる場合において、溶接ビードの側縁の形状が一方の開先壁Wnb側及び他方の開先壁Wsb側で同じになるように違えて設定するのに加えて、溶接電流及びアーク電圧も調整する。
なお、一方の被溶接物及び他方の被溶接物が同じ種類の金属であり、各開先壁の開先角度が異なる場合は、ワイヤ送給速度のみ調整する。
The wire feeding speed is any of the cases where one object to be welded Wn and the other object to be welded Ws are different metals from each other and the groove angles of the groove walls Wnb and Wsb are the same as in this embodiment. When the groove walls Wnb and Wsb are set to be equal and the groove angles of the groove walls Wnb and Wsb are different, the shape of the side edge of the weld bead is on one groove wall Wnb side and the other groove wall Wsb side. In addition to setting them differently so that they are the same, adjust the welding current and arc voltage.
If one object to be welded and the other object to be welded are the same type of metal and the groove angles of the groove walls are different, only the wire feeding speed is adjusted.

また、一方の開先壁Wnb及び他方の開先壁Wsbに対する閾値は、この実施形態のように、一方の被溶接物Wn及び他方の被溶接物Wsが異種金属であり、開先壁Wnb,Wsbの開先角度が同じ場合において、いずれの開先壁Wnb,Wsbで同等に設定する。
なお、開先壁Wnb,Wsbで閾値をそれぞれ変える場合、開先壁Wnbに溶接トーチ8が進む際には、開先壁Wnbに設定された閾値が選択され、開先壁Wsbに溶接トーチ8が進む際には、開先壁Wsbに設定された閾値が選択される。
Further, the threshold values for one groove wall Wnb and the other groove wall Wsb are such that one work piece Wn and the other work piece Ws are dissimilar metals as in this embodiment, and the groove wall Wnb, When the groove angles of Wsb are the same, the groove walls Wnb and Wsb are set to be the same.
When the threshold values are changed for the groove wall Wnb and Wsb, respectively, when the welding torch 8 advances to the groove wall Wnb, the threshold value set for the groove wall Wnb is selected, and the welding torch 8 is applied to the groove wall Wsb. When the process advances, the threshold value set in the groove wall Wsb is selected.

そこで、このような構成を成す倣い溶接装置1により互いに異種金属である一方の被溶接物Wn及び他方の被溶接物Ws間の開先Waに対して倣い溶接を行う際の電極11の挙動を図4のタイムチャートに基づいて説明する。 Therefore, the behavior of the electrode 11 when performing copy welding with respect to the groove Wa between one object to be welded Wn and the other object to be welded Ws, which are dissimilar metals to each other, by the copy welding device 1 having such a configuration. This will be described based on the time chart of FIG.

まず、先端が軸心に対して角度θをもって斜め切りされた電極11を有する溶接トーチ8を開先Waに沿って所定速度で移動させつつオシレート動作を行わせると(T1)、図2(a)及び図3(a)に示すように、電極11の電極尖端11bが制御部10によりオシレート動作する溶接トーチ8が進む側(図示左側)に配置される。 First, when the welding torch 8 having the electrode 11 whose tip is obliquely cut at an angle θ with respect to the axis is moved along the groove Wa at a predetermined speed to perform the oscillating operation (T1), FIG. 2 (a). And, as shown in FIG. 3A, the electrode tip 11b of the electrode 11 is arranged on the side (left side in the drawing) where the welding torch 8 that is oscillated by the control unit 10 advances.

この状態で開先Waの開先壁Wnbに溶接トーチ8が接近すると、図2(a)及び図3(a)に一点鎖線で示すように、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから電極尖端11bと開先壁Wnbとの距離h1に転じて、すなわち、電極尖端11bから開先Waまでの距離が短くなって、一方の開先壁Wnbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向(この実施形態では上方向)に移動させるAVCが行われる。 When the welding torch 8 approaches the groove wall Wnb of the groove Wa in this state, the arc Ar generation position is the electrode tip 11b and the groove as shown by the one-point chain line in FIGS. 2 (a) and 3 (a). The distance h from the bottom Wc turns to the distance h1 between the electrode tip 11b and the groove wall Wnb, that is, the distance from the electrode tip 11b to the groove Wa becomes shorter and is set for one groove wall Wnb. AVC is performed to move the welding torch 8 in a direction away from the groove Wa (upward in this embodiment) based on the welding conditions.

そして、このAVCにより溶接トーチ8が上昇して、移動量が予め一方の開先壁Wnbに対して設定した閾値h2に達した時点(T2)において、AVCにより溶接トーチ8が上昇し続けるのを防ぐためにAVCをオフにし、溶接品質を確保すると共にビード形状を盛り上がりのない良好な形状にするために、上記溶接条件に基づいて溶接電流値を抑えた状態で一方の開先壁Wnb近傍において溶接トーチ8を所定時間停止させる(T3)。
なお、この実施形態では、溶接条件のパラメータとして溶接電流値を採用しているが、これは一例であり、溶接条件のパラメータとして溶接電流値とは異なる項目を採用してもよい。
Then, when the welding torch 8 rises due to this AVC and the movement amount reaches the threshold value h2 set in advance for one groove wall Wnb (T2), the welding torch 8 continues to rise due to the AVC. To prevent this, AVC is turned off, and in order to ensure welding quality and to make the bead shape a good shape without swelling, welding is performed in the vicinity of one groove wall Wnb with the welding current value suppressed based on the above welding conditions. The torch 8 is stopped for a predetermined time (T3).
In this embodiment, the welding current value is adopted as the parameter of the welding condition, but this is an example, and an item different from the welding current value may be adopted as the parameter of the welding condition.

