以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
(実施の形態1)
図1は、実施の形態1に係る緩衝材の斜視図である。図2は、図1に示す緩衝材の単位構造体の斜視図である。図3は、図1中に示す矢印III方向から見た緩衝材の正面図である。図4は、図1中に示す矢印IV方向から見た緩衝材の平面図である。図5は、図4中に示すV−V線に沿った緩衝材の断面図である。また、図6は、図4中に示すVI−VI線に沿った緩衝材の断面図である。以下、これら図1ないし図6を参照して、本実施の形態に係る緩衝材1Aについて説明する。
図1ないし図6に示すように、緩衝材1Aは、複数の単位構造体U(特に図1および図2参照)を有する立体構造物Sを含んでいる。複数の単位構造体Uの各々は、並行する一対の曲面によって外形が規定される壁10にて形作られた立体的形状を有している。
ここで、図1および図2においては、理解を容易とするために、参照符号Uを厳密な意味においては単位構造体に付しておらず、当該単位構造体が占有する空間である直方体形状の単位空間に付している。また、図1ないし図4においては、理解を容易とするために、全体としての外形が略直方体形状の緩衝材1Aの外表面のうち、図中に示すX方向、Y方向およびZ方向の各々に位置する端面に濃い色を付して他の外表面と区別している。なお、図2に示すように、単位構造体Uの幅方向(図中に示すX方向)の寸法をLxとし、単位構造体Uの奥行き方向(図中に示すY方向)の寸法をLyとし、単位構造体Uの高さ方向(図中に示すZ方向)の寸法をLzとする。
複数の単位構造体Uは、幅方向、奥行き方向および高さ方向の各々に沿って規則的にかつ連続的に繰り返し配列されている。本実施の形態に係る緩衝材1Aにおいては、幅方向であるX方向および奥行き方向であるY方向にそれぞれ6つの単位構造体Uが並んで配置されており、高さ方向であるZ方向に3つの単位構造体Uが並んで配置されている。
本実施の形態に係る緩衝材1Aは、高さ方向(図中に示すZ方向)において緩衝機能が発揮されるように企図されたものである。そのため、緩衝材1Aが荷重を受けることで緩衝機能を発揮する方向である軸方向は、上述した高さ方向に合致することになる。なお、幅方向、奥行き方向および高さ方向における単位構造体Uの繰り返しの数は、特にこれが制限されるものではなく、これら3つの方向のうちの少なくとも一方向に沿って2つ以上配列されていればよい。
上述したように、複数の単位構造体Uの各々は、壁10によって形作られた立体的形状を有している。そのため、これら複数の単位構造体Uが互いに連続して接続されることにより、立体構造物Sもまた、これら壁10の集合体によって構成されている。
ここで、緩衝材1Aに含まれる立体構造物Sは、幾何学的な面構造を基準にこれに厚みを付けた構造を有している。本実施の形態に係る緩衝材1Aにおいては、当該面構造は、数学的に定義される三重周期極小曲面の一種であるシュワルツP構造である。なお、極小曲面とは、与えられた閉曲線を境界にもつ曲面の中で面積が最小のものと定義される。
図6に示すように、シュワルツP構造を基準にこれに厚みを付けた立体構造物Sは、これを特定の平面に沿って切断した場合に蛇行状に延在する断面形状が現れる部位である蛇行部11を有している。当該特定の平面は、本実施の形態においては、図4において紙面と直交しかつVI−VI線と平行な平面である。
蛇行部11は、立体構造物Sの構造上、幅方向に沿って延在するもの、奥行き方向に沿って延在するもの、および、高さ方向に沿って延在するものの合計で3種類が存在することになるが、ここでは、図6に示す断面において現れる、高さ方向(すなわちZ方向)に沿って延在する蛇行部11に着目している。
この高さ方向に延在する蛇行部11は、当該高さ方向に沿って位置する複数の方向転換点12を有しており、当該方向転換点12においては、入隅部13と出隅部14とがそれぞれ設けられている。このうち、入隅部13は、上記断面形状において、壁10の表面上において凹状の形状を有するように現れる部位であり、出隅部14は、上記断面形状において、壁10の表面上において凸状の形状を有するように現れる部位である。ここで、この高さ方向に延在する蛇行部11は、隣り合う蛇行部との間の距離が当該高さ方向における位置によって異なっており、上述した距離は、高さ方向に沿って移動するにつれて周期的に大きくなったり小さくなったりする。
上述した寸法Lx,Ly,Lzは、特に制限されるものではなく、種々変更が可能であるが、本実施の形態においては、これらLx,Ly,Lzが、Lx=Ly=Lzの条件を満たしている。なお、これらLx,Ly,Lzのうち、緩衝機能が発揮されることが企図された軸方向である高さ方向の寸法LzをL1とし、残る幅方向の寸法Lxおよび奥行き方向の寸法Lyのうちの長い方をL2とした場合に、これら寸法L1,L2が、1.1≦L1/L2≦4.0の条件を満たしていれば、高い圧縮剛性を得ることができ、0.1≦L1/L2≦0.9の条件を満たしていれば、圧縮剛性が低くなることで高い変形能を得ることができる。ただし、上述した寸法L1,L2が、これらの条件を満たしている必要は必ずしもなく、これらの条件を満たすか否かは任意である。
図1および図3ないし図6に示すように、緩衝材1Aは、上述した壁10に加えて、異形部30を有している。この異形部30は、単位構造体Uを規定する壁10には該当しない部位であり、当該壁10とは区別されるものである。
異形部30は、上述した立体構造物Sのうちの単位構造体Uが配置された領域である緩衝領域(本実施の形態においては、緩衝材1Aの全体が緩衝領域に該当する)に局所的に設けられている。より詳細には、本実施の形態においては、異形部30は、緩衝材1Aを平面視した場合の中央部に設けられており、当該中央部を除く部分である周囲部には設けられていない。
異形部30は、緩衝材1Aが荷重を受けることで緩衝機能を発揮する軸方向(すなわちZ方向)と交差する方向に厚みを有する板形状を成している。より詳細には、本実施の形態においては、異形部30が、4つの板状部からなる角筒状の形状を有しており、各々の板状部は、図中に示すZ方向に沿って延在している。特に、本実施の形態においては、異形部30を構成する4つの板状部が、図中に示すZ方向に沿って緩衝領域を縦断するように緩衝材1Aの両端部にまで達している。
この異形部30は、上述した蛇行部11の間に位置する空間に配置されており、隣接する部分の単位構造体Uと一体化するように接続されている。そのため、緩衝材1Aのうちのこの異形部30が設けられた部位においては、緩衝材1Aのその他の部位(すなわち、異形部30が設けられていない部位)に比べて圧縮剛性が高められることになる。
これは、緩衝材1Aのうちの異形部30が設けられた部位においては、当該異形部30が軸方向に沿って延在する板形状を有しているため、この板形状を有する異形部30の圧縮剛性が当該部位の壁10の圧縮剛性にさらに追加的に加わるためである。そのため、このような異形部30を緩衝材1Aに設けることにより、緩衝材1Aに局所的な高剛性部を形成することが可能になる。
なお、上述したように、異形部30が軸方向に沿って緩衝材1Aの両端部にまで達するように構成した場合には、当該異形部30が衝立状に作用することになるため、上述した効果がより顕著に得られることになる。
このように、本実施の形態に係る緩衝材1Aの如く、単位構造体Uを規定する壁10には該当しない異形部30を立体構造物Sのうちの単位構造体Uが配置された領域である緩衝領域に局所的に設ける構成を採用することにより、軽量で緩衝性能に優れた緩衝材とすることができる。
ここで、緩衝材1Aの製造方法は、特にこれが制限されるものではないが、緩衝材1Aは、たとえば三次元積層造形装置を用いた造形によって製造することができる。この三次元積層造形装置を用いた造形によって緩衝材1Aを製造する場合には、上述した壁10の材質と異形部30の材質とは、同じになる。ただし、熱溶融積層(FDM)方式の三次元積層造形装置を用いた場合には、上述した壁10の材質と異形部30の材質とを異ならせることも可能である。
緩衝材1A(すなわち壁10および異形部30)の材質としては、弾性力に富んだ材料であれば基本的にどのような材料であってもよいが、樹脂材料またはゴム材料であることが好ましい。より具体的な材質としては、緩衝材1Aを樹脂製とする場合には、たとえばエチレン−酢酸ビニル共重合体(EVA)等の熱可塑性樹脂とすることができ、また、たとえばポリウレタン(PU)等の熱硬化性樹脂とすることができる。一方、緩衝材1Aをゴム製とする場合には、たとえばブタジエンゴムとすることができる。
緩衝材1Aは、ポリマー組成物にて構成することもできる。その場合にポリマー組成物に含有させるポリマーとしては、たとえばオレフィン系エラストマーやオレフィン系樹脂等のオレフィン系ポリマーが挙げられる。オレフィン系ポリマーとしては、たとえばポリエチレン(たとえば直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等)、ポリプロピレン、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1−ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体(EVA)、プロピレン−酢酸ビニル共重合体のポリオレフィン等が挙げられる。
また、上記ポリマーは、たとえばアミド系エラストマーやアミド系樹脂等のアミド系ポリマーであってもよい。アミド系ポリマーとしては、たとえばポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610等が挙げられる。
また、上記ポリマーは、たとえばエステル系エラストマーやエステル系樹脂等のエステル系ポリマーであってもよい。エステル系ポリマーとしては、たとえばポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
また、上記ポリマーは、たとえばウレタン系エラストマーやウレタン系樹脂等のウレタン系ポリマーであってもよい。ウレタン系ポリマーとしては、たとえばポリエステル系ポリウレタン、ポリエーテル系ポリウレタン等が挙げられる。
また、上記ポリマーは、たとえばスチレン系エラストマーやスチレン系樹脂等のスチレン系ポリマーであってもよい。スチレン系エラストマーとしては、スチレン−エチレン−ブチレン共重合体(SEB)、スチレン−ブタジエン−スチレン共重合体(SBS)、SBSの水素添加物(スチレン−エチレン−ブチレン−スチレン共重合体(SEBS))、スチレン−イソプレン−スチレン共重合体(SIS)、SISの水素添加物(スチレン−エチレン−プロピレン−スチレン共重合体(SEPS))、スチレン−イソブチレン−スチレン共重合体(SIBS)、スチレン−ブタジエン−スチレン−ブタジエン(SBSB)、スチレン−ブタジエン−スチレン−ブタジエン−スチレン(SBSBS)等が挙げられる。スチレン系樹脂としては、たとえばポリスチレン、アクリロニトリルスチレン樹脂(AS)、アクリロニトリルブタジエンスチレン樹脂(ABS)等が挙げられる。
また、上記ポリマーは、たとえばポリメタクリル酸メチルなどのアクリル系ポリマー、ウレタン系アクリルポリマー、ポリエステル系アクリルポリマー、ポリエーテル系アクリルポリマー、ポリカーボネート系アクリルポリマー、エポキシ系アクリルポリマー、共役ジエン重合体系アクリルポリマーならびにその水素添加物、ウレタン系メタクリルポリマー、ポリエステル系メタクリルポリマー、ポリエーテル系メタクリルポリマー、ポリカーボネート系メタクリルポリマー、エポキシ系メタクリルポリマー、共役ジエン重合体系メタクリルポリマーならびにその水素添加物、ポリ塩化ビニル系樹脂、シリコーン系エラストマー、ブタジエンゴム(BR)、イソプレンゴム(IR)、クロロプレン(CR)、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等であってもよい。
上述したように、本実施の形態に係る緩衝材1Aは、軽量で緩衝性能に優れた緩衝材となる。これは、緩衝材1Aの構造的特徴(形状的特徴)によるところが大きい。以下、シュワルツP構造を基準にこれに厚みを付けた立体構造物Sからなる緩衝材(すなわち、上述した異形部30が設けられていない緩衝材)の緩衝性能を本発明者がシミュレーションした検証試験の結果に基づいて、本実施の形態に係る緩衝材1Aとすることによってもたらされる効果について説明する。
図7は、検証例1,2に係る緩衝材の緩衝性能をシミュレーションした結果を示すグラフである。
検証試験においては、検証例1,2に係る緩衝材のモデルをそれぞれ具体的に設計し、これらモデルに対して所定方向に沿って外力が加わった場合を想定し、その場合の挙動についてシミュレーションによって個別に解析を行なった。より具体的には、これらモデルのそれぞれについていわゆる応力−歪み曲線を得た。
ここで、検証例1,2に係る緩衝材は、上述したように、シュワルツP構造を基準にこれに厚みを付けた立体構造物Sからなる緩衝材(すなわち、上述した異形部30が設けられていない緩衝材)であり、壁10のみによって構成されたものである。
より詳細には、検証例1に係る緩衝材は、単位構造体Uの幅方向の寸法、奥行き方向の寸法および高さ方向の寸法をそれぞれ10mmとしたものであり、壁10の厚みtを1.4mmとしたものである。なお、この場合の占積率Vは、約30%である。
一方、検証例2に係る緩衝材は、単位構造体Uの幅方向の寸法、奥行き方向の寸法および高さ方向の寸法をそれぞれ10mmとしたものであり、壁10の厚みtを1.8mmとしたものである。なお、この場合の占積率Vは、約40%である。
また、検証例1,2に係る緩衝材に加える外力の方向は、いずれも上述した軸方向である高さ方向とした。なお、検証例1,2に係る緩衝材の材質は、いずれもウレタン系アクリルポリマーを想定した。
ここで、通常、圧縮剛性を高める場合には、単位構造体Uの壁10の厚みを増加させることが考えられる。しかしながら、壁10の厚みを増加させた場合には、これに伴って占積率Vも増加することになるため、壁10の厚みが大きいほど占積率Vも増加し、緩衝材が重くなってしまう。すなわち、圧縮剛性の確保と軽量化とはいわゆるトレードオフの関係を有していることになる。
しかしながら、たとえば検証例1,2に係る緩衝材において、局所的に上述した如くの異形部30を設けることとすれば、当該異形部30が設けられた部分において、図7において破線DLで示す如くの性能が得られることになり、緩衝材全体として見た場合に所望の緩衝性能を得ることが可能になる。この手法を用いれば、局所的に高い圧縮剛性を得るために、当該部分の壁10の厚みを全体的に増すよりも、緩衝材の重量の増加を大幅に抑制することができる。
したがって、上述した本実施の形態に係る緩衝材1Aとすることにより、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。
なお、並行する一対の曲面によって外形が規定される壁にて形作られた立体的形状としては、上述したシュワルツP構造を基準にこれに厚みを付けたものの他にも、シュワルツD構造を基準にこれに厚みを付けたものや、ジャイロイド構造を基準にこれに厚みを付けたもの等がある。したがって、これらシュワルツD構造やジャイロイド構造を基準にこれに厚みを付けた立体構造物を緩衝領域として含む緩衝材において、上述した如くの異形部を局所的に設けることとしてもよい。
(第1ないし第3変形例)
図8ないし図10は、それぞれ第1ないし第3変形例に係る緩衝材の平面図である。以下、これら図8ないし図10を参照して、上述した実施の形態1に基づいた第1ないし第3変形例に係る緩衝材1A1〜1A3について説明する。
上述した実施の形態1においては、緩衝材1Aを平面視した場合における中央部にのみ角筒状の異形部30を設けた場合を例示したが、異形部30を設ける位置や形状、数等を種々変更することにより、様々な緩衝性能が発揮される緩衝材をいずれも軽量に製作することができる。以下に示す第1ないし第3変形例は、緩衝材1Aにそのような変更を加えた場合を例示したものである。
図8に示すように、第1変形例に係る緩衝材1A1は、互いに独立した同形状の複数の異形部30を緩衝領域の全体にわたって満遍なく設けたものである。より詳細には、第1変形例に係る緩衝材1A1にあっては、複数の異形部30の各々が角筒状を成しており、これら角筒状の異形部30を平面視千鳥状に配置している。
図9に示すように、第2変形例に係る緩衝材1A2は、互いに独立した異なる形状の複数の異形部を緩衝領域に設けたものである。より詳細には、第2変形例に係る緩衝材1A2にあっては、異形部30として円筒状のものと角筒状のものとを設けており、これらを平面視同心上に配置している。
図10に示すように、第3変形例に係る緩衝材1A3は、複数の板形状の異形部30を互いに交差するように緩衝領域に設けたものである。より詳細には、第3変形例に係る緩衝材1A3にあっては、異形部30が全体として井桁状を成しており、これが平面視した場合に緩衝材1A3の周縁に位置するように配置している。
このように、異形部30を設ける位置や形状、数等を種々変更した場合にも、上述した実施の形態1において説明した効果と同様の効果を得ることができる。特に、局所的に設ける異形部30を緩衝材の全体にわたって満遍なく設けることとすれば、軽量化を図りつつ、緩衝材の全体にわたって概ね同様の緩衝性能を得ることが可能になり、また、互いに異なる形状の異形部30を緩衝材に設けることとすれば、軽量化を図りつつ、緩衝材の部位毎に異なる緩衝性能を発揮させることが可能になる。
(実施の形態2)
図11は、実施の形態2に係る緩衝材の斜視図である。また、図12は、図11中に示すXII−XII線に沿った緩衝材の断面図である。以下、これら図11および図12を参照して、本実施の形態に係る緩衝材1Bについて説明する。なお、本実施の形態に係る緩衝材1Bは、上述した実施の形態1に係る緩衝材1Aと比較した場合に、主として異形部30の構成が異なるものである。
図11および図12に示すように、本実施の形態に係る緩衝材1Bは、複数の単位構造体を有する立体構造物Sを含んでおり、当該立体構造物Sは、並行する一対の曲面によって外形が規定される壁10にて形作られている。本実施の形態に係る緩衝材1Bにおける立体構造物Sの構造の基準は、シュワルツP構造である。
緩衝材1Bは、高さ方向(図中に示すZ方向)において緩衝機能が発揮されるように企図されたものであり、当該高さ方向の端部には、上述した立体構造物Sを挟み込むように一対の支持部40が設けられている。この一対の支持部40の各々は、板形状を成している。一対の支持部40の各々は、上述した立体構造物Sとは別部材にて構成されたものが接着等によって立体構造物Sに組付けられていてもよいし、立体構造物Sと一体的に成形されていてもよい。なお、一対の支持部40の材質は、必ずしも立体構造物Sと同じ材質である必要はなく、当該立体構造物Sの材質と異なる材質のものであってもよい。
ここで、本実施の形態に係る緩衝材1Bにおいては、幅方向であるX方向および奥行き方向であるY方向にそれぞれ5つの単位構造体Uが並んで配置されており、高さ方向であるZ方向に3つの単位構造体Uが並んで配置されている。なお、図11においては、理解を容易とするために、図中に示すX方向、Y方向およびZ方向の各々に位置する端面に濃い色を付して他の外表面と区別している。
本実施の形態に係る緩衝材1Bにあっては、立体構造物Sで構成された緩衝領域のY方向に位置する一対の端部うちの一方の端部の所定位置に、複数の異形部30が設けられている。この複数の異形部30は、立体構造物Sが有する複数の開口部のうちの特定の開口部を閉塞するように設けられている。
すなわち、立体構造物Sの構造の基準がシュワルツP構造である場合には、立体構造物Sの端部には、行列状に位置する互いに独立した複数の第1開口部17aと、これら複数の第1開口部17aを取り囲む格子状の単一の第2開口部17bとが位置することになる。上述した複数の異形部30は、このうちの複数の第1開口部17aを閉塞するようにカバー状に設けられている。
ここで、複数の異形部30の各々は、緩衝材1Bが荷重を受けることで緩衝機能を発揮する軸方向(すなわちZ方向)と交差する方向に厚みを有する板形状を成している。すなわち、複数の異形部30の各々は、XZ面方向に沿って延在している。そのため、緩衝材1Bのうちの当該複数の異形部30が設けられた部位(すなわち、緩衝領域のY方向に位置する一対の端部うちの一方の端部)においては、緩衝材1Bのその他の部位に比べて圧縮剛性が高められることになる。
したがって、このように構成した場合にも、緩衝領域に局所的な高剛性部を形成することが可能になるため、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。また、上記の構成を採用することにより、複数の異形部30が一種のカバーとして機能することにもなり、当該部分を介して緩衝材1Bの内部に異物が侵入してしまうことが抑制可能になるという副次的な効果も得られる。
なお、本実施の形態に係る緩衝材1Bにおいては、緩衝領域のY方向に位置する一対の端部のうちの一方の端部にのみカバー状の複数の異形部30を設けた場合を例示したが、Y方向に位置する他方の端部、および、X方向に位置する一対の端部のうち、それらの少なくともいずれかに、さらにカバー状の複数の異形部30を設けることとしてもよい。
図13および図14は、図11に示す緩衝材の端部の第1ないし第9構成例を示す図である。次に、これら図13および図14を参照して、緩衝材1Bの端部の取り得る構成の幾つかを第1ないし第9構成例として説明する。なお、当該端部の構成を種々変更することにより、緩衝性能を種々変更することができる。
上述した実施の形態2に係る緩衝材1Bにおいては、当該緩衝材1Bの端部の構成として、複数の第1開口部17aをそのまま露出させた構成(当該構成が、図13および図14に示す第1構成例に該当する)と、板形状(より厳密には平板状)の異形部30を設けることによって複数の第1開口部17aを閉塞させた構成(当該構成が、図14に示す第9構成例に該当する)とを含むものとしていたが、複数の第1開口部17aを異形部30によって閉塞させる場合にも、異形部30の形状を種々変更できる。
たとえば図13に示す第2ないし第5構成例のように、異形部30の厚みを変更すれば、これに応じて当該端部における圧縮剛性に変化をもたせることができる。
すなわち、第3構成例のように厚みを中程度に構成した異形部30bを基準とすれば、第2構成例のように厚みを相対的に小さくした異形部30aとすることにより、端部の圧縮剛性を相対的に低くすることができ、第1構成例のように異形部自体を設けないことにより、さらに端部の圧縮剛性を低くすることができる。一方、第4構成例のように厚みを相対的に大きくした異形部30cとすることにより、端部の圧縮剛性を相対的に高くすることができる。
このように異形部30の厚みを増減させた場合には、これに応じて圧縮剛性も増減することになる。しかしながら、その場合、緩衝材全体としての重量も異形部30の厚みの増減に応じて増減することになるため、単に異形部30の厚みを増やせば、重量の増加に繋がってしまう。その点、たとえば第5構成例のように、厚みに変化をもたせることによって一部において相対的に厚みを大きくしつつも一部において厚みを相対的に小さくした異形部30dとすることにより、重量の増加を抑制しつつ圧縮剛性を相対的に大きくすることも可能である。
また、たとえば図14に示す第6ないし第9構成例のように、異形部30の形状を変更すれば、これに応じて当該端部における圧縮剛性に変化をもたせることができる。
すなわち、第6構成例のように断面視波板状の異形部30eとすることにより、第1構成例のように異形部自体を設けない場合よりも端部の圧縮剛性を高めることができ、第7構成例のように湾曲凸板状の異形部30fとすることにより、第6構成例のように断面視波板状の異形部30eとした場合よりも端部の圧縮剛性をさらに高めることができる。また、第8構成例のように湾曲凹板状の異形部30gとすることにより、第7構成例のように湾曲凸板状の異形部30fとした場合よりも端部の圧縮剛性をさらに高めることができ、加えて、第9構成例のように平板状の異形部30hとすることにより、第8構成例のように湾曲板凹状の異形部30gとした場合よりもさらに端部の圧縮剛性を高めることができる。
このように異形部30の形状を変更させた場合には、これに応じて圧縮剛性も変化することになる。しかしながら、その場合、緩衝材全体としての重量も異形部30の形状の変更に応じて変化することになる。なお、重量に関してみた場合には、第1構成例、第9構成例、第7および第8構成例、第6構成例の順で重量が増加することになる。
以上の説明から明らかなように、緩衝材の端部の構成をたとえば上述した第1ないし第9構成例の如くに種々変更することとすれば、緩衝性能に様々なバリエーションをもたせることが可能になるため、より様々な用途への当該緩衝材の適用が可能になる。
(第4変形例)
図15は、第4変形例に係る緩衝材の斜視図である。以下、この図15を参照して、上述した実施の形態2に基づいた第4変形例に係る緩衝材1B1について説明する。
上述した実施の形態2においては、緩衝材1Bの所定の端部において、当該端部に位置する複数の第1開口部17aのすべてをカバー状の異形部30によって閉塞した場合を例示したが、当該端部に位置する複数の第1開口部17aのすべてを当該異形部30によって閉塞する必要は必ずしもなく、これを一部に限定することで、緩衝性能を部位毎に様々に変更させることも可能である。以下に示す第4変形例は、その一例を示したものである。
図15に示すように、第4変形例に係る緩衝材1B1においては、幅方向であるX方向に8つの単位構造体Uが並んで配置されており、奥行き方向であるY方向に4つの単位構造体Uが並んで配置されており、高さ方向であるZ方向に3つの単位構造体Uが並んで配置されている。なお、図15においては、理解を容易とするために、図中に示すX方向、Y方向およびZ方向の各々に位置する端面に濃い色を付して他の外表面と区別している。
ここで、本実施の形態に係る緩衝材1B1にあっては、立体構造物Sで構成された緩衝領域がX方向において4つの区域SC1〜SC4に区分されており、これら4つの区域SC1〜SC4毎に、そのY方向に位置する一対の端部うちの一方の端部の構成が相違している。
すなわち、区域SC1の上記一方の端部においては、合計で6つの第1開口部17aのすべてが開放されており、区域SC2の上記一方の端部においては、上段および下段の合計で4つの第1開口部17aが開放されているとともに、中段の2つの第1開口部17aが異形部30によって閉塞されており、区域SC3の上記一方の端部においては、中段の2つの第1開口部17aが開放されているとともに、上段および下段の合計で4つの第1開口部17aが異形部30によって閉塞されており、区域SC4の上記一方の端部においては、合計で6つの第1開口部17aのすべてが異形部30によって閉塞されている。
したがって、このように異形部30によって閉塞する開口部を種々選択することにより、緩衝領域に圧縮剛性が異なる領域を部位毎にさらには段階的に形成することが可能になる。そのため、このような構成を採用することにより、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。
(第5および第6変形例)
図16および図17は、それぞれ第5および第6変形例に係る緩衝材の斜視図である。以下、これら図16および図17を参照して、上述した実施の形態2に基づいた第5および第6変形例に係る緩衝材1B2,1B3について説明する。
図16に示すように、第5変形例に係る緩衝材1B2は、上述した実施の形態2に係る緩衝材1Bとは異なり、当該緩衝材1B2が荷重を受けることで緩衝機能を発揮する高さ方向(図中に示すZ方向)の一方の端部にのみ支持部40が設けられてなるものである。すなわち、第5変形例に係る緩衝材1B2においては、複数の開口部を有する立体構造物Sの端面が、上記高さ方向の他方の端部においてそのまま露出している。
図17に示すように、第6変形例に係る緩衝材1B3は、上述した実施の形態2に係る緩衝材1Bとは異なり、当該緩衝材1B3が荷重を受けることで緩衝機能を発揮する高さ方向(図中に示すZ方向)の一対の端部のいずれにも支持部40(図11等参照)が設けられていないものである。すなわち、第6変形例に係る緩衝材1B3においては、複数の開口部を有する立体構造物Sの端面が、上記高さ方向の両端部においていずれもそのまま露出している。
一方で、これら第5および第6変形例に係る緩衝材1B2,1B3においても、上述した実施の形態2に係る緩衝材1Bの場合と同様に、立体構造物Sで構成された緩衝領域のY方向に位置する一対の端部うちの一方の端部の所定位置に、複数の異形部30が設けられている。したがって、このように構成した場合にも、上述した実施の形態2の場合と同様に、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。
(実施の形態3)
図18は、実施の形態3に係る緩衝材の斜視図である。また、図19は、図18中に示すXIX−XIX線に沿った緩衝材の断面図である。以下、これら図18および図19を参照して、本実施の形態に係る緩衝材1Cについて説明する。なお、本実施の形態に係る緩衝材1Cは、上述した実施の形態2に係る緩衝材1Bと比較した場合に、主として異形部30の構成が異なるものである。
図18および図19に示すように、本実施の形態に係る緩衝材1Cにあっては、立体構造物Sで構成された緩衝領域のY方向に位置する一対の端部うちの一方の端部の所定位置に、単一の異形部30が設けられている。この単一の異形部30は、立体構造物Sが有する複数の開口部のうちの特定の開口部を閉塞するように設けられている。
すなわち、上述した実施の形態2の場合と同様に、立体構造物Sの端部には、行列状に位置する互いに独立した複数の第1開口部17aと、この複数の第1開口部17aを取り囲む格子状の単一の第2開口部17bとが位置することになるが、上述した単一の異形部30は、このうちの単一の第2開口部17bを閉塞するようにカバー状に設けられている。
ここで、単一の異形部30は、緩衝材1Cが荷重を受けることで緩衝機能を発揮する軸方向(すなわちZ方向)と交差する方向に厚みを有する板形状を成している。すなわち、単一の異形部30は、XZ面方向に沿って延在している。そのため、緩衝材1Cのうちの当該単一の異形部30が設けられた部位(すなわち、緩衝領域のY方向に位置する一対の端部うちの一方の端部)においては、緩衝材1Cのその他の部位に比べて圧縮剛性が高められることになる。
したがって、このように構成した場合にも、緩衝領域に局所的な高剛性部を形成することが可能になるため、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。また、上記の構成を採用することにより、単一の異形部30が一種のカバーとして機能することにもなり、当該部分を介して緩衝材の内部に異物が侵入してしまうことが抑制可能になるという副次的な効果も得られる。
なお、本実施の形態に係る緩衝材1Cにおいては、緩衝領域のY方向に位置する一対の端部のうちの一方の端部にのみカバー状の単一の異形部30を設けた場合を例示したが、Y方向に位置する他方の端部、および、X方向に位置する一対の端部のうち、それらの少なくともいずれかに、さらにカバー状の単一の異形部30を設けることとしてもよい。
(実施の形態4)
図20は、実施の形態4に係る緩衝材の斜視図である。また、図21は、図20中に示すXXI−XXI線に沿った緩衝材の断面図である。以下、これら図20および図21を参照して、本実施の形態に係る緩衝材1Dについて説明する。なお、本実施の形態に係る緩衝材1Dは、上述した実施の形態2に係る緩衝材1Bと比較した場合に、主として異形部30の構成が異なるものである。
図20および図21に示すように、本実施の形態に係る緩衝材1Dにあっては、立体構造物Sで構成された緩衝領域のY方向に位置する一対の端部うちの一方の端部の所定位置に、単一の異形部30が設けられている。この単一の異形部30は、立体構造物Sが有する複数の開口部のすべてを閉塞するように設けられている。
すなわち、上述した実施の形態2の場合と同様に、立体構造物Sの端部には、行列状に位置する互いに独立した複数の第1開口部17aと、この複数の第1開口部17aを取り囲む格子状の単一の第2開口部17bとが位置することになるが、上述した単一の異形部30は、これら複数の第1開口部17aおよび単一の第2開口部17bのすべてを閉塞するようにカバー状に設けられている。
ここで、単一の異形部30は、緩衝材1Dが荷重を受けることで緩衝機能を発揮する軸方向(すなわちZ方向)と交差する方向に厚みを有する板形状を成している。すなわち、単一の異形部30は、XZ面方向に沿って延在している。そのため、緩衝材1Dのうちの当該単一の異形部30が設けられた部位(すなわち、緩衝領域のY方向に位置する一対の端部うちの一方の端部)においては、緩衝材1Dのその他の部位に比べて圧縮剛性が高められることになる。
したがって、このように構成した場合にも、緩衝領域に局所的な高剛性部を形成することが可能になるため、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。また、上記の構成を採用することにより、単一の異形部30が一種のカバーとして機能することにもなり、当該部分を介して緩衝材の内部に異物が侵入してしまうことが抑制可能になるという副次的な効果も得られる。
なお、本実施の形態に係る緩衝材1Dにおいては、緩衝領域のY方向に位置する一対の端部のうちの一方の端部にのみカバー状の単一の異形部30を設けた場合を例示したが、Y方向に位置する他方の端部、および、X方向に位置する一対の端部のうち、それらの少なくともいずれかに、さらにカバー状の単一の異形部30を設けることとしてもよい。
(実施の形態5)
図22は、実施の形態5に係る緩衝材の斜視図である。また、図23は、図22に示す緩衝材の単位構造体の斜視図である。以下、これら図22および図23を参照して、本実施の形態に係る緩衝材1Eについて説明する。
図22および図23に示すように、緩衝材1Eは、複数の単位構造体Uを有する立体構造物Sを含んでいる。複数の単位構造体Uの各々は、並行する一対の平面によって外形が規定される壁10にて形作られた立体的形状を有している。
ここで、図22および図23においては、理解を容易とするために、参照符号Uを厳密な意味においては単位構造体に付しておらず、当該単位構造体が占有する空間である直方体形状の単位空間に付している。なお、図23に示すように、単位構造体Uの幅方向(図中に示すX方向)の寸法をLxとし、単位構造体Uの奥行き方向(図中に示すY方向)の寸法をLyとし、単位構造体Uの高さ方向(図中に示すZ方向)の寸法をLzとする。
複数の単位構造体Uは、幅方向、奥行き方向および高さ方向の各々に沿って規則的にかつ連続的に繰り返し配列されている。本実施の形態に係る緩衝材1Eにおいては、幅方向であるX方向および奥行き方向であるY方向にそれぞれ6つの単位構造体Uが並んで配置されており、高さ方向であるZ方向に2つの単位構造体Uが並んで配置されている。
本実施の形態に係る緩衝材1Eは、高さ方向(図中に示すZ方向)において緩衝機能が発揮されるように企図されたものである。そのため、緩衝材1Eが荷重を受けることで緩衝機能を発揮する方向である軸方向は、上述した高さ方向に合致することになる。なお、幅方向、奥行き方向および高さ方向における単位構造体Uの繰り返しの数は、特にこれが制限されるものではなく、これら3つの方向のうちの少なくとも一方向に沿って2つ以上配列されていればよい。
上述したように、複数の単位構造体Uの各々は、壁10によって形作られた立体的形状を有している。そのため、これら複数の単位構造体Uが互いに連続して接続されることにより、立体構造物Sもまた、これら壁10の集合体によって構成されている。
ここで、緩衝材1Eに含まれる立体構造物Sは、幾何学的な面構造を基準にこれに厚みを付けた構造を有している。本実施の形態に係る緩衝材1Eにおいては、当該面構造は、内部に空洞を有する多面体の一種であるオクテット構造である。
上述した寸法Lx,Ly,Lzは、特に制限されるものではなく、種々変更が可能であるが、本実施の形態においては、これらLx,Ly,Lzが、Lx=Ly=Lz/2の条件を満たしている。なお、これらLx,Ly,Lzのうち、緩衝機能が発揮されることが企図された軸方向である高さ方向の寸法LzをL1とし、残る幅方向の寸法Lxおよび奥行き方向の寸法Lyのうちの長い方をL2とした場合に、これら寸法L1,L2が、1.1≦L1/L2≦4.0の条件を満たしていれば、高い圧縮剛性を得ることができ、0.1≦L1/L2≦0.9の条件を満たしていれば、圧縮剛性が低くなることで高い変形能を得ることができる。ただし、上述した寸法L1,L2が、これらの条件を満たしている必要は必ずしもなく、これらの条件を満たすか否かは任意である。
緩衝材1Eは、上述した壁10に加えて、異形部30を有している。この異形部30は、単位構造体Uを規定する壁10には該当しない部位であり、当該壁10とは区別されるものである。
異形部30は、上述した立体構造物Sのうちの単位構造体Uが配置された領域である緩衝領域(本実施の形態においては、緩衝材1Eの全体が緩衝領域に該当する)に局所的に設けられている。なお、ここではその詳細な説明は省略するが、異形部30は、上述した実施の形態1の場合と同様に、角筒状の形状を有しており、緩衝材1Eを平面視した場合の中央部に設けられている。
この異形部30は、当該異形部30の隣接する部分の単位構造体Uと一体化するように接続されている。そのため、緩衝材1Eのうちのこの異形部30が設けられた部位においては、緩衝材1Eのその他の部位(すなわち、異形部30が設けられていない部位)に比べて圧縮剛性が高められることになる。
したがって、本実施の形態に係る緩衝材1Eの如く、単位構造体Uを規定する壁10には該当しない異形部30を立体構造物Sのうちの単位構造体Uが配置された領域である緩衝領域に局所的に設ける構成を採用することにより、上述した実施の形態1の場合と同様に、軽量で緩衝性能に優れた緩衝材とすることができる。
なお、並行する一対の平面によって外形が規定される壁にて形作られた立体的形状としては、上述したオクテット構造を基準にこれに厚みを付けたものの他にも、キュービック構造を基準にこれに厚みを付けたものやキュービックオクテット構造を基準にこれに厚みを付けたもの等がある。したがって、これらキュービック構造やキュービックオクテット構造を基準にこれに厚みを付けた立体構造物を緩衝領域として含む緩衝材において、上述した如くの異形部を局所的に設けることとしてもよい。
また、上述した実施の形態1の場合と同様に、異形部を設ける位置や形状、数等を種々変更することも当然に可能である。その場合には、軽量化を図りつつ、緩衝材の全体にわたって概ね同様の緩衝性能が得られるように構成したり、緩衝材の部位毎に異なる緩衝性能が得られるように構成したりすることが可能になる。
(実施の形態6)
図24は、実施の形態6に係る緩衝材の斜視図である。以下、この図24を参照して、本実施の形態に係る緩衝材1Fについて説明する。なお、本実施の形態に係る緩衝材1Fは、上述した実施の形態5に係る緩衝材1Eと比較した場合に、主として異形部30の構成が異なるものである。
図24に示すように、本実施の形態に係る緩衝材1Fは、複数の単位構造体を有する立体構造物Sを含んでおり、当該立体構造物Sは、並行する一対の平面によって外形が規定される壁10にて形作られている。本実施の形態に係る緩衝材1Fにおける立体構造物Sの構造の基準は、オクテット構造である。
緩衝材1Fは、高さ方向(図中に示すZ方向)において緩衝機能が発揮されるように企図されたものであり、当該高さ方向の端部には、上述した立体構造物Sを挟み込むように一対の支持部40が設けられている。この一対の支持部40の各々は、板形状を成している。一対の支持部40の各々は、上述した立体構造物Sとは別部材にて構成されたものが接着等によって立体構造物Sに組付けられていてもよいし、立体構造物Sと一体的に成形されていてもよい。
ここで、本実施の形態に係る緩衝材1Fにおいては、幅方向であるX方向および奥行き方向であるY方向にそれぞれ5つの単位構造体Uが並んで配置されており、高さ方向であるZ方向に2つの単位構造体Uが並んで配置されている。なお、図24においては、理解を容易とするために、図中に示すX方向、Y方向およびZ方向の各々に位置する端面に濃い色を付して他の外表面と区別している。
本実施の形態に係る緩衝材1Fにあっては、立体構造物Sで構成された緩衝領域のY方向に位置する一対の端部うちの一方の端部の所定位置に、複数の異形部30が設けられている。この複数の異形部30は、立体構造物Sが有する複数の開口部のうちの特定の開口部を閉塞するように設けられている。
すなわち、立体構造物Sの構造の基準がオクテット構造である場合には、立体構造物Sの端部には、斜格子状に配列された互いに独立した複数の開口部17が位置することになる。上述した複数の異形部30は、このうちの一部の開口部17を閉塞するようにカバー状に設けられている。
ここで、複数の異形部30の各々は、緩衝材1Fが荷重を受けることで緩衝機能を発揮する軸方向(すなわちZ方向)と交差する方向に厚みを有する板形状を成している。すなわち、複数の異形部30の各々は、XZ面方向に沿って延在している。そのため、緩衝材1Fのうちの当該複数の異形部30が設けられた部位(すなわち、緩衝領域のY方向に位置する一対の端部うちの一方の端部)においては、緩衝材1Fのその他の部位に比べて圧縮剛性が高められることになる。
したがって、このように構成した場合にも、緩衝領域に局所的な高剛性部を形成することが可能になるため、各種の用途に使用することが可能な軽量で緩衝性能に優れた緩衝材とすることができる。また、上記の構成を採用することにより、複数の異形部30が一種のカバーとして機能することにもなり、当該部分を介して緩衝材1Fの内部に異物が侵入してしまうことが抑制可能になるという副次的な効果も得られる。
なお、本実施の形態に係る緩衝材1Fにおいては、緩衝領域のY方向に位置する一対の端部のうちの一方の端部にのみカバー状の複数の異形部30を設けた場合を例示したが、Y方向に位置する他方の端部、および、X方向に位置する一対の端部のうち、それらの少なくともいずれかに、さらにカバー状の複数の異形部30を設けることとしてもよい。
また、上述した実施の形態2ないし4および上述した第4ないし第6変形例において示したように、緩衝材の端部に位置する複数の開口部のうちのいずれにカバー状の異形部を設けるかや、異形部を設ける場合にカバー状の異形部の厚みや形状をどのようにするか等は、種々これを変更することができる。
(実施の形態7)
図25は、実施の形態7に係る靴底およびこれを備えた靴の斜視図である。図26は、図25に示す靴底の側面図である。図27は、図25に示す靴底の構成を示す図26中の矢印XXVII方向から見た模式図である。また、図28は、図25に示す靴底が具備する緩衝材を図27中の矢印XXVIII方向から見た場合の斜視図である。以下、これら図25ないし図28を参照して、本実施の形態に係る靴底110Aおよびこれを備えた靴100について説明する。なお、本実施の形態に係る靴底110Aは、上述した実施の形態2に係る緩衝材1Bならびに上述した第4変形例に係る緩衝材1B1に近似の構成の緩衝材1Gを具備してなるものである。
図25に示すように、靴100は、靴底110Aと、アッパー120とを備えている。靴底110Aは、足の足裏を覆う部材であり、略偏平な形状を有している。アッパー120は、挿入された足の甲側の部分の全体を少なくとも覆う形状を有しており、靴底110Aの上方に位置している。
アッパー120は、アッパー本体121と、シュータン122と、シューレース123とを有している。このうち、シュータン122およびシューレース123は、いずれもアッパー本体121に固定または取り付けられている。
アッパー本体121の上部には、足首の上部と足の甲の一部とを露出させる上側開口部が設けられている。一方、アッパー本体121の下部には、一例としては、靴底110Aによって覆われる下側開口部が設けられており、他の例としては、当該アッパー本体121の下端が袋縫いされること等で底部が形成されている。
シュータン122は、アッパー本体121に設けられた上側開口部のうち、足の甲の一部を露出させる部分を覆うようにアッパー本体121に縫製、溶着あるいは接着またはこれらの組み合わせ等によって固定されている。アッパー本体121およびシュータン122としては、たとえば織地や編地、不織布、合成皮革、樹脂等が用いられ、特に通気性や軽量性が求められる靴においては、ポリエステル糸を編み込んだダブルラッセル経編地が利用される。
シューレース123は、アッパー本体121に設けられた足の甲の一部を露出させる上側開口部の周縁を足幅方向において互いに引き寄せるための紐状の部材からなり、当該上側開口部の周縁に設けられた複数の孔部に挿通されている。アッパー本体121に足が挿入された状態においてこのシューレース123を締め付けることにより、アッパー本体121を足に密着させることが可能になる。
図25ないし図27に示すように、靴底110Aは、ミッドソール111と、アウトソール112と、緩衝材1Gとを有している。ミッドソール111は、靴底110Aの上部に位置しており、アッパー120に接合されている。アウトソール112は、その下面に接地面112a(図26参照)を有しており、靴底110Aの下部に位置している。緩衝材1Gは、これらミッドソール111とアウトソール112との間の所定位置に介装されている。
ミッドソール111は、適度な強度を有しつつも緩衝性に優れていることが好ましく、当該観点から、ミッドソール111としては、たとえば樹脂製またはゴム製のフォーム材とすることができ、特に好適にはエチレン−酢酸ビニル共重合体(EVA)等の熱可塑性樹脂、ポリウレタン(PU)等の熱硬化性樹脂、ブタジエンゴム等からなるフォーム材とすることができる。
アウトソール112は、耐摩耗性やグリップ性に優れていることが好ましく、当該観点から、アウトソール112としては、たとえばゴム製とすることができる。なお、アウトソール112の下面である接地面112aには、上述したグリップ性を高める観点から、トレッドパターンが付与されていてもよい。
図26および図27に示すように、靴底110Aは、平面視した状態における長軸方向である前後方向(図26中の左右方向、図27中の上下方向)に沿って、足の足趾部と踏付け部とを支持する前足部R1、足の踏まず部を支持する中足部R2、および、足の踵部を支持する後足部R3に区画される。また、図27に示すように、靴底110Aは、平面視した状態における長軸方向と交差する方向である足幅方向に沿って、足のうちの解剖学的正位における正中側(すなわち正中に近い側)である内足側の部分(図中に示すS1側の部分)と、足のうちの解剖学的正位における正中側とは反対側(すなわち正中に遠い側)である外足側の部分(図中に示すS2側の部分)とに区画される。
図27に示すように、靴底110Aの前足部R1のうちの内足側(S1側)の部分には、足の母趾を支持する部位Q1が含まれている。また、靴底110Aの前足部R1のうちの外足側(S2側)の部分には、足の小趾を支持する部位Q2が含まれている。一方、靴底110Aの内足側(S1側)および外足側(S2側)に跨がる部分の後足部R3には、足の踵骨を支持する部位Q3が含まれている。
ここで、本実施の形態に係る靴100にあっては、ミッドソール111に所定形状の切り欠き部が設けられており、当該切り欠き部に緩衝材1Gが収容されることにより、緩衝材1Gが靴底110Aの厚み方向においてミッドソール111とアウトソール112とによって挟み込まれた状態で固定されている。
具体的には、図26および図27に示すように、ミッドソール111には、中足部R2の後足部R3寄りの部分および後足部R3のすべての部分に対応した位置に上述した切り欠き部が形成されており、当該切り欠き部を埋め込むように平面視略D字状の外形を有する緩衝材1Gが配置されている。これにより、緩衝材1Gの端部の一部は、靴底110Aの縁部のうち、中足部R2の内足側の後方の縁部、後足部R3の内足側の縁部、後足部R3の後方側の縁部、後足部R3の外足側の縁部、および、中足部R2の外足側の後方の縁部に位置している。なお、図27においては、理解を容易とするために、靴底110Aを平面視した場合における緩衝材1Gの配置領域に薄い色を付している。すなわち、緩衝材1Gは、上述した靴底110Aの縁部のみならず、その内側の領域にも緩衝領域を有している。
図25、図26および図28に示すように、緩衝材1Gは、その緩衝領域を構成する立体構造物Sの基準がシュワルツP構造である。そのため、図28に示すように、当該緩衝材1Gの端部には、前述したように、行列状に位置する互いに独立した複数の第1開口部17aと、これら複数の第1開口部17aを取り囲む格子状の単一の第2開口部17bとが位置している。なお、緩衝材1Gにおいては、単位構造体Uが、幅方向および奥行き方向(すなわち水平方向)の双方において複数配列されている反面、高さ方向(すなわちZ方向)においては1つのみ配列されている。
緩衝材1Gの材質としては、上述した実施の形態1において説明したように、特にこれが制限されるものではないが、たとえば樹脂材料またはゴム材料とすることができ、特に好適にはエチレン−酢酸ビニル共重合体(EVA)等の熱可塑性樹脂、ポリウレタン(PU)等の熱硬化性樹脂、ブタジエンゴム等とすることができる。また、オレフィン系ポリマー、アミド系ポリマー、エステル系ポリマー、ウレタン系ポリマー、スチレン系ポリマー、アクリル系ポリマー等のポリマー組成物とすることもできる。
緩衝材1Gの立体構造物Sを構成する壁10の厚みとしては、特にこれに制限されるものではないが、好ましくは、0.1mm以上10mm以下とされ、さらに好ましくは、1mm以上5mm以下とされる。
ここで、図27に示すように、靴底110Aの縁部に沿って位置する緩衝材1Gの端部は、その構成の差に起因して3つの区域SC1〜SC3に区分される。より具体的には、区域SC1は、中足部R2の内足側の後方の縁部、および、後足部R3の内足側の前方の縁部に対応しており、区域SC2は、後足部R3の内足側の後方の縁部に対応しており、区域SC3は、後足部R3の外足側の縁部、および、中足部R2の外足側の後方の縁部に対応している。
図28に示すように、区域SC1においては、緩衝材1Gの端部に位置する複数の第1開口部17aの各々が、平板状の異形部30h(図14に示した第9構成例参照)によって閉塞されている。また、区域SC2においては、緩衝材1Gの端部に位置する複数の第1開口部17aの各々が、湾曲凸板状の異形部30f(図14に示した第7構成例参照)によって閉塞されている。一方、区域SC3においては、緩衝材1Gの端部に位置する複数の第1開口部17aの各々が、閉塞されることなくそのまま露出している。なお、図26においては、理解を容易とするために、緩衝材1Gの端部のうちの支持部40を除く部分の端面にのみ濃い色を付している。
したがって、このように構成することにより、緩衝材1Gの区域SC1における圧縮剛性は、緩衝材1Gの区域SC2および区域SC3における圧縮剛性の各々よりも高くなり、緩衝材1Gの区域SC2における圧縮剛性は、緩衝材1Gの区域SC3における圧縮剛性よりも高くなる。すなわち、緩衝材1Gの端部における圧縮剛性を区域ごとに変更することができ、相対的に、区域SC3、区域SC2、区域SC1の順で圧縮剛性を高めることができる。
そのため、靴底110Aのうち、足の踵骨を支持する部位Q3の周囲において、中足部R2の内足側の後方の部分および後足部R3の内足側の部分の圧縮剛性が相対的に高くなるとともに、中足部R2の外足側の後方の部分および後足部R3の外足側の部分の圧縮剛性が相対的に低くなる。
このように構成することにより、着地時において踵部が必要以上に内側に倒れ込んでしまういわゆるオーバープロネーションの発生を抑制することが可能になる。すなわち、オーバープロネーションが発生し易い人が本実施の形態に係る靴底110Aを備えた靴100を装着することにより、中足部R2の内足側の後方の部分および後足部R3の内足側の部分において足裏を安定的に支持することが可能になるため、これに伴ってミッドソール111に作用する圧力を分散させることが可能となってミッドソール111に過度な変形が発生することが抑制でき、結果としてオーバープロネーションの発生を抑制することができる。
また、このように構成することにより、上述のとおり中足部R2の内足側の後方の部分および後足部R3の内足側の部分において足裏を安定的に支持することが可能になるため、これに伴ってミッドソール111に作用する圧力を分散させることが可能となってミッドソール111に過度な変形が発生することが抑制できることになり、外反偏平足の人が本実施の形態に係る靴底110Aを備えた靴100を装着することにより、着地時において足の内足側の部分に負担が集中してしまうことを回避することができる。
一方で、上記のように構成することにより、中足部R2の外足側の後方の部分および後足部R3の外足側の部分において着地時に緩衝材1Gがより大きく変形することにより、着地時に足裏に加わる衝撃を大幅に緩和させることが可能になる。
したがって、本実施の形態に係る靴底110Aおよびこれを備えた靴100とすることにより、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
なお、緩衝材1Gは、上述した軸方向であるその高さ方向(図中に示すZ方向)が靴底110Aの接地面112aと直交するように配置されていてもよい。このように構成することにより、着地時において足裏および地面から靴底110Aに付与される荷重は、緩衝材1Gが大きい変形量をもって変形することによって吸収され、靴底110Aから足裏に対して印加される荷重が減少し、高い緩衝性能が得られることになる。
(第7および第8変形例)
図29および図30は、それぞれ第7および第8変形例に係る靴底が具備する緩衝材の斜視図である。以下、これら図29および図30を参照して、上述した実施の形態7に基づいた第7および第8変形例に係る靴底に具備された緩衝材1G1,1G2について説明する。なお、これら第7および第8変形例に係る靴底は、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図29に示すように、第7変形例に係る靴底に具備された緩衝材1G1は、上述した実施の形態7に係る靴底110Aに具備された緩衝材1Gと同様に、靴底のうちの中足部R2の後足部R3寄りの部分および後足部R3のすべての部分に配置されるように、当該緩衝材1Gとほぼ同様の大きさの平面視略D字状の外形を有している。その一方で、緩衝材1G1においては、上述した緩衝材1Gの場合とは異なり、単位構造体Uが高さ方向(すなわちZ方向)において2つ配列されている。
ここで、靴底の縁部に沿って位置する緩衝材1G1の端部は、その構成の差に起因して4つの区域SC1〜SC4に区分される。より具体的には、区域SC1は、中足部R2の内足側の後方の縁部に対応しており、区域SC2は、後足部R3の内足側の前方の縁部に対応しており、区域SC3は、後足部R3の内足側の後方の縁部に対応しており、区域SC4は、後足部R3の外足側の縁部、および、中足部R2の外足側の後方の縁部に対応している。
区域SC1においては、緩衝材1G1の端部に位置する複数の第1開口部17aの各々が、閉塞されることなくそのまま露出している。一方、区域SC2においては、緩衝材1G1の端部に位置する複数の第1開口部17aの各々が、平板状の異形部30h(図14に示した第9構成例参照)によって閉塞されている。また、区域SC3においては、緩衝材1G1の端部に位置する複数の第1開口部17aの各々が、湾曲凸板状の異形部30f(図14に示した第7構成例参照)によって閉塞されている。さらに、区域SC4においては、緩衝材1G1の端部に位置する複数の第1開口部17aの各々が、閉塞されることなくそのまま露出している。
したがって、このように構成することにより、緩衝材1G1の区域SC2における圧縮剛性は、緩衝材1G1の区域SC1、区域SC3および区域SC4における圧縮剛性の各々よりも高くなり、緩衝材1G1の区域SC3における圧縮剛性は、緩衝材1G1の区域SC1および区域SC4における圧縮剛性よりも高くなり、緩衝材1G1の区域SC1における圧縮剛性と緩衝材1G1の区域SC4における圧縮剛性とは、概ね同程度となる。すなわち、緩衝材1G1の端部における圧縮剛性を区域ごとに変更することができ、相対的に、区域SC1および区域SC4、区域SC3、区域SC2の順で圧縮剛性を高めることができる。
そのため、靴底のうち、足の踵骨を支持する部位Q3の周囲において、後足部R3の内足側の部分の圧縮剛性が相対的に高くなるとともに、中足部R2の内足側の前方の部分、中足部R2の外足側の後方の部分および後足部R3の外足側の部分の圧縮剛性が相対的に低くなる。
したがって、このように構成した場合にも、上述した実施の形態7において説明した効果とほぼ同様の効果を得ることができ、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
図30に示すように、第8変形例に係る靴底に具備された緩衝材1G2は、区域SC2の上段に位置する複数の第1開口部17aが、平板状の異形部30hによって閉塞されることなくそのまま露出している点においてのみ、上述した第7変形例に係る靴底に具備された緩衝材1G1と構成が相違している。
このように構成した場合には、区域SC2の下段に平板状の異形部30hが設けられていることにより、当該区域SC2における圧縮剛性が相対的に高められる一方、区域SC2の上段に位置する複数の第1開口部17aが開放されていることにより、当該区域SC2の上部の圧縮剛性が相対的に低められることになる。したがって、当該構成を採用することにより、後足部R3の内足側の部分において足裏を安定的に支持することが可能になるとともに、その足当たりをも改善することが可能になる。
(実施の形態8)
図31は、実施の形態8に係る靴底の構成を示す模式図である。以下、この図31を参照して、本実施の形態に係る靴底110Bおよびこれに具備された緩衝材1G,1Hについて説明する。なお、本実施の形態に係る靴底110Bは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図31に示すように、靴底110Bは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gに加え、さらに緩衝材1Hを具備している。緩衝材1Gは、上述した実施の形態7の場合と同様に、中足部R2の後足部R3寄りの部分および後足部R3のすべての部分に配置されている。一方、緩衝材1Hは、前足部R1の中足部R2寄りの部分および中足部R2の前足部R1寄りの部分に配置されている。
ミッドソール111には、前足部R1の中足部R2寄りの部分および中足部R2の前足部R1寄りの部分に対応した位置に切り欠き部が形成されており、当該切り欠き部を埋め込むように平面視略四角形状の外形を有する緩衝材1Hが配置されている。これにより、緩衝材1Hの端部の一部は、概ね、靴底110Bの縁部のうち、前足部R1の内足側の後方の縁部、中足部R2の外足側の前方の縁部、および、前足部R1の外足側の後方の縁部に位置している。なお、図31においては、理解を容易とするために、靴底110Bを平面視した場合における緩衝材1G,1Hの配置領域に薄い色を付している。すなわち、緩衝材1Hは、緩衝材1Gと同様に、上述した靴底110Bの縁部のみならず、その内側の領域にも緩衝領域を有している。
ここで、靴底110Bの縁部に沿って位置する緩衝材1Hの端部は、その構成の差に起因して2つの区域SC4,SC5に区分される。より具体的には、区域SC4は、前足部R1の内足側の後方の縁部に対応しており、区域SC5は、中足部R2の外足側の前方の縁部、および、前足部R1の外足側の後方の縁部に対応している。なお、区域SC4および区域SC5は、いずれも緩衝材1Gの区域SC2と同様の構成を有している。
そのため、靴底110Bのうち、足の母趾を支持する部位Q1の周囲において、前足部R1の内足側の後方の部分の圧縮剛性が相対的に高くなるとともに、足の小趾を支持する部位Q2の周囲において、前足部R1の外足側の後方の部分、および、中足部R2の外足側の前方の部分の圧縮剛性が相対的に高くなる。
このように構成することにより、中足部R2の内足側の後方の部分および後足部R3の内足側の部分において足裏を安定的に支持することが可能になるばかりでなく、前足部R1の内足側の後方の部分、ならびに、前足部R1の外足側の後方の部分および中足部R2の外足側の前方の部分において足裏を安定的に支持することが可能になるため、上述した実施の形態7の場合よりもさらに、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
(実施の形態9)
図32は、実施の形態9に係る靴底の構成を示す模式図である。以下、この図32を参照して、本実施の形態に係る靴底110Cおよびこれに具備された緩衝材1Iについて説明する。なお、本実施の形態に係る靴底110Cは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図32に示すように、靴底110Cは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gと異なる構成の緩衝材1Iを具備している。具体的には、緩衝材1Iは、平面視した場合の靴底110Cの全領域(すなわち、前足部R1、中足部R2および後足部R3のすべて)に配置されている。なお、図32においては、理解を容易とするために、靴底110Cを平面視した場合における緩衝材1Iの配置領域に薄い色を付している。すなわち、緩衝材1Iは、後述する靴底110Cの縁部のみならず、その内側の領域にも緩衝領域を有している。
ここで、靴底110Cの縁部に沿って位置する緩衝材1Iの端部は、その構成の差に起因して5つの区域SC1〜SC5に区分される。より具体的には、区域SC1は、前足部R1の内足側の縁部、および、中足部R2の内足側の後方寄りの部分を除く縁部に対応しており、区域SC2は、中足部R2の内足側の後方の縁部、および、後足部R3の内足側の前方の縁部に対応しており、区域SC3は、後足部R3の内足側の後方の縁部に対応しており、区域SC4は、後足部R3の外足側の縁部、および、中足部R2の外足側の後方の縁部に対応しており、区域SC5は、中足部R2の外足側の後方の部分を除く縁部、および、前足部R1の外足側の縁部に対応している。
なお、区域SC1、区域SC3および区域SC5は、いずれも上述した緩衝材1Gの区域SC2と同様の構成を有しており、区域SC2は、上述した緩衝材1Gの区域SC1と同様の構成を有しており、区域SC4は、上述した緩衝材1Gの区域SC3と同様の構成を有している。
そのため、靴底110Cのうち、足の母趾を支持する部位Q1の周囲において、前足部R1の内足側の後方の部分の圧縮剛性が相対的に高くなるとともに、足の小趾を支持する部位Q2の周囲において、前足部R1の外足側の後方の部分、および、中足部R2の外足側の前方の部分の圧縮剛性が相対的に高くなり、足の踵骨を支持する部位Q3の周囲において、後足部R3の内足側の部分の圧縮剛性が相対的に高くなる。
したがって、このように構成した場合にも、上述した実施の形態8の場合と同様に、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
(実施の形態10)
図33は、実施の形態10に係る靴底の構成を示す模式図である。以下、この図33を参照して、本実施の形態に係る靴底110Dおよびこれに具備された緩衝材1Jについて説明する。なお、本実施の形態に係る靴底110Dは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図33に示すように、靴底110Dは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gと異なる構成の緩衝材1Jを具備している。具体的には、緩衝材1Jは、平面視した場合の靴底110Dの全領域(すなわち、前足部R1、中足部R2および後足部R3のすべて)に配置されている。なお、図33においては、理解を容易とするために、靴底110Dを平面視した場合における緩衝材1Jの配置領域に薄い色を付している。すなわち、緩衝材1Jは、後述する靴底110Dの縁部のみならず、その内側の領域にも緩衝領域を有している。
ここで、靴底110Dの縁部に沿って位置する緩衝材1Jの端部は、その構成の差に起因して3つの区域SC1〜SC3に区分される。より具体的には、区域SC1は、前足部R1の内足側の縁部、中足部R2の内足側の縁部、および、後足部R3の内足側の縁部に対応しており、区域SC2は、後足部R3の外足側の縁部、中足部R2の外足側の縁部、および、前足部R1の外足側の後方の縁部に対応しており、区域SC3は、前足部R1の外足側の後方の部分を除く縁部に対応している。
なお、区域SC1および区域SC3は、いずれも上述した緩衝材1Gの区域SC3と同様の構成を有しており、区域SC2は、上述した緩衝材1Gの区域SC1と同様の構成を有している。
そのため、靴底110Dのうち、足の踵骨を支持する部位Q3の周囲において、中足部R2の外足側の後方の部分および後足部R3の外足側の部分の圧縮剛性が相対的に高くなり、足の小趾を支持する部位Q2の周囲において、前足部R1の外足側の後方の部分、および、中足部R2の外足側の前方の部分の圧縮剛性が相対的に高くなる。また、靴底110Dのうち、内足側の部分の圧縮剛性が相対的に低くなる。
このように構成することにより、着地時において踵部が十分には内側に倒れ込まないいわゆるアンダープロネーションの発生を抑制することが可能になる。すなわち、アンダープロネーションが発生し易い人が本実施の形態に係る靴底110Dを備えた靴100を装着することにより、外足側の部分において足裏を安定的に支持することが可能になり、これに伴ってミッドソール111に作用する圧力を分散させることが可能となってミッドソール111に過度な変形が発生することが抑制でき、結果としてアンダープロネーションの発生を抑制することができる。
また、このように構成することにより、上述のとおり外足側の部分において足裏を安定的に支持することが可能になり、これに伴ってミッドソール111に作用する圧力を分散させることが可能となってミッドソール111に過度な変形が発生することが抑制できるため、O脚の人が本実施の形態に係る靴底110Dを備えた靴100を装着することにより、着地時において足の外足側の部分に負担が集中してしまうことを回避することができる。
一方で、上記のように構成することにより、内足側の部分において着地時に緩衝材1Gがより大きく変形することにより、着地時に足裏に加わる衝撃を大幅に緩和させることが可能になる。
したがって、本実施の形態に係る靴底110Dおよびこれを備えた靴100とすることにより、アンダープロネーションが発生し易い人やO脚の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
(実施の形態11)
図34は、実施の形態11に係る靴底の構成を示す模式図である。以下、この図34を参照して、本実施の形態に係る靴底110Eおよびこれに具備された緩衝材1Kについて説明する。なお、本実施の形態に係る靴底110Eは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図34に示すように、靴底110Eは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gと異なる構成の緩衝材1Kを具備している。具体的には、緩衝材1Kは、平面視した場合の靴底110Eの全領域(すなわち、前足部R1、中足部R2および後足部R3のすべて)に配置されている。なお、図34においては、理解を容易とするために、靴底110Eを平面視した場合における緩衝材1Kの配置領域に薄い色を付している。すなわち、緩衝材1Kは、後述する靴底110Eの縁部のみならず、その内側の領域にも緩衝領域を有している。
ここで、緩衝材1Kは、上述した緩衝材1Gとは異なり、靴底110Eの縁部に沿って位置する端部に異形部を有しておらず、平面視した場合における緩衝材1Kのより内側の位置に異形部30を有している。当該異形部30は、緩衝材1Kの単位構造体Uからなる緩衝領域に局所的に設けられており、より具体的には、緩衝材1Kの全体にわたって満遍なく当該異形部30が位置することとなるように、平面視した場合に一方が他方の内側に位置する二重環状に配置されている。
異形部30は、緩衝材1Kが荷重を受けることで緩衝機能を発揮する軸方向(すなわち図34において紙面と直交する方向)と交差する方向に厚みを有する板形状を成しており、当該軸方向に沿って緩衝材1Kの両端部にまで達している。当該異形部30は、これに隣接する部分の単位構造体Uと一体化するように接続されている。そのため、緩衝材1Kのうちのこの異形部30が設けられた部位においては、緩衝材1Kのその他の部位に比べて圧縮剛性が高められることになる。
このように、単位構造体Uが配置された領域である緩衝領域に局所的に異形部30が設けられた構成の緩衝材1Kを備えた靴底110Eおよびこれを備えた靴100とすることにより、軽量で緩衝性能に優れた靴底およびこれを備えた靴とすることができる。特に、上記構成を採用することにより、局所的に設ける異形部30を緩衝材1Kの全体にわたって満遍なく設けることが可能になるため、軽量化を図りつつ、緩衝材1Kの全体にわたって概ね同様の緩衝性能を得ることが可能になる。
なお、本実施の形態において、緩衝材1Kの上層側に異形部30を設けずに下層側にのみ異形部30を設けることとすれば、圧縮剛性が高く維持されつつも足当たりのよい靴底およびこれを備えた靴とすることができる。一方、本実施の形態において、緩衝材1Kの下層側に異形部30を設けずに上層側にのみ異形部30を設けることとすれば、走行時における前足部R1のミッドソールの反り形状が維持され易くなるため、蹴り出し時の足関節の仕事量の軽減が図られることになり、エネルギーセーブ型の靴底およびこれを備えた靴とすることができる。
(実施の形態12)
図35は、実施の形態12に係る靴底の構成を示す模式図である。以下、この図35を参照して、本実施の形態に係る靴底110Fおよびこれに具備された緩衝材1Lについて説明する。なお、本実施の形態に係る靴底110Fは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図35に示すように、靴底110Fは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gと異なる構成の緩衝材1Lを具備している。具体的には、緩衝材1Lは、平面視した場合の靴底110Fの全領域(すなわち、前足部R1、中足部R2および後足部R3のすべて)に配置されている。なお、図35においては、理解を容易とするために、靴底110Fを平面視した場合における緩衝材1Lの配置領域に薄い色を付している。すなわち、緩衝材1Lは、後述する靴底110Fの縁部のみならず、その内側の領域にも緩衝領域を有している。
ここで、緩衝材1Lは、上述した緩衝材1Gとは異なり、靴底110Fの縁部に沿って位置する端部のみならず、平面視した場合における緩衝材1Lのより内側の位置にも異形部30を有している。当該異形部30は、緩衝材1Lの単位構造体Uからなる緩衝領域に局所的に設けられており、より具体的には、緩衝材1Lの全体にわたって満遍なく当該異形部30が位置することとなるように、上述した靴底110Fの端部に達する平面視格子状の形状を有している。
異形部30は、緩衝材1Lが荷重を受けることで緩衝機能を発揮する軸方向(すなわち図35において紙面と直交する方向)と交差する方向に厚みを有する板形状を成しており、当該軸方向に沿って緩衝材1Lの両端部にまで達している。当該異形部30は、これに隣接する部分の単位構造体Uと一体化するように接続されている。そのため、緩衝材1Lのうちのこの異形部30が設けられた部位においては、緩衝材1Lのその他の部位に比べて圧縮剛性が高められることになる。
このように、単位構造体Uが配置された領域である緩衝領域に局所的に異形部30が設けられた構成の緩衝材1Lを備えた靴底110Fおよびこれを備えた靴100とすることにより、軽量で緩衝性能に優れた靴底およびこれを備えた靴とすることができる。特に、上記構成を採用することにより、局所的に設ける異形部30を緩衝材1Lの全体にわたって満遍なく設けることが可能になるため、軽量化を図りつつ、緩衝材1Lの全体にわたって概ね同様の緩衝性能を得ることが可能になる。
なお、本実施の形態において、緩衝材1Lの上層側に異形部30を設けずに下層側にのみ異形部30を設けることとすれば、圧縮剛性が高く維持されつつも足当たりのよい靴底およびこれを備えた靴とすることができる。一方、本実施の形態において、緩衝材1Lの下層側に異形部30を設けずに上層側にのみ異形部30を設けることとすれば、走行時における前足部R1のミッドソールの反り形状が維持され易くなるため、蹴り出し時の足関節の仕事量の軽減が図られることになり、エネルギーセーブ型の靴底およびこれを備えた靴とすることができる。
(実施の形態13)
図36は、実施の形態13に係る靴底の構成を示す模式図である。図37は、図36に示す靴底が具備する緩衝材を図36中の矢印XXXVII方向から見た場合の斜視図である。また、図38は、図36に示す靴底における緩衝材の単位構造体の配置例を表わした模式図である。以下、これら図36ないし図38を参照して、本実施の形態に係る靴底110Gおよびこれに具備された緩衝材1Mについて説明する。なお、本実施の形態に係る靴底110Gは、上述した靴底110Aに代えて、実施の形態7に係る靴100に具備されるものである。
図36に示すように、靴底110Gは、上述した実施の形態7に係る靴底110Aが具備していた緩衝材1Gと異なる構成の緩衝材1Mを具備している。具体的には、緩衝材1Mは、全体として平面視略U字状に形成されており、これと同じ形状に形成されたミッドソール111の切り欠き部に配置されている。これにより、緩衝材1Mは、概ね、中足部R2の内足側の縁部、後足部R3の内足側の縁部、後足部R3の後方側の縁部、後足部R3の外足側の縁部、および、中足部R2の外足側の縁部に沿って配置されることになる。なお、図36においては、理解を容易とするために、靴底110Gを平面視した場合における緩衝材1Mの配置領域に薄い色を付している。すなわち、緩衝材1Mは、上述した靴底110Mの縁部のみならず、その内側の領域の一部にも緩衝領域を有している。
図37に示すように、緩衝材1Mは、その緩衝領域を構成する立体構造物Sの基準がオクテット構造である。そのため、当該緩衝材1Mの端部には、前述したように、斜格子状に配列された互いに独立した複数の開口部17が位置している。なお、緩衝材1Mにおいては、単位構造体Uが、幅方向および奥行き方向(すなわち水平方向)の双方において複数配列されている反面、高さ方向(すなわちZ方向)においては1つのみ配列されている。
ここで、図36に示すように、靴底110Gの縁部に沿って位置する緩衝材1Mの端部は、その構成の差に起因して3つの区域SC1〜SC3に区分される。より具体的には、区域SC1は、中足部R2の内足側の中央寄りの縁部に対応しており、区域SC2は、中足部R2の内足側の後方の縁部、および、後足部R3の内足側の縁部に対応しており、区域SC3は、後足部R3の外足側の縁部、および、中足部R2の外足側の前方の部分を除く縁部に対応している。
図37に示すように、区域SC1においては、緩衝材1Mの端部において水平方向に隣り合って位置する複数の菱形の開口部17が、一つ置きに平板状の異形部30h(図14に示した第9構成例参照)によって閉塞されている。また、区域SC2においては、緩衝材1Mの端部において水平方向に隣り合って位置する複数の菱形の開口部17が、いずれも平板状の異形部30hによって閉塞されている。一方、区域SC3においては、緩衝材1Mの端部に位置する複数の開口部17が、いずれも閉塞されることなくそのまま露出している。なお、図37においては、理解を容易とするために、緩衝材1Mのうちの異形部30にのみ濃い色を付している。
したがって、このように構成することにより、緩衝材1Mの区域SC2における圧縮剛性は、緩衝材1Mの区域SC1および区域SC3における圧縮剛性の各々よりも高くなり、緩衝材1Mの区域SC1における圧縮剛性は、緩衝材1Mの区域SC3における圧縮剛性よりも高くなる。すなわち、緩衝材1Mの端部における圧縮剛性を区域ごとに変更することができ、相対的に、区域SC3、区域SC1、区域SC2の順で圧縮剛性を高めることができる。
そのため、靴底110Gのうち、足の踵骨を支持する部位Q3の周囲において、中足部R2の内足側の後方の部分および後足部R3の内足側の部分の圧縮剛性が相対的に高くなるとともに、中足部R2の外足側の後方の部分および後足部R3の外足側の部分の圧縮剛性が相対的に低くなる。
したがって、本実施の形態に係る靴底110Gおよびこれを備えた靴100とすることにより、上述した実施の形態7の場合と同様に、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
なお、緩衝材1Mは、互いに独立した複数の部材が組み合わされて相互に接合等されることによって全体として上述したような平面視略U字状の形状に形成されていてもよいが、より好ましくは、その全体が一部材として構成されることで上述した平面視略U字状の形状に形成されていることが好ましい。特に後者の構成を採用する場合には、直方体形状からなる単位構造体Uを複数備えた緩衝材1Mを、部位毎における緩衝性能の不必要な偏りを排除しつつ、如何に非直方体形状の切り欠き部に対してレイアウトするかが重要となる。
以下、図38(A)ないし図38(E)を参照して、立方体形状の単位空間を占有する単位構造体Uを複数備えた緩衝材を、当該複数の単位構造体Uの一部または全部を、大きな形状変更を伴わずに僅かに形状変更させることのみにより、部位毎における緩衝性能の不必要な偏りを排除しつつ非直方体形状の領域にレイアウトすることを可能にする、具体的な設計の一手法について説明する。
まず、図38(A)に示すように、緩衝材が配置される領域のうち、単位構造体Uの大きさを調整しつつ、当該単位構造体Uの数を、幅方向、奥行き方向および高さ方向の少なくともいずれかにおいて増減させることでそのまま配列させることが可能な領域A1と、それが困難な領域A2とに分ける。具体的には、本実施の形態においては、緩衝材1Mが配置される領域のうち、靴底110Gの内足側および外足側の周縁に沿って直線状に延在する領域が、上記領域A1に該当し、靴底110Gの後端側の周縁に沿って曲線状に延在する領域が、上記領域A2に該当する。
ここで、領域A1においては、図38(B)に示す如くの3つの辺の長さがそれぞれLx,Ly,Lzに調整された立方体形状からなる単位空間を占有する単位構造体Uを互いに隣り合うように複数配列することとする。これにより、当該領域A1は、大きさが調整された複数の単位構造体Uによって隙間なく敷き詰められることになる。
一方、領域A2においては、図38(C)に示す如くの、対向する三組の面のうち、特定の一組の面が互いに非平行になるように形状変更された単位空間を占有するように構成された単位構造体U’を互いに隣り合うように複数配列することとする。ここで、当該単位構造体U’は、たとえば幅方向に延在する単位空間の4つの辺のうちの隣り合う一対の辺が他の辺の長さLxよりも僅かに短いLx’になるように調整した、当該調整後の単位空間を占有するように形状変更したものである。このような僅かな形状変更は、単位構造体の緩衝性能を大きく異ならしめるものとはならない。
なお、このような形状を有する単位構造体U’は、その大きさや向きを個別に調整しつつこれを並べて配置することにより、上述した曲線状に延在する領域である上記領域A2に沿って概ね隙間なくこれを敷き詰めることができる。そのため、このような僅かな形状変更を加えるのみにより、当該領域A2においても上述した領域A1と同等の緩衝性能が発揮されるようになる。
したがって、このような設計方法を採用することにより、立方体形状の単位空間を占有する単位構造体Uを複数備えた緩衝材を、当該複数の単位構造体Uの一部または全部を、大きな形状変更を伴わずに僅かに形状変更させることのみにより、部位毎における緩衝性能の不必要な偏りを排除しつつ非直方体形状の領域にレイアウトすることが可能になる。
そのため、当該設計方法に従って緩衝材を設計し、これに基づいて三次元積層造形装置を用いて当該緩衝材を製造することとすれば、その全体が一部材として構成された外形が様々な形状の緩衝材を容易に得ることができる。
なお、上述した設計方法において、さらに複雑な湾曲形状の領域に緩衝材を敷き詰める場合には、図38(D)に示す如くの、対向する三組の面のうち、特定の二組の面が互いに非平行になるように形状変更された単位空間を占有するように構成された単位構造体U1を互いに隣り合うように複数配列することとすればよい。
ここで、当該単位構造体U1は、たとえば幅方向に延在する単位空間の4つの辺のうちの隣り合う一対の辺が他の辺の長さLxよりも僅かに短いLx’になるように調整するとともに、さらにたとえば高さ方向に延在する単位空間の4つの辺のうちの隣り合う一対の辺が他の辺の長さLzよりも僅かに短いLz’になるように調整した、当該調整後の単位空間を占有するように形状変更したものである。このような僅かな形状変更は、単位構造体の緩衝性能を大きく異ならしめるものとはならない。
なお、このような形状を有する単位構造体U1は、その大きさや向きを個別に調整しつつこれを並べて配置することにより、上述した複雑な湾曲形状の領域に沿って概ね隙間なくこれを敷き詰めることができる。そのため、このような僅かな形状変更を加えるのみにより、当該領域においても上述した領域A1と同等の緩衝性能が発揮されるようになる。
また、上述した設計方法において、直線状に延びる領域に緩衝材を敷き詰める場合には、図38(B)に示す如くの単位構造体Uに代えて、図38(E)に示す如くの単位構造体U2を互いに隣り合うように複数配列してもよい。ここで、当該単位構造体U2は、対向する三組の面が平行である一方、特定の一組の面の形状が平行四辺形となるように調整した、当該調整後の単位空間を占有するように形状変更したものである。
なお、図示する単位構造体U2においては、たとえば高さ方向に位置する一組の面の各々を角度θだけ幅方向に沿って傾斜させることにより、当該一組の面の形状を平行四辺形にしている。このような僅かな形状変更は、単位構造体の緩衝性能を大きく異ならしめるものとはならない。したがって、当該単位構造体U2を敷き詰めた場合にも、部位毎における緩衝性能の不必要な偏りを排除しつつ緩衝材を隙間なくレイアウトすることが可能になる。
(第9および第10変形例)
図39および図40は、それぞれ第9および第10変形例に係る靴底が具備する緩衝材の斜視図である。以下、これら図39および図40を参照して、上述した実施の形態13に基づいた第9および第10変形例に係る靴底に具備された緩衝材1M1,1M2について説明する。なお、これら第9および第10変形例に係る靴底は、上述した靴底110Gに代えて、実施の形態13に係る靴100に具備されるものである。
図39に示すように、第9変形例に係る靴底に具備された緩衝材1M1は、上述した実施の形態13に係る靴底110Gに具備された緩衝材1Mと同様に、全体として平面視略U字状に形成されたものであるが、当該緩衝材1M1の緩衝領域を構成する立体構造物Sの基準がジャイロイド構造である点において、上述した緩衝材1Mとその構成が相違している。
図40に示すように、第10変形例に係る靴底に具備された緩衝材1M2は、上述した実施の形態13に係る靴底110Gに具備された緩衝材1Mと同様に、全体として平面視略U字状に形成されたものであるが、当該緩衝材1M1の緩衝領域を構成する立体構造物Sの基準がシュワルツD構造である点において、上述した緩衝材1Mとその構成が相違している。
ここで、緩衝材1M1,1M2は、いずれも上述した緩衝材1Mと同様に3つの区域SC1〜SC3を有している。区域SC1においては、緩衝材1M1,1M2の端部において水平方向に隣り合って位置する複数の開口部17が、一つ置きに平板状の異形部30h(図14に示した第9構成例参照)によって閉塞されている。また、区域SC2においては、緩衝材1M1,1M2の端部において水平方向に隣り合って位置する複数の開口部17が、いずれも平板状の異形部30hによって閉塞されている。一方、区域SC3においては、緩衝材1M1,1M2の端部に位置する複数の開口部17が、いずれも閉塞されることなくそのまま露出している。なお、図39および図40においては、理解を容易とするために、開口部17を介して外部から視認可能な緩衝材1M1,1M2の内部構造については、その図示を省略している。
したがって、このように構成した場合にも、上述した実施の形態7の場合と同様に、オーバープロネーションが発生し易い人や外反偏平足の人に特に適した、着地時の安定性に優れるとともに、足当たりが良好でかつ軽量化が図られた靴底およびこれを備えた靴とすることができる。
(実施の形態等における開示内容の要約)
上述した実施の形態1ないし13およびそれらの変形例において開示した特徴的な構成を要約すると、以下のとおりとなる。
本開示のある態様に従った緩衝材は、並行する一対の平面または曲面によって外形が規定される壁にて形作られた立体的形状を単位構造体とし、当該単位構造体が少なくとも一方向において規則的にかつ連続的に繰り返し配列されてなる立体構造物を含むものである。上記本発明に基づく緩衝材にあっては、上記単位構造体を規定する上記壁には該当しない異形部が、上記立体構造物のうちの上記単位構造体が配置された領域である緩衝領域に局所的に設けられている。
上記本開示のある態様に従った緩衝材にあっては、上記異形部が、当該緩衝材が荷重を受けることで緩衝機能を発揮する軸方向と交差する方向に厚みを有する板形状を成していてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記異形部が、上記緩衝領域を縦断するように上記緩衝領域の上記軸方向の両端部にまで達していてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記異形部が、上記軸方向と交差する方向の上記緩衝領域の端部に位置する開口部を覆うように設けられていてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記立体構造物が、三重周期極小曲面を基準にこれに厚みを付けたものにて構成されていてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記立体構造物が、シュワルツP構造、ジャイロイド構造、または、シュワルツD構造を有していてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記立体構造物が、内部に空洞を有することとなるように、互いに交差するように配置された複数の平面を基準にこれに厚みを付けたものにて構成されていてもよい。
上記本開示のある態様に従った緩衝材にあっては、上記立体構造物が、オクテット構造、キュービック構造、または、キュービックオクテット構造を有していてもよい。
上記本開示のある態様に従った緩衝材にあっては、樹脂材料およびゴム材料のいずれかにて構成されていてもよい。
上記本開示のある態様に従った緩衝材は、オレフィン系ポリマー、アミド系ポリマー、エステル系ポリマー、ウレタン系ポリマー、スチレン系ポリマー、アクリル系ポリマー、および、メタアクリル系ポリマーからなる群より選ばれる1種以上を含有するポリマー組成物にて構成されていてもよい。
本開示のある態様に従った靴底は、上述した本開示のある態様に従った緩衝材を備えてなるものである。
上記本開示のある態様に従った靴底にあっては、上記緩衝材が荷重を受けることで緩衝機能を発揮する軸方向が接地面と直交するように、上記緩衝材が配置されていてもよい。
本開示のある態様に従った靴は、上述した本開示のある態様に従った靴底と、上記靴底の上方に設けられたアッパーとを備えてなるものである。
(その他の形態等)
上述した実施の形態1および3ないし5ならびにそれらの変形例においては、緩衝領域に設けられた異形部が、緩衝材が荷重を受けることで緩衝機能を発揮する軸方向に沿って緩衝材の両端部にまで達するように形成されている場合を例示して説明を行なったが、当該異形部は、上記軸方向の一方の端部にのみ達するように形成されていてもよいし、上記軸方向のいずれの端部にも達しないように形成されていてもよい。そのように構成した場合にも、当該異形部が設けられた部位において相応に圧縮剛性が高まることになる。
また、上述した実施の形態1ないし6およびそれらの変形例においては、立体構造物に含まれる複数の単位構造体がいずれも同じ外形寸法に構成された場合を例示して説明を行なったが、上述したように、単位構造体の幅方向の寸法、奥行き方向の寸法および高さ方向の寸法は、種々変更することができる。そのため、緩衝領域を構成する立体構造物が、単位構造体としてこれら外形寸法が異なるものを含むように構成することも可能である。このように構成すれば、緩衝材の部位毎に圧縮性能や変形能を種々調整することができる。
したがって、緩衝材の部位毎に単位構造体の外形寸法を調整しつつ、さらに緩衝材の特定の部位に異形部を設けることとすれば、それらの組合わせを種々変更することにより、様々な緩衝機能を有する緩衝材を高い設計自由度をもって製作することができる。特に、靴底に具備される緩衝材においては、当該緩衝材の部位毎に単位構造体の外形寸法を調整するとともに、当該緩衝材の端部において上述したカバー状の異形部の有無や形状、厚み等を種々変更することにより、所望の緩衝機能を備えた緩衝材を容易に製作することが可能になる。
また、上述した実施の形態2ないし4および6ないし13ならびにそれらの変形例においては、緩衝領域の端部にのみ異形部が設けられてなる緩衝材および当該緩衝材を備えた靴底ならびに靴を例示して説明を行なったが、これに代えて、緩衝領域の端部のみならずその内部の所定位置にも異形部が設けられてなる緩衝材および当該緩衝材を備えた靴底ならびに靴としてもよい。
また、上述した実施の形態7ないし13およびそれらの変形例においては、緩衝領域としての立体構造物がその軸方向において一対の支持部によって挟み込まれてなる緩衝材を靴底およびこれを備えた靴に適用した場合を例示して説明を行なったが、その場合には、これら一対の支持部の各々を、これに対向配置されることとなるミッドソール、アウトソールまたはアッパー本体等に接着等によって固定してもよい。その一方で、緩衝材の接地面側の部分に上述した如くの支持部を設ける場合には、当該支持部自体にアウトソールの機能をもたせることにより、別部材からなるアウトソールの設置を廃止してもよい。さらには、緩衝材に支持部を設けずにこれを直接、ミッドソール、アウトソールまたはアッパー本体等に接着等によって固定してもよい。
また、上述した実施の形態7ないし13およびそれらの変形例においては、平面視した場合における靴底の一部または全部に緩衝材を配置した場合を例示して説明を行なったが、緩衝材を設ける位置はこれら実施の形態ならびに変形例において具体的に例示したレイアウトに限定されるものではない。たとえば、当該靴が使用される競技の種類や用途に応じて、靴底の内足側の部分および外足側の部分のいずれかのみに緩衝材が配置されてもよいし、靴底の縁部に沿った一部の領域(当該一部の領域は、互いに独立して複数設けられてもよい)にのみ緩衝材が配置されてもよい。また、緩衝材は、ミッドソールとアッパーとの間に設けることとしてもよい。ここで、靴底の全面に緩衝材を設けるようにする場合には、ミッドソールに代えてその全体を緩衝材に置き換えることとしてもよい。
また、靴底に対する配置位置に応じて緩衝材の壁の厚みを異ならしめてもよいし、靴底に対する配置位置に応じて緩衝材の面構造を異ならしめてもよい。たとえば、靴底のある部分には、面構造がシュワルツP構造である緩衝材を配置し、靴底の他のある部分には、面構造がジャイロイド構造である緩衝材を配置することとしてもよい。
また、上述した実施の形態7ないし13およびそれらの変形例においては、シュータンおよびシューレースを備えてなる靴に本発明を適用した場合を例示して説明を行なったが、これら備えない靴(たとえばソック状のアッパーを備えてなる靴等)およびこれに具備される靴底に本発明を適用してもよい。
さらには、上述した実施の形態7ないし13およびそれらの変形例においては、本発明に係る緩衝材を靴の靴底に適用した場合を例示して説明を行なったが、本発明に係る緩衝材は、他の緩衝用途に使用することができる。たとえば、本発明に係る緩衝材は、梱包材や、建築物(たとえば住宅等)の床材、舗装路の表面材、ソファーや椅子等の表面材、タイヤ等、様々な用途に使用することができる。
また、上述した実施の形態1ないし13およびそれらの変形例において開示した特徴的な構成は、本発明の趣旨を逸脱しない範囲において、相互に組み合わせることが可能である。
このように、今回開示した上記実施の形態およびそれらの変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。