JP2021186802A - Porous carbon composite titanium oxide-halogen oxide photocatalyst and method for producing the same - Google Patents

Porous carbon composite titanium oxide-halogen oxide photocatalyst and method for producing the same Download PDF

Info

Publication number
JP2021186802A
JP2021186802A JP2020183687A JP2020183687A JP2021186802A JP 2021186802 A JP2021186802 A JP 2021186802A JP 2020183687 A JP2020183687 A JP 2020183687A JP 2020183687 A JP2020183687 A JP 2020183687A JP 2021186802 A JP2021186802 A JP 2021186802A
Authority
JP
Japan
Prior art keywords
porous carbon
oxide
titanium oxide
halogen
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020183687A
Other languages
Japanese (ja)
Inventor
曹江行
Jiangxing Cao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2021186802A publication Critical patent/JP2021186802A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a porous carbon composite titanium oxide-halogen oxide photocatalyst which has high conversion efficiency, a long life and a high circulation utilization rate, and decomposes formaldehyde with a photocatalyst, and a method for producing the same.SOLUTION: In a porous carbon composite titanium oxide-halogen oxide photocatalyst, the halogen oxide precursor is one of bismuth oxychloride, bismuth iodide oxide and fluorinated bismuth, the porous carbon precursor is one of a zeolite-based skeleton material and a diamond-like carbon material, weight percentage contents of the titanium oxide, the porous carbon precursor and the halogen oxide precursor are 30%, 20-60% and 40-70%, the zeolite-based skeleton material is one of ZIF-5, ZIF-7, ZIF-8, ZIF-9, ZIF-21 and ZIF-67, and the graphene-based skeleton material is one of Cu3(HHTP)2 and Ni3(HITP)2.SELECTED DRAWING: Figure 1

Description

本発明は環境に優しい光触媒技術分野に属し、具体的には多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒及びその製造方法に関する。 The present invention belongs to the field of environmentally friendly photocatalyst technology, and specifically relates to a porous carbon composite titanium oxide-halogen oxide photocatalyst and a method for producing the same.

現在、室内空気汚染は、高い環境リスクの一つとして認識されている。ホルムアルデヒドは、主な室内空気汚染物質の一つとして、家具、織物、ペイント、壁紙から室内に拡散する。世界保健機関によると、HCHOの濃度が0.1ミリグラム/立方メートルを超えると、HCHOが健康に有害である。高濃度HCHOの空気に長期間暴露されると、白血病や癌の発生率が増加するため、HCHO汚染を抑制する必要がある。近年、吸収、プラズマ浄化、生分解、熱触媒浄化、光触媒浄化など、室内空気に含まれるHCHOを除去する方法が多く開示されている。これらの方法において、光触媒技術は、反応条件が適切で、除去効率が高く、二次汚染がなく、操作が簡単であるため、最も経済的で簡単な方法である。
CN108609600Bには、新型三次元炭素材料及びその製造方法が開示されている。新型三次元炭素材料の製造方法は、不活性雰囲気または無酸素の環境で、以下の温度変化条件で硬木を処理し、(a)室温から210〜250℃まで0.05〜2℃/minの昇温速度で昇温し、(b)210〜250℃から760〜850℃まで0.1〜3℃/minの昇温速度で昇温し、(c)760〜850℃から1100〜1450℃まで0.5〜4℃/minの昇温速度で昇温し、0.5〜6.0h保温し、(d)0.5〜20℃/minの降温速度で1100〜1450℃から室温まで降温する。しかし、新型三次元炭素材料は吸着作用のみを果たし、空気中のホルムアルデヒドを効果的に分解することができない。
酸化チタンは、無毒でありながら、優れた化学的安定性と低コストを有するため、半導体からHCHOを除去する最も有望な光触媒の一つと考えられている。しかしながら、本来のTiOは、太陽光の下でのみ紫外線を吸収し、その実用化が制限されている。可視光における光触媒活性を高めるために、多くの方法が開発された。例えば、金属/非金属元素の混ざり合い、二つ又は複数の半導体同士の結合、貴金属表面の改質、異なる材料の複合での製造などは、ますます重視されている。
CN108609600Bには、ホルムアルデヒド浄化機能を有する建築装飾材料及びその製造方法が開示されている。ホルムアルデヒド浄化機能を有する建築装飾材料は重量部で計算すると、1〜20部のホルムアルデヒド浄化剤、100部の基材、0.5〜1部の改質澱粉、1〜1.5部の接着剤、0.6〜1部のリグノセルロース、0.01〜0.1部の発泡剤及び65〜75部の水で構成され、ホルムアルデヒド浄化剤は重量部で計算すると、2〜10部のポリビニルピロリドン、1〜6部の水溶性高分子化合物、4〜42部のキラルアミノアルコール、1〜7部の酸化チタン、1〜7部の二酸化スズ、1〜7部の二酸化ケイ素、2〜6部の酸化マグネシウム、1〜13部の活性炭、1〜9部の塩化カルシウム及び1〜13部の可溶性弱酸塩によって構成される。ホルムアルデヒド浄化機能を有する建築装飾材料は、構造が複雑で、光電変換効率が低く、空気中のホルムアルデヒドの触媒分解を効率よく行うことができない。
しかしながら、従来技術では、ホルムアルデヒド触媒転化効率が確保されておらず、寿命が短いという問題も有効に解決されていなかった。
Currently, indoor air pollution is recognized as one of the high environmental risks. Formaldehyde diffuses indoors from furniture, textiles, paints and wallpaper as one of the main indoor air pollutants. According to the World Health Organization, HCHO is harmful to health when the concentration of HCHO exceeds 0.1 mg / cubic meter. Prolonged exposure to high-concentration HCHO air increases the incidence of leukemia and cancer, so it is necessary to control HCHO contamination. In recent years, many methods for removing HCHO contained in indoor air such as absorption, plasma purification, biodegradation, heat catalyst purification, and photocatalyst purification have been disclosed. In these methods, the photocatalytic technique is the most economical and simple method because of the appropriate reaction conditions, high removal efficiency, no secondary contamination, and easy operation.
CN108609600B discloses a new type three-dimensional carbon material and a method for producing the same. The method for producing the new three-dimensional carbon material is to treat hard wood under the following temperature change conditions in an inert atmosphere or an oxygen-free environment, and (a) from room temperature to 210-250 ° C at 0.05 to 2 ° C / min. The temperature is raised at a heating rate of (b) 210 to 250 ° C to 760 to 850 ° C at a heating rate of 0.1 to 3 ° C / min, and (c) from 760 to 850 ° C to 1100 to 1450 ° C. The temperature is raised to 0.5 to 4 ° C / min, the temperature is kept for 0.5 to 6.0 hours, and (d) the temperature is lowered to 0.5 to 20 ° C / min from 1100 to 1450 ° C to room temperature. To lower the temperature. However, the new three-dimensional carbon material exerts only an adsorptive action and cannot effectively decompose formaldehyde in the air.
Titanium oxide is considered to be one of the most promising photocatalysts for removing HCHO from semiconductors due to its non-toxic nature, excellent chemical stability and low cost. However, the original TiO 2 absorbs ultraviolet rays only under sunlight, and its practical use is limited. Many methods have been developed to increase photocatalytic activity in visible light. For example, mixing of metal / non-metal elements, bonding of two or more semiconductors, modification of precious metal surfaces, manufacturing of composites of different materials, etc. are becoming more and more important.
CN108609600B discloses a building decoration material having a formaldehyde purification function and a method for producing the same. Architectural decorative materials with formaldehyde purification function are calculated by weight: 1 to 20 parts of formaldehyde purifier, 100 parts of base material, 0.5 to 1 part of modified starch, 1 to 1.5 parts of adhesive. , 0.6-1 parts lignocellulose, 0.01-0.1 parts foaming agent and 65-75 parts water, formaldehyde purifier is 2-10 parts polyvinylpyrrolidone calculated by weight. , 1 to 6 parts of water-soluble polymer compound, 4 to 42 parts of chiralaminoalcohol, 1 to 7 parts of titanium oxide, 1 to 7 parts of tin dioxide, 1 to 7 parts of silicon dioxide, 2 to 6 parts. It is composed of magnesium oxide, 1 to 13 parts of activated carbon, 1 to 9 parts of calcium chloride and 1 to 13 parts of soluble weak acid salt. Architectural decorative materials having a formaldehyde purification function have a complicated structure, have low photoelectric conversion efficiency, and cannot efficiently perform catalytic decomposition of formaldehyde in the air.
However, in the prior art, the problem that the formaldehyde catalyst conversion efficiency is not ensured and the life is short has not been effectively solved.

中国特許出願公開第109174141号明細書Chinese Patent Application Publication No. 109174141

本発明は、従来技術における、ホルムアルデヒド触媒転化効率が低く、耐用年数が短く、循環利用率が低い問題に対し、高い転化効率、長寿命、高い循環利用率を有する、光触媒でホルムアルデヒドを分解する多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒及びその製造方法を提供する。 INDUSTRIAL APPLICABILITY The present invention solves the problems of low formaldehyde catalyst conversion efficiency, short service life, and low circulation utilization rate in the prior art, and has high conversion efficiency, long life, and high circulation utilization rate, and is porous to decompose formaldehyde with a photocatalyst. A carbon composite titanium oxide-halogen oxide photocatalyst and a method for producing the same are provided.

多孔質炭素複合酸化チタン‐ハロゲン酸化物は、前記酸化チタン表面に前記ハロゲン酸化物前駆体の加水分解により堆積し、その場成長法により前記多孔質炭素材料前駆体が調製され、さらに高温炭化して前記多孔質炭素複合酸化チタン‐ハロゲン酸化物複合材料を得、前記酸化チタンは異なる温度で焼成され、前記ハロゲン酸化物前駆体は、オキシ塩化ビスマス、ヨウ素酸化ビスマス及びフッ素化ビスマスのうちの一種であり、前記多孔質炭素前駆体は、ゼオライト系骨格材料とダイヤモンドライクカーボン材料とのうちの一種である。 The porous carbon composite titanium oxide-halogen oxide is deposited on the surface of the titanium oxide by hydrolysis of the halogen oxide precursor, and the porous carbon material precursor is prepared by an in-situ growth method and further high-temperature carbonized. The porous carbon composite titanium oxide-halogen oxide composite material was obtained, and the titanium oxide was fired at different temperatures, and the halogen oxide precursor was one of bismuth oxychloride, bismuth iodine oxide and bismuth fluorinated. The porous carbon precursor is one of a zeolite-based skeleton material and a diamond-like carbon material.

