JP2021185877A - Cell culture container, cell culture method and evaluation method of cell growth state - Google Patents

Cell culture container, cell culture method and evaluation method of cell growth state Download PDF

Info

Publication number
JP2021185877A
JP2021185877A JP2020097103A JP2020097103A JP2021185877A JP 2021185877 A JP2021185877 A JP 2021185877A JP 2020097103 A JP2020097103 A JP 2020097103A JP 2020097103 A JP2020097103 A JP 2020097103A JP 2021185877 A JP2021185877 A JP 2021185877A
Authority
JP
Japan
Prior art keywords
culture
chamber
cells
medium
cell culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020097103A
Other languages
Japanese (ja)
Inventor
光哉 山本
Mitsuya Yamamoto
広貴 佐久間
Hirotaka Sakuma
優史 丸山
Yuji Maruyama
チュム エリック オフォス
Ofosu Chum Erik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020097103A priority Critical patent/JP2021185877A/en
Publication of JP2021185877A publication Critical patent/JP2021185877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

To provide a cell culture container capable of reducing a use amount of a culture component in a culture medium, and supplying properly, a medium according to a growth state of a cell in a closed system.SOLUTION: A cell culture container comprises: a culture chamber for culturing a cell; a storage chamber for storing fluid; a substance exchange film for partitioning the culture chamber and the storage chamber, and selectively transmitting a prescribed substance without transmitting the cell; and a gas exchange film for partitioning the culture chamber or the storage chamber from an external part. The culture chamber and the storage chamber have respectively, an opening part into which fluid can enter and from which the fluid can exit.SELECTED DRAWING: Figure 1

Description

本発明は、細胞培養容器、その細胞培養容器を用い細胞を培養する細胞培養方法、及びその細胞培養方法で細胞の生育状態を評価する細胞生育状態の評価方法に関する。 The present invention relates to a cell culture vessel, a cell culture method for culturing cells using the cell culture vessel, and a cell growth state evaluation method for evaluating a cell growth state by the cell culture method.

医療や製薬等を用途とする細胞培養に自動培養装置を用いる細胞製造技術の開発が進んでいる。自動培養装置は、従来の人の手技による培養と比較して、培養場の拡大による大量培養が容易である点、及び閉鎖系を構築することで細胞培養時の汚染リスクを大幅に低減できる点で有利である。 Development of cell manufacturing technology using an automatic culture device for cell culture for medical and pharmaceutical applications is in progress. The automatic culture device is easier to mass-culture by expanding the culture field than the conventional culture by human technique, and the risk of contamination during cell culture can be significantly reduced by constructing a closed system. Is advantageous.

こうした自動培養装置及びその関連技術は種々開発されており、例えば、特許文献1には、培養槽での懸濁培養方式の自動培養装置が提案されている。また、特許文献2には、自動培養装置に適用可能なバック型の培養容器が提案されている。 Various such automatic culture devices and related techniques have been developed. For example, Patent Document 1 proposes a suspension culture type automatic culture device in a culture tank. Further, Patent Document 2 proposes a back-type culture container applicable to an automatic culture apparatus.

さらに、特許文献3には、透析膜で区切られた培地画室及び培養画室を有する細胞培養容器を備える細胞培養装置が記載されている。この細胞培養装置の細胞培養容器では、培地画室が培養画室の上に存在し、培養画室及び培地画室に細胞懸濁液及び培地をそれぞれ分けて供給することで、培地交換をせずに細胞の長期培養が可能である。 Further, Patent Document 3 describes a cell culture apparatus including a culture medium image chamber separated by a dialysis membrane and a cell culture container having a culture image chamber. In the cell culture vessel of this cell culture device, the culture medium is located above the culture medium, and the cell suspension and the medium are separately supplied to the culture medium and the medium, so that the cells can be supplied without changing the medium. Long-term culture is possible.

特開2015−216880号公報Japanese Unexamined Patent Publication No. 2015-216880 特開2009−136156号公報Japanese Unexamined Patent Publication No. 2009-136156 特開昭61−108373号公報Japanese Unexamined Patent Publication No. 61-108373

一般に細胞培養に使用する培地は、細胞が生育時に消費する栄養成分の他に、培地環境を安定化させる成分や少量で細胞の増殖や分化に影響する生理活性物質成分等のようなタンパク質成分などの培養成分を含んでいる。これらの培養成分は、生体由来の成分も多く、血清や精製タンパク等の添加又は培養中の細胞自身の分泌等により培地に存在している。 In general, the medium used for cell culture includes not only the nutritional components consumed by cells during growth, but also protein components such as components that stabilize the medium environment and bioactive substance components that affect the growth and differentiation of cells in a small amount. Contains the culture components of. Many of these culture components are derived from living organisms, and are present in the medium due to the addition of serum, purified protein, or the like, or the secretion of cells themselves during culture.

細胞は培養中に培養培地に含まれる栄養成分を消費し老廃物を排出する。従って、細胞の生育に伴い培地の劣化が進行するので、一般的な細胞培養では、使用済みの培養培地の新鮮な培養培地への定期的な交換が必要となる。一方で、この培地交換の際に、培養培地に残存する培養成分が不要に廃棄されている。そのため、従来の細胞培養方法では、培養成分を効率的に利用できていない点に問題がある。特に産業用途の自動培養装置では、培養場の拡大に伴う培地消費量が増大しているため、この問題による培養成分の損失を無視することができない。 During the culture, the cells consume the nutrients contained in the culture medium and excrete waste products. Therefore, since the deterioration of the medium progresses as the cells grow, it is necessary to periodically replace the used culture medium with a fresh culture medium in general cell culture. On the other hand, at the time of this medium exchange, the culture components remaining in the culture medium are unnecessarily discarded. Therefore, there is a problem that the conventional cell culture method cannot efficiently use the culture components. In particular, in automatic culture equipment for industrial use, the amount of medium consumed due to the expansion of the culture field is increasing, so that the loss of culture components due to this problem cannot be ignored.

これに対し、特許文献3に記載された細胞培養装置の細胞培養容器では、培養画室に血清を含む培養培地を添加し、培地画室には血清を含まない栄養培地を添加することで細胞を培養している。しかしながら、この細胞培養容器は培地交換をせずに細胞の長期培養を行うための構成であり、細胞の生育状態に応じて培地を適切に供給する運用や閉鎖系で細胞を培養する運用に適用することができない。 On the other hand, in the cell culture vessel of the cell culture apparatus described in Patent Document 3, cells are cultured by adding a culture medium containing serum to the culture medium and adding a nutrient medium containing no serum to the culture medium. is doing. However, this cell culture vessel is configured for long-term cell culture without changing the medium, and is applicable to the operation of appropriately supplying the medium according to the growth state of the cells and the operation of culturing the cells in a closed system. Can not do it.

さらに、近年では、三次元培養による細胞の大量培養や高機能を発現する三次元組織の培養による作製が必要となっている。これらの培養では、従来の平面培養と比較して細胞密度が非常に増大するため、それに応じて培地の劣化速度も増大する。そのため、大量の培地を貯留し供給するために、培地容量の制約を受けない構造や迅速かつ頻繁に新鮮な培地を供給可能な構造が求められている。 Furthermore, in recent years, there has been a need for mass culture of cells by three-dimensional culture and production by culture of three-dimensional tissues expressing high functionality. In these cultures, the cell density is significantly increased as compared with the conventional planar culture, and therefore the deterioration rate of the medium is increased accordingly. Therefore, in order to store and supply a large amount of medium, a structure that is not restricted by the medium volume and a structure that can quickly and frequently supply fresh medium are required.

本発明は、上記課題に鑑みてなされたものであり、培養培地中の培養成分の使用量を低減でき、かつ閉鎖系で細胞の生育状態に応じて適切に培地を供給することができる細胞培養容器、その細胞培養容器を用い細胞を培養する細胞培養方法、及びその細胞培養方法で細胞の生育状態を評価する細胞生育状態の評価方法を提供することを主目的とする。 The present invention has been made in view of the above problems, and is a cell culture capable of reducing the amount of culture components used in a culture medium and appropriately supplying a medium according to the growth state of cells in a closed system. An object of the present invention is to provide a container, a cell culture method for culturing cells using the cell culture container, and a cell growth state evaluation method for evaluating the cell growth state by the cell culture method.

上記課題を解決するために、本発明の細胞培養容器は、細胞を培養する培養室と、流体を貯留する貯留室と、上記培養室及び上記貯留室を区画し、上記細胞を透過せず所定の物質を選択的に透過する物質交換膜と、上記培養室又は上記貯留室と外部を隔てるガス交換膜と、を備え、上記培養室及び上記貯留室はそれぞれ流体を流入出可能な開口部を有することを特徴とする。 In order to solve the above problems, the cell culture vessel of the present invention comprises a culture chamber for culturing cells, a storage chamber for storing fluid, the culture chamber and the storage chamber, and is predetermined without permeating the cells. A substance exchange membrane that selectively permeates the above-mentioned substances and a gas exchange membrane that separates the outside from the above-mentioned culture chamber or the above-mentioned storage chamber, and the above-mentioned culture chamber and the above-mentioned storage chamber each have an opening through which fluid can flow in and out. It is characterized by having.

また、上記課題を解決するために、本発明の細胞培養方法は、上記細胞培養容器を用い、上記培養室で上記細胞を培養する細胞培養方法であって、上記開口部を介して上記培養室及び上記貯留室に成分又は成分濃度が異なる培地を供給することを特徴とする。 Further, in order to solve the above-mentioned problems, the cell culture method of the present invention is a cell culture method in which the above-mentioned cells are cultured in the above-mentioned culture chamber using the above-mentioned cell culture vessel, and the above-mentioned culture chamber is passed through the above-mentioned opening. And the above-mentioned storage chamber is supplied with a medium having different components or component concentrations.

さらに、上記課題を解決するために、本発明の細胞生育状態の評価方法は、上記細胞培養方法で上記細胞を培養する過程において、上記細胞の生育状態を評価する細胞生育状態の評価方法であって、上記貯留室に供給される上記培地及び上記貯留室から排出される上記培地のグルコース濃度の差を測定し、当該グルコース濃度の差からグルコース消費速度を算出し、上記グルコース消費速度から上記培養室内の細胞数を推定することを特徴とする。 Further, in order to solve the above problems, the method for evaluating the cell growth state of the present invention is a method for evaluating the cell growth state in which the cell growth state is evaluated in the process of culturing the cells by the cell culture method. Then, the difference in glucose concentration between the medium supplied to the storage chamber and the medium discharged from the storage chamber is measured, the glucose consumption rate is calculated from the difference in glucose concentration, and the culture is obtained from the glucose consumption rate. It is characterized by estimating the number of cells in the room.

本発明によれば、培養培地中の培養成分の使用量を低減でき、かつ閉鎖系で細胞の生育状態に応じて適切に培地を供給することができる。 According to the present invention, the amount of the culture component used in the culture medium can be reduced, and the medium can be appropriately supplied according to the growth state of the cells in a closed system.

以上に説明した内容以外の本発明の課題、構成、及び効果は、以下の発明を実施するための形態の説明により明らかにされる。 Issues, configurations, and effects of the present invention other than those described above will be clarified by the following description of embodiments for carrying out the invention.

実施形態の細胞培養容器の一例の要部を示す概略断面図である。It is a schematic sectional drawing which shows the main part of the example of the cell culture container of an embodiment. 図1に示すA−A線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line AA shown in FIG. 実施形態の細胞培養容器の変形例の要部を示す図であって、図2に示される断面に対応する断面を示す概略断面図である。It is a figure which shows the main part of the modification of the cell culture container of an embodiment, and is the schematic cross-sectional view which shows the cross section corresponding to the cross section shown in FIG. 実施形態の細胞培養容器の他の変形例の要部を示す概略断面図である。It is a schematic cross-sectional view which shows the main part of the other modification of the cell culture vessel of an embodiment. (a)は、袋状透析膜の外部(外部溶液)及び内部(内部溶液)におけるグルコース濃度の経時変化を示すグラフであり、(b)は、袋状透析膜の外部(外部溶液)及び内部(内部溶液)における乳酸濃度の経時変化を示すグラフである。(A) is a graph showing the time course of the glucose concentration in the outside (external solution) and the inside (internal solution) of the bag-shaped dialysis membrane, and (b) is the outside (external solution) and the inside of the bag-shaped dialysis membrane. It is a graph which shows the time-dependent change of the lactic acid concentration in (internal solution). 実施例1で設計した細胞培養容器を示す概略断面図である。It is a schematic sectional drawing which shows the cell culture container designed in Example 1. FIG.