一方の開先壁Wnb側での停止時間が終了すると、電極11が軸心回りに反転し(T4)、この電極11が軸心回りに反転している間にAVCが再びオン状態になる(T4’)。 When the stop time on one groove wall Wnb side ends, the electrode 11 is inverted around the axis (T4), and the AVC is turned on again while the electrode 11 is inverted around the axis (T4). T4').

溶接トーチ8は、電極11が反転し終わった時点(T5)から、図2(b)及び図3(b)に二点鎖線で示すように、それまでとは逆方向へのオシレート動作を開始し(T6)、この状態で開先Waの開先壁Wsbに溶接トーチ8が接近してアークArが開先壁Wsbに到達すると、他方の開先壁Wsbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向に移動させるAVCが行われる。 From the time when the electrode 11 finishes reversing (T5), the welding torch 8 starts the oscillating operation in the opposite direction as shown by the alternate long and short dash line in FIGS. 2 (b) and 3 (b). (T6) When the welding torch 8 approaches the groove wall Wsb of the groove Wa in this state and the arc Ar reaches the groove wall Wsb, the welding conditions set for the other groove wall Wsb are used. Then, AVC is performed to move the welding torch 8 in a direction away from the groove Wa.

そして、このAVCにより溶接トーチ8が上昇して、移動量が予め他方の開先壁Wsbに対して設定した閾値に達した時点(T7)においAVCをオフにし、この他方の開先壁Wsb側では、一方の開先壁Wnb側とは異なり、溶接条件に基づいて溶接電流値を高めた状態で溶接トーチ8を所定時間停止させる(T8)。 Then, when the welding torch 8 is raised by this AVC and the movement amount reaches a threshold value set in advance for the other groove wall Wsb (T7), the odor AVC is turned off, and the other groove wall Wsb side. Then, unlike the one groove wall Wnb side, the welding torch 8 is stopped for a predetermined time in a state where the welding current value is increased based on the welding conditions (T8).

他方の開先壁Wsb側での停止時間が終了すると、電極11が軸心回りに反転し(T9)、この電極11が軸心回りに反転している間にAVCが再びオン状態になる(T9’)。 When the stop time on the other groove wall Wsb side ends, the electrode 11 is inverted around the axis (T9), and the AVC is turned on again while the electrode 11 is inverted around the axis (T9). T9').

溶接トーチ8は、電極11が反転し終わった時点(T10)から、それまでとは逆方向へのオシレート動作を開始し(T11)、この状態で開先Waの一方の開先壁Wnbに溶接トーチ8が再び接近すると、一方の開先壁Wnbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向に移動させるAVCが行われ、以降、上記と同様の各タイミング(T12,T13,T14,…)で、倣い動作が行われる。 The welding torch 8 starts an oscillating operation in the opposite direction from the time when the electrode 11 finishes inversion (T10) (T11), and in this state, welds to one groove wall Wnb of the groove Wa. When the torch 8 approaches again, AVC is performed to move the welding torch 8 in the direction away from the groove Wa based on the welding conditions set for one groove wall Wnb, and thereafter, the same as above is performed. The copying operation is performed at the timing (T12, T13, T14, ...).

上記したように、この実施形態に係る倣い溶接装置1では、一方の被溶接物Wn及び他方の被溶接物Ws間における開先Waの一方の開先壁Wnb及び他方の開先壁Wsbのそれぞれにおいて、溶接条件及び電極11のAVCによる移動量の閾値を個別に設定するようにしているので(この実施形態において開先壁Wnb,Wsbで閾値は同等)、互いに異種金属である一方の被溶接物Wn及び他方の被溶接物Wsのように、一方の開先壁Wnb及び他方の開先壁Wsbでの各溶融状況が異なる場合であったとしても、いずれの開先壁Wnb,Wsbも適正な位置で倣い溶接を行うことが可能である。 As described above, in the copy welding device 1 according to this embodiment, one groove wall Wnb and the other groove wall Wsb of the groove Wa between one work piece Wn and the other work piece Ws are respectively. In the above, since the welding conditions and the threshold of the amount of movement of the electrode 11 by AVC are set individually (the thresholds are the same for the groove walls Wnb and Wsb in this embodiment), one of the welded metals is different from each other. Even if the melting conditions of one groove wall Wnb and the other groove wall Wsb are different, such as the object Wn and the other object to be welded Ws, both groove walls Wnb and Wsb are appropriate. It is possible to perform copy welding at various positions.

また、この実施形態に係る倣い溶接装置1によれば、Ni基合金鋼と低合金鋼とを接合することができるため、例えば、従来はNi基合金鋼同士の接合としていた構造を、Ni基合金鋼と低合金鋼とを接合する構造にすることができる。したがって、Ni基合金鋼等の高価な材料の使用量を減じて、コストダウンを図ることができる。 Further, according to the copy welding apparatus 1 according to this embodiment, the Ni-based alloy steel and the low-alloy steel can be joined. Therefore, for example, a structure in which Ni-based alloy steels are conventionally joined is changed to a Ni-based structure. The structure can be such that alloy steel and low alloy steel are joined. Therefore, the amount of expensive materials such as Ni-based alloy steel used can be reduced to reduce the cost.

図5は、上記倣い溶接装置1により一方の被溶接物Wn及び他方の被溶接物Ws間の開先Waに対して倣い溶接を行う際の電極11の動作を示している。
一方の被溶接物Wn及び他方の被溶接物Ws間の開先Waは、その内部において電極駆動機構による電極11の開先幅方向の往復移動(オシレート動作)を行い得ない、いわゆる狭開先Waである。このような狭開先Waに対する倣い溶接装置1による倣い溶接は、電極11の回転機構による回転及び電極駆動機構による狭開先Waに接近離間する方向(図示上下方向)の往復移動のみが行われる。
FIG. 5 shows the operation of the electrode 11 when performing copy welding with respect to the groove Wa between one object to be welded Wn and the other object to be welded Ws by the copy welding device 1.
The groove Wa between one object Wn to be welded and the other object Ws to be welded cannot perform reciprocating movement (oscillating operation) of the electrode 11 in the groove width direction by the electrode drive mechanism, that is, a so-called narrow groove. Wa. In the copy welding by the copy welding device 1 to such a narrow groove Wa, only the rotation by the rotation mechanism of the electrode 11 and the reciprocating movement in the direction of approaching and separating from the narrow groove Wa by the electrode drive mechanism (vertical direction in the drawing) are performed. ..

すなわち、回転機構により電極11を二点鎖線で示す状態から実線(或いは一点鎖線)で示す状態に回転させて、その電極尖端11bを一方の開先壁Wnb側(或いは他方の開先壁Wsb側)に配置すると、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから電極尖端11bと開先壁Wnbとの距離h1に転じて、すなわち、電極尖端11bから開先Waまでの距離(アーク長)が短くなって、一方の開先壁Wnb(或いは他方の開先壁Wsb)に対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向に移動させるAVCが行われる。 That is, the electrode 11 is rotated from the state indicated by the alternate long and short dash line to the state indicated by the solid line (or the alternate long and short dash line) by the rotation mechanism, and the electrode tip 11b is placed on one groove wall Wnb side (or the other groove wall Wsb side). ), The position where the arc Ar is generated changes from the distance h between the electrode tip 11b and the groove bottom Wc to the distance h1 between the electrode tip 11b and the groove wall Wnb, that is, from the electrode tip 11b to the groove Wa. The distance (arc length) is shortened, and the welding torch 8 is moved in a direction away from the groove Wa based on the welding conditions set for one groove wall Wnb (or the other groove wall Wsb). AVC is performed.

そして、このAVCにより溶接トーチ8が上昇して、移動量が予め一方の開先壁Wnb(或いは他方の開先壁Wsb)に対して設定した閾値h2に達した時点で一方の開先壁Wnb(或いは他方の開先壁Wsb)を検出(認識)し、電極11を軸心回りに反転させる。 Then, when the welding torch 8 is raised by this AVC and the movement amount reaches the threshold value h2 set in advance for one groove wall Wnb (or the other groove wall Wsb), one groove wall Wnb (Or the other groove wall Wsb) is detected (recognized), and the electrode 11 is inverted around the axis.

したがって、この実施形態においても、互いに異種金属である一方の被溶接物Wn及び他方の被溶接物Ws間における、いわゆる狭開先Waの一方の開先壁Wnb及び他方の開先壁Wsbでの各溶融状況が異なる場合であったとしても、いずれの開先壁Wnb,Wsbも適正な位置で倣い溶接を行うことが可能である。 Therefore, also in this embodiment, one groove wall Wnb and the other groove wall Wsb of the so-called narrow groove Wa between the one work piece Wn and the other work piece Ws which are dissimilar metals to each other. Even if the melting conditions are different, it is possible to perform copy welding at an appropriate position on any of the groove walls Wnb and Wsb.

図6は、上記倣い溶接装置1により一方の被溶接物W及び他方の被溶接物W間における横向の開先Waの開先壁Wb,Wb、すなわち、互いに上下の位置関係を成す開先壁Wb,Wbに対して倣い溶接を行う際の電極11の動作を示している。 FIG. 6 shows the groove walls Wb and Wb of the lateral groove Wa between one object to be welded W and the other object to be welded W by the copying welding device 1, that is, groove walls having a vertical positional relationship with each other. The operation of the electrode 11 when performing follow-up welding to Wb and Wb is shown.

この実施形態では、先端が軸心に対して角度θをもって斜め切りされた電極11を有する溶接トーチ8にオシレート動作を行わせると、電極11の電極尖端11bが制御部10によりオシレート動作する溶接トーチ8が進む側(図示上側)に配置され、この状態で開先Waの上側の開先壁Wbに溶接トーチ8が接近すると、図6に一点鎖線で示すように、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから電極尖端11bと開先壁Wbとの距離h1に転じて、すなわち、電極尖端11bから開先Waまでの距離(アーク長)が短くなって、上側の開先壁Wbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向(この実施形態では右方向)に移動させるAVCが行われる。 In this embodiment, when the welding torch 8 having the electrode 11 whose tip is obliquely cut at an angle θ with respect to the axis is subjected to the oscillating operation, the electrode tip 11b of the electrode 11 is oscillated by the control unit 10. When the welding torch 8 approaches the groove wall Wb on the upper side of the groove Wa in this state, the position where the arc Ar is generated is the tip of the electrode, as shown by the one-point chain line in FIG. The distance h between the electrode tip 11b and the groove bottom Wc changes to the distance h1 between the electrode tip 11b and the groove wall Wb, that is, the distance (arc length) from the electrode tip 11b to the groove Wa becomes shorter, and the upper side Based on the welding conditions set for the groove wall Wb, AVC is performed to move the welding torch 8 in a direction away from the groove Wa (to the right in this embodiment).

そして、溶接トーチ8の移動量が予め上側の開先壁Wbに対して設定した閾値h2に達した時点で上側の開先壁Wbを検出(認識)し、電極11を軸心回りに反転させる。この後、溶接トーチ8がそれまでとは逆方向へのオシレート動作を開始し、この状態で開先Waの下側の開先壁Wbに溶接トーチ8が接近すると、下側の開先壁Wbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向に移動させるAVCが行われ、溶接トーチ8の移動量が予め下側の開先壁Wbに対して設定した閾値に達した時点で下側の開先壁Wbを検出(認識)し、電極11を軸心回りに反転させる。 Then, when the movement amount of the welding torch 8 reaches the threshold value h2 set in advance with respect to the upper groove wall Wb, the upper groove wall Wb is detected (recognized) and the electrode 11 is inverted around the axis. .. After that, the welding torch 8 starts oscillating operation in the opposite direction to the previous direction, and when the welding torch 8 approaches the lower groove wall Wb of the groove Wa in this state, the lower groove wall Wb AVC is performed to move the welding torch 8 in a direction away from the groove Wa based on the welding conditions set for, and the amount of movement of the welding torch 8 is set in advance with respect to the lower groove wall Wb. When the threshold is reached, the lower groove wall Wb is detected (recognized), and the electrode 11 is inverted around the axis.

したがって、この実施形態では、被溶接物W,W間の横向の開先Waにおける上側の開先壁Wb及び下側の開先壁Wbのように、重力の影響で溶融金属の垂れ方(溶融状況)が異なる場合であったとしても、いずれの開先壁Wb,Wbも適正な位置で倣い溶接を行うことが可能である。 Therefore, in this embodiment, like the upper groove wall Wb and the lower groove wall Wb in the lateral groove Wa between the objects W and W, the molten metal hangs down (melts) due to the influence of gravity. Even if the situation) is different, it is possible to perform follow-up welding at an appropriate position on any of the groove walls Wb and Wb.

図7は、上記倣い溶接装置1により一方の被溶接物Wn及び他方の被溶接物Ws間の開先壁Wnb,Wsbの各角度が互いに異なっている開先Waに対して倣い溶接を行う際の電極11の動作を示している。 FIG. 7 shows the case where the copy welding device 1 performs copy welding on a groove Wa in which the angles of the groove walls Wnb and Wsb between one object Wn and the other object Ws are different from each other. The operation of the electrode 11 of the above is shown.

この実施形態では、先端が軸心に対して角度θをもって斜め切りされた電極11を有する溶接トーチ8にオシレート動作を行わせると、図7に実線で示すように、電極11の電極尖端11bが制御部10によりオシレート動作する溶接トーチ8が進む側(図示左側)に配置され、この状態で開先Waの一方の開先壁Wnbに溶接トーチ8が接近すると、図7に一点鎖線で示すように、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから電極尖端11bと開先壁Wnbとの距離h1に転じて、すなわち、電極尖端11bから開先Waまでの距離(アーク長)が短くなって、一方の開先壁Wnbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向(この実施形態では上方向)に移動させるAVCが行われる。 In this embodiment, when the welding torch 8 having the electrode 11 whose tip is diagonally cut at an angle θ with respect to the axial center is subjected to the oscillating operation, the electrode tip 11b of the electrode 11 is controlled as shown by the solid line in FIG. The welding torch 8 oscillating by the portion 10 is arranged on the advancing side (left side in the drawing), and when the welding torch 8 approaches one groove wall Wnb of the groove Wa in this state, as shown by a single point chain line in FIG. , The position where the arc Ar is generated changes from the distance h between the electrode tip 11b and the groove bottom Wc to the distance h1 between the electrode tip 11b and the groove wall Wnb, that is, the distance from the electrode tip 11b to the groove Wa (arc). The length) becomes shorter, and AVC is performed to move the welding torch 8 in the direction away from the groove Wa (upward in this embodiment) based on the welding conditions set for one groove wall Wnb. ..

そして、溶接トーチ8の移動量が予め一方の開先壁Wnbに対して設定した閾値h2に達した時点で一方の開先壁Wnbを検出(認識)し、電極11を軸心回りに反転させる。この後、溶接トーチ8がそれまでとは逆方向へのオシレート動作を開始し、この状態で開先Waの一方の開先壁Wnbとは開先角度が異なる他方の開先壁Wsbに溶接トーチ8が接近すると、図7に二点鎖線で示すように、アークArの発生位置が電極尖端11bと開先底Wcとの距離hから電極尖端11bと開先壁Wsbとの距離h1に転じて、他方の開先壁Wsbに対して設定した溶接条件に基づいて、溶接トーチ8を開先Waから離間する方向に移動させるAVCが行われ、溶接トーチ8の移動量が予め他方の開先壁Wsbに対して設定した閾値h2に達した時点で他方の開先壁Wsbを検出(認識)し、電極11を軸心回りに反転させる。 Then, when the movement amount of the welding torch 8 reaches the threshold value h2 set in advance for the one groove wall Wnb, the one groove wall Wnb is detected (recognized) and the electrode 11 is inverted around the axis. .. After that, the welding torch 8 starts the oscillating operation in the opposite direction to the previous one, and in this state, the welding torch is applied to the other groove wall Wsb whose groove angle is different from that of one groove wall Wnb of the groove Wa. When 8 approaches, as shown by the two-point chain line in FIG. 7, the position where the arc Ar is generated changes from the distance h between the electrode tip 11b and the groove bottom Wc to the distance h1 between the electrode tip 11b and the groove wall Wsb. , AVC is performed to move the welding torch 8 in the direction away from the groove Wa based on the welding conditions set for the other groove wall Wsb, and the amount of movement of the welding torch 8 is previously set to the other groove wall. When the threshold h2 set for Wsb is reached, the other groove wall Wsb is detected (recognized), and the electrode 11 is inverted around the axis.

したがって、この実施形態では、一方の被溶接物Wn及び他方の被溶接物Ws間における開先壁Wnb,Wsbの各角度が互いに異なっている(溶融状況が異なっている)場合であったとしても、いずれの開先壁Wnb,Wsbも適正な位置で倣い溶接を行うことが可能である。 Therefore, in this embodiment, even if the angles of the groove walls Wnb and Wsb between one work piece Wn and the other work piece Ws are different from each other (the melting state is different). , Both groove walls Wnb and Wsb can be lied welded at appropriate positions.

上記した実施形態では、本発明に係る溶接装置及び溶接方法を突き合わせ溶接に用いた場合を例に挙げて説明したが、これに限定されるものではなく、例えば、図8に示すように、すみ肉溶接にも用いることができる。 In the above-described embodiment, the case where the welding apparatus and welding method according to the present invention are used for butt welding has been described as an example, but the present invention is not limited to this, and for example, as shown in FIG. It can also be used for fillet welding.

図8は、上記倣い溶接装置1により一方の被溶接物Wz及び他方の被溶接物Wxを脚長が大きいすみ肉溶接により接合する際の電極11の動作を示している。この実施形態において、溝状溶接部とは入隅部Wdである。また、溝壁とは一方の被溶接物Wz及び他方の被溶接物Wxの各入隅部Wd側に位置する面である。 FIG. 8 shows the operation of the electrode 11 when one object to be welded Wz and the other object to be welded Wx are joined by fillet welding having a large leg length by the copy welding device 1. In this embodiment, the groove-shaped welded portion is the inside corner portion Wd. The groove wall is a surface of one object to be welded Wz and the other object to be welded Wx located on the Wd side of each inside corner.

この実施形態では、先端が軸心に対して角度θをもって斜め切りされた電極11にオシレート動作を行わせると、図8(a)に実線で示すように、電極11の電極尖端11bがオシレート動作する電極11が進む側(図示左上側)に配置され、この状態で入隅部Wdの開先壁に相当する一方の被溶接物Wzに電極11が接近してアークArの発生位置が電極尖端11bと他方の被溶接物Wxとの距離hから、電極尖端11bと一方の被溶接物Wzとの距離h1に転じると、図8(a)に二点鎖線で示すように、電極尖端11bから一方の被溶接物Wzまでの距離が短くなって、一方の被溶接物Wzに対して設定した溶接条件に基づいて、電極11を入隅部Wdから離間する方向(図示矢印方向)に移動させるAVCが行われる。 In this embodiment, when the electrode 11 whose tip is obliquely cut at an angle θ with respect to the axial center is subjected to the oscillating operation, the electrode tip 11b of the electrode 11 is oscillated as shown by the solid line in FIG. 8 (a). The electrode 11 is arranged on the side where the electrode 11 advances (upper left side in the drawing), and in this state, the electrode 11 approaches one of the objects to be welded Wz corresponding to the groove wall of the inside corner Wd, and the position where the arc Ar is generated is the electrode tip 11b. When the distance h between the electrode tip 11b and the other object to be welded Wx is changed to the distance h1 between the electrode tip 11b and one object to be welded Wz, as shown by the two-point chain line in FIG. The distance to the object to be welded Wz is shortened, and the electrode 11 is moved in the direction away from the inside corner Wd (in the direction of the arrow in the figure) based on the welding conditions set for one object to be welded Wz. Is done.

そして、電極11の移動量が予め一方の被溶接物Wzに対して設定した閾値に達した時点で一方の被溶接物Wzを検出(認識)し、電極11を軸心回りに反転させる。この後、図8(b)に実線で示すように、電極11がそれまでとは逆方向(図示右下方向)へのオシレート動作を開始し、この状態で入隅部Wdの開先壁に相当する他方の被溶接物Wxに電極11が接近すると、図8(b)に二点鎖線で示すように、他方の被溶接物Wxに対して設定した溶接条件に基づいて、電極11を入隅部Wdから離間する方向(図示矢印方向)に移動させるAVCが行われ、電極11の移動量が予め他方の被溶接物Wxに対して設定した閾値に達した時点で他方の被溶接物Wxを検出(認識)し、電極11を軸心回りに反転させる。 Then, when the movement amount of the electrode 11 reaches a threshold value set in advance for one object to be welded Wz, one object to be welded Wz is detected (recognized) and the electrode 11 is inverted around the axis. After that, as shown by the solid line in FIG. 8B, the electrode 11 starts the oscillating operation in the opposite direction (lower right direction in the drawing), and in this state, on the groove wall of the inside corner Wd. When the electrode 11 approaches the corresponding other object to be welded Wx, the electrode 11 is inserted based on the welding conditions set for the other object to be welded Wx, as shown by the two-point chain line in FIG. 8 (b). AVC is performed to move the electrode 11 in a direction away from the corner Wd (in the direction of the arrow in the figure), and when the amount of movement of the electrode 11 reaches a threshold set in advance for the other work to be welded Wx, the other work to be welded Wx Is detected (recognized), and the electrode 11 is inverted around the axis.

したがって、この実施形態では、一方の被溶接物Wz及び他方の被溶接物Wxを脚長が大きいすみ肉溶接により接合する場合であったとしても、いずれの被溶接物Wz,Wxも適正な位置ですみ肉溶接を行うことが可能である。 Therefore, in this embodiment, even if one object to be welded Wz and the other object to be welded Wx are joined by fillet welding having a large leg length, both objects to be welded Wz and Wx are in appropriate positions. It is possible to perform fillet welding.

ここで、上記倣い溶接装置1により一方の被溶接物Wz及び他方の被溶接物Wxを脚長が小さいすみ肉溶接により接合する場合は、図9に示すように、電極11を二点鎖線で示す状態から実線(或いは一点鎖線)で示す状態に回転させて、その電極尖端11bを一方の被溶接物Wz側(或いは他方の被溶接物Wx側)に配置すると、アークArの発生位置が電極尖端11bと他方の被溶接物Wxとの距離hから電極尖端11bと一方の被溶接物Wzとの距離h1に転じて、すなわち、電極尖端11bから一方の被溶接物Wzまでの距離(アーク長)が短くなって、一方の被溶接物Wz(或いは他方の被溶接物Wx)に対して設定した溶接条件に基づいて、電極11を入隅部Wdから離間する方向に移動させるAVCが行われる。 Here, when one object to be welded Wz and the other object to be welded Wx are joined by fillet welding having a small leg length by the copy welding device 1, the electrode 11 is shown by a two-point chain line as shown in FIG. When the electrode tip 11b is rotated from the state to the state shown by the solid line (or one-point chain line) and the electrode tip 11b is placed on one welded object Wz side (or the other welded object Wx side), the arc Ar generation position is the electrode tip end. The distance h between 11b and the other work piece Wx turns to the distance h1 between the electrode tip 11b and one work piece Wz, that is, the distance from the electrode tip 11b to one work piece Wz (arc length). Is shortened, and AVC is performed in which the electrode 11 is moved in a direction away from the inside corner Wd based on the welding conditions set for one work piece Wz (or the other work piece Wx).

そして、このAVCにより電極11が上昇して、移動量が予め一方の被溶接物Wz(或いは他方の被溶接物Wx)に対して設定した閾値に達した時点で一方の被溶接物Wzを検出(認識)し、電極11を軸心回りに反転させる。 Then, when the electrode 11 is raised by this AVC and the movement amount reaches a threshold value set in advance for one work piece Wz (or the other work piece Wx), one work piece Wz is detected. (Recognize) and invert the electrode 11 around the axis.

したがって、この実施形態では、一方の被溶接物Wz及び他方の被溶接物Wxを脚長が小さいすみ肉溶接により接合する場合であったとしても、いずれの被溶接物Wz,Wxも適正な位置ですみ肉溶接を行うことが可能である。 Therefore, in this embodiment, even if one object to be welded Wz and the other object to be welded Wx are joined by fillet welding with a small leg length, both objects to be welded Wz and Wx are in appropriate positions. It is possible to perform fillet welding.

上記した図8,9の実施形態に係る倣い溶接装置1によれば、すみ肉溶接において、一方の被溶接物の溝壁における溶融状況と、他方の被溶接物の溝壁における溶融状況とが互いに異なる場合であっても、いずれも適正な位置ですみ肉溶接を行うことが可能である。 According to the copy welding device 1 according to the embodiment of FIGS. 8 and 9 described above, in fillet welding, the melting state in the groove wall of one work piece and the melting state in the groove wall of the other work piece are determined. Even if they are different from each other, it is possible to perform fillet welding at an appropriate position.

本発明に係る溶接装置及び溶接方法の構成は、上記した実施形態に限られるものではなく、発明の趣旨を逸脱しない範囲で種々変形可能である。
また、本発明に係る溶接装置及び溶接方法が適用される溶接姿勢は、上述した下向姿勢や横向姿勢の開先倣い溶接だけでなく、立向姿勢及び上向姿勢の各開先倣い溶接にも適用可能であり、例えば、管の全周にわたって開先倣い溶接を行う全姿勢の開先倣い溶接や、溝状溶接部の一方の溝壁及び他方の溝壁が上下の位置関係を成す溝壁部分をそれぞれ含んでいるような傾斜した管の全周にわたって開先倣い溶接を行う全姿勢(AWS:6G姿勢)の開先倣い溶接にも適用可能である。
The configuration of the welding apparatus and welding method according to the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the spirit of the invention.
Further, the welding posture to which the welding device and the welding method according to the present invention are applied is not only the groove copying welding in the downward posture and the lateral posture described above, but also the groove copying welding in the vertical posture and the upward posture. Is also applicable, for example, groove copying welding in all postures in which groove copying welding is performed over the entire circumference of the pipe, and grooves in which one groove wall and the other groove wall of the groove-shaped welded portion form a vertical positional relationship. It can also be applied to groove copying welding in all postures (AWS: 6G posture) in which groove copying welding is performed over the entire circumference of an inclined pipe including each wall portion.

なお、上記した各実施形態では、一方の被溶接物Wn及び他方の被溶接物Wsがそれぞれ互いに種類の異なるNi基合金鋼及びSUSである場合を示したが、被溶接物に用いる金属の種類はこれらに限定されないのは言うまでもない。 In each of the above embodiments, the case where one object to be welded Wn and the other object to be welded Ws are Ni-based alloy steels and SUSs of different types are shown, but the type of metal used for the object to be welded. Needless to say, is not limited to these.

1 倣い溶接装置(溶接装置)
5 昇降部(電極駆動機構)
7 スライダ(電極駆動機構)
10 制御部
11,11A 電極(非消耗電極)
11b 電極尖端
h2 閾値
W 被溶接物
Wa 開先(溝状溶接部)
Wb 開先壁(溝壁)
Wc 開先底(溝底)
Wd 入隅部(溝状溶接部)
Wn 一方の被溶接物(Ni基合金鋼)
Wnb 一方の開先壁(溝壁)
Ws 他方の被溶接物(SUS)
Wsb 他方の開先壁(溝壁)
Wx 一方の被溶接物
Wz 他方の被溶接物
1 Copy welding equipment (welding equipment)
5 Elevating part (electrode drive mechanism)
7 Slider (electrode drive mechanism)
10 Control units 11, 11A Electrodes (non-consumable electrodes)
11b Electrode tip h2 Threshold W Welded object Wa Groove (grooved weld)
Wb groove wall (groove wall)
Wc groove bottom (groove bottom)
Wd inside corner (grooved weld)
Wn One of the objects to be welded (Ni-based alloy steel)
Wnb One groove wall (groove wall)
Ws The other object to be welded (SUS)
Wsb The other groove wall (groove wall)
Wx One object to be welded Wz The other object to be welded

Claims (7)

斜め切りされた電極尖端を有する棒状の非消耗電極と、
溶接により互いに接合される一方の被溶接物及び他方の被溶接物間の溝状溶接部を横切る方向に前記非消耗電極を往復移動させると共に、該非消耗電極を長手方向に沿って往復移動させて前記溝状溶接部に接近離間させる電極駆動機構と、
前記非消耗電極を軸心回りに回転させる回転機構と、
前記電極駆動機構による前記非消耗電極の前記溝状溶接部を横切る方向の往復移動における進行側に前記電極尖端を配置するべく前記回転機構を制御すると共に、前記非消耗電極のAVCを行う制御部を備え、
前記制御部には、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の一方の溝壁側及び他方の溝壁側のそれぞれに接近した状態で前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させる前記一方の溝壁及び他方の溝壁の各々の溶接条件と、前記非消耗電極の移動量が達することで前記非消耗電極にそれまでとは逆方向の溝壁に向かう動作を行わせる前記一方の溝壁及び他方の溝壁の各々の閾値とが設定されている溶接装置。
A rod-shaped non-consumable electrode with an obliquely cut electrode tip,
The non-consumable electrode is reciprocated in a direction crossing the groove-shaped welded portion between one object to be welded and the other object to be welded to each other by welding, and the non-consumable electrode is reciprocated along the longitudinal direction. An electrode drive mechanism that approaches and separates the groove-shaped welded portion,
A rotation mechanism that rotates the non-consumable electrode around the axis,
A control unit that controls the rotation mechanism so as to arrange the electrode tip on the traveling side in the reciprocating movement of the non-consumable electrode in the direction across the groove-shaped welded portion by the electrode drive mechanism, and performs AVC of the non-consumable electrode. With
In the control unit, the non-consumable electrode moving in a direction crossing the groove-shaped welded portion is brought close to each of one groove wall side and the other groove wall side of the groove-shaped welded portion by the AVC. The welding conditions of one groove wall and the other groove wall for moving the non-consumable electrode in a direction away from the groove-shaped welded portion along the longitudinal direction of the non-consumable electrode and the amount of movement of the non-consumable electrode A welding device in which a threshold value for each of the one groove wall and the other groove wall is set, which causes the non-consumable electrode to perform an operation toward the groove wall in the opposite direction to the previous direction.
前記一方の被溶接物及び他方の被溶接物が互いに異なる種類の金属である請求項1に記載の溶接装置。 The welding apparatus according to claim 1, wherein the one object to be welded and the other object to be welded are metals of different types. 前記溝状溶接部内において、前記電極駆動機構による前記非消耗電極の該溝状溶接部を横切る方向の往復移動を行い得ない場合には、前記非消耗電極の前記回転機構による回転及び前記電極駆動機構による該非消耗電極の長手方向に沿う方向の前記溝状溶接部に接近離間する往復移動のみが行われる請求項1又は2に記載の溶接装置。 When the non-consumable electrode cannot be reciprocated in the groove-shaped weld in the direction across the groove-shaped weld by the electrode drive mechanism, the non-consumable electrode is rotated by the rotation mechanism and the electrode is driven. The welding apparatus according to claim 1 or 2, wherein only the reciprocating movement of the mechanism so as to approach and separate the groove-shaped welded portion in the direction along the longitudinal direction of the non-consumable electrode is performed. 前記溝状溶接部の一方の溝壁及び他方の溝壁は、互いに上下の位置関係を成している、又は、上下の位置関係を成す溝壁部分をそれぞれ含んでいる請求項1〜3のいずれか一つの項に記載の溶接装置。 Claims 1 to 3 that one groove wall and the other groove wall of the groove-shaped welded portion have a vertical positional relationship with each other or include a groove wall portion having a vertical positional relationship with each other. The welding apparatus according to any one of the sections. 前記溝状溶接部の一方の溝壁及び他方の溝壁の溝底に対する各角度が互いに異なっている請求項1又は2に記載の溶接装置。 The welding apparatus according to claim 1 or 2, wherein the angles of one groove wall and the other groove wall of the groove-shaped welded portion with respect to the groove bottom are different from each other. 前記一方の被溶接物及び他方の被溶接物はすみ肉溶接により互いに接合され、前記溝状溶接部は前記一方の被溶接物及び他方の被溶接物間に形成される入隅部である請求項1〜3のいずれか一つの項に記載の溶接装置。 The claim that one object to be welded and the other object to be welded are joined to each other by fillet welding, and the groove-shaped weld is an inside corner formed between the one object to be welded and the other object to be welded. The welding apparatus according to any one of 1 to 3. 斜め切りされた棒状の電極尖端を有する非消耗電極を、溶接により互いに接合される一方の被溶接物及び他方の被溶接物間の溝状溶接部を横切る方向に往復移動させると共に該非消耗電極を長手方向に沿って往復移動させて前記溝状溶接部に接近離間させるに際して、
前記非消耗電極の前記溝状溶接部を横切る方向の往復移動における進行側に前記電極尖端を配置すると共に、前記非消耗電極のAVCを行い、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の一方の溝壁に接近した段階で、該一方の溝壁に対して設定した溶接条件に基づいて前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させて、前記非消耗電極の移動量が前記一方の溝壁に設定した閾値に達したところで前記非消耗電極に前記他方の溝壁に向かう動作を行わせ、前記溝状溶接部を横切る方向に移動する前記非消耗電極が前記溝状溶接部の他方の溝壁に接近した段階で、該他方の溝壁に対して前記一方の溝壁とは別に設定した溶接条件に基づいて前記AVCにより前記非消耗電極を該非消耗電極の長手方向に沿って前記溝状溶接部から離間する方向へ移動させて、前記非消耗電極の移動量が前記他方の溝壁に前記一方の溝壁とは別に設定した閾値に達したところで前記非消耗電極に前記一方の溝壁に向かう動作を行わせる溶接方法。
A non-consumable electrode having a rod-shaped electrode tip cut diagonally is reciprocated in a direction crossing a groove-shaped welded portion between one workpiece and the other workpiece to be joined to each other by welding, and the non-consumable electrode is elongated. When moving back and forth along the direction to approach and separate the groove-shaped welded portion,
The electrode tip is arranged on the advancing side in the reciprocating movement of the non-consumable electrode in the direction across the groove-shaped welded portion, and the non-consumable electrode is AVCed to move in the direction across the groove-shaped welded portion. When the consumable electrode approaches one groove wall of the groove-shaped welded portion, the non-consumable electrode is placed along the longitudinal direction of the non-consumable electrode by the AVC based on the welding conditions set for the one groove wall. The non-consumable electrode is moved in a direction away from the groove-shaped welded portion, and when the amount of movement of the non-consumable electrode reaches a threshold set for the one groove wall, the non-consumable electrode is moved toward the other groove wall. At the stage when the non-consumable electrode moving in the direction across the groove-shaped welded portion approaches the other groove wall of the groove-shaped welded portion, the one groove wall is referred to with respect to the other groove wall. Based on the welding conditions set separately, the non-consumable electrode is moved by the AVC in a direction away from the groove-shaped welded portion along the longitudinal direction of the non-consumable electrode, and the amount of movement of the non-consumable electrode is the other. A welding method in which the non-consumable electrode is made to perform an operation toward the one groove wall when the groove wall reaches a threshold value set separately from the one groove wall.
JP2016217308A 2016-11-07 2016-11-07 Welding equipment and welding method Active JP6792196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016217308A JP6792196B2 (en) 2016-11-07 2016-11-07 Welding equipment and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016217308A JP6792196B2 (en) 2016-11-07 2016-11-07 Welding equipment and welding method

Publications (2)

Publication Number Publication Date
JP2018075583A JP2018075583A (en) 2018-05-17
JP6792196B2 true JP6792196B2 (en) 2020-11-25

Family

ID=62149600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217308A Active JP6792196B2 (en) 2016-11-07 2016-11-07 Welding equipment and welding method

Country Status (1)

Country Link
JP (1) JP6792196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209365A (en) * 2018-06-07 2019-12-12 株式会社Ihi Welding method and welding device
JP7481940B2 (en) * 2020-08-06 2024-05-13 日立造船株式会社 Extremely narrow gap submerged arc welding method and extremely narrow gap submerged arc welding device

Also Published As

Publication number Publication date
JP2018075583A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
US11759879B2 (en) Synchronized rotating arc welding method and system
US9511442B2 (en) Adaptable rotating arc welding method and system
JP2015501727A (en) DC electrode minus rotary arc welding method and system
CN105473267A (en) System for and method of welding with hot wire TIG positioned heat control
WO2016175155A1 (en) Horizontal fillet welding method, horizontal fillet welding system, and program
KR101991607B1 (en) Horizontal Fillet Welding Method, Horizontal Fillet Welding System and Program
CN111655417B (en) Swing control method and swing control system
JP2014518163A (en) Metal core welding method and system
WO2018092647A1 (en) Gouging-less complete penetration welding method, and welded joint
JP6792196B2 (en) Welding equipment and welding method
EP3385021B1 (en) Heat manipulation and seam tracking of weaved welds
KR102001171B1 (en) Growing Welding Apparatus
JP6741547B2 (en) Welding method
KR101367009B1 (en) A Welding System
Zhernosekov Tendencies in development of control of metal transfer processes in shielding gases
JP2022139971A (en) Arc-welding device and welded article manufacturing method
JP2005021977A (en) Non-consumable electrode type arc welding method and welding equipment
JP6137476B2 (en) Groove profiling apparatus and groove profiling welding method
JP2013027895A (en) Gas shielded arc welding method, and device therefor
JP3947011B2 (en) Consumable electrode arc welding apparatus and consumable electrode arc welding method
JPH10296438A (en) Non consumable electrode type horizontal position arc welding method
JP4861101B2 (en) Arc welding method
JP2019209365A (en) Welding method and welding device
KR20050069708A (en) Welding weaving method of robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201020

R151 Written notification of patent or utility model registration

Ref document number: 6792196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151