多孔質炭素複合は酸化チタン‐ハロゲン酸化物に安定的なMOF骨格構造を提供し、酸化チタン‐ハロゲン酸化物の光電変換過程での構造変化を緩和し、MOF骨格構造の、炭素構造に優れた導電性を利用し、酸化チタン‐ハロゲン酸化物の電子輸送効率を加速し、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒のホルムアルデヒドに対する触媒転化効率を向上させ、ハロゲン酸化物前駆体を酸化チタン表面に堆積させ、ハロゲン酸化物と酸化チタンとの結合率を高め、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の光電変換効率を高め、ホルムアルデヒドに対する吸収転換効率を向上させる。 The porous carbon composite provides a stable MOF skeleton structure for titanium oxide-halogen oxide, mitigates structural changes during the photoelectric conversion process of titanium oxide-halogen oxide, and is excellent in carbon structure of MOF skeleton structure. Utilizing conductivity, accelerate the electron transport efficiency of titanium oxide-halogen oxide, improve the catalytic conversion efficiency of porous carbon composite titanium oxide-halogen oxide photocatalyst to formaldehyde, and make the halogen oxide precursor on the titanium oxide surface. The bond rate between halogen oxide and titanium oxide is increased, the photoelectric conversion efficiency of the porous carbon composite titanium oxide-halogen oxide photocatalyst is increased, and the absorption conversion efficiency for formaldehyde is improved.

前記酸化チタン、前記多孔質炭素前駆体、及び前記ハロゲン酸化物前駆体の重量百分率含有量は、それぞれ、30%、20%?60%:40%?70%であり、酸化チタン‐ハロゲン酸化物は、光電変換においてホルムアルデヒドを水と酸化炭素に触媒分解することに対して重要な役割を果たし、酸化チタン‐ハロゲン酸化物の重量百分率含有量を調節することにより、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の、ホルムアルデヒドに対する吸収転化効率をさらに促進することができる。 The weight percentage contents of the titanium oxide, the porous carbon precursor, and the halogen oxide precursor are 30% and 20% to 60%: 40% to 70%, respectively, and the titanium oxide-halogen oxide. Plays an important role in the catalytic decomposition of formaldehyde into water and carbon oxide in photoelectric conversion, and by adjusting the weight percentage content of titanium oxide-halogen oxide, the porous carbon composite titanium oxide-halogen The absorption conversion efficiency of the oxide photocatalyst to formaldehyde can be further promoted.

前記ゼオライト系骨格材料は、ZIF‐5、ZIF‐7、ZIF‐8、ZIF‐9、ZIF‐21、及びZIF‐67、のうちの一種であり、前記系グラフェン骨格材料は、Cu(HHTP)とNi(HITP)とのうち一種であり、多孔質炭素は多孔質構造であり、比表面積が高く、自己支持骨格が安定しており、酸化チタン‐ハロゲン酸化物と結合し、空気中のホルムアルデヒドに対する吸着作用を増強し、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の、ホルムアルデヒドに対する吸収転化効率を向上させることができる。 The zeolite-based skeleton material is one of ZIF-5, ZIF-7, ZIF-8, ZIF-9, ZIF-21, and ZIF-67, and the system graphene skeleton material is Cu 3 (HHTP). ) 2 and Ni 3 (HITP) 2 , porous carbon has a porous structure, a high specific surface area, a stable self-supporting skeleton, and is bonded to titanium oxide-halogen oxide. It is possible to enhance the adsorption action for formaldehyde in the air and improve the absorption conversion efficiency of the porous carbon composite titanium oxide-halogen oxide photocatalyst to formaldehyde.

前記多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法は以下のステップ一、ステップ二、ステップ三、ステップ四、ステップ五、ステップ六、ステップ七、及びステップ八を含む:
前記ステップ一は、一定質量の硫酸チタニルとアンモニア水を秤量し、混合撹拌し、濾過した後に乾燥し、
前記ステップ二は、前記ステップ一の生成物を高温焼成し、
前記ステップ三は、硝酸ビスマスのある塩化カリウム溶液を前記ステップ二の生成物に滴下し、1〜10h撹拌し、
前記ステップ四は、前記ステップ三の生成物を分離、乾燥し、容器に入れ、容器を真空に引き、密閉し、2〜10h放置し、
前記ステップ五は、前記ステップ四の生成物を塩酸溶液に投入し、5〜6h浸漬し、分離し、脱イオン水で洗浄し、乾燥し、
前記ステップ六は、前記ステップ五の生成物を多孔質炭素材料前駆体のアルコール溶液に投入し、多孔質炭素中間体炭素材料をその場成長させ、
前記ステップ七は、前記ステップ六の生成物を2〜4h放置し、焼成し、
前記ステップ八は、前記ステップ七の生成物を洗浄し、乾燥させることで、最終生成物の前記多孔質炭素複合酸化チタン?ハロゲン酸化物を得、
前記ステップ二の生成物の焼成温度は100〜300℃であり、
前記ステップ六の生成物の焼成温度は300〜800℃である。
The method for producing the porous carbon composite titanium oxide-halogen oxide photocatalyst includes the following steps 1, step 2, step 3, step 4, step 5, step 6, step 7, and step 8.
In step 1, a constant mass of titanyl sulfate and aqueous ammonia are weighed, mixed and stirred, filtered, and then dried.
In step 2, the product of step 1 is calcined at a high temperature.
In step 3, a potassium chloride solution containing bismuth nitrate is added dropwise to the product of step 2, and the mixture is stirred for 1 to 10 hours.
In step 4, the product of step 3 is separated, dried, placed in a container, evacuated, sealed, and left for 2 to 10 hours.
In step 5, the product of step 4 is put into a hydrochloric acid solution, soaked for 5 to 6 hours, separated, washed with deionized water, dried, and dried.
In step 6, the product of step 5 is put into an alcohol solution of the porous carbon material precursor, and the porous carbon intermediate carbon material is in situ grown.
In step 7, the product of step 6 is left to stand for 2 to 4 hours and then fired.
In step 8, the product of step 7 is washed and dried to obtain the porous carbon composite titanium-halogen oxide of the final product.
The firing temperature of the product of step 2 is 100 to 300 ° C.
The firing temperature of the product of step 6 is 300 to 800 ° C.

前記ステップ二の生成物の焼成温度は、例えば150℃、180℃、200℃、260℃、300℃など、異なる焼成温度で酸化チタンの結晶粒構造を改善し、TiO周囲Ti3+、O2+空孔を増加させ、可視光吸収範囲を拡大し、その吸収範囲を赤外領域まで延長することで、光変換効率を高め、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の、ホルムアルデヒドに対する吸収転化効率を向上させることができる。 Firing temperature of step two of the products, for example 150 ℃, 180 ℃, 200 ℃ , 260 ℃, such as 300 ° C., to improve the grain structure of the titanium oxide at different firing temperatures, TiO 2 ambient Ti 3+, O 2+ By increasing the number of pores, expanding the visible light absorption range, and extending the absorption range to the infrared region, the light conversion efficiency is improved, and the absorption conversion of the porous carbon composite titanium oxide-halogen oxide photocatalyst to formaldehyde. Efficiency can be improved.

前記ステップ六の生成物の焼成温度は、例えば300℃、400℃、500℃、600℃、700℃、800℃など、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の複合性能を向上させることができ、多孔質炭素複合酸化チタン?ハロゲン酸化物光触媒は、吸収転化を行う際に多孔質炭素が分離しにくく、多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の安定性を向上させることができる。 The firing temperature of the product of step 6 is, for example, 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C., and the composite performance of the porous carbon composite titanium oxide-halogen oxide photocatalyst can be improved. In the porous carbon composite titanium oxide-halogen oxide photocatalyst, the porous carbon is difficult to separate during absorption conversion, and the stability of the porous carbon composite titanium oxide-halogen oxide photocatalyst can be improved.

本発明は、他の酸化チタン光触媒材料と比較して以下の利点を有する: The present invention has the following advantages over other titanium oxide photocatalytic materials:

加水分解沈殿法と焼成結晶プロセスを組み合わせて製造し、低コストで環境に優しく、また、得られた光触媒材料はガス状HCHOに対して高い光触媒吸収転化率を有する。
多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒は、見かけの最高吸収転化率が0.07685/minであり、BiOCl等のハロゲン酸化物特有の層状四角形構造が交互に二重ハロゲン原子層と酸化物層を有することにより、高い光学活性を実現し、光誘起キャリアの効率的な分離を促進することができる。
多孔質炭素材料と複合することで、吸着能を著しく向上させることができ、吸着性能が弱く、分離や回収性能に劣り、分散性が悪いなどの欠点を克服することができる。
多孔質炭素材料MOFは、安定した炭素‐炭素二重結合、単結合の複合骨格構造を有し、使用過程における安定性が向上する。
Manufactured by combining the hydrolysis precipitation method and the calcination process, it is low cost and environmentally friendly, and the obtained photocatalytic material has a high photocatalytic absorption conversion rate with respect to gaseous HCHO.
The porous carbon composite titanium oxide-halogen oxide photocatalyst has an apparent maximum absorption conversion rate of 0.07685 / min, and the layered square structure peculiar to halogen oxides such as BiOCl alternates between the double halogen atomic layer and the oxide. By having the layer, high optical activity can be realized and efficient separation of photoinduced carriers can be promoted.
By combining with a porous carbon material, the adsorption ability can be remarkably improved, and the drawbacks such as weak adsorption performance, inferior separation and recovery performance, and poor dispersibility can be overcome.
The porous carbon material MOF has a stable carbon-carbon double bond and single bond composite skeleton structure, and the stability in the process of use is improved.

純TiO、純MOF炭素材料、多孔質炭素複合酸化チタン‐ハロゲン酸化物複合材料の走査型電子顕微鏡図である。It is a scanning electron microscope diagram of pure TiO 2 , pure MOF carbon material, and porous carbon composite titanium oxide-halogen oxide composite material. 異なる光波長の照射下でのホルムアルデヒド転化効率図である。It is a formaldehyde conversion efficiency diagram under irradiation of different light wavelengths. 純TiOと純MOF炭素材料と多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料との、ホルムアルデヒド除去と二酸化炭素発生率図である。It is a formaldehyde removal and carbon dioxide generation rate diagram of a pure TiO 2 , a pure MOF carbon material, and a porous carbon composite titanium oxide-halogen oxide composite material.

実施例1
多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒であって、製造方法は以下のステップ一、ステップ二、ステップ三、ステップ四、ステップ五、ステップ六、ステップ七、及びステップ八を含む:
前記ステップ一は、一定質量の硫酸チタニルとアンモニア水を秤量し、混合撹拌し、濾過した後に乾燥し、
前記ステップ二は、前記ステップ一の生成物を高温焼成し、温度を100℃とし、
前記ステップ三は、硝酸ビスマスのある塩化カリウム溶液を前記ステップ二の生成物に滴下し、1h撹拌し、温度を30℃に制御し、
前記ステップ四は、前記ステップ三の生成物を分離、乾燥し、容器に入れ、容器を真空に引き、密閉し、500℃で2〜4h放置し、
前記ステップ五は、前記ステップ四の生成物を塩酸溶液に投入し、6h浸漬し、分離し、脱イオン水で洗浄し、乾燥し、
前記ステップ六は、前記ステップ五の生成物を多孔質炭素材料前駆体のアルコール溶液に投入し、250℃で多孔質炭素中間体炭素材料をその場成長させ、
前記ステップ七は、前記ステップ六の生成物を300℃で15h放置し、
前記ステップ八は、前記ステップ七の生成物を洗浄し、乾燥させることで、最終生成物の多孔質炭素複合酸化チタン?ハロゲン酸化物を得る。
得られた多孔質炭素複合酸化チタン?ハロゲン酸化物光触媒の、HCHOに対する光触媒吸収転化効果を試験し、試験方法は以下の通り:
パワー調整可能な300Wキセノンランプを光反応器の外部に垂直に置き、フィルタ(420nm)を調節することで太陽光や可視光源をシミュレーションし、クローズドループサンプリングと分析システムを装備したGASERAONE複数種ガス分析計によりHCHOとCOの濃度をオンラインで分析する。HCHO濃度の変化と増加したCO濃度をモニタリングすることによりHCHOの吸収転化効率を評価し、反応中のホルムアルデヒド濃度は66mg/m3から17.8mg/m3まで低下した。
Example 1
A porous carbon composite titanium oxide-halogen oxide photocatalyst, the production method comprising: step 1, step 2, step 3, step 4, step 5, step 6, step 7, and step 8.
In step 1, a constant mass of titanyl sulfate and aqueous ammonia are weighed, mixed and stirred, filtered, and then dried.
In step 2, the product of step 1 is fired at a high temperature, and the temperature is set to 100 ° C.
In step 3, a potassium chloride solution containing bismuth nitrate was added dropwise to the product of step 2, stirred for 1 hour, and the temperature was controlled to 30 ° C.
In step 4, the product of step 3 is separated, dried, placed in a container, evacuated, sealed, and left at 500 ° C. for 2 to 4 hours.
In step 5, the product of step 4 is put into a hydrochloric acid solution, soaked for 6 hours, separated, washed with deionized water, dried, and dried.
In step 6, the product of step 5 is put into an alcohol solution of the porous carbon material precursor, and the porous carbon intermediate carbon material is grown in situ at 250 ° C.
In step 7, the product of step 6 is left at 300 ° C. for 15 hours.
In step 8, the product of step 7 is washed and dried to obtain a porous carbon composite titanium-halogen oxide of the final product.
The photocatalytic absorption and conversion effect of the obtained porous carbon composite titanium oxide-halogen oxide photocatalyst on HCHO was tested, and the test method is as follows:
A power-adjustable 300W xenon lamp is placed vertically outside the photoreactor, and the filter (420nm) is adjusted to simulate sunlight and visible light sources. GASERAONE multi-type gas analysis equipped with closed-loop sampling and analysis system. HCHO and CO 2 concentrations are analyzed online by meter. The absorption conversion efficiency of HCHO was evaluated by monitoring the change in HCHO concentration and the increased CO 2 concentration, and the formaldehyde concentration during the reaction decreased from 66 mg / m3 to 17.8 mg / m3.

実施例2:実施例1における前記多孔質炭素複合酸化チタン?ハロゲン酸化物触媒の製造方法のステップ六の生成物焼成温度を300℃、400℃、500℃、600℃、700℃、800℃に調節し、他の部分は実施例1と完全に一致する。
試験により得られた結果を以下の表に示す。

Figure 2021186802
Example 2: The product firing temperature of step 6 of the method for producing the porous carbon composite titanium oxide-halogen oxide catalyst in Example 1 is set to 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C. Adjusted and the other parts are in perfect agreement with Example 1.
The results obtained by the test are shown in the table below.
Figure 2021186802

実施例3:実施例1における前記多孔質炭素複合酸化チタン?ハロゲン酸化物触媒における触媒の種類を調節し、調整触媒は、純BiOCl触媒、純TiO触媒、純MOF、多孔質炭素複合酸化チタン?ハロゲン酸化物触媒であり、他の部分は実施例1と完全に一致する。

Figure 2021186802
図1は、純TiO、純MOF炭素材料、多孔質炭素複合酸化チタン‐ハロゲン酸化物複合材料の走査型電子顕微鏡図であり、図1からわかるように、改質後の複合材料の変化が顕著であり、その表面に正孔が増加し、顕著な凹凸がある粗面構造を示し、即ち、改質後の複合材料の吸着能が強くなった。
図2は、異なる光波長の照射下でのホルムアルデヒド転化効率図であり、図2からわかるように、太陽光や可視光源下、500℃で、可視光範囲が最も広く、ホルムアルデヒドの転化効率が最も高く、太陽光下で反応速度定数(0.07685/分)が最も高く、多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料は、同じ温度でTiO、BiOCl、MOFs炭素材料の3.59、25.4及び2.96倍であることが分かる。また、多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料は、可視光下での光触媒能も他の光触媒より高く、その多孔質炭素複合酸化チタン?ハロ酸化物のk値(0.00728/分はそれぞれTiO、BiOCl、T?Bの6.62、7.43、2.57倍である。多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料は、吸着性能が向上するため、光変換効率が向上する。なぜなら、触媒表面に吸着したHCHO分子がHCHO酸化の第一ステップである。
図3は純TiOと純MOF炭素材料と多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料との、ホルムアルデヒド除去と二酸化炭素発生率図であり、図3からわかるように、波長帯域がより長い太陽光において、多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料の吸収転化効率および二酸化炭素増加量が他の単一材料より著しく高く、即ち、結合後のバンドギャップがより広く、より多くのホルムアルデヒドを水と二酸化炭素に転化することができ、有毒有機物を無毒有機物に転化することができる。
即ち、多孔質炭素複合酸化チタン?ハロゲン酸化物複合材料は、酸素を吸着してO2?活物質を形成した後、正孔を形成して、ホルムアルデヒド分子を触媒で無毒のCOとHOに転化するのに有利であることがわかる。 Example 3: The type of catalyst in the porous carbon composite titanium oxide-halogen oxide catalyst in Example 1 is adjusted, and the adjusting catalyst is a pure BiOCl catalyst, a pure TiO 2 catalyst, a pure MOF, and a porous carbon composite titanium oxide. It is a halogen oxide catalyst, and the other parts are completely consistent with Example 1.
Figure 2021186802
FIG. 1 is a scanning electron micrograph of pure TiO 2 , pure MOF carbon material, and porous carbon composite titanium oxide-halogen oxide composite material, and as can be seen from FIG. 1, changes in the composite material after modification are shown. It was remarkable, holes increased on its surface, and it showed a rough surface structure with remarkable irregularities, that is, the adsorption ability of the modified composite material became stronger.
FIG. 2 is a formaldehyde conversion efficiency diagram under irradiation with different light wavelengths. As can be seen from FIG. 2, the visible light range is the widest and the formform conversion efficiency is the highest at 500 ° C. under sunlight or a visible light source. High, highest reaction rate constant (0.07685 / min) under sunlight, porous carbon composite titanium oxide-halogen oxide composite material is TiO 2 , BiOCl, MOFs carbon material 3.59, at the same temperature. It can be seen that it is 25.4 and 2.96 times. In addition, the porous carbon composite titanium oxide / halogen oxide composite material has a higher photocatalytic ability under visible light than other photocatalysts, and the k value (0.00728 / min) of the porous carbon composite titanium oxide / halo oxide is higher. Are 6.62, 7.43, and 2.57 times that of TiO 2 , BiOCl, and TB, respectively. The porous carbon composite titanium-halogen oxide composite material has improved photoconversion efficiency because of its improved adsorption performance. This is because the HCHO molecules adsorbed on the surface of the catalyst are the first step of HCHO oxidation.
FIG. 3 is a formaldehyde removal and carbon dioxide generation rate diagram of pure TiO 2 , a pure MOF carbon material, and a porous carbon composite titanium-halogen oxide composite material, and as can be seen from FIG. 3, the wavelength band is longer. In sunlight, the absorption conversion efficiency and carbon dioxide increase of the porous carbon composite titanium-halogen oxide composite material is significantly higher than that of other single materials, that is, the band gap after binding is wider and more formaldehyde. Can be converted to water and carbon dioxide, and toxic organics can be converted to non-toxic organics.
That is, the porous carbon composite titanium-halogen oxide composite material adsorbs oxygen to form an O 2 active material, then forms holes, and uses formaldehyde molecules as a catalyst to form nontoxic CO 2 and H 2. It turns out that it is advantageous to convert to O.

上記記述は、本発明の好適な実施例の説明であり、本発明の範囲を何ら限定するものではなく、当業者による上記開示内容に基づく任意の変更、修飾は、いずれも特許請求の範囲の保護範囲に属するものである。 The above description is a description of a preferred embodiment of the present invention, and does not limit the scope of the present invention in any way. Any modification or modification based on the above disclosure contents by those skilled in the art is within the scope of claims. It belongs to the scope of protection.

Claims (6)

多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒であって、
前記ハロゲン酸化物前駆体は、オキシ塩化ビスマス、ヨウ素酸化ビスマス及びフッ素化ビスマスのうちの一種であり、
前記多孔質炭素前駆体は、ゼオライト系骨格材料とダイヤモンドライクカーボン材料とのうちの一種であり、
前記酸化チタン、前記多孔質炭素前駆体、及び前記ハロゲン酸化物前駆体の重量百分率含有量は、それぞれ、30%、20%?60%:40%?70%であり、
前記ゼオライト系骨格材料は、ZIF‐5、ZIF‐7、ZIF‐8、ZIF‐9、ZIF‐21、及びZIF‐67、のうちの一種であり、
前記系グラフェン骨格材料は、Cu(HHTP)とNi(HITP)とのうち一種である、
ことを特徴とする多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒。
Porous carbon composite titanium oxide-halogen oxide photocatalyst
The halogen oxide precursor is one of bismuth oxychloride, bismuth iodine oxide and bismuth fluorinated.
The porous carbon precursor is one of a zeolite-based skeleton material and a diamond-like carbon material.
The weight percentage contents of the titanium oxide, the porous carbon precursor, and the halogen oxide precursor are 30% and 20% to 60%: 40% to 70%, respectively.
The zeolite-based skeleton material is one of ZIF-5, ZIF-7, ZIF-8, ZIF-9, ZIF-21, and ZIF-67.
The graphene skeleton material is one of Cu 3 (HHTP) 2 and Ni 3 (HITP) 2 .
A porous carbon composite titanium oxide-halogen oxide photocatalyst.
前記多孔質炭素複合酸化チタン‐ハロゲン酸化物は、前記酸化チタン表面に前記ハロゲン酸化物前駆体の加水分解により堆積し、
その場成長法により前記多孔質炭素材料前駆体が調製され、さらに高温炭化して前記多孔質炭素複合酸化チタン‐ハロゲン酸化物複合材料を得、
前記酸化チタンは異なる温度で焼成される、
ことを特徴とする請求項1に記載の多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法。
The porous carbon composite titanium oxide-halogen oxide is deposited on the surface of the titanium oxide by hydrolysis of the halogen oxide precursor.
The porous carbon material precursor is prepared by an in-situ growth method, and further carbonized at a high temperature to obtain the porous carbon composite titanium oxide-halogen oxide composite material.
The titanium oxide is fired at different temperatures,
The method for producing a porous carbon composite titanium oxide-halogen oxide photocatalyst according to claim 1.
前記多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法は以下のステップ一、ステップ二、ステップ三、ステップ四、ステップ五、ステップ六、ステップ七、及びステップ八を含む:
前記ステップ一は、一定質量の硫酸チタニルとアンモニア水を秤量し、混合撹拌し、濾過した後に乾燥し、
前記ステップ二は、前記ステップ一の生成物を高温焼成し、
前記ステップ三は、硝酸ビスマスのある塩化カリウム溶液を前記ステップ二の生成物に滴下し、1〜10h撹拌し、
前記ステップ四は、前記ステップ三の生成物を分離、乾燥し、容器に入れ、容器を真空に引き、密閉し、2〜10h放置し、
前記ステップ五は、前記ステップ四の生成物を塩酸溶液に投入し、5〜6h浸漬し、分離し、脱イオン水で洗浄し、乾燥し、
前記ステップ六は、前記ステップ五の生成物を多孔質炭素材料前駆体のアルコール溶液に投入し、多孔質炭素中間体炭素材料をその場成長させ、
前記ステップ七は、前記ステップ六の生成物を2〜4h放置し、焼成し、
前記ステップ八は、前記ステップ七の生成物を洗浄し、乾燥させることで、最終生成物の前記多孔質炭素複合酸化チタン?ハロゲン酸化物を得る、
ことを特徴とする請求項2に記載の多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法。
The method for producing the porous carbon composite titanium oxide-halogen oxide photocatalyst includes the following steps 1, step 2, step 3, step 4, step 5, step 6, step 7, and step 8.
In step 1, a constant mass of titanyl sulfate and aqueous ammonia are weighed, mixed and stirred, filtered, and then dried.
In step 2, the product of step 1 is calcined at a high temperature.
In step 3, a potassium chloride solution containing bismuth nitrate is added dropwise to the product of step 2, and the mixture is stirred for 1 to 10 hours.
In step 4, the product of step 3 is separated, dried, placed in a container, evacuated, sealed, and left for 2 to 10 hours.
In step 5, the product of step 4 is put into a hydrochloric acid solution, soaked for 5 to 6 hours, separated, washed with deionized water, dried, and dried.
In step 6, the product of step 5 is put into an alcohol solution of the porous carbon material precursor, and the porous carbon intermediate carbon material is in situ grown.
In step 7, the product of step 6 is left to stand for 2 to 4 hours and then fired.
In step 8, the product of step 7 is washed and dried to obtain the porous carbon composite titanium-halogen oxide of the final product.
The method for producing a porous carbon composite titanium oxide-halogen oxide photocatalyst according to claim 2.
前記ステップ二の焼成温度は、段階的な温度焼成であり、100?140℃で10?30min焼成し、さらに20℃/minの昇温速度で260?300℃まで昇温して20?40min焼成した後、炉に冷却する、
ことを特徴とする請求項3に記載の多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法。
The firing temperature in step 2 is stepwise firing, in which firing is performed at 100 to 140 ° C. for 10 to 30 minutes, and the temperature is further raised to 260 to 300 ° C. at a heating rate of 20 ° C./min to be fired for 20 to 40 minutes. After that, cool it to the furnace,
The method for producing a porous carbon composite titanium oxide-halogen oxide photocatalyst according to claim 3.
前記ハロゲン酸化物前駆体は、オキシ塩化ビスマス、ヨウ素酸化ビスマス及びフッ素化ビスマスのうちの一種である、
ことを特徴とする請求項3に記載の多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法。
The halogen oxide precursor is one of bismuth oxychloride, bismuth iodine oxide and bismuth fluorinated.
The method for producing a porous carbon composite titanium oxide-halogen oxide photocatalyst according to claim 3.
前記ステップ六の生成物の焼成温度は300〜800℃である、
ことを特徴とする請求項3に記載の多孔質炭素複合酸化チタン‐ハロゲン酸化物光触媒の製造方法。
The firing temperature of the product of step 6 is 300 to 800 ° C.
The method for producing a porous carbon composite titanium oxide-halogen oxide photocatalyst according to claim 3.
JP2020183687A 2020-05-25 2020-11-02 Porous carbon composite titanium oxide-halogen oxide photocatalyst and method for producing the same Pending JP2021186802A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010449204.9 2020-05-25
CN202010449204.9A CN111468147A (en) 2020-05-25 2020-05-25 Porous carbon composite titanium dioxide-oxyhalide photocatalyst and preparation method thereof

Publications (1)

Publication Number Publication Date
JP2021186802A true JP2021186802A (en) 2021-12-13

Family

ID=71762724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020183687A Pending JP2021186802A (en) 2020-05-25 2020-11-02 Porous carbon composite titanium oxide-halogen oxide photocatalyst and method for producing the same

Country Status (2)

Country Link
JP (1) JP2021186802A (en)
CN (1) CN111468147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976015A (en) * 2022-06-27 2022-08-30 巢湖学院 Two-dimensional metal organic framework based composite electrode material, and preparation method and application thereof
CN115672405A (en) * 2022-11-22 2023-02-03 河南师范大学 Catalytic material and preparation method thereof
CN116785928A (en) * 2023-08-07 2023-09-22 广州柏芬环保科技有限公司 Air purifying material and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007523A (en) * 2020-08-10 2020-12-01 上海应用技术大学 Polyvinylidene fluoride mixed matrix film and preparation method thereof
CN113053673B (en) * 2021-03-10 2022-03-25 常州大学 Working electrode of dye-sensitized solar cell and preparation method thereof
CN113398956B (en) * 2021-06-17 2023-08-04 西安石油大学 BiOI photocatalyst with visible light response and preparation method and application thereof
CN115678558B (en) * 2022-10-25 2023-08-29 昆明理工大学 Ytterbium erbium-doped rare earth ion chiral bismuth oxyhalide and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260011A (en) * 2007-03-20 2008-10-30 Sumitomo Metal Ind Ltd Visible light-responsive photocatalyst and its producing method
CN105170097A (en) * 2015-09-29 2015-12-23 安徽工程大学 TiO2/ZIF-8 nanocomposite with core-shell structure and preparation method of TiO2/ZIF-8 nanocomposite
CN109174141A (en) * 2018-10-12 2019-01-11 宝鸡文理学院 A kind of preparation method of composite Nano catalysis material
JP2019508225A (en) * 2015-12-22 2019-03-28 エンヴィジョン エスキュー インコーポレイテッド Photocatalytic composite for decomposing air pollutants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260011A (en) * 2007-03-20 2008-10-30 Sumitomo Metal Ind Ltd Visible light-responsive photocatalyst and its producing method
CN105170097A (en) * 2015-09-29 2015-12-23 安徽工程大学 TiO2/ZIF-8 nanocomposite with core-shell structure and preparation method of TiO2/ZIF-8 nanocomposite
JP2019508225A (en) * 2015-12-22 2019-03-28 エンヴィジョン エスキュー インコーポレイテッド Photocatalytic composite for decomposing air pollutants
CN109174141A (en) * 2018-10-12 2019-01-11 宝鸡文理学院 A kind of preparation method of composite Nano catalysis material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976015A (en) * 2022-06-27 2022-08-30 巢湖学院 Two-dimensional metal organic framework based composite electrode material, and preparation method and application thereof
CN115672405A (en) * 2022-11-22 2023-02-03 河南师范大学 Catalytic material and preparation method thereof
CN116785928A (en) * 2023-08-07 2023-09-22 广州柏芬环保科技有限公司 Air purifying material and preparation method thereof

Also Published As

Publication number Publication date
CN111468147A (en) 2020-07-31

Similar Documents

Publication Publication Date Title
JP2021186802A (en) Porous carbon composite titanium oxide-halogen oxide photocatalyst and method for producing the same
CN107824210B (en) Titanium dioxide composite photocatalyst coated by nitrogen-doped mesoporous carbon and preparation method and application thereof
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
Li et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: Insight into the effect of graphene coupling
CN107029702B (en) Manganese oxide-loaded carbon fiber felt catalyst material and preparation method and application thereof
CN107617447B (en) Ag @ MOFs/TiO2Preparation method and application of photocatalyst
CN109331853B (en) Nitrogen oxide nanoparticle photocatalyst and application thereof
CN104772110A (en) Visible-light response type air purifier photo-catalyst filter screen and preparation method thereof
CN111437867A (en) Composite photocatalyst containing tungsten oxide and preparation method and application thereof
CN106861626B (en) Adsorption-photocatalysis dual-function material, preparation method thereof and application thereof in volatile organic gas treatment process
CN112892534B (en) MO for VOC purificationx/CuxPreparation of O/Cu photocatalyst
CN105749858A (en) Preparation method of carbon monoxide absorbent
CN111841540B (en) Spinel type CuFe rich in oxygen vacancy 2 O 4 Method for preparing photocatalyst
CN101837281A (en) Method for preparing formaldehyde adsorbent having composite adsorption function
CN107376905B (en) Preparation method of Ag/ZnO composite material capable of degrading formaldehyde
CN104190465A (en) SAPO-5 molecular sieve loaded metal oxide photocatalyst
WO2009130924A1 (en) Dendritic substances and structures containing the same
Yuan et al. Enhanced visible-light degradation performance toward gaseous formaldehyde using oxygen vacancy-rich TiO2-x/TiO2 supported by natural diatomite
CN107670641B (en) Graphene air purification material and preparation method thereof
Cui et al. Zeolite-based CuO nanotubes catalysts: investigating the characterization, mechanism, and decolouration process of methylene blue
CN109201044B (en) Potassium-doped gamma manganese dioxide catalyst and preparation method and application thereof
CN109233455B (en) Diatom ooze coating with purification effect
CN114887655B (en) Nanometer NiO-VO X /TiO 2 Molecular sieve composite catalyst and preparation method and application thereof
CN106311222A (en) Double-transition metal-based silkworm excrement porous carbon catalyst and preparation method thereof
KR20170059829A (en) Manufacturing method of mesoporous titanium dioxide sphere/multi-walled carbon nanotubes composites for photocatalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411