JP2021186830A - レーザ加工機及び加工ノズル選択交換方法 - Google Patents

レーザ加工機及び加工ノズル選択交換方法 Download PDF

Info

Publication number
JP2021186830A
JP2021186830A JP2020093923A JP2020093923A JP2021186830A JP 2021186830 A JP2021186830 A JP 2021186830A JP 2020093923 A JP2020093923 A JP 2020093923A JP 2020093923 A JP2020093923 A JP 2020093923A JP 2021186830 A JP2021186830 A JP 2021186830A
Authority
JP
Japan
Prior art keywords
processing
nozzle
machining
laser
quality level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020093923A
Other languages
English (en)
Inventor
匡哉 北澤
Masaya Kitazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP2020093923A priority Critical patent/JP2021186830A/ja
Publication of JP2021186830A publication Critical patent/JP2021186830A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】加工ノズルの有効活用を図ることにより、加工ノズル全体の寿命を向上させる。【解決手段】レーザ加工機は、レーザ光を照射してワークをレーザ加工する加工ヘッドと、前記レーザ光を射出する孔部を有し前記加工ヘッドに着脱自在に装着される加工ノズルと、前記加工ノズルの前記レーザ光の射出面側を撮像可能な撮像手段と、加工条件に定義された前記加工ノズルの要求品質レベルと前記撮像手段で得られた画像情報とに基づいて、前記加工ノズルの品質レベルを判定するための判定品質レベルを判定する学習器と、を備え、前記学習器は、予め前記加工ノズルの前記判定品質レベルを調整するための教師データが取り込まれて構成されると共に、前記教師データ及び前記撮像手段で前記加工ノズルの前記射出面側を撮像して得られた画像情報に基づいて、前記加工ノズルの前記判定品質レベルを判定し、前記学習器による判定結果である前記判定品質レベルを出力する制御手段を更に備える。【選択図】図1

Description

本発明は、レーザ加工機の加工ヘッドの先端に装着される加工ノズルの品質レベルを判定するレーザ加工機及び加工ノズル選択交換方法に関する。
レーザ加工機によるレーザ加工においては、被加工部材であるワークに対して加工ヘッドに取り付けられた加工ノズルの孔部からレーザ光を照射して、ワークを切断等することが行われる。この加工ノズルは、加工中のスパッタ等の金属溶融物の衝突や付着による擦れ、欠け或いは凹凸等の発生が射出面や孔部に起こることによって徐々に劣化する。これに伴い、加工ノズルを使用したレーザ加工による加工品質も、結果的に徐々に低下してしまうこととなる。
これに対し、従来より、例えば加工ノズルを検査することが行われている(下記特許文献1〜3参照)。そして、検査結果に応じてアシストガス流量を変える等の各種制御を行ったり、加工ノズルそのものを交換等したりすることで、加工ノズルを使用したレーザ加工による加工品質を維持したり、加工品質自体の低下を防ぐことが行われている。
特開2018−24003号公報 特開平9−168885号公報 特開2017−148814号公報
しかしながら、上記特許文献1〜3に開示された従来技術のレーザ加工機では、適切な加工ノズルに交換したり加工ノズルを使用したレーザ加工による加工品質の低下を抑えたりすることはできるものの、劣化したと判断された加工ノズルについては交換するしかない。つまり、あらゆる材質・板厚に共通した判断しかできず、所定の板厚や材質に適切な加工条件を選択した場合に、未だ使用可能な状態であっても、使用条件の厳しい加工条件の判断につれて使用不可と判断され、加工ノズル全体の寿命が短いという問題があった。
本発明は、上記事情に鑑みてなされたものであり、加工ノズルの有効活用を図ることにより、加工ノズル全体の寿命を向上させることができるレーザ加工機及び加工ノズル選択交換方法を提供することを目的とする。
本発明に係るレーザ加工機は、レーザ光を照射してワークをレーザ加工する加工ヘッドと、前記レーザ光を射出する孔部を有し前記加工ヘッドに着脱自在に装着される加工ノズルと、前記加工ノズルの前記レーザ光の射出面側を撮像可能な撮像手段と、加工条件に定義された前記加工ノズルの要求品質レベルと前記撮像手段で得られた画像情報とに基づいて、前記加工ノズルの品質レベルを判定するための判定品質レベルを判定する学習器と、を備え、前記学習器は、予め前記加工ノズルの前記判定品質レベルを調整するための教師データが取り込まれて構成されると共に、前記教師データ及び前記撮像手段で前記加工ノズルの前記射出面側を撮像して得られた画像情報に基づいて、前記加工ノズルの前記判定品質レベルを判定し、前記学習器による判定結果である前記判定品質レベルを出力する制御手段を更に備えたことを特徴とする。
本発明の一実施形態において、前記制御手段は、前記レーザ加工の加工条件と、その加工条件で要求される前記加工ノズルの要求品質レベルと、複数の前記加工ノズルのそれぞれの前記判定品質レベルと、を記憶し、前記レーザ加工に先立って、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルと、前記各加工ノズルの判定品質レベルとに基づいて、前記レーザ加工に使用する前記加工ノズルを選択する。
本発明の他の実施形態において、前記制御手段は、前記レーザ加工に使用する加工ノズルとして、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルを満たし、且つ前記判定品質レベルが最も低い加工ノズルを選択する。
本発明の更に他の実施形態において、前記制御手段は、前記レーザ加工の後に、前記加工ノズルの品質レベルを判定し、前記加工ノズルの前記判定品質レベルを更新する。
本発明の更に他の実施形態において、複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換手段を更に備え、前記制御手段は、前記加工ヘッドに現在装着されている加工ノズルが、直後に実行されるレーザ加工の加工条件及び要求品質レベルを満たす場合には、前記加工ノズルを交換せずに、そのままレーザ加工を実行させる。
本発明の更に他の実施形態において、複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換手段を更に備え、前記制御手段は、前記加工ヘッドに現在装着されている加工ノズルが、直後に実行されるレーザ加工の加工条件及び要求品質レベルを満たし、且つ前記要求品質レベルと前記加工ノズルの判定品質レベルとが異なる場合には、前記要求品質レベルを満たし、且つ最も低い判定品質レベルを有する他の加工ノズルを前記ノズル交換手段にセットされた複数の前記加工ノズルの中から検索し、前記加工ヘッドに装着されている加工ノズルと前記検索された加工ノズルとを、前記ノズル交換手段を制御して交換した後、前記レーザ加工を実行させる。
本発明の更に他の実施形態において、前記制御手段は、複数の前記画像情報を学習して前記加工ノズルの劣化度合いに基づく判定品質レベルを分類可能な学習モデルを生成し記憶した学習部と、前記撮像手段で得られた画像情報を、前記学習モデルに基づいて分類することにより前記判定品質レベルを決定する演算処理部と、を備える。
本発明に係る加工ノズル選択交換方法は、レーザ光を照射してワークをレーザ加工する加工ヘッド、及び前記レーザ光を射出する孔部を有し前記加工ヘッドに着脱自在に装着される加工ノズルを有するレーザ加工機と、前記加工ノズルの前記レーザ光の射出面側を撮像可能な撮像装置と、前記撮像装置で前記加工ノズルの前記射出面側を撮像して得られた画像情報に基づいて、前記加工ノズルの劣化度合いに基づく品質レベルを判定する判定処理を、前記レーザ加工機における前記レーザ加工毎に実行する制御手段と、複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換装置と、を備えたレーザ加工システムにおいて実行される加工ノズル選択交換方法であって、前記レーザ加工に先立って、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルと、前記各加工ノズルの判定品質レベルとに基づいて、前記レーザ加工に使用する前記加工ノズルとして、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルを満たし、且つ前記判定品質レベルが最も低い加工ノズルを選択する加工ノズル選択工程を含むことを特徴とする。
本発明によれば、加工ノズルの有効活用を図ることにより、加工ノズル全体の寿命を向上させることができる。
本発明の第1の実施形態に係るレーザ加工機の概略構成を示す説明図である。 同レーザ加工機の機能的構成を概略的に示すブロック図である。 同レーザ加工機に使用される加工ノズルの例を概略的に示す断面図である。 同レーザ加工機に使用される加工条件テーブルの一例を示す図である。 同レーザ加工機に使用される加工ノズル登録情報の一例を示す図である。 同レーザ加工機における加工ノズルの要求品質レベルRQと使用可能な加工ノズルの判定品質レベルDQとの関係を示す図である。 同レーザ加工機の自動運転時の動作を示すフローチャートである。 図7のフローチャートにおける各プログラムのフローチャートである。 図8のフローチャートにおける加工ノズル選択処理を示すフローチャートである。 同レーザ加工機における加工スケジュールの一例を示す図である。 同加工スケジュールに沿ってレーザ加工した際の加工ノズル交換状態及び判定品質レベルを示す図である。 同レーザ加工機における加工ノズルの判定処理を説明するための図である。 本発明の第2の実施形態に係るレーザ加工機における加工ノズル選択処理を示すフローチャートである。 同レーザ加工機でレーザ加工した際の加工ノズル交換状態及び判定品質レベルを示す図である。
以下、添付の図面を参照して、本発明の実施形態に係るレーザ加工機及び加工ノズル選択交換方法を詳細に説明する。ただし、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本発明の一実施形態に係るレーザ加工機100の概略構成を示す説明図であり、図2はレーザ加工機100の機能的構成を概略的に示すブロック図である。なお、レーザ加工ユニット1を含むレーザ加工機100の基本的な構成や構造については既知であるので、ここでは説明が必要な部分を除いて概略のみを説明する。また、このレーザ加工機100においては、本発明の一実施形態に係る加工ノズル選択交換方法が併せて実行されることは言うまでもない。
また、以下の説明において、「X軸方向」はレーザ加工機100におけるレーザ加工ユニット1の加工テーブル30の正面に向かい合った場合の左右方向を意味し、「Y軸方向」はこの場合の奥行き方向を意味し、「Z軸方向」はX方向及びY方向と交差する上下方向を意味する。更に、本実施形態においては、各構成要素の縮尺や寸法が誇張されて示されている場合や、一部の構成要素が省略されている場合がある。
図1に示すように、レーザ加工機100は、レーザ光Lによってワーク(被加工材料)Wを加工(切断加工、穴開け加工等)する加工機である。レーザ加工機100の加工対象となるワークWとしては、例えば板状の金属母材(板金)が用いられる。板金は、鉄系(SS、SPH等)、ステンレス(SUS)、アルミニウム(Al)又はアルミニウム合金(例えば、Al−Mg系合金であり、以下「アルミマグネシウム合金」と称する。)等の材質からなる。レーザ加工機100は、レーザ発振器10、レーザヘッド20及びワークWを載せる加工テーブル30を含むレーザ加工ユニット1と、後述する加工ノズル26のレーザ光Lの射出面27側を撮像可能な撮像手段としての撮像ユニット31とを備える。
また、レーザ加工機100は、レーザヘッド20のワークWに向かう先端側の加工ヘッド25に装着される加工ノズル26を交換するノズル交換装置40と、加工プログラム58(図2参照、以下同じ。)に従って、レーザ加工ユニット1を制御する制御手段として機能するNC装置50と、加工ノズル26の孔部28から噴出されるアシストガスを供給するアシストガス供給装置(図示せず)とを備える。
ノズル交換装置40は、NC装置50によってその動作が制御され、ステーション41と呼ばれる複数の凹部にそれぞれ種類の異なる加工ノズル26をストックし得る。なお、同じ種類の加工の長時間運転に対応するため、同じ種類の加工ノズル26を複数ストックしても良い。NC装置50は、具体的には、加工プログラム58で設定された加工スケジュールに従って、複数枚のシートを連続的に加工するため、レーザ加工機100のレーザ加工処理を制御する加工制御装置として機能する。各シートの加工条件は、加工プログラム58から加工条件テーブル59(図2参照、以下同じ。)を参照することで設定される。また、NC装置50は、各シートの加工において使用される加工ノズル26を選択する処理、及び各加工ノズル26の品質レベルを判定する処理等を実行する演算処理装置としても機能する。なお、NC装置50には、報知手段として、例えば音声情報を出力可能な図示しない音声出力装置等が接続されていても良い。
レーザ加工ユニット1は、実際にレーザ光Lを用いてワークWを加工するためのユニットである。レーザ加工ユニット1のレーザ発振器10とレーザヘッド20とは、例えばプロセスファイバ11を介して接続されている。レーザ発振器10は、レーザ光Lを生成してレーザ光Lを射出する。
レーザ発振器10としては、例えばレーザダイオードより発せられる種光が共振器でYb等を励起させ増幅させて所定の波長のレーザ光Lを射出するタイプのものや、レーザダイオードより発せられるレーザ光Lを直接利用するタイプのものが好適に用いられる。レーザ発振器10は、例えば固体レーザ発振器としてはファイバレーザ発振器、YAGレーザ発振器、ディスクレーザ発振器、DDL発振器等が挙げられる。
本実施形態のレーザ加工機100に用いられるレーザ発振器10は、例えば波長900nm〜1100nmの1μm帯のレーザ光Lを射出し、例えば、DDL発振器は波長910nm〜950nmのレーザ光Lを射出し、ファイバレーザ発振器は波長1060nm〜1080nmのレーザ光Lを射出する。
また、例えば青色半導体レーザは波長400nm〜460nmのレーザ光を射出し、グリーンレーザは、波長500nm〜540nmのレーザ光を射出するファイバレーザ発振器やDDL発振器でも良く、1μm帯のレーザ光Lと光合成した多波長共振器であっても良い。プロセスファイバ11は、レーザ発振器10により射出されたレーザ光Lをレーザ加工ユニット1のレーザヘッド20へと伝送する。
レーザヘッド20は、プロセスファイバ11により伝送されたレーザ光Lを加工テーブル30上のワークWに照射する。レーザヘッド20は、レーザ光Lの照射中心軸Cを含む筒状のハウジング24を有する。レーザヘッド20は、このハウジング24の内部に、プロセスファイバ11の出射端から射出されたレーザ光Lが入射されるコリメータレンズ21と、このコリメータレンズ21から射出されたレーザ光LをX軸及びY軸に垂直なZ軸方向の下方に向けて反射させるベンドミラー22とを有する。
ベンドミラー22には、例えばレーザ光Lの一部の波長(1080nm、650nm)のみを反射する特殊コーティングが予め施されている。また、レーザヘッド20は、ベンドミラー22で反射したレーザ光Lを集光させる加工用集光レンズ23をベンドミラー22の下方に有している。
ハウジング24は、レーザヘッド20の先端側においては、先細形状となるように形成され、その先端部分は、加工ノズル26が着脱自在に取り付けられる加工ヘッド25を構成する。加工ノズル26は、ノズル交換装置40によって加工ヘッド25に交換可能に装着され得るもので、ワークW側の端面がレーザ光Lの射出面27を形成し、この射出面27に開口してレーザ光LをワークWに照射するための円形の孔部28を有する。
加工ノズル26は、例えば図3に示すように、シングルノズル(a)、ダブルノズル(b)、加工ノズル26の冷却機能を備えたもの(c)、ワークWの冷却機構を備えたもの(d)等、加工条件に応じて種々のタイプ及び孔径のものが用意されている。これら加工ノズル26は、溶融したワークWを除去するために、アシストガス供給装置から供給されるガス流29を、例えば孔部28を介してレーザ光Lと同軸にワークWに向けるためのノズル機能を有する。
レーザ加工ユニット1は、このように構成されたレーザヘッド20を、図示しないキャリッジを介して接続された加工テーブル30上に備えている。キャリッジは、レーザヘッド20を、加工テーブル30に対してX軸方向、Y軸方向及びZ軸方向の3軸方向に移動可能に支持する。
撮像ユニット31は、内部に図示しない撮像手段としてのカメラを有し、例えば加工ノズル26の射出面27側を撮像可能に、加工テーブル30の側方に配置されている。この例では、撮像ユニット31は固定式で、加工ヘッド25が撮像ユニット31の上方まで移動することにより、加工ノズル26の射出面27を撮像する。しかし、撮像ユニット31は、可動式で構成されていても良い。この場合、加工ヘッド25に装着された状態の加工ノズル26のみならず、例えばノズル交換装置40のステーション41にストックされた状態の加工ノズル26を撮像可能に構成されていても良い。
撮像ユニット31で撮像された、加工ノズル26の射出面27側を撮像して得られた画像情報は、NC装置50内の画像処理部53(図2参照)に入力される。
なお、撮像ユニット31のカメラはカラーカメラ、単色カメラ、高速カメラ等の可視光を捉える公知の光学式カメラや、レーザ光を照射して走査し、反射光を受光することで三次元距離画像を取得する三次元距離画像センサ等により構成され得る。また、カメラは、例えば空間的に分解された撮像画像の画像情報を取得可能に構成され得る。撮像された画像情報は、データリンク(ケーブル)32を介して接続されたNC装置50に入力される。
このように構成されたレーザ加工ユニット1においては、プロセスファイバ11によって伝送されたレーザ光Lを用いて、加工スケジュールに従って、例えばワークWの切断加工(カッティング)や貫通加工(ピアッシング)等のレーザ加工が行われる。そして、このようなレーザ加工においては、溶融金属(金属溶融物)が加工ノズル26に衝突したり付着したりすることで、加工ノズル26の射出面27の表面形状や孔部28の孔形状が徐々に変化する。
このような変化に伴って、加工ノズル26とワークWとの間の静電容量が変化してギャップが正しく検出できないことからレーザ光Lの焦点位置がずれたり、孔部28の欠けや付着物によりアシストガスの流量や流路が変わって溶融金属除去の効果等が低下したりする。このため、加工ノズル26が本来有していたレーザ加工における性能も徐々に低下することとなる。そして、最終的には求められるレーザ加工性能を発揮或いは維持できなくなった時点で、加工ノズル26は使用を中止され交換或いは廃棄されることとなる。
しかし、当業者の事情は一元的ではない。詳しく説明すると、アシストガスに酸素を用いる酸素カットは例えばSS材に用いられる。酸素カットでは、酸素還元反応を伴いながら材料を熱切断するので、切断面には酸化被膜が付着するが、面粗度は良いとされる。これは、SUSやAlの切断とは切断の物理的プロセスが異なる。例えば、SUSのように、SS材と似たような融解温度でありながら、含有元素のCrが起因してドロスを発生し易いことが当業者の間で知られている材料の場合、ユーザは酸化クロムの黒色の見た目を嫌い、無酸素切断を求める。そして、SUSは建材として使われることが多いことから、ユーザは切断面の精度も求め、クリーンカット(窒素切断)での切断やノズルの高品質も要求する。
それに対し、AlはSS材やSUSよりも融点が低く、レーザの吸収率も低いためドロスが発生し易い。また、Alは大気中において酸化アルミの皮膜で覆われており、ユーザは切断による酸化に比較的寛容である。Al−Mg系合金は含有元素のMgが酸化還元反応するので、ユーザは通常無酸素切断を要求することが多い。しかしながら、イージーカット(微量の酸素を含む窒素リッチアシストガスを用いた切断)は、ガス圧を調整することで良好な切断となることも知られている。更に、エアーカット(大気を気圧を上げて用いた切断)は、Al加工にも用いられ、比較的厚い板厚のときには無酸素切断よりも高速に切断することが可能である。
つまり、ユーザは加工する素材によって、又はユーザのビジネス上の都合で求める切断品質が異なる。そこで、本発明は、ユーザのノズル要求品質も、費用対コストの関係でノズルの許容品質が異なる場合がある点についても着目している。
そこで、本実施形態に係るレーザ加工機100では、ある加工で劣化したと判断した加工ノズル26を更に別の加工で有効活用すべく、例えばNC装置50において、加工条件に加工ノズル26の要求品質レベルRQの情報を付加すると共に、加工ノズル26の品質レベルを判定して、加工ノズル26毎に、判定品質レベルDQを登録するように構成した。そして、要求品質レベルRQと判定品質レベルDQとを比較することで、劣化した加工ノズル26であってもレーザ加工の要求品質に適したものであれば積極的に使用するように構成し、これによってレーザ加工機100における加工ノズル26の全体的な寿命を延ばすことが可能な構成とした。
次に、図2に基づいて、NC装置50の機能的構成について説明する。NC装置50は、図2に示すように、機能的には、記憶部51、表示部52、画像処理部53、制御部54、入力部55、及び学習部56を備える。
記憶部51は、RAM、ROM、HDD、SSD等の記憶媒体を有し、各種の情報の読み出し/書き込みを行うと共に、様々な情報を関連付けて記憶するデータベース57に接続され、画像処理部53、制御部54及びデータベース57との間でデータを一時記憶する。
データベース57には、加工プログラム58、加工条件テーブル59及び加工ノズル登録情報60が格納されている。これらの詳細については後述する。
表示部52は、ディスプレイ等の表示画面を備え、加工プログラム58、加工条件テーブル59、及び加工ノズル登録情報60等の任意の情報を入力又は訂正する設定入力画面やレーザ加工機100の操作画面等の各種画面や各種の情報を表示画面上に表示する。この表示部52は、後述する入力部55の機能を有するタッチパネルで構成され得る。
入力部55は、入力インタフェース(I/F)3を介して制御部54に接続された、例えばキーボードやマウス等の入力デバイスからなる。入力部55は、表示部52に表示された設定入力画面、操作画面等の各種画面に必要な情報を入力する際に用いられる。
画像処理部53は、撮像ユニット31が加工ノズル26の射出面27側を撮像して得られた画像情報を、ケーブル32及び映像インタフェース(I/F)2を介して入力する。画像処理部53は、入力した画像情報に画像処理や画像解析を施して、加工ノズル26の品質レベルを判定する際の前処理を実行する。画像処理部53は、具体的には、例えば所定の画像処理によって、入力された画像情報の種々の特徴量を算出したり、主成分分析によって次元減算したり、それらの処理を実行するようにしても良い。
制御部54は、例えば学習部56によって、予め正常品及び不良品を含む複数の加工ノズル26の射出面27の画像情報を学習して得られた学習モデルに基づいて、加工ノズル26の品質レベルを判定する。そして、制御部54は、得られた判定品質レベルDQについて、加工ノズル登録情報60の該当箇所を更新する。
制御部54は、データベース57から読み出され、記憶部51にロードされた加工プログラム58を実行し、この加工プログラム58に従って出力インタフェース(I/F)4を介して制御信号を出力し、レーザ加工ユニット1を動作させる。また、制御部54は、加工プログラム58の加工スケジュールに基づき、順次加工を行うシートの加工条件を加工条件テーブル59から読み出し、読み出された加工条件と加工ノズル登録情報60とに基づいて、必要に応じて加工ヘッド25に装着される加工ノズル26を交換するよう出力インタフェース(I/F)4を介して制御信号を出力し、ノズル交換装置40を動作させる。
加工条件テーブル59は、図4に示すように、レーザ加工されるワークWであるシートの種類毎に規定された加工条件を記録したテーブルである。加工条件テーブル59には、図4に示すように、例えばレーザ加工の加工条件名、加工される材料名称、材質、板厚、使用される加工ノズル26を特定する加工ノズル種類、焦点、アシストガス種類、及びその加工ノズル26に要求される要求品質レベルRQ等の情報が含まれる。
また、加工ノズル登録情報60は、図5に示すように、ノズル交換装置40の各ステーション41にストックされた加工ノズル26についての情報を登録したテーブルである。加工ノズル登録情報60は、ノズル交換装置40のステーション番号(ステーションNo.)と、そのステーションNo.のステーション41sにセットされた加工ノズル26の種類を示すノズル情報と、その加工ノズル26の現時点での判定品質レベルDQとを含む。判定品質レベルDQは、加工ノズル26が未使用状態で最初に判定され、レーザ加工の終了後、新たな判定結果が得られる度に随時更新される。なお、判定処理は、レーザ加工後ではなく、レーザ加工前に実行するようにしても良い。
次に、加工条件と使用する加工ノズル26との関係について説明する。
使用する加工ノズル26に影響を与える加工条件の一つに、ワークWの材質が挙げられる。
図6は、加工条件で既定された加工ノズル26の要求品質レベルRQと、使用可能な加工ノズル26の判定品質レベルDQとの関係を示している。例えば、ステンレス(SUS)や鉄系(SS、SPH)等は、アルミニウム(Al)、アルミマグネシウム合金等に比べると加工品質が高い。このため、SUS、SPHの加工に使用される加工ノズル26には、高い品質レベルが要求される。これに対し、元々加工品質のレベルが高くないAl、アルミマグネシウム合金の加工に使用される加工ノズル26は、前述の鉄系等と比較して低い品質レベルでも十分であると言える。このように、加工条件によって、要求される加工ノズル26の品質が異なる。
なお、ワークWの材質の他に、ワークWの板厚とアシストガス(種類、圧力)も使用する加工ノズル26に影響を与え、要求される加工品質も変化する。例えば、ワークWの板厚については、板厚が増すほど、ワークWの下面まで到達するアシストガスの量が低下するため、加工品質のレベルは低くなるが、要求品質も比較的低くなる。また、アシストガスについては、例えば窒素カットは酸化を許さない加工に用い、加工品質のレベルが高く求められる場合に使用される。これに対し、エアーカットやイージーカットは加工品質よりも生産効率を重視する場合に用い、加工品質のレベルが高くないときに求められる。
図6の例では、加工条件の中に、要求品質レベルRQとして、高い方からA、B、C、Dの4つのレベルが設定可能であることを示している。最も高い要求品質レベルRQ=Aの場合、使用可能な加工ノズル26は、判定品質レベルDQがA、即ち、新品か、それと同等の加工ノズル26のみである。要求品質レベルRQ=Bの場合、使用可能な加工ノズル26は、判定品質レベルDQがA及びBの2種類である。しかし、判定品質レベルDQがAの加工ノズル26は、極力、それよりも高い品質が要求されるレーザ加工のために、ストックしておきたいので、判定品質レベルDQがBの加工ノズル26を優先的に使用する。
同様に、要求品質レベルRQ=Cの場合、使用可能な加工ノズル26は、判定品質レベルDQがA、B及びCの3種類である。この場合も、判定品質レベルDQがC、B、Aの加工ノズル26の順に使用の優先度を決定する。更に、要求品質レベルRQ=Dの場合、使用可能な加工ノズル26は、判定品質レベルDQがA、B、C及びDの4種類である。この場合も、判定品質レベルDQがD、C、B、Aの加工ノズル26の順に使用の優先度を決定する。
このようにして、品質レベルの低い加工ノズル26でも、使用可能な加工には使用することで、加工ノズル26全体の寿命が向上する。
次に、図7、図8及び図9のフローチャートを参照して、レーザ加工機100が、レーザ加工システムに組み込まれた場合の全体的な動作について説明する。レーザ加工システムは、レーザ加工機100の他に、例えばNC装置50のコンピュータオートメーションにより協働可能なシャトルテーブルや自動棚を備えて構成される。この場合のNC装置50はシステム全体も制御するものとする。
まず、事前準備として、どのワークW(シート)を何枚加工するか、その順番を「操作画面」を介して入力し、加工スケジュールを組む。次に、ノズル交換装置40に加工に必要な加工ノズル26をセットすると共に、加工ノズル登録情報60をデータベース57にセットする。また、図示しないワーク自動搬入装置に、加工に必要なワークWを挿入しておく。
次に、NC装置50においてシステムが起動されて自動運転動作が開始されると、加工スケジュールに従って自動棚からシャトルテーブルの加工パレットへ未加工のワークWであるシートが搬送され、スキッドテーブル上に載置されてセットされる。
次に、図7に示すように、シート毎にレーザ加工を行うためのプログラム1〜プログラムnまでn回のレーザ加工を繰り返す(ステップS100〜S100)。
図8は、各プログラム(ステップS100〜S100)のフローチャートである。
図8に示すように、レーザ加工機100においてプログラム1(ステップS100)のレーザ加工が開始されると、制御部54は、まず、ワークWであるシートを搬入する(ステップS101)。即ち、制御部54は、スキッドテーブル上のワークWを、シャトルテーブルによって加工パレットごとレーザ加工機100に向かう方へ移動させ、レーザ加工機100の内部へ搬入する。
次に、加工プログラム58に組み込まれた加工スケジュールに記述された加工条件名に基づいて、データベース57の加工条件テーブル59から今回レーザ加工されるシートの加工条件をロードする(ステップS102)。
次に、加工ノズル26の選択処理を実行する(ステップS103)。
図9は、加工ノズル26の選択処理を示すフローチャートである。まず、加工ノズル登録情報60から、加工条件に適合するノズル情報を有し、加工条件で設定された要求品質レベルRQを満たす加工ノズル26で、且つ判定品質レベルDQが最も低いものを検索する(ステップS1031)。
次に、加工ヘッド25に現在装着されている加工ノズル26が、加工条件に記述されたノズル情報と要求品質レベルRQを満たすかどうかを判定する(ステップS1032)。もし、加工ノズル26が、加工条件のノズル情報と要求品質レベルRQを満たしていれば、加工ノズル26の交換はせずに、そのまま次のステップに移行する。一方、加工ノズル26が、加工条件のノズル情報と要求品質レベルRQを満たしていない場合には、ノズル交換装置40内からステップS1031で検索された加工ノズル26と、現在加工ヘッド25に装着されている加工ノズル26とを交換する(ステップS1033)。
次に、図8に戻り、制御部54は、設定された加工条件に従って、ワークWをレーザ加工する(ステップS104)。加工が終了したら、加工後の加工ノズル26のレーザ光Lの射出面27を撮像ユニット31によって撮像する(ステップS105)。次に、制御部54は、撮像した加工ノズル26の品質レベルを判定する(ステップS106)。そして、判定結果に基づいて加工ノズル登録情報60に登録されている判定品質レベルDQを更新する(ステップS107)。最後に加工後のワークWをレーザ加工機100から搬出して1枚のシートの加工が終了する(ステップS108)。
以上の処理を、加工スケジュールに沿って、続くプログラム2(ステップS100)〜プログラムn(ステップS100)についても繰り返すことにより、全てのシートについてのレーザ加工処理は終了する。
次に、具体的な加工ノズル26の交換例について説明する。
図10は、加工プログラム58にセットされる加工スケジュールの一例である。また、図11は、この加工スケジュールに沿って加工プログラム58が実行されたときの加工ノズル26の交換例を示す図である。
図10に示すように、第1のシート001の加工条件名が「C−SUS2.5L1」なので、加工条件テーブル59から、「C−SUS2.5L1」の加工条件名を有する加工条件を読み出す。加工条件には、ノズル情報として、「S2.0」と規定されている。また、材料がSUSであるため、比較的加工品質は良好であり、要求品質レベルRQとしても高めの「B」が規定されている。
図11に示すように、シート001を加工するプログラム1において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「S2.0」、判定品質レベルDQ=Aのノズルである場合、ノズル情報と要求品質レベルRQ=Bを満たしているので、加工ノズル26を交換することなく、そのままレーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「A」と判定された。
次に、図10に示すように、第2のシート002の加工条件名が「C−SUS2.5L1」なので、加工条件テーブル59から、「C−SUS2.5L1」の加工条件名を有する加工条件を読み出す。加工条件には、ノズル情報として、「S2.0」、要求品質レベルRQとして「A」が規定されている。
図11に示すように、シート002を加工するプログラム2において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「S2.0」、判定品質レベルDQ=Aのノズルなので、ノズル情報と要求品質レベルRQ=Aを満たしている。よって、加工ノズル26を交換することなく、そのままレーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「C」と判定された。
次に、図10に示すように、第3のシート003の加工条件名が「A−SPC1.0L1」なので、加工条件テーブル59から、「A−SPC1.0L1」の加工条件名を有する加工条件を読み出す。加工条件には、ノズル情報として、「S2.0」が規定されている。材料は冷間圧延鋼板であり、エアーカットでもあり、加工品質はSUSに比べると劣る。よって、要求品質レベルRQとして「C」が規定されている。
図11に示すように、シート003を加工するプログラム3において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「S2.0」、判定品質レベルDQ=Cのノズルなので、ノズル情報と要求品質レベルRQ=Cを満たしている。よって、加工ノズル26を交換することなく、そのままレーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「D」と判定された。
次に、図10に示すように、第4のシート004の加工条件名が「A−SUS2.0L1」なので、加工条件テーブル59から、「A−SUS2.0L1」の加工条件名を有する加工条件を読み出す。加工条件には、ノズル情報として、「S2.0」、要求品質レベルRQとして「C」が規定されている。
ここで、シートNo.002とシートNo.004の加工条件を比較すると、シートNo.002の加工条件においてはクリーンカットを採用していたが、シートNo.004の加工条件ではエアーカットを採用している。この場合に、ユーザが加工条件に合わせて要求品質レベルRQを変えて加工条件を設定してある。
つまり、加工ノズル26の状態が劣化しても、要求品質レベルRQによってはそのまま加工ノズル26を使用できるようユーザの意図を加工条件に反映させることが可能であることを示したものである。
図11に示すように、シート004を加工するプログラム4において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「S2.0」、判定品質レベルDQ=Dのノズルなので、ノズル情報は満たすが、要求品質レベルRQ=Cは満たしていない。よって、加工ノズル26は交換される。このとき、直前のステップS1031(図9)で検索された判定品質レベルDQの最も低いレベル「C」の加工ノズル26に交換した後、レーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「C」と判定された。
次に、図10に示すように、第5のシート005の加工条件名が「C−A1050−2.0L1」なので、加工条件テーブル59から、「C−A1050−2.0L1」の加工条件名を有する加工条件を読み出す。加工条件には、ノズル情報として、「D2.0F」が規定されている。また、材料はアルミニウムであり、加工品質はSUSに比べると劣る。よって、要求品質レベルRQとして「C」が規定されている。
図11に示すように、シート005を加工するプログラム5において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「S2.0」、判定品質レベルDQ=Cのノズルである。このため、ノズル情報「D2.0F」を満たしていない。よって、加工ノズル26を、直前に検索された「D2.0F」、判定品質レベルDQ=Cの加工ノズル26に交換する。その後、レーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「D」と判定された。
次に、図10に示すように、第6のシート006の加工条件名が「A−SPC1.0L1」なので、加工条件テーブル59から、「A−SPC1.0L1」の加工条件名を有する加工条件を読み出す。加工条件には、シート003と同様、ノズル情報として、「S2.0」、要求品質レベルRQとして「C」が規定されている。
図11に示すように、シート006を加工するプログラム6において、現在、加工ヘッド25に装着されている加工ノズル26が、ノズル情報「D2.0F」、判定品質レベルDQ=Dのノズルなので、ノズル情報と要求品質レベルRQ=Cのいずれも満たしていない。よって、プログラム4で使用された、ノズル情報「S2.0」、判定品質レベルDQが「C」の加工ノズル26に交換する。その後、レーザ加工が実行される。レーザ加工後の加工ノズル26を判定した結果、判定品質レベルDQは「D」と判定された。
以上のように、本実施形態によれば、従来は不良品として廃棄等されていた、判定品質レベルDQ=Cの加工ノズル26でも、プログラム3、プログラム5及びプログラム6で積極的に使用することができ、加工ノズル26全体の寿命を延ばすことが可能となる。
次に、加工ノズル26の品質レベルの判定処理について説明する。
まず、判定処理に先立ち、予め図1に示す学習部56で学習モデルを生成する。学習部56による機械学習は、基本的には、多数の加工ノズル26のサンプルを撮像して得られた画像情報を学習し、複数の品質レベルに分類することで、学習済みの学習モデルを作成することであり、例えば、教師無し学習、教師付き学習等種々の方法が採用し得る。
ここでは、一例としてCNN(Convolutional Neural Network)等を使用しても良い。なお、この方法に限定されるものではない。まず、学習するための学習データの準備を行う。すなわち、学習対象となるレーザ加工機100で使用する全ての加工ノズル26について、正常状態のものと異常状態のものを用意する。また、これらの中でも、射出面27の傷、欠け、スパッタ付着などの欠陥の度合いが異なる複数の加工ノズル26を、学習サンプルとして用意する。
次に、例えば撮像ユニット31等を用いて、用意した全ての加工ノズル26の射出面27側を撮像し、例えば学習用の撮像画像と評価用の撮像画像を用意する。具体的には、例えば正常状態の撮像画像が50枚及び異常状態の撮像画像が50枚の計100枚あった場合に、それぞれ40枚ずつを学習用とし、10枚ずつを評価用とすること等が挙げられる。
次に、80枚の画像情報に対し、最も近いラベルを付与することで分類する。ラベルは、ノズルの品質の劣化状態に応じて決定されるが、例えば以下のようにA〜Dに分類されることになる。
A:ほぼ新品のノズル
B:ノズルに傷はあるがノズル内径に傷がないもの
C:ノズル内径に傷があるが円の形状がくずれていないもの
D:ノズル内径の円の形が崩れてしまっているもの
入力した画像情報に対し付与されたラベルが出力されるように、ニューラルネットワークの学習の中で、真円度、偏心度、画像の濃淡等、多次元の特徴ベクトルを抽出し、ハイパーパラメータを決定する。
次に、評価用の20枚の画像情報を使って、前述のとおり作成したニューラルネットワークで推論処理を行う。評価データの正解率が高くなるようにハイパーパラメータを調整する。以上が学習処理となる。
ハイパーパラメータを調整したニューラルネットワークで入力画像に対してA〜Dのラベルを出力する。ニューラルネットワークの出力結果をもとに判定品質レベルDQを判定する。ラベルと判定品質レベルDQは同一のアルファベット同士で対応しており、例えば画像情報に対しAのラベルが付与されていれば判定品質レベルDQはAと判定される。
この結果、図12に示すように、学習部56に入力される画像情報33は、画像情報34〜39に示すように、その品質の劣化状態に応じて判定品質レベルA〜Dに分類されることになる。
つまり、予め学習部56を教師データで学習済み状態にしておいて、ユーザの加工時に入力された画像情報34〜39を学習部56が判定品質レベルA〜Dに評価する。ここで評価された情報には、ユーザが今回の加工に適しているかを事前判定し、次の加工においては別途要求品質レベルRQに対する判定品質レベルDQが判定評価されるから、加工毎に許容される加工ノズル26を使用することができる。
以上述べたように、本実施形態によれば、レーザ加工機100によって加工ノズル26の品質レベルの判定処理を行い、品質レベルを更新するので、加工ノズル26の最新の状態を判定して把握することができ、要求品質に合えば劣化した加工ノズル26であっても使用することが可能となるので、加工ノズル26の有効活用を図り、加工ノズル26の全体的な寿命を延ばすことが可能となる。
次に、第2の実施形態について説明する。
第1の実施形態では、加工ノズル選択処理(ステップS103)において、加工ヘッド25に装着されている加工ノズル26が、加工条件に設定されたノズル情報及び要求品質レベルRQを満たしていれば、加工ノズル26を交換せずに、そのままレーザ加工処理(ステップS104)を実行した。
これに対し、第2の実施形態では、加工ノズル26選択処理(ステップS103)において、加工ヘッド25に装着されている加工ノズル26が、加工条件に設定されたノズル情報及び要求品質レベルRQを満たし、且つ判定品質レベルDQが最も低いものでない場合、加工ヘッド25に装着されている加工ノズル26を交換する(ステップS1034)という点で第1の実施形態とは異なる。他の処理は第1の実施形態と同様である。
この場合、図14に示すように、先の実施形態と同様の加工スケジュールにおいて、プログラム1では、加工ノズル26が、判定品質レベルDQ=Aのものから、判定品質レベルDQ=Bのものに交換される。従って、プログラム2及びプログラム3においても、加工ノズル26の交換が発生する。
第2の実施形態によれば、第1の実施形態よりも加工ノズル26の交換頻度が多くなるが、判定品質レベルDQ=Aの加工ノズル26を使用する頻度を低下させることができ、新品の加工ノズル26の使用頻度を第1の実施形態よりも軽減させることができるという利点がある。
以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 レーザ加工ユニット
2 映像インタフェース
3 入力インタフェース
4 出力インタフェース
10 レーザ発振器
20 レーザヘッド
25 加工ヘッド
26 加工ノズル
27 射出面
28 孔部
31 撮像ユニット
40 ノズル交換装置
41 ステーション
50 NC装置
51 記憶部
52 表示部
53 画像処理部
54 制御部
55 入力部
56 学習部
57 データベース
100 レーザ加工機

Claims (8)

  1. レーザ光を照射してワークをレーザ加工する加工ヘッドと、
    前記レーザ光を射出する孔部を有し前記加工ヘッドに着脱自在に装着される加工ノズルと、
    前記加工ノズルの前記レーザ光の射出面側を撮像可能な撮像手段と、
    加工条件に定義された前記加工ノズルの要求品質レベルと前記撮像手段で得られた画像情報とに基づいて、前記加工ノズルの品質レベルを判定するための判定品質レベルを判定する学習器と、を備え、
    前記学習器は、予め前記加工ノズルの前記判定品質レベルを調整するための教師データが取り込まれて構成されると共に、前記教師データ及び前記撮像手段で前記加工ノズルの前記射出面側を撮像して得られた画像情報に基づいて、前記加工ノズルの前記判定品質レベルを判定し、
    前記学習器による判定結果である前記判定品質レベルを出力する制御手段を更に備えた
    ことを特徴とするレーザ加工機。
  2. 前記制御手段は、前記レーザ加工の加工条件と、その加工条件で要求される前記加工ノズルの要求品質レベルと、複数の前記加工ノズルのそれぞれの前記判定品質レベルと、を記憶し、
    前記レーザ加工に先立って、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルと、前記各加工ノズルの判定品質レベルとに基づいて、前記レーザ加工に使用する前記加工ノズルを選択する
    ことを特徴とする請求項1記載のレーザ加工機。
  3. 前記制御手段は、前記レーザ加工に使用する加工ノズルとして、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルを満たし、且つ前記判定品質レベルが最も低い加工ノズルを選択する
    ことを特徴とする請求項2記載のレーザ加工機。
  4. 前記制御手段は、前記レーザ加工の後に、前記加工ノズルの品質レベルを判定し、前記加工ノズルの前記判定品質レベルを更新する
    ことを特徴とする請求項2又は3記載のレーザ加工機。
  5. 複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換手段を更に備え、
    前記制御手段は、前記加工ヘッドに現在装着されている加工ノズルが、直後に実行されるレーザ加工の加工条件及び要求品質レベルを満たす場合には、前記加工ノズルを交換せずに、そのままレーザ加工を実行させる
    ことを特徴とする請求項2〜4のいずれか1項記載のレーザ加工機。
  6. 複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換手段を更に備え、
    前記制御手段は、前記加工ヘッドに現在装着されている加工ノズルが、直後に実行されるレーザ加工の加工条件及び要求品質レベルを満たし、且つ前記要求品質レベルと前記加工ノズルの判定品質レベルとが異なる場合には、前記要求品質レベルを満たし、且つ最も低い判定品質レベルを有する他の加工ノズルを前記ノズル交換手段にセットされた複数の前記加工ノズルの中から検索し、前記加工ヘッドに装着されている加工ノズルと前記検索された加工ノズルとを、前記ノズル交換手段を制御して交換した後、前記レーザ加工を実行させる
    ことを特徴とする請求項2〜4のいずれか1項記載のレーザ加工機。
  7. 前記制御手段は、
    複数の前記画像情報を学習して前記加工ノズルの劣化度合いに基づく判定品質レベルを分類可能な学習モデルを生成し記憶した学習部と、
    前記撮像手段で得られた画像情報を、前記学習モデルに基づいて分類することにより前記判定品質レベルを決定する演算処理部と、を備える
    ことを特徴とする請求項2〜6のいずれか1項記載のレーザ加工機。
  8. レーザ光を照射してワークをレーザ加工する加工ヘッド、及び前記レーザ光を射出する孔部を有し前記加工ヘッドに着脱自在に装着される加工ノズルを有するレーザ加工機と、前記加工ノズルの前記レーザ光の射出面側を撮像可能な撮像装置と、前記撮像装置で前記加工ノズルの前記射出面側を撮像して得られた画像情報に基づいて、前記加工ノズルの劣化度合いに基づく品質レベルを判定する判定処理を、前記レーザ加工機における前記レーザ加工毎に実行する制御手段と、複数の前記加工ノズルがセットされ、前記制御手段の制御に基づいて、前記加工ヘッドに装着される前記加工ノズルを交換するノズル交換装置と、を備えたレーザ加工システムにおいて実行される加工ノズル選択交換方法であって、
    前記レーザ加工に先立って、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルと、前記各加工ノズルの判定品質レベルとに基づいて、前記レーザ加工に使用する前記加工ノズルとして、前記レーザ加工の加工条件で要求される前記加工ノズルの要求品質レベルを満たし、且つ前記判定品質レベルが最も低い加工ノズルを選択する加工ノズル選択工程を含む
    ことを特徴とする加工ノズル選択交換方法。
JP2020093923A 2020-05-29 2020-05-29 レーザ加工機及び加工ノズル選択交換方法 Pending JP2021186830A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020093923A JP2021186830A (ja) 2020-05-29 2020-05-29 レーザ加工機及び加工ノズル選択交換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093923A JP2021186830A (ja) 2020-05-29 2020-05-29 レーザ加工機及び加工ノズル選択交換方法

Publications (1)

Publication Number Publication Date
JP2021186830A true JP2021186830A (ja) 2021-12-13

Family

ID=78850925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093923A Pending JP2021186830A (ja) 2020-05-29 2020-05-29 レーザ加工機及び加工ノズル選択交換方法

Country Status (1)

Country Link
JP (1) JP2021186830A (ja)

Similar Documents

Publication Publication Date Title
JP6795472B2 (ja) 機械学習装置、機械学習システム及び機械学習方法
US20200246920A1 (en) Laser cutting device and laser cutting method
JP6795567B2 (ja) 加工条件設定装置及び三次元レーザ加工システム
Ciurana et al. Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel
JP2017164801A (ja) 機械学習装置、レーザ加工システムおよび機械学習方法
CN108406141B (zh) 基于光学相干层析扫描的超快激光微孔加工方法及装置
EP3808542A1 (en) Arithmetic device, detection system, modeling apparatus, arithmetic method, detection method, modeling method, arithmetic program, detection program, and modeling program
US8969759B2 (en) Apparatus and method for perforating material
CN113231745A (zh) 激光雕刻制版设备、控制系统、制版方法以及存储介质
JP2020189324A (ja) 構造体の製造システム及び製造方法
US20220317663A1 (en) Method and apparatus for determining cutting parameters for a laser cutting machine
JP2021186830A (ja) レーザ加工機及び加工ノズル選択交換方法
CN112504714B (zh) 激光加工质量监测方法、系统、装置及设备、存储介质
WO2020246354A1 (ja) 加工プログラム作成装置、溶融金属の飛散方向決定方法、レーザ加工機、及びレーザ加工方法
CN116060642A (zh) 一种激光选区熔化成型质量监测分析方法
US20200341432A1 (en) Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system
JP2020028913A (ja) レーザ加工システム、及びレーザ加工方法
Kogel-Hollacher Laser welding using optical coherence tomography
Lim et al. A dimensionless analysis to select directed energy deposition process parameters for proper clad formation
Araki et al. Development of f-theta lens for UV lasers
CN114007800A (zh) 激光加工系统、加工条件搜索装置及加工条件搜索方法
JP7271295B2 (ja) 機械学習方法、情報処理装置、及びプログラム
WO2023188865A1 (ja) 加工システム及び加工性判定システム
JP2020028914A (ja) レーザ加工システム、噴流調整装置、及びレーザ加工方法
JP2020028911A (ja) レーザ加工システム、噴流観測装置、レーザ加工方法、及び噴流観測方法