以下、本発明の細胞培養容器、細胞培養方法、及び細胞生育状態の評価方法に係る実施形態について説明する。 Hereinafter, embodiments relating to the cell culture vessel, the cell culture method, and the method for evaluating the cell growth state of the present invention will be described.

最初に、実施形態の細胞培養容器の一例について、図1及び図2に沿って説明する。図1は、実施形態の細胞培養容器の一例の要部を示す概略断面図である。図2は、図1に示すA−A線における概略断面図である。 First, an example of the cell culture vessel of the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view showing a main part of an example of a cell culture vessel of an embodiment. FIG. 2 is a schematic cross-sectional view taken along the line AA shown in FIG.

図1に示されるように、本例の細胞培養容器1は、筐体5を備え、筐体5の内部に細胞Cを培養する培養室10及び流体を貯留する貯留室20を有している。細胞培養容器1は、培養室10及び貯留室20を区画し、所定の物質を選択的に透過する物質交換膜30と、培養室10及び貯留室20と外気をそれぞれ隔てるガス交換膜40と、をさらに備えている。培養室10は、側面側が筐体5により外気と隔てられ、下面側がガス交換膜40により外気と隔てられ、上面側が物質交換膜30により貯留室20と隔てられている。貯留室20は、側面側が筐体5により外気と隔てられ、上面側がガス交換膜40により外気と隔てられ、下面側が物質交換膜30により培養室10と隔てられている。物質交換膜30は、貯留室20に供給される栄養培地に含まれる栄養成分及び培養室10に培養で生じる老廃物等の低分子量の成分を透過し、培養室10に供給される培養培地に含まれる生理活性物質成分等のような高分子量のタンパク質成分を透過しない選択的透過性を有する膜である。ガス交換膜40は酸素を透過し、培地を透過しない膜である。 As shown in FIG. 1, the cell culture vessel 1 of this example includes a housing 5, and has a culture chamber 10 for culturing cells C and a storage chamber 20 for storing fluid inside the housing 5. .. The cell culture vessel 1 has a substance exchange membrane 30 that partitions the culture chamber 10 and the storage chamber 20 and selectively permeates a predetermined substance, and a gas exchange membrane 40 that separates the culture chamber 10 and the storage chamber 20 from the outside air, respectively. Is further equipped. The side surface side of the culture chamber 10 is separated from the outside air by the housing 5, the lower surface side is separated from the outside air by the gas exchange membrane 40, and the upper surface side is separated from the storage chamber 20 by the substance exchange membrane 30. The side surface side of the storage chamber 20 is separated from the outside air by the housing 5, the upper surface side is separated from the outside air by the gas exchange membrane 40, and the lower surface side is separated from the culture chamber 10 by the substance exchange membrane 30. The substance exchange membrane 30 allows the nutrient components contained in the nutrient medium supplied to the storage chamber 20 and low molecular weight components such as waste products generated in the culture to permeate the culture medium 10 and becomes the culture medium supplied to the culture chamber 10. It is a membrane having selective permeability that does not permeate high molecular weight protein components such as contained physiologically active substance components. The gas exchange membrane 40 is a membrane that permeates oxygen and does not permeate the medium.

そして、培養室10の側面の対向する2箇所にはポート51、52(流体を流入出可能な開口部)がそれぞれ設けられ、ポート51、52のそれぞれに開閉機構(図示せず)が設けられている。貯留室20の側面の対向する2箇所にはポート61、62(流体を流入出可能な開口部)がそれぞれ設けられ、ポート61、62のそれぞれに開閉機構(図示せず)が設けられている。 Ports 51 and 52 (openings through which fluid can flow in and out) are provided at two opposite locations on the side surface of the culture chamber 10, and opening / closing mechanisms (not shown) are provided at each of the ports 51 and 52. ing. Ports 61 and 62 (openings capable of inflowing and discharging fluid) are provided at two opposite locations on the side surface of the storage chamber 20, and opening / closing mechanisms (not shown) are provided at each of the ports 61 and 62. ..

これに続いて、実施形態の細胞培養方法の一例として、図1に示す細胞培養容器1を用い、培養室10で細胞Cを培養する細胞培養方法について説明する。 Following this, as an example of the cell culture method of the embodiment, a cell culture method of culturing cells C in the culture chamber 10 using the cell culture container 1 shown in FIG. 1 will be described.

本例の細胞培養方法では、事前に、細胞培養容器1の培養室10に培養足場80(細胞を接着又は包埋可能な構造体)及び培養足場80に接着させた細胞Cを導入する。さらに、培養室10のポート51に配管(図示せず)を接続し当該配管のポート51とは反対側を培養培地供給源(図示せず)等に接続することで流入路を構築し、培養室10のポート52に配管(図示せず)を接続し当該配管のポート52とは反対側を回収タンク等に接続することで流出路を構築する。また、貯留室20のポート61に配管(図示せず)を接続し当該配管のポート61とは反対側を栄養培地供給源(図示せず)等に接続することで流入路を構築し、貯留室20のポート62に配管(図示せず)を接続し当該配管のポート62とは反対側を貯留タンク等に接続することで流出路を構築する。そして、貯留室20に接続する流入路及び流出路のそれぞれにサンプリングポートS1又は成分分析用センサーS2を設置する。これにより、細胞培養容器1、培養培地供給源及び栄養培地供給源、流入路及び流出路、回収タンク及び貯留タンク、並びにサンプリングポートS1又は成分分析用センサーS2から構成される閉鎖系の細胞培養装置を構築する。この細胞培養装置では、流入路及び流出路を介し貯留室20又は培養室10に培地やガス等を灌流することによって、細胞を連続培養することができる。 In the cell culture method of this example, the culture scaffold 80 (a structure capable of adhering or embedding cells) and the cell C adhering to the culture scaffold 80 are introduced into the culture chamber 10 of the cell culture container 1 in advance. Further, by connecting a pipe (not shown) to the port 51 of the culture chamber 10 and connecting the side of the pipe opposite to the port 51 to a culture medium supply source (not shown) or the like, an inflow path is constructed and culture is performed. An outflow path is constructed by connecting a pipe (not shown) to the port 52 of the chamber 10 and connecting the side of the pipe opposite to the port 52 to a recovery tank or the like. Further, by connecting a pipe (not shown) to the port 61 of the storage chamber 20 and connecting the side of the pipe opposite to the port 61 to a nutrient medium supply source (not shown) or the like, an inflow path is constructed and storage is performed. An outflow path is constructed by connecting a pipe (not shown) to the port 62 of the chamber 20 and connecting the side of the pipe opposite to the port 62 to a storage tank or the like. Then, a sampling port S1 or a component analysis sensor S2 is installed in each of the inflow path and the outflow path connected to the storage chamber 20. As a result, a closed cell culture apparatus composed of a cell culture vessel 1, a culture medium supply source and a nutrient medium supply source, an inflow channel and an outflow channel, a recovery tank and a storage tank, and a sampling port S1 or a component analysis sensor S2. To build. In this cell culture apparatus, cells can be continuously cultured by perfusing a medium, gas, or the like into a storage chamber 20 or a culture chamber 10 via an inflow channel and an outflow channel.

続いて、細胞培養容器1をインキュベータ(図示せず)内に設置し、細胞培養容器1の培養室10で細胞を培養する。この際には、まず、細胞培養容器1の貯留室20のポート61、62を開閉機構で開放することで、貯留室20からポート62を介して流出路に空気を押し出しながら、栄養培地供給源からポート61を介して貯留室20に新鮮な栄養培地を供給することで貯留室20を新鮮な栄養培地で満たした後に、ポート61、62を開閉機構で閉鎖する。次に、培養室10のポート51、52を開閉機構で開放することで、培養室10からポート52を介して流出路に空気を押し出しながら、培養培地供給源からポート51を介して培養室10に液体の培養培地を供給することで培養室10を培養培地で満たした後に、ポート51、52を開閉機構で閉鎖する。次に、貯留室20のポート61、62を開閉機構で連続的に開放することで、栄養培地供給源からポート61を介して貯留室20に栄養成分を含む新鮮な液体の栄養培地を連続的に供給し、貯留室20からポート62を介して培養で生じる老廃物を含む使用済みの栄養培地を連続的に回収タンクに排出する。これにより、貯留室20に供給される栄養培地に含まれる栄養成分が物質交換膜30を透過することで培養室10に供給され、培養室10に培養で生じる老廃物が物質交換膜30を透過することで貯留室20に移動する。一方、培養室10に供給される培養培地に含まれるタンパク質成分が培養室10内に保持される。このような透析の結果、閉鎖系の細胞培養装置において、培養培地供給源から貯留室20への新鮮な栄養培地の連続的な供給及び貯留室20から回収タンクへの使用済みの栄養培地の連続的な排出を行うことによって、培養室10内の培養培地の劣化を防止することができ、かつ培養室10内に培養培地に含まれるタンパク質成分を保持することができる。そのため、閉鎖系の細胞培養装置において、培養室10内の培養培地を交換することなく培養室10で細胞を培養することができる。よって、培養培地中のタンパク質成分の使用量を低減し細胞Cの製造コストを抑制することができ、かつ閉鎖系で培地を供給することができる。 Subsequently, the cell culture vessel 1 is placed in an incubator (not shown), and the cells are cultured in the culture chamber 10 of the cell culture vessel 1. At this time, first, by opening the ports 61 and 62 of the storage chamber 20 of the cell culture vessel 1 by the opening / closing mechanism, the nutrient medium supply source is pushed out from the storage chamber 20 to the outflow passage through the port 62. After filling the storage chamber 20 with the fresh nutrient medium by supplying the storage chamber 20 with the fresh nutrient medium via the port 61, the ports 61 and 62 are closed by the opening / closing mechanism. Next, by opening the ports 51 and 52 of the culture chamber 10 by an opening / closing mechanism, air is pushed out from the culture chamber 10 to the outflow channel through the port 52, and the culture medium supply source passes through the culture chamber 10 through the port 51. After filling the culture chamber 10 with the culture medium by supplying a liquid culture medium to the culture medium, the ports 51 and 52 are closed by an opening / closing mechanism. Next, by continuously opening the ports 61 and 62 of the storage chamber 20 by the opening / closing mechanism, a fresh liquid nutrient medium containing a nutrient component is continuously supplied from the nutrient medium supply source to the storage chamber 20 via the port 61. The used nutrient medium containing the waste products generated by the culture is continuously discharged from the storage chamber 20 through the port 62 to the recovery tank. As a result, the nutritional components contained in the nutrient medium supplied to the storage chamber 20 are supplied to the culture chamber 10 by permeating the substance exchange membrane 30, and the waste products generated by the culture permeate the substance exchange membrane 30 into the culture chamber 10. By doing so, it moves to the storage chamber 20. On the other hand, the protein component contained in the culture medium supplied to the culture chamber 10 is retained in the culture chamber 10. As a result of such dialysis, in a closed cell culture apparatus, continuous supply of fresh nutrient medium from the culture medium source to the reservoir 20 and continuous supply of used nutrient medium from the reservoir 20 to the recovery tank. By performing such discharge, deterioration of the culture medium in the culture chamber 10 can be prevented, and the protein component contained in the culture medium can be retained in the culture chamber 10. Therefore, in a closed cell culture apparatus, cells can be cultured in the culture chamber 10 without exchanging the culture medium in the culture chamber 10. Therefore, the amount of the protein component used in the culture medium can be reduced, the production cost of the cells C can be suppressed, and the medium can be supplied in a closed system.

これに続いて、実施形態の細胞生育状態の評価方法の一例として、上記細胞培養方法の一例において、細胞Cの生育状態を評価する細胞生育状態の評価方法について説明する。 Following this, as an example of the method for evaluating the cell growth state of the embodiment, the method for evaluating the cell growth state for evaluating the growth state of the cell C will be described in the above example of the cell culture method.

本例の細胞生育状態の評価方法では、上記例の細胞培養方法で細胞培養容器1の培養室10で細胞Cを培養する過程において、貯留室20の流入路及び流出路のそれぞれに設置したサンプリングポートS1又は成分分析用センサーS2を用いて、貯留室20に供給される栄養培地及び貯留室20から排出される栄養培地のグルコース濃度の差を測定した後に、グルコース濃度の差からグルコース消費速度を算出し、グルコース消費速度から培養室10内の細胞数を推定する。さらに、貯留室20から排出される栄養培地の乳酸濃度を測定した後に、乳酸濃度から乳酸産生速度を算出し、グルコース消費速度及び乳酸産生速度から培養室10内の細胞の代謝挙動を推定する。そして、上記例の細胞培養方法では、このように推定した培養室10内の細胞数及び細胞の代謝挙動から、細胞の生育状態を評価し、その評価結果に基づいて、貯留室20又は培養室10に供給する栄養培地の成分を調整することができる。よって、細胞培養容器1は、閉鎖系で細胞の生育状態に応じて適切に培地を供給する細胞培養装置に適用することができる。 In the method for evaluating the cell growth state of this example, sampling installed in each of the inflow channel and the outflow channel of the storage chamber 20 in the process of culturing the cells C in the culture chamber 10 of the cell culture vessel 1 by the cell culture method of the above example. After measuring the difference in glucose concentration between the nutrient medium supplied to the storage chamber 20 and the nutrient medium discharged from the storage chamber 20 using the port S1 or the component analysis sensor S2, the glucose consumption rate is calculated from the difference in glucose concentration. Calculate and estimate the number of cells in the culture chamber 10 from the glucose consumption rate. Further, after measuring the lactic acid concentration of the nutrient medium discharged from the storage chamber 20, the lactic acid production rate is calculated from the lactic acid concentration, and the metabolic behavior of the cells in the culture chamber 10 is estimated from the glucose consumption rate and the lactic acid production rate. Then, in the cell culture method of the above example, the growth state of cells is evaluated from the number of cells in the culture chamber 10 and the metabolic behavior of the cells estimated in this way, and based on the evaluation result, the storage chamber 20 or the culture chamber is used. The components of the nutrient medium supplied to 10 can be adjusted. Therefore, the cell culture vessel 1 can be applied to a cell culture device that appropriately supplies a medium according to the growth state of cells in a closed system.

従って、実施形態の細胞培養容器は、上記例のように、培養培地中の培養成分の使用量を低減し細胞の製造コストを抑制することができ、かつ閉鎖系で細胞の生育状態に応じて適切に培地を供給することができる。また、実施形態の細胞培養方法によれば、実施形態の胞培養容器を用い、培養室で細胞を培養することで、培養培地中の培養成分の使用量を低減し細胞の製造コストを抑制することができ、かつ閉鎖系で細胞の生育状態に応じて適切に培地を供給することができる。さらに、実施形態の細胞生育状態の評価方法によれば、実施形態の細胞培養方法で細胞を培養する過程において、培養室内の細胞数及び細胞の代謝挙動を推定し、細胞の生育状態を評価することができる。 Therefore, the cell culture vessel of the embodiment can reduce the amount of the culture component used in the culture medium and suppress the cell production cost as in the above example, and is a closed system depending on the cell growth state. The medium can be supplied appropriately. Further, according to the cell culture method of the embodiment, by culturing the cells in the culture chamber using the cell culture vessel of the embodiment, the amount of the culture component used in the culture medium is reduced and the cell production cost is suppressed. It is possible to supply a medium appropriately according to the growth state of cells in a closed system. Further, according to the method for evaluating the cell growth state of the embodiment, in the process of culturing the cells by the cell culture method of the embodiment, the number of cells in the culture chamber and the metabolic behavior of the cells are estimated, and the cell growth state is evaluated. be able to.

以下、実施形態の細胞培養容器の構成並びに実施形態の細胞培養方法及び細胞生育状態の評価方法について、詳細に説明する。 Hereinafter, the configuration of the cell culture vessel of the embodiment, the cell culture method of the embodiment, and the evaluation method of the cell growth state will be described in detail.

1.物質交換膜
物質交換膜は、上記培養室及び上記貯留室を区画し、所定の物質を選択的に透過する膜である。物質交換膜としては、ガスや溶液などの所定の物質を選択的に透過する選択的透過性を有する膜であれば特に限定されないが、栄養培地に含まれる栄養成分及び培養で生じる老廃物等の低分子量の成分を透過し、培養培地に含まれる生理活性物質成分等のような標的となる高分子量のタンパク質成分を透過しない選択的透過性を有するものが好ましい。このような選択的透過性を有する物質交換膜を用いることにより、栄養培地に含まれる栄養成分及び培養で生じる老廃物を貯留室及び培養室の間で交換することができ、培養培地に含まれるタンパク質成分を培養室内に保持することができる。
1. 1. Substance exchange membrane The substance exchange membrane is a membrane that partitions the culture chamber and the storage chamber and selectively permeates a predetermined substance. The substance exchange membrane is not particularly limited as long as it is a membrane having selective permeability that selectively permeates a predetermined substance such as gas or solution, but the nutritional components contained in the nutrient medium and waste products generated in culture are used. Those having selective permeability that permeates low molecular weight components and does not permeate target high molecular weight protein components such as physiologically active substance components contained in the culture medium are preferable. By using the substance exchange membrane having such selective permeability, the nutrient components contained in the nutrient medium and the waste products generated in the culture can be exchanged between the storage chamber and the culture chamber, and are contained in the culture medium. The protein component can be retained in the culture chamber.

物質交換膜は、例えば、上記のように栄養成分及び老廃物等の低分子量の成分を透過する必要があり、標的となる高分子量のタンパク質成分を透過しない必要がある。栄養成分としては、例えば、グルコース(分子量:180.96)及び乳酸(分子量:90.08)等が挙げられ、標的となる高分子量のタンパク質成分としては、例えば、タンパク安定化剤であるウシ血清アルブミン(分子量:66000)及び成長因子であるFGF2(分子量:17400)等が挙げられる。そのため、物質交換膜の分画分子量(MWCO)は、物質交換膜を上記のような選択的透過性を有する膜とするものであれば特に限定されないが、例えば、500以上60000以下の範囲内が好ましく、中でも1000以上15000以下の範囲内が好ましい。培養室内に、例えば、これらのような標的となる高分子量のタンパク質成分を保持することができるからである。なお、ウシ血清アルブミン及びFGF2以外のタンパク質成分が標的となる場合も、適切な分画分子量の物質交換膜を用いることにより、培養室内に標的となるタンパク質成分を保持することができる。ここで、「分画分子量」とは、複数種類の低濃度の球状溶質を物質交換膜に透過させ、阻止率が90%以上となるときの球状溶質の分子量を指す。 The substance exchange membrane needs to permeate low molecular weight components such as nutritional components and waste products as described above, and does not need to permeate the target high molecular weight protein components. Examples of the nutritional component include glucose (molecular weight: 180.96) and lactic acid (molecular weight: 90.08), and examples of the target high molecular weight protein component include bovine serum, which is a protein stabilizer. Examples thereof include albumin (molecular weight: 66000) and FGF2 (molecular weight: 17400) which is a growth factor. Therefore, the fractional molecular weight (MWCO) of the substance exchange membrane is not particularly limited as long as the substance exchange membrane is a membrane having selective permeability as described above, but is, for example, in the range of 500 or more and 60,000 or less. It is preferable, and above all, the range of 1000 or more and 15,000 or less is preferable. This is because the target high molecular weight protein component such as these can be retained in the culture chamber. Even when a protein component other than bovine serum albumin and FGF2 is targeted, the target protein component can be retained in the culture chamber by using a substance exchange membrane having an appropriate molecular weight cut-off. Here, the "molecular weight cut-off" refers to the molecular weight of the spherical solute when a plurality of types of low-concentration spherical solutes are permeated through the substance exchange membrane and the inhibition rate is 90% or more.

物質交換膜は、上記のような選択的透過性を有するものであれば特に限定されないが、例えば、半透膜等である。半透膜としては、例えば、セルロース系膜(例えば、再生セルロース膜、表面化改質再生セルロース膜、及びセルロースアセテート等)、合成高分子系膜(例えば、ポリアクリロニトリール、ポリメチルメタクリレート、エチレンビニルアルコール共重合体、ポリスルホン、ポリアミド、ポリエステル系ポリマーアロイ、及びフッ素系樹脂等)等が挙げられる。さらに、物質交換膜は、細胞非接着性の膜が好ましい。 The substance exchange membrane is not particularly limited as long as it has the above-mentioned selective permeability, and is, for example, a semipermeable membrane or the like. Examples of the semipermeable membrane include a cellulosic membrane (for example, a regenerated cellulose membrane, a surfaced modified regenerated cellulose membrane, a cellulose acetate, etc.) and a synthetic polymer membrane (for example, polyacrylonitril, polymethylmethacrylate, ethylenevinyl, etc.). Alcohol copolymers, polysulfones, polyamides, polyester polymer alloys, fluororesins, etc.) and the like can be mentioned. Further, the substance exchange membrane is preferably a cell non-adhesive membrane.

2.ガス交換膜
ガス交換膜は、酸素を透過する膜である。細胞の三次元培養では細胞密度が高くなるため、細胞の生育に必要な酸素の不足が課題となる。そこで、培養室内の培養足場の近傍にガス交換膜を設置することで、外気から効率良く酸素を供給することが可能となる。ガス交換膜としては、細胞非接着性の膜が好ましい。細胞非接着性の膜を使用することで、培養足場から底面に細胞が脱離し遊走することを防ぐことができるからである。
2. 2. Gas exchange membrane A gas exchange membrane is a membrane that allows oxygen to pass through. Since the cell density is high in the three-dimensional culture of cells, the lack of oxygen required for cell growth becomes an issue. Therefore, by installing a gas exchange membrane in the vicinity of the culture scaffold in the culture chamber, oxygen can be efficiently supplied from the outside air. As the gas exchange membrane, a cell non-adhesive membrane is preferable. This is because the use of a cell non-adhesive membrane can prevent cells from detaching from the culture scaffold to the bottom surface and migrating.

ガス交換膜は、酸素を透過する膜であれば特に限定されないが、例えば、シリコーン、ポリトリメチルシリルプロピン、含フッ素アクリル樹脂、フッ素系樹脂、ポリメチルペンテン、及び天然ゴムのいずれかを主成分とするもの等が好ましい。 The gas exchange membrane is not particularly limited as long as it is a membrane that allows oxygen to pass through, but for example, it is mainly composed of any one of silicone, polytrimethylsilylpropine, fluoroacrylic resin, fluororesin, polymethylpentene, and natural rubber. And the like are preferable.

3.細胞培養容器
細胞培養容器は、細胞を培養する培養室と、流体を貯留する貯留室と、上記培養室及び上記貯留室を区画し、上記細胞を透過せず所定の物質を選択的に透過する物質交換膜と、上記培養室又は上記貯留室と外部を隔てるガス交換膜と、を備え、上記培養室及び上記貯留室はそれぞれ流体を流入出可能な開口部を有することを特徴とする。
3. 3. Cell culture container The cell culture container divides a culture chamber for culturing cells, a storage chamber for storing fluid, the culture chamber and the storage chamber, and selectively permeates a predetermined substance without permeating the cells. It comprises a substance exchange membrane and a gas exchange membrane that separates the outside from the culture chamber or the storage chamber, and each of the culture chamber and the storage chamber has an opening through which fluid can flow in and out.

細胞培養容器の筐体は、特に限定されないが、例えば、(a)生体適合性を有し、(b)滅菌可能であり、(c)耐食性を有し、(d)成形可能であるものが好ましく、中でも、ガラス、市販の培養容器に使用されているポリスチレン、ポリカーボネート、及びポリエチレンテレフタレート等の樹脂、MED610等の医療用樹脂、SUS316等のステンレス、並びにチタン等が好ましい。 The housing of the cell culture vessel is not particularly limited, but for example, one having (a) biocompatibility, (b) sterilizable, (c) corrosion resistance, and (d) moldable. Among them, glass, resins such as polystyrene, polycarbonate and polyethylene terephthalate used in commercially available culture containers, medical resins such as MED610, stainless steel such as SUS316, and titanium are preferable.

上記培養室及び上記貯留室はそれぞれ培地などの流体を流入出可能な開口部を有する。これらのポートを介し培地やガス等の流体及び細胞を流入させ、かつ流出させることができる。培養室が有する開口部は、例えば、図1に示すポート51、52のように、流体を外部に流入出可能な少なくとも2つの開口部でよく、流体を外部に流入出可能な3つ以上の開口部でもよい。同様に、貯留室が有する開口部は、例えば、図1に示すポート61、62のように、流体を外部に流入出可能な少なくとも2つの開口部でよく、流体を外部に流入出可能な3つ以上の開口部でもよい。貯留室又は培養室は、各開口部に設けられた開閉機構をさらに備えていてもよい。開口部の開閉機構により、貯留室又は培養室への流体の供給及び貯留室又は培養室からの流体の排出を連続的又は逐次的に行うことを設定することができる。なお、物質交換膜を介した貯留室及び培養室間の物質交換は液体間の界面で生じるために、物質交換膜の表面に空気が残存すると物質交換膜を介した物質交換の効率が低下することがある。そこで、貯留室及び培養室の各室に少なくとも2つの開口部を設けることにより、各室に培地の液体や細胞を含む液体等を流入させる際に空気を押し出すことができ、培地の液体や細胞を含む液体等の流路(例えば、物質交換膜の表面等)に空気を残存させずに各室を培地で簡便に満たすことができるので、物質交換の効率の低下を抑制することができる。これに対し、貯留室及び培養室の各室に1つだけ開口部を設ける場合には、各室に培地の液体や細胞を含む液体等を流入させる際に空気を残存させずに各室を培地で満たすことが困難である。 The culture chamber and the storage chamber each have an opening through which a fluid such as a medium can flow in and out. Fluids such as media and gas and cells can flow in and out through these ports. The openings of the culture chamber may be at least two openings that allow the fluid to flow in and out, as in ports 51 and 52 shown in FIG. 1, and three or more openings that allow the fluid to flow in and out. It may be an opening. Similarly, the openings of the storage chamber may be at least two openings that allow the fluid to flow in and out, as in ports 61 and 62 shown in FIG. 1, and the fluid can flow in and out 3 It may be one or more openings. The storage chamber or culture chamber may further include an opening / closing mechanism provided at each opening. By the opening / closing mechanism of the opening, it is possible to set the supply of the fluid to the storage chamber or the culture chamber and the discharge of the fluid from the storage chamber or the culture chamber continuously or sequentially. Since the substance exchange between the storage chamber and the culture chamber via the substance exchange membrane occurs at the interface between the liquids, if air remains on the surface of the substance exchange membrane, the efficiency of the substance exchange via the substance exchange membrane decreases. Sometimes. Therefore, by providing at least two openings in each of the storage chamber and the culture chamber, air can be pushed out when the liquid of the medium or the liquid containing cells flows into each chamber, and the liquid of the medium or the cells can be extruded. Since each chamber can be easily filled with the medium without leaving air in the flow path of the liquid or the like containing the above (for example, the surface of the substance exchange membrane), it is possible to suppress a decrease in the efficiency of the substance exchange. On the other hand, when only one opening is provided in each of the storage chamber and the culture chamber, each chamber is not left with air when the liquid of the medium or the liquid containing cells is allowed to flow into each chamber. Difficult to fill with medium.

ここで、図3は、実施形態の細胞培養容器の変形例の要部を示す図であって、図2に示される断面に対応する断面を示す概略断面図である。図3に示すように、本例の細胞培養容器1の貯留室20は、ポート61、62(開口部)とは別に空気抜き用のポート63(開口部)を有していてもよい。同様に、培養室10は、ポート51、52(開口部)とは別に空気抜き用のポート53(開口部)を有していてもよい。 Here, FIG. 3 is a diagram showing a main part of a modified example of the cell culture container of the embodiment, and is a schematic cross-sectional view showing a cross section corresponding to the cross section shown in FIG. As shown in FIG. 3, the storage chamber 20 of the cell culture vessel 1 of this example may have a port 63 (opening) for bleeding air in addition to the ports 61 and 62 (opening). Similarly, the culture chamber 10 may have a port 53 (opening) for venting air in addition to the ports 51 and 52 (opening).

貯留室又は培養室は、流体を外部から流入可能な複数の開口部及び流体を外部に流出可能な複数の開口部を有していてもよい。この場合には、貯留室又は培養室は、各開口部に設けられた開閉機構をさらに備えていてもよい。これにより、異なる複数の培地供給元を準備し、貯留室又は培養室が有する複数の開口部に異なる複数の培地供給元をそれぞれ接続することにより、貯留室又は培養室に導入する培地の種類を連続的に切り替えることができ、貯留室又は培養室に複数種類の培地を流入させ混合することで導入する培地の成分を調整することができる。無論、貯留室又は培養室の一つの開口部に接続し、当該開口部の反対側を分岐させ複数の培地供給元にそれぞれ接続する流路を配管等で構築してもよい。この場合にも、同様に、培地の種類を連続的な切り替えや培地の成分の調整が可能である。 The storage chamber or culture chamber may have a plurality of openings that allow the fluid to flow in from the outside and a plurality of openings that allow the fluid to flow out to the outside. In this case, the storage chamber or the culture chamber may further include an opening / closing mechanism provided at each opening. As a result, different media supply sources are prepared, and by connecting the different culture medium supply sources to the plurality of openings of the storage chamber or the culture chamber, the type of medium to be introduced into the storage chamber or the culture chamber can be selected. It can be continuously switched, and the components of the medium to be introduced can be adjusted by inflowing and mixing a plurality of types of media into the storage chamber or the culture chamber. Of course, a flow path may be constructed by connecting to one opening of the storage chamber or the culture chamber, branching the opposite side of the opening, and connecting to each of a plurality of culture medium supply sources by piping or the like. In this case as well, it is possible to continuously switch the type of medium and adjust the components of the medium.

ここで、図4は、実施形態の細胞培養容器の他の変形例の要部を示す概略断面図である。図4に示すように、本例の細胞培養容器1は、筐体5の内部に細胞Cを培養する培養室10並びに流体をそれぞれ貯留する第1貯留室21及び第2貯留室22を有する三段構造でもよい。この場合には、細胞培養容器1は、培養室10及び第1貯留室21を区画し、所定の物質を選択的に透過する第1物質交換膜31と、培養室10及び第2貯留室22を区画し、所定の物質を選択的に透過する第2物質交換膜32と、第1貯留室21と外気を隔てる第1ガス交換膜41と、第2貯留室22と外気を隔てる第2ガス交換膜42と、をさらに備えている。培養室10は、側面側が筐体5により外気と隔てられ、上面側が第1物質交換膜31により第1貯留室21と隔てられ、下面側が第2物質交換膜32により第2貯留室22と隔てられている。第1貯留室21は、側面側が筐体5により外気と隔てられ、上面側が第1ガス交換膜41により外気と隔てられ、下面側が第1物質交換膜31により培養室10と隔てられている。第2貯留室22は、側面側が筐体5により外気と隔てられ、上面側が第2物質交換膜32により外気と隔てられ、下面側が第2ガス交換膜42により外気と隔てられている。そして、培養室10の側面の対向する2箇所にはポート51、52(流体を流入出可能な開口部)がそれぞれ設けられている。第1貯留室21の側面の対向する2箇所にはポート61、62(流体を流入出可能な開口部)がそれぞれ設けられている。第2貯留室22の側面の対向する2箇所にはポート61、62(流体を流入出可能な開口部)がそれぞれ設けられている。 Here, FIG. 4 is a schematic cross-sectional view showing a main part of another modification of the cell culture vessel of the embodiment. As shown in FIG. 4, the cell culture container 1 of this example has a culture chamber 10 for culturing cells C and a first storage chamber 21 and a second storage chamber 22 for storing fluid, respectively, inside the housing 5. It may have a stepped structure. In this case, the cell culture vessel 1 partitions the culture chamber 10 and the first storage chamber 21, and has a first substance exchange membrane 31 that selectively permeates a predetermined substance, and the culture chamber 10 and the second storage chamber 22. A second substance exchange membrane 32 that selectively permeates a predetermined substance, a first gas exchange membrane 41 that separates the first storage chamber 21 from the outside air, and a second gas that separates the second storage chamber 22 from the outside air. It further comprises an exchange membrane 42. The side surface side of the culture chamber 10 is separated from the outside air by the housing 5, the upper surface side is separated from the first storage chamber 21 by the first substance exchange membrane 31, and the lower surface side is separated from the second storage chamber 22 by the second substance exchange membrane 32. Has been done. The side surface side of the first storage chamber 21 is separated from the outside air by the housing 5, the upper surface side is separated from the outside air by the first gas exchange membrane 41, and the lower surface side is separated from the culture chamber 10 by the first substance exchange membrane 31. The side surface side of the second storage chamber 22 is separated from the outside air by the housing 5, the upper surface side is separated from the outside air by the second substance exchange membrane 32, and the lower surface side is separated from the outside air by the second gas exchange membrane 42. Ports 51 and 52 (openings through which fluid can flow in and out) are provided at two opposite positions on the side surface of the culture chamber 10, respectively. Ports 61 and 62 (openings through which fluid can flow in and out) are provided at two opposite locations on the side surface of the first storage chamber 21, respectively. Ports 61 and 62 (openings through which fluid can flow in and out) are provided at two opposite locations on the side surface of the second storage chamber 22, respectively.

細胞培養容器1がこのような三段構造である場合には、第1貯留室21及び第2貯留室22がそれぞれ第1物質交換膜31及び第2物質交換膜32を介して培養室10に隣接するので、物質交換の有効面積が増大し、より効率的に物質交換可能となる。例えば、第1物質交換膜31及び第2物質交換膜32が、同一範囲の低分子量の成分を透過し、同一範囲の高分子量のタンパク質成分を透過しないという同一の選択的透過性を有する場合において、第1貯留室21及び第2貯留室22の両方に同一の栄養培地を供給するときには、培養室10に栄養成分をより効率的に供給することができ、培養室10から老廃物をより効率的に排出することができる。一方、第1物質交換膜31及び第2物質交換膜32が、異なる範囲の分子量の成分を透過するという互いに異なる選択的透過性を有する場合には、複数種類の物質を選択的に交換する物質交換を行うことができる。例えば、第1物質交換膜31を栄養成分及び老廃物等の低分子量の成分を透過する透析膜とし、第2物質交換膜32をガス交換膜とする場合には、第1貯留室21に栄養培地を供給し、第2貯留室22に酸素濃度を調整したガスを供給することで、培養室10に酸素を効率的に供給しつつ、栄養成分及び老廃物を第1貯留室21及び培養室10の間で交換することができる。 When the cell culture vessel 1 has such a three-stage structure, the first storage chamber 21 and the second storage chamber 22 enter the culture chamber 10 via the first substance exchange membrane 31 and the second substance exchange membrane 32, respectively. Since they are adjacent to each other, the effective area for substance exchange increases, and substance exchange becomes possible more efficiently. For example, when the first substance exchange film 31 and the second substance exchange film 32 have the same selective permeability of permeating low molecular weight components in the same range and not permeating high molecular weight protein components in the same range. When the same nutrient medium is supplied to both the first storage chamber 21 and the second storage chamber 22, the nutritional components can be supplied to the culture chamber 10 more efficiently, and the waste products can be more efficiently supplied from the culture chamber 10. Can be discharged as a target. On the other hand, when the first substance exchange membrane 31 and the second substance exchange membrane 32 have different selective permeability of permeating components having different molecular weights, a substance that selectively exchanges a plurality of types of substances. Can be exchanged. For example, when the first substance exchange membrane 31 is a dialysis membrane that permeates low molecular weight components such as nutrients and waste products and the second substance exchange membrane 32 is a gas exchange membrane, the first storage chamber 21 is used for nutrition. By supplying a medium and supplying a gas having an adjusted oxygen concentration to the second storage chamber 22, oxygen is efficiently supplied to the culture chamber 10, and nutrient components and waste products are supplied to the first storage chamber 21 and the culture chamber. It can be exchanged between 10.

4.細胞培養方法及び細胞生育状態の評価方法
細胞培養方法は、上記細胞培養容器を用い、上記培養室で上記細胞を培養する細胞培養方法であって、上記開口部を介して上記培養室及び上記貯留室に成分又は成分濃度が異なる培地を供給することを特徴とする。
4. Cell culture method and evaluation method of cell growth state The cell culture method is a cell culture method in which the cells are cultured in the culture chamber using the cell culture vessel, and the culture chamber and the storage are provided through the opening. It is characterized in that a medium having different components or component concentrations is supplied to the chamber.

培養室で培養する細胞は、接着細胞及び浮遊細胞のどちらでもよく、一種の細胞でもよいし、複数種の細胞でもよい。さらに、培養室で培養する細胞は、分散して存在する単一の細胞に限定されず、スフェロイドでもよいし、細胞及び細胞外マトリックスを含有する組織でもよい。 The cells to be cultured in the culture chamber may be either adherent cells or floating cells, may be one type of cells, or may be a plurality of types of cells. Further, the cells to be cultured in the culture chamber are not limited to a single cell existing in a dispersed manner, and may be a spheroid or a tissue containing cells and extracellular matrix.

培養室で培養する細胞が接着細胞である場合には、培養室に培養足場を導入することが好ましい。培養足場は、細胞を接着又は包埋可能な構造体である。培養足場の材料としては、細胞を接着又は包埋可能な生体適合性材料であれば特に限定されないが、例えば、シリコーン、樹脂、ガラス、多糖類、又はタンパク質等から構成される多孔質体、ゲル、フィルム、ディスク、及びビーズ等が挙げられる。 When the cells to be cultured in the culture chamber are adherent cells, it is preferable to introduce a culture scaffold into the culture chamber. A culture scaffold is a structure capable of adhering or embedding cells. The material of the culture scaffold is not particularly limited as long as it is a biocompatible material capable of adhering or embedding cells, but for example, a porous body or gel composed of silicone, resin, glass, polysaccharide, protein or the like. , Films, discs, beads and the like.

培養室に細胞又は培養足場を導入する方法としては、例えば、図1に示すポート51、52のような開口部を介して培養室に細胞又は培養足場を流入させる方法等が挙げられる。培養室を組み立て式とする場合には、組立て前の培養室に予め細胞又は培養足場を導入した後に培養室を組み立てることにより、培養室に細胞又は培養足場を導入することができる。 Examples of the method of introducing the cells or the culture scaffold into the culture chamber include a method of flowing the cells or the culture scaffold into the culture chamber through openings such as ports 51 and 52 shown in FIG. When the culture chamber is an assembly type, the cells or the culture scaffold can be introduced into the culture chamber by assembling the culture chamber after introducing the cells or the culture scaffold into the culture chamber before the assembly in advance.

培養室に導入する培地は、貯留室に供給する培地と成分又は成分濃度が異なるものであれば特に限定されないが、例えば、細胞の培養に必要なタンパク質成分などの培養成分を含む培養培地等が挙げられる。細胞の培養には同化又は異化の対象となる栄養成分の他に、例えば、少量で細胞の増殖や分化に影響する生理活性物質成分や培地環境を安定化させる成分等のようなタンパク質成分などの培養成分が必要である。生理活性物質成分としては、例えば、サイトカインやホルモン等の成長因子及び医薬品等が挙げられる。これらの細胞の培養に必要なタンパク質成分などの培養成分は、血清や精製タンパク等の添加又は培養中の細胞自身の分泌等により培地に含ませることができる。 The medium to be introduced into the culture chamber is not particularly limited as long as it has a different component or component concentration from the medium supplied to the storage chamber, and for example, a culture medium containing a culture component such as a protein component necessary for cell culture may be used. Can be mentioned. In cell culture, in addition to nutritional components that are subject to assimilation or catabolism, for example, protein components such as physiologically active substance components that affect cell proliferation and differentiation in small amounts and components that stabilize the medium environment. Culture components are needed. Examples of the bioactive substance component include growth factors such as cytokines and hormones, pharmaceuticals and the like. Culture components such as protein components necessary for culturing these cells can be contained in the medium by adding serum, purified protein, or the like, or by secreting the cells themselves during culture.

貯留室に供給する培地は、培養室に供給する培地と成分又は成分濃度が異なるものであれば特に限定されないが、例えば、細胞が生育時に消費する栄養成分を含む栄養培地等が挙げられる。中でも、タンパク質成分の濃度が1%以下である栄養培地等が好ましい。栄養成分としては、例えば、グルコース等の糖質、アミノ酸、脂質、ペプチド、並びに核酸等が挙げられる。栄養培地としては、例えば、アミノ酸、ビタミン、無機塩、又はグルコース等を含む基本培地等が好ましい。 The medium supplied to the storage chamber is not particularly limited as long as it has a different component or component concentration from the medium supplied to the culture chamber, and examples thereof include a nutritional medium containing a nutritional component consumed by cells during growth. Among them, a nutrient medium or the like having a protein component concentration of 1% or less is preferable. Examples of the nutritional component include sugars such as glucose, amino acids, lipids, peptides, nucleic acids and the like. As the nutrient medium, for example, a basal medium containing amino acids, vitamins, inorganic salts, glucose and the like is preferable.

細胞培養方法としては、上記開口部を介して上記貯留室に連続的又は逐次的に上記培地を供給し、上記貯留室から上記開口部を介して連続的又は逐次的に上記培地を排出しながら、上記培養室で上記細胞を培養する方法が好ましい。これにより、細胞を連続培養することができる。この方法の中でも、上記貯留室の上記開口部又は当該開口部に接続する流路にサンプリングポート又は成分分析用センサーを設置した状態において、上記培養室で上記細胞を培養する方法が好ましい。特に、上記サンプリングポート又は上記成分分析用センサーを用い、上記培地に含まれるグルコース、乳酸、アンモニア、グルタミン、グルタミン酸、酸素、及び二酸化炭素(上記二酸化炭素は、炭酸、炭酸イオン、又は炭酸水素イオンを含む)の少なくとも一種の成分の濃度を連続的又は逐次的に測定しながら、上記培養室で上記細胞を培養する方法が好ましい。これにより、貯留室に供給される培地及び貯留室から排出される培地の成分を分析し培養室内の細胞数や細胞の代謝を推定することで、細胞生育状態を評価することができる。その上で、細胞生育状態の評価結果に基づき、フィードバック制御により、貯留室又は培養室に培地を供給する方法を制御することができる。 As a cell culture method, the medium is continuously or sequentially supplied to the storage chamber through the opening, and the medium is continuously or sequentially discharged from the storage chamber through the opening. , The method of culturing the cells in the culture chamber is preferable. This allows the cells to be continuously cultured. Among these methods, a method of culturing the cells in the culture chamber in a state where the sampling port or the component analysis sensor is installed in the opening of the storage chamber or the flow path connected to the opening is preferable. In particular, using the sampling port or the component analysis sensor, glucose, lactic acid, ammonia, glutamine, glutamic acid, oxygen, and carbon dioxide contained in the medium (the carbon dioxide is carbonic acid, carbonate ion, or hydrogen carbonate ion). A method of culturing the cells in the culture chamber while continuously or sequentially measuring the concentration of at least one component (including) is preferable. Thereby, the cell growth state can be evaluated by analyzing the components of the medium supplied to the storage chamber and the medium discharged from the storage chamber and estimating the number of cells and the metabolism of the cells in the culture chamber. Then, based on the evaluation result of the cell growth state, the method of supplying the medium to the storage chamber or the culture chamber can be controlled by feedback control.

以下、本発明の細胞培養方法で効果が得られる根拠を理論的に説明する。以下では、細胞治療で最も注目されている細胞の一種であるhMSC(human mesenchymal stem cells)の高密度培養への本発明の細胞培養方法の適用可能性を検証した結果を詳述することで、その根拠を理論的に説明する。この適用可能性の検証では、hMSCの一般的な平面培養でのコンフルエント状態における細胞密度が1×10cells/cm程度であるため、細胞密度の到達目標をその10倍の1×10cells/cmとした。この適用可能性の検証は、物質交換膜として市販の透析膜Spectra/Por 7(MWCO:10kDa)を用い、グルコース及び乳酸についての透析膜の透析特性を調査することで行った。 Hereinafter, the grounds for obtaining the effect by the cell culture method of the present invention will be theoretically described. In the following, the results of verifying the applicability of the cell culture method of the present invention to high-density culture of hMSC (human mesenchymal stem cells), which is one of the cells that have received the most attention in cell therapy, will be described in detail. The rationale will be explained theoretically. In the verification of this applicability, since the cell density in the confluent state in the general planar culture of hMSC is about 1 × 10 5 cells / cm 2 , the achievement target of the cell density is 1 × 10 6 which is 10 times that. It was set to cells / cm 2 . This applicability was verified by using a commercially available dialysis membrane Spectra / Por 7 (MWCO: 10 kDa) as a substance exchange membrane and investigating the dialysis characteristics of the dialysis membrane for glucose and lactic acid.

グルコース及び乳酸についての透析膜の透析特性を調査するために、最初に、透析膜を袋状にしたもの(以下、「袋状透析膜」という)の内部を乳酸濃度(溶質濃度)が2.0g/Lの内部溶液で満たし、袋状透析膜の外部をグルコース濃度(溶質濃度)が4.5g/Lの外部溶液で満たし、袋状透析膜の外部(外部溶液)及び内部(内部溶液)におけるグルコース濃度及び乳酸濃度の経時変化を測定した。ここで、図5(a)は、袋状透析膜の外部(外部溶液)及び内部(内部溶液)におけるグルコース濃度の経時変化を示すグラフであり、図5(b)は、袋状透析膜の外部(外部溶液)及び内部(内部溶液)における乳酸濃度の経時変化を示すグラフである。 In order to investigate the dialysis characteristics of the dialysis membrane for glucose and lactic acid, first, the lactic acid concentration (solute concentration) is 2. Fill with an internal solution of 0 g / L, fill the outside of the bag-shaped dialysis membrane with an external solution having a glucose concentration (solute concentration) of 4.5 g / L, and fill the outside (external solution) and inside (internal solution) of the bag-shaped dialysis membrane. The time course of glucose concentration and lactic acid concentration in dialysis was measured. Here, FIG. 5A is a graph showing changes over time in glucose concentration in the external (external solution) and internal (internal solution) of the bag-shaped dialysis membrane, and FIG. 5B is a graph of the bag-shaped dialysis membrane. It is a graph which shows the time-dependent change of the lactic acid concentration in the external (external solution) and the internal (internal solution).

一般に、透析膜を介した物質の移動は、拡散に由来するものである。そのため、透析膜を隔てて接触している2種類の溶液において、一方の溶液及び他方の溶液の間の透析膜を介した溶質の移動速度d(C)/dt〔ここで、Cは上記一方の溶液の溶質濃度であり、Vは上記一方の溶液の体積である〕は、上記一方の溶液及び上記他方の溶液の溶質濃度の差ΔC〔ここで、ΔC=C−Cであり、Cは上記他方の溶液の溶質濃度である〕、透析膜の面積Smembrane、及び透析膜固有の透過係数kに比例し、下記式(1)の微分方程式で表記することができる。 In general, mass transfer through the dialysis membrane is due to diffusion. Therefore, in two kinds of solutions that are in contact with each other across the dialysis membrane, the transfer rate of the solute through the dialysis membrane between one solution and the other solution d (C 1 V 1 ) / dt [here, C 1 is the solute concentration of the one solution, and V 1 is the volume of the one solution] is the difference in the solute concentration between the one solution and the other solution ΔC [where ΔC = C 1 −. C 0 , where C 0 is the solute concentration of the other solution], proportional to the area of the dialysis membrane Smembrane , and the permeation coefficient k peculiar to the dialysis membrane, and shall be expressed by the differential equation of the following equation (1). Can be done.

Figure 2021185877
Figure 2021185877

これに対し、図5(a)に示すグルコース濃度の経時変化では、袋状透析膜を隔てて接触している袋状透析膜の外部(外部溶液)及び内部(内部溶液)におけるグルコース濃度(溶質濃度)の差ΔCglucが、指数関数的な時間依存性を示している。同様に、図5(b)に示す乳酸濃度の経時変化では、袋状透析膜を隔てて接触している袋状透析膜の外部(外部溶液)及び内部(内部溶液)における乳酸濃度(溶質濃度)の差ΔClacが、指数関数的な時間依存性を示している。そのため、袋状透析膜の内部(内部溶液)に着目した際に、袋状透析膜の外部(外部溶液)及び内部(内部溶液)の間の透析膜を介したグルコース(溶質)の移動速度d(Cglucinside)/dt〔ここで、Cglucは袋状透析膜の内部(内部溶液)におけるグルコース濃度であり、Vinsideは袋状透析膜の内部(内部溶液)の体積である〕が、袋状透析膜の外部(外部溶液)及び内部(内部溶液)におけるグルコース濃度の差ΔCglucに比例すること、並びに袋状透析膜の内部(内部溶液)及び外部(外部溶液)の間の透析膜を介した乳酸(溶質)の移動速度d(Clacinside)/dt〔ここで、Clacは袋状透析膜の内部(内部溶液)における乳酸濃度であり、Vinsideは袋状透析膜の内部(内部溶液)の体積である〕が、袋状透析膜の外部(外部溶液)及び内部(内部溶液)における乳酸濃度の差ΔClacに比例することが示唆されている。そして、グルコース濃度及び乳酸濃度は袋状透析膜の外部(外部溶液)でほぼ一定であり、袋状透析膜の内部(内部溶液)及び外部(外部溶液)の体積はほぼ一定である。そのため、袋状透析膜の外部(外部溶液)及び内部(内部溶液)の間の透析膜を介したグルコース(溶質)の移動速度d(Cglucinside)/dtをグルコースの透過係数をkglucとして上記式(1)で表記する場合には、下記式(2)で近似して表記することができる。同様に、袋状透析膜の内部(内部溶液)及び外部(外部溶液)の間の透析膜を介した乳酸(溶質)の移動速度d(Clacinside)/dtを乳酸の透過係数をklacとして上記式(1)で表記する場合には、下記式(3)で近似して表記することができる。 On the other hand, in the time course of the glucose concentration shown in FIG. 5 (a), the glucose concentration (solute) in the outer (external solution) and the inner (internal solution) of the bag-shaped dialysis membrane in contact with the bag-shaped dialysis membrane. The difference ΔC gluc ( concentration) indicates an exponential time dependence. Similarly, in the time course of the lactic acid concentration shown in FIG. 5 (b), the lactic acid concentration (solute concentration) in the outer (external solution) and the inner (internal solution) of the bag-shaped dialysis membrane in contact with the bag-shaped dialysis membrane. ) Difference ΔC lac indicates an exponential time dependence. Therefore, when focusing on the inside (internal solution) of the bag-shaped dialysis membrane, the movement speed d of glucose (solute) via the dialysis membrane between the outside (external solution) and the inside (internal solution) of the bag-shaped dialysis membrane. (C gluc V inside ) / dt [Here, C gluc is the glucose concentration inside the bag-shaped dialysis membrane (internal solution), and V inside is the volume inside the bag-shaped dialysis membrane (internal solution)]. , The difference in glucose concentration between the outside (external solution) and the inside (internal solution) of the bag-shaped dialysis membrane is proportional to ΔC gluc , and dialysis between the inside (internal solution) and the outside (external solution) of the bag-shaped dialysis membrane. Movement rate of lactic acid (solute) through the membrane d (C lac V inside ) / dt [Here, C lac is the lactic acid concentration inside the sac-shaped dialysis membrane (internal solution), and V inside is the sac-shaped dialysis membrane. internal the volume (internal solution)] is, to be proportional to the difference [Delta] C lac lactate concentration has been suggested in the external of the bag-like dialysis membrane (external solution) and internal (internal solution). The glucose concentration and the lactic acid concentration are substantially constant outside the bag-shaped dialysis membrane (external solution), and the volumes inside (internal solution) and outside (external solution) of the bag-shaped dialysis membrane are substantially constant. Therefore, the glucose (solute) transfer rate d (C gluc V inside ) / dt between the external (external solution) and the internal (internal solution) of the bag-shaped dialysis membrane is set to the glucose permeability coefficient of k gluc. When it is expressed by the above equation (1), it can be expressed by approximating it by the following equation (2). Similarly, the transfer coefficient of lactic acid (Clac V inside ) / dt through the dialysis membrane between the inside (internal solution) and the outside (external solution) of the bag-shaped dialysis membrane is k. When the lac is expressed by the above equation (1), it can be approximated by the following equation (3).

Figure 2021185877
Figure 2021185877

Figure 2021185877
Figure 2021185877

上記式(2)に従って、図5(a)に示すグルコース濃度の経時変化について、グルコース濃度の差ΔCglucの時間依存性を指数関数でフィッティングすることにより、グルコースの透過係数kglucは2.2×10−4L/cm/hと算出される。同様に、上記式(3)に従って、図5(b)に示す乳酸濃度の経時変化について、乳酸濃度の濃度差ΔClacの時間依存性を指数関数でフィッティングすることにより、乳酸の透過係数klacは2.6×10−4L/cm/hと算出される。 According to the above formula (2), the glucose permeation coefficient k gluc is 2.2 by fitting the time dependence of the difference in glucose concentration ΔC gluc with respect to the time course of the glucose concentration shown in FIG. It is calculated as × 10 -4 L / cm 2 / h. Similarly, according to the above formula (3), the time course of the lactic acid concentration shown in FIG. 5 (b), by fitting the time dependence of the concentration difference [Delta] C lac lactate concentration exponentially, permeability coefficient k lac lactate Is calculated as 2.6 × 10 -4 L / cm 2 / h.

続いて、これらの透過係数を用い到達細胞数Nmaxを算出し、到達細胞密度Nmax/Sculture及び到達乳酸濃度Clacを推定する。 Subsequently, the number of reached cells N max is calculated using these permeability coefficients, and the reached cell density N max / Molare and the reached lactic acid concentration C lac are estimated.

透析培養方式における培養終期では、一定濃度のグルコースを含み乳酸を含まない透析液(上記外部溶液に相当)が、グルコースが枯渇し一定濃度の乳酸を含む培養液(上記内部溶液に相当)と透析膜を隔てて接触している状態において、透析液から培養液への透析膜を介したグルコースの供給速度がhMSCによるグルコース消費量と釣り合った状態になり、かつ培養液から透析液への透析膜を介した乳酸の排出速度がhMSCによる乳酸産生量と釣り合った状態になると考えられる。そのため、rglucをhMSCのグルコース消費速度、rlacをhMSCの乳酸産生速度、透析液のグルコース濃度をC、培養液の到達乳酸濃度をCとすると、下記式(4)及び(5)が成立すると考えられる。 At the end of dialysis in the dialysis culture method, a dialysate containing a certain concentration of glucose and not containing lactic acid (corresponding to the above external solution) is depleted of glucose and dialysis with a culture solution containing a constant concentration of lactic acid (corresponding to the above internal solution). In the state of being in contact with each other across the membrane, the supply rate of glucose from the dialysate to the culture solution via the dialysate becomes balanced with the glucose consumption by hMSC, and the dialysate from the culture solution to the dialysate. It is considered that the discharge rate of dialysis via dialysis is in balance with the amount of lactic acid produced by hMSC. Therefore, the glucose consumption rate of hMSC a r gluc, lactate production rate of hMSC a r lac, the glucose concentration of the dialysate C G, when the arrival lactate concentration in the culture solution and C L, the following formula (4) and (5) Is considered to hold.

Figure 2021185877
Figure 2021185877

Figure 2021185877
Figure 2021185877

ここで、単純のため、円筒状の細胞室を用いる条件、すなわち透析膜の面積Smembrane及び培養室の細胞接地面積Scultureが同一になる条件を想定し、透析液のグルコース濃度Cを一般的に培養で用いられる1.0g/L(低グルコース培地)と仮定する。また、hMSCは一般的に3〜7×10−11g/cell/h程度の速度でグルコースを消費すると知られている。そこで、hMSCのグルコース消費速度rglucを多めに見積もって8×10−11g/cell/hとする。さらに、完全嫌気呼吸を仮定することで、hMSCの乳酸産生速度rlacをhMSCのグルコース消費速度rglucと同一とする。以上の設定により、上記式(4)から到達細胞密度Nmax/Scultureは2.8×10cells/cmと推定される。この値は、細胞密度の到達目標(1×10cells/cm)を超える値である。さらに、上記式(5)から培養液の到達乳酸濃度Cは0.85g/Lと推定される。よって、培養液の乳酸濃度が1.0g/LであるとするとhMSCを培養可能であることからすれば、本調査での透析膜Spectra/Por 7(MWCO:10kDa)を用いた透析により、hMSCを培養するのに十分なだけ乳酸を除去することができると考えられる。 Here, for simplicity, assume the conditions used a cylindrical cell chamber, i.e. the condition where the area S membrane and cell contact area S culture of the culture chamber of the dialysis membrane is the same, generally a glucose concentration C G of the dialysate It is assumed that 1.0 g / L (low glucose medium) used in the culture is used. Further, hMSC is generally known to consume glucose at a rate of about 3 to 7 × 10-11 g / cell / h. Therefore, the glucose consumption rate r gluc of hMSC is overestimated to be 8 × 10 -11 g / cell / h. Furthermore, by assuming complete anaerobic respiration, the lactate production rate r lac of hMSC is made the same as the glucose consumption rate r gluc of hMSC. With the above settings, the reached cell density N max / Culture is estimated to be 2.8 × 10 6 cells / cm 2 from the above formula (4). This value exceeds the achievement target of cell density (1 × 10 6 cells / cm 2 ). Furthermore, reach lactate concentration C L of the culture solution from the above equation (5) is estimated to 0.85 g / L. Therefore, since hMSC can be cultivated assuming that the lactic acid concentration of the culture solution is 1.0 g / L, hMSC is obtained by dialysis using the dialysis membrane Spectra / Por 7 (MWCO: 10 kDa) in this study. It is considered that lactic acid can be removed sufficiently for culturing.

従って、本発明の細胞培養方法の適用により、従来の一般的な平面培養の10倍以上の密度でhMSCを培養可能であると考えられる。なお、上述した本発明の細胞培養方法の適用可能性の検証では、hMSCの高密度培養への適用可能性を検証したが、本発明の細胞培養方法の適用対象は、hMSCの高密度培養に限定されず、本発明の細胞培養方法は、例えば、他の種類の細胞の培養や増殖以外の分化や維持等を目的とする培養にも適用可能である。 Therefore, by applying the cell culture method of the present invention, it is considered that hMSC can be cultured at a density 10 times or more that of the conventional general planar culture. In the above-mentioned verification of the applicability of the cell culture method of the present invention, the applicability of hMSC to high-density culture was verified, but the application target of the cell culture method of the present invention is to high-density culture of hMSC. The cell culture method of the present invention is not limited, and can be applied to, for example, culture of other types of cells and culture for the purpose of differentiation or maintenance other than proliferation.

以下、実施例及び参考例を挙げ、本発明をさらに具体的に説明する。ただし、本発明は、以下に挙げる実施例及び参考例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples. However, the present invention is not limited to the examples and reference examples listed below.

[実施例1]
本発明の細胞培養容器を設計した。図6は、実施例1で設計した細胞培養容器を示す概略断面図である。以下、図6に示す細胞培養容器1の設計に基づく作製方法について、具体的に説明する。
[Example 1]
The cell culture vessel of the present invention was designed. FIG. 6 is a schematic cross-sectional view showing the cell culture vessel designed in Example 1. Hereinafter, a production method based on the design of the cell culture vessel 1 shown in FIG. 6 will be specifically described.

細胞培養容器1の作製において筐体5を作製する場合には、例えば、医療用樹脂(MED610)を材料として用い3Dプリンタを使用する方法、又はステンレス(SUS316)を切削加工する方法を用いる。また、筐体5の上部分である筐体上部5U及び筐体5の下部分である筐体下部5Lを別々に作製する。筐体上部5Uの上面に設けられた開口部5Ua及び筐体下部5Lの下面に設けられた開口部5Laにはそれらを塞ぐようにガス交換膜40を設置する。そして、筐体上部5U及び筐体下部5Lをそれらの間に物質交換膜30を挟みこむように組み立てることで細胞培養容器1を作製する。 When the housing 5 is manufactured in the production of the cell culture vessel 1, for example, a method using a medical resin (MED610) as a material and using a 3D printer, or a method of cutting stainless steel (SUS316) is used. Further, the upper part 5U of the housing which is the upper part of the housing 5 and the lower part 5L of the housing which is the lower part of the housing 5 are separately manufactured. A gas exchange film 40 is installed in the opening 5Ua provided on the upper surface of the upper portion 5U of the housing and the opening 5La provided on the lower surface of the lower portion 5L of the housing so as to close them. Then, the cell culture vessel 1 is manufactured by assembling the upper part 5U of the housing and the lower part 5L of the housing so as to sandwich the substance exchange membrane 30 between them.

細胞培養容器1の作製方法では、筐体下部5Lの内部の空間である培養室10内に三次元の培養足場80を予め導入した状態で細胞培養容器1を組み立てることができる。そのため、培養足場80は、培養室10内に収まるサイズのものであれば特に限定されず、形状及び性状を適宜選択することができる。無論、培養足場80が流動性や分散性が高い培養足場である場合には、ポート51、52を使用することにより、培養足場80を培養室10内に流体として流し込む方法を用いることができる。細胞培養容器1では、培養室10内に導入した培養足場80の構造により、簡便に三次元の培養足場を用いた細胞培養を行うことができる。 In the method for producing the cell culture vessel 1, the cell culture vessel 1 can be assembled with the three-dimensional culture scaffold 80 introduced in advance in the culture chamber 10, which is the space inside the lower part 5L of the housing. Therefore, the culture scaffold 80 is not particularly limited as long as it has a size that fits in the culture chamber 10, and the shape and properties can be appropriately selected. Of course, when the culture scaffold 80 is a culture scaffold having high fluidity and dispersibility, a method of pouring the culture scaffold 80 into the culture chamber 10 as a fluid can be used by using the ports 51 and 52. In the cell culture vessel 1, the structure of the culture scaffold 80 introduced into the culture chamber 10 makes it possible to easily perform cell culture using the three-dimensional culture scaffold.

筐体上部5Uを作製する場合には、筐体上部5Uの内部の空間である貯留室20内に流路方向と垂直な方向に沿って仕切り板24を設置する。このような筐体上部5Uの構造により、培地をポート61から貯留室20内に流入させる場合に、培地を貯留室20の下面に設置された物質交換膜30の近傍に流すことができる。これにより、貯留室20及び培養室10の間で効率よく物質交換を行うことができる。 When the housing upper portion 5U is manufactured, the partition plate 24 is installed in the storage chamber 20, which is the space inside the housing upper portion 5U, along the direction perpendicular to the flow path direction. With such a structure of the upper portion 5U of the housing, when the medium flows into the storage chamber 20 from the port 61, the medium can be flowed in the vicinity of the substance exchange membrane 30 installed on the lower surface of the storage chamber 20. As a result, substances can be efficiently exchanged between the storage chamber 20 and the culture chamber 10.

筐体下部5Lを作製する場合には、培養室10内の上側に空気貯め16を形成する。この構造により、培地を培養室10内に供給する場合に空気が残存したとしても、空気を空気貯め16に貯めることにより、物質交換膜30に気泡が付くことによる物質交換の効率の低下を抑制することができる。 When the lower part 5L of the housing is manufactured, the air reservoir 16 is formed on the upper side in the culture chamber 10. With this structure, even if air remains when the medium is supplied into the culture chamber 10, by storing the air in the air reservoir 16, it is possible to suppress a decrease in the efficiency of substance exchange due to bubbles attached to the substance exchange membrane 30. can do.

以下、細胞培養容器1を用いる細胞培養方法の一例について説明する。
本例の細胞培養方法では、まず、細胞培養容器1の組み立ての前に予め筐体上部5U及び筐体下部5L並びにガス交換膜40及び物質交換膜30を滅菌する。そして、細胞培養容器1の組み立て及び細胞播種を無菌環境下で実施する。
Hereinafter, an example of a cell culture method using the cell culture container 1 will be described.
In the cell culture method of this example, first, the upper 5U of the housing, the lower 5L of the housing, the gas exchange membrane 40, and the substance exchange membrane 30 are sterilized in advance before assembling the cell culture container 1. Then, the cell culture vessel 1 is assembled and the cells are seeded in a sterile environment.

次に、筐体上部5Uのポート61、62及び筐体下部5Lのポート51、52にチューブを接続し、ルアーロックコネクタ又はクランプ等で密閉する。また、三次元の培養足場80を筐体下部5Lの培養室10内に開口部5Lbから導入する。この際、同時に細胞及び培養培地を培養室10内に導入してもよい。 Next, the tubes are connected to the ports 61 and 62 of the upper part 5U of the housing and the ports 51 and 52 of the lower part 5L of the housing, and sealed with a luer lock connector or a clamp. Further, the three-dimensional culture scaffold 80 is introduced into the culture chamber 10 of the lower part of the housing 5L from the opening 5Lb. At this time, the cells and the culture medium may be introduced into the culture chamber 10 at the same time.

次に、筐体下部5Lの開口部5Lbに物質交換膜30に設置し、筐体上部5U及び筐体下部5Lをそれらの間に物質交換膜30を挟み込むように組み立てることで細胞培養容器1を作製する。筐体上部5U及び筐体下部5Lは、筐体上部5U及び筐体下部5Lの組み立て時に開口部5Ub及び開口部5Lbの周囲の壁面が密着する寸法となっている。 Next, the cell culture vessel 1 is assembled by installing the substance exchange membrane 30 in the opening 5Lb of the housing lower part 5L and assembling the housing upper part 5U and the housing lower part 5L so as to sandwich the substance exchange membrane 30 between them. To make. The upper portion 5U of the housing and the lower portion 5L of the housing have dimensions such that the wall surfaces around the opening 5Ub and the opening 5Lb are in close contact with each other when the upper portion 5U of the housing and the lower portion 5L of the housing are assembled.

次に、細胞培養容器1の組み立て後、筐体上部5Uのポート61、62を開放し、細胞の生育時に消費する栄養成分を含んだ培地である栄養培地を導入する。その後、筐体上部5Uのポート61、62を閉鎖する。 Next, after assembling the cell culture vessel 1, the ports 61 and 62 of the upper part 5U of the housing are opened, and a nutrient medium containing nutrients to be consumed during cell growth is introduced. After that, the ports 61 and 62 of the upper part 5U of the housing are closed.

次に、筐体下部5Lのポート51、52を開放し、細胞及び細胞の培養に必要なタンパク質成分等を含有した培地である培養培地を導入する。その際、気泡が物質交換膜30に接して残存した場合、細胞培養容器1の全体を傾けることで、気泡を空気貯め16へ逃がす。その後、筐体下部5Lのポート51、52を閉鎖する。必要であれば、筐体下部5Lのポート51を流入路、筐体下部5Lのポート52を流出路として培養培地の流路を構築することにより、培養培地を灌流してもよい。この段階で、細胞培養容器1をインキュベータ内に設置することで細胞を培養してもよい。 Next, the ports 51 and 52 of the lower part 5L of the housing are opened, and a culture medium, which is a medium containing cells and protein components necessary for cell culture, is introduced. At that time, when the bubbles are in contact with the substance exchange membrane 30 and remain, the bubbles are released to the air reservoir 16 by tilting the entire cell culture vessel 1. After that, the ports 51 and 52 of the lower 5L of the housing are closed. If necessary, the culture medium may be perfused by constructing a flow path of the culture medium using the port 51 of the lower part of the housing 5L as an inflow path and the port 52 of the lower part of the housing 5L as an outflow path. At this stage, cells may be cultured by placing the cell culture vessel 1 in the incubator.

次に、筐体上部5Uのポート61を流入路、筐体上部5Uのポート62を流出路として栄養培地の流路を構築する。そして、筐体上部5Uのポート61を貯留室20内へ新鮮な栄養培地を供給する栄養培地供給源に接続する。また、筐体上部5Uのポート62を使用済みの栄養培地を貯留するタンクに接続する。次に、細胞培養容器1をインキュベータ内に設置することで細胞を培養する。 Next, a flow path for the nutrient medium is constructed by using the port 61 of the upper part 5U of the housing as an inflow path and the port 62 of the upper part 5U of the housing as an outflow path. Then, the port 61 of the upper portion 5U of the housing is connected to a nutrient medium supply source that supplies a fresh nutrient medium into the storage chamber 20. Further, the port 62 of the upper part 5U of the housing is connected to the tank for storing the used nutrient medium. Next, the cells are cultured by placing the cell culture vessel 1 in the incubator.

本例の細胞培養方法では、細胞培養時において、貯留室20への新鮮な栄養培地の連続供給又は逐次供給を行うことができる。貯留室20へ供給する栄養培地は、栄養成分等の低分子量の成分が含まれていればよい。低分子量の成分としては、例えば、糖質、アミノ酸、脂質、ペプチド、及び核酸等の栄養成分、塩、並びに緩衝剤等が挙げられる。これらの成分は、物質交換膜30を介して、拡散により貯留室20から培養室10へ供給される。また、細胞培養時に発生する老廃物は、培養室10から貯留室20へ拡散し回収されることで除去される。老廃物は、細胞の代謝産物であり、例えば、乳酸等である。従って、細胞培養容器1では、貯留室20へ供給する栄養培地がタンパク質成分を添加していない培地であったとしても、細胞培養を行うことができる。 In the cell culture method of this example, the fresh nutrient medium can be continuously or sequentially supplied to the storage chamber 20 at the time of cell culture. The nutritional medium supplied to the storage chamber 20 may contain low molecular weight components such as nutritional components. Examples of low molecular weight components include nutritional components such as sugars, amino acids, lipids, peptides, and nucleic acids, salts, and buffers. These components are supplied from the storage chamber 20 to the culture chamber 10 by diffusion via the substance exchange membrane 30. In addition, waste products generated during cell culture are removed by diffusing and collecting from the culture chamber 10 to the storage chamber 20. Waste products are metabolites of cells, such as lactic acid. Therefore, in the cell culture vessel 1, cell culture can be performed even if the nutrient medium supplied to the storage chamber 20 is a medium to which no protein component is added.

本例の細胞培養方法では、細胞培養後に細胞を回収する。具体的には、まず、筐体下部5Lのポート51、52を開放し、洗浄液を導入することで培地を除去する。次に、細胞剥離酵素を導入し、作用させることで培養足場80から細胞を剥離させる。次に、細胞回収用の培地をポート51から流入させ、ポート52からの流出液を回収し、細胞を回収できる。他の方法として、無菌環境下で、細胞培養容器1を筐体上部5U及び筐体下部5L等に分解し、培養室10から培養足場80ごと細胞を回収する方法を用いることができる。この方法の場合、単一細胞での回収に限定されず、組織様の構造体として細胞を回収することも可能である。 In the cell culture method of this example, cells are collected after cell culture. Specifically, first, the ports 51 and 52 of the lower part 5L of the housing are opened, and the culture medium is removed by introducing a washing liquid. Next, cells are detached from the culture scaffold 80 by introducing a cell exfoliating enzyme and allowing it to act. Next, the medium for cell recovery can be flowed in from the port 51, the effluent from the port 52 can be recovered, and the cells can be recovered. As another method, a method can be used in which the cell culture vessel 1 is decomposed into 5U in the upper part of the housing, 5L in the lower part of the housing, and the like under a sterile environment, and the cells are collected from the culture chamber 10 together with the culture scaffold 80. In the case of this method, the recovery is not limited to single cells, and it is also possible to recover cells as a tissue-like structure.

[参考例1]
本発明に適用される透析方式により、ポリスチレン製多孔質担体(3D Biotek社製PS304012−6)を培養足場としてhMSCを培養する場合における血清消費量の試算を示す。
[Reference Example 1]
The estimation of the serum consumption in the case of culturing hMSC using a polystyrene porous carrier (PS304012-6 manufactured by 3D Biotek) as a culture scaffold by the dialysis method applied to the present invention is shown.

血清消費量を試算する際には、予め、上記多孔質担体にhMSCを8.0×10cells播種したときにhMSCがコンフルエント相当の1.9×10cellsになるまでに必要とされるグルコース量を、実験により2.7mgと求めた。そして、これを血清消費量の試算でhMSCの培養に必要なグルコース量として用いた。さらに、血清消費量の試算では、栄養培地及び培養培地として、グルコースを含み血清成分を含まない基本培地及び上記基本培地に血清を10体積%添加した培地をそれぞれ想定し、栄養培地及び培養培地のグルコース濃度を一般的に培養で用いられる1.0g/L(低グルコース培地)と仮定する。これらを前提として、hMSCの培養に必要な栄養培地及び培養培地の合計量が2.7mLと試算される。 When calculating the serum consumption, it is required in advance until the hMSC becomes 1.9 × 10 6 cells equivalent to the confluent when hMSC is seeded on the porous carrier at 8.0 × 10 4 cells. The amount of glucose was determined experimentally to be 2.7 mg. Then, this was used as the amount of glucose required for culturing hMSC in the estimation of serum consumption. Furthermore, in the estimation of serum consumption, the nutrient medium and the culture medium are assumed to be a basal medium containing glucose and not containing serum components and a medium obtained by adding 10% by volume of serum to the basal medium, respectively. The serum concentration is assumed to be 1.0 g / L (low glucose medium) commonly used in culture. Based on these assumptions, the total amount of nutrient medium and culture medium required for hMSC culture is estimated to be 2.7 mL.

その上で、透析方式により、上記多孔質担体を培養足場としてhMSCを培養する方法として、培養培地を多孔質担体が12ウェルプレートのウェルで完全に浸漬される1mLの初期の培地としてだけ使用し、培養培地に透析膜を介して栄養培地を接触させることでグルコースを供給することで良好な培養環境を維持する方法を想定する。これにより、上記多孔質担体を培養足場としてhMSCを培養する場合における血清消費量が0.1mLと試算される。 Then, as a method of culturing hMSC using the above-mentioned porous carrier as a culture scaffold by a dialysis method, the culture medium is used only as a 1 mL initial medium in which the porous carrier is completely immersed in the wells of a 12-well plate. We envision a method for maintaining a good culture environment by supplying glucose to the culture medium by contacting the culture medium with the nutrient medium via a dialysis membrane. As a result, the serum consumption when hMSC is cultured using the porous carrier as a culture scaffold is estimated to be 0.1 mL.

[参考例2]
従来の培地交換方式により、ポリスチレン製多孔質担体(3D Biotek社製PS304012−6)を培養足場としてhMSCを培養する場合における血清消費量の試算を示す。この血清消費量の試算で用いるhMSCの培養に必要なグルコース量、この血清消費量の試算で想定する栄養培地及び培養培地、並びにこの血清消費量の試算で仮定する栄養培地及び培養培地のグルコース濃度は、参考例1と同一である。そのため、参考例1と同様に、hMSCの培養に必要な栄養培地及び培養培地の合計量が2.7mLと試算される。
[Reference Example 2]
The estimation of serum consumption in the case of culturing hMSC using a polystyrene porous carrier (PS304012-6 manufactured by 3D Biotek) as a culture scaffold by a conventional medium exchange method is shown. The amount of glucose required for culturing hMSC used in this estimation of serum consumption, the nutrient medium and culture medium assumed in this estimation of serum consumption, and the glucose concentration in the nutrition medium and culture medium assumed in this estimation of serum consumption. Is the same as Reference Example 1. Therefore, as in Reference Example 1, the total amount of the nutrient medium and the culture medium required for culturing hMSC is estimated to be 2.7 mL.

その上で、培地交換方式により、上記多孔質担体を培養足場としてhMSCを培養する方法として、培養培地を、多孔質担体を12ウェルプレートのウェルで完全に浸漬可能な1mLの培地として使用し、当該培地の全量を定期的に未使用の培養培地で交換することで良好な培養環境を維持する方法を想定する。これにより、上記多孔質担体を培養足場としてhMSCを培養する場合における血清量が0.3mLと試算される。なお、培地交換方式により、上記多孔質担体を培養足場としてhMSCを培養する場合における血清消費量の最小量は、0.27mLと試算可能である。 Then, as a method of culturing hMSC using the above-mentioned porous carrier as a culture scaffold by a medium exchange method, the culture medium is used as a 1 mL medium in which the porous carrier can be completely immersed in a well of a 12-well plate. We envision a method for maintaining a good culture environment by periodically replacing the entire amount of the medium with an unused culture medium. As a result, the serum volume when hMSC is cultured using the porous carrier as a culture scaffold is estimated to be 0.3 mL. The minimum amount of serum consumption when hMSC is cultured using the porous carrier as a culture scaffold by the medium exchange method can be estimated to be 0.27 mL.

本発明は、上記実施形態及び上記実施例に限定されるものではなく、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含され、様々な変形例が含む。例えば、上記実施形態及び上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態及び実施例の構成の一部を他の実施形態及び実施例の構成に置き換えることが可能であり、また、ある実施形態及び実施例の構成に他の実施形態及び実施例の構成を加えることも可能である。また、各実施形態及び各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment and the above-mentioned embodiment, but has substantially the same configuration as the technical idea described in the claims of the present invention, and exhibits the same function and effect. Anything is included in the technical scope of the invention and includes various modifications. For example, the above-described embodiment and the above-mentioned embodiment have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment and embodiment with the configuration of another embodiment and embodiment, and the configuration of one embodiment and example can be replaced with the configuration of another embodiment and embodiment. It is also possible to add configurations. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment and each embodiment.

1 細胞培養容器
5 筐体
5U 筐体上部
5Ua 開口部
5Ub 開口部
5L 筐体下部
5La 開口部
5Lb 開口部
10 培養室
16 空気貯め
20 貯留室
21 第1貯留室
22 第2貯留室
24 仕切り板
30 物質交換膜
31 第1物質交換膜
32 第2物質交換膜
40 ガス交換膜
41 第1ガス交換膜
42 第2ガス交換膜
51、52 ポート
53 空気抜き用のポート
61、62 ポート
63 空気抜き用のポート
80 培養足場
C 細胞
1 Cell culture container 5 Membrane 5U Membrane upper part 5Ua Opening 5Ub Opening 5L Membrane lower part 5La Opening 5Lb Opening 10 Culture room 16 Air storage 20 Storage room 21 First storage room 22 Second storage room 24 Partition plate 30 Material exchange membrane 31 1st material exchange membrane 32 2nd gas exchange membrane 40 Gas exchange membrane 41 1st gas exchange membrane 42 2nd gas exchange membrane 51, 52 Port 53 Air bleeding port 61, 62 Port 63 Air bleeding port 80 Culture scaffold C cells

Claims (14)

細胞を培養する培養室と、
流体を貯留する貯留室と、
前記培養室及び前記貯留室を区画し、前記細胞を透過せず所定の物質を選択的に透過する物質交換膜と、
前記培養室又は前記貯留室と外部を隔てるガス交換膜と、
を備え、
前記培養室及び前記貯留室はそれぞれ流体を流入出可能な開口部を有することを特徴とする細胞培養容器。
A culture room for culturing cells and
A storage chamber that stores fluid and
A substance exchange membrane that partitions the culture chamber and the storage chamber and selectively permeates a predetermined substance without permeating the cells.
A gas exchange membrane that separates the culture chamber or the storage chamber from the outside,
Equipped with
A cell culture vessel, wherein each of the culture chamber and the storage chamber has an opening through which a fluid can flow in and out.
前記物質交換膜の分画分子量は500以上60000以下の範囲内であることを特徴とする請求項1に記載の細胞培養容器。 The cell culture vessel according to claim 1, wherein the fractional molecular weight of the substance exchange membrane is in the range of 500 or more and 60,000 or less. 前記物質交換膜の分画分子量は1000以上15000以下の範囲内であることを特徴とする請求項2に記載の細胞培養容器。 The cell culture vessel according to claim 2, wherein the fractional molecular weight of the substance exchange membrane is in the range of 1000 or more and 15000 or less. 前記ガス交換膜は、シリコーン、ポリトリメチルシリルプロピン、含フッ素アクリル樹脂、フッ素系樹脂、ポリメチルペンテン、及び天然ゴムのいずれかを主成分とすることを特徴とする請求項1〜3のいずれか1項に記載の細胞培養容器。 Any of claims 1 to 3, wherein the gas exchange film contains any one of silicone, polytrimethylsilylpropine, a fluoroacrylic resin, a fluororesin, polymethylpentene, and natural rubber as a main component. The cell culture container according to item 1. 請求項1〜4のいずれか1項に記載の細胞培養容器を用い、前記培養室で前記細胞を培養する細胞培養方法であって、前記開口部を介して前記培養室及び前記貯留室に成分又は成分濃度が異なる培地を供給することを特徴とする細胞培養方法。 A cell culture method for culturing the cells in the culture chamber using the cell culture vessel according to any one of claims 1 to 4, wherein the components are added to the culture chamber and the storage chamber through the opening. Alternatively, a cell culture method comprising supplying a medium having a different component concentration. 前記培養室及び前記貯留室にそれぞれ生理活性物質を含む培養培地及び栄養培地を供給することを特徴とする請求項5に記載の細胞培養方法。 The cell culture method according to claim 5, wherein a culture medium and a nutrient medium containing a physiologically active substance are supplied to the culture chamber and the storage chamber, respectively. 前記生理活性物質は成長因子であることを特徴とする請求項6に記載の細胞培養方法。 The cell culture method according to claim 6, wherein the physiologically active substance is a growth factor. 前記培養室に前記細胞を接着又は包埋可能な構造体である培養足場を導入し、前記培養足場で前記細胞を培養することを特徴とする請求項5〜7のいずれか1項に記載の細胞培養方法。 The invention according to any one of claims 5 to 7, wherein a culture scaffold, which is a structure capable of adhering or embedding the cells, is introduced into the culture chamber, and the cells are cultured in the culture scaffold. Cell culture method. 前記開口部を介して前記貯留室に連続的又は逐次的に前記培地を供給し、前記貯留室から前記開口部を介して連続的又は逐次的に前記培地を排出しながら、前記培養室で前記細胞を培養することを特徴とする請求項5〜8のいずれか1項に記載の細胞培養方法。 The medium is continuously or sequentially supplied to the storage chamber through the opening, and the medium is continuously or sequentially discharged from the storage chamber through the opening, and the medium is discharged in the culture chamber. The cell culture method according to any one of claims 5 to 8, wherein the cells are cultured. 前記貯留室の前記開口部又は当該開口部に接続する流路にサンプリングポート又は成分分析用センサーを設置した状態において、前記培養室で前記細胞を培養することを特徴とする請求項9に記載の細胞培養方法。 The ninth aspect of claim 9, wherein the cells are cultured in the culture chamber in a state where a sampling port or a component analysis sensor is installed in the opening of the storage chamber or a flow path connected to the opening. Cell culture method. 前記サンプリングポート又は前記成分分析用センサーを用い、前記培地に含まれるグルコース、乳酸、アンモニア、グルタミン、グルタミン酸、酸素、及び二酸化炭素(前記二酸化炭素は、炭酸、炭酸イオン、又は炭酸水素イオンを含む)の少なくとも一種の成分の濃度を連続的又は逐次的に測定しながら、前記培養室で前記細胞を培養することを特徴とする請求項10に記載の細胞培養方法。 Using the sampling port or the component analysis sensor, glucose, lactic acid, ammonia, glutamine, glutamic acid, oxygen, and carbon dioxide contained in the medium (the carbonic acid contains carbonic acid, carbonate ion, or hydrogen carbonate ion). The cell culture method according to claim 10, wherein the cells are cultured in the culture chamber while continuously or sequentially measuring the concentration of at least one of the components of the cell. 請求項9〜11のいずれか1項に記載の細胞培養方法で前記細胞を培養する過程において、前記細胞の生育状態を評価する細胞生育状態の評価方法であって、
前記貯留室に供給される前記培地及び前記貯留室から排出される前記培地のグルコース濃度の差を測定し、当該グルコース濃度の差からグルコース消費速度を算出し、前記グルコース消費速度から前記培養室内の細胞数を推定することを特徴とする細胞生育状態の評価方法。
A method for evaluating a cell growth state, which evaluates the growth state of the cells in the process of culturing the cells by the cell culture method according to any one of claims 9 to 11.
The difference in glucose concentration between the medium supplied to the storage chamber and the medium discharged from the storage chamber is measured, the glucose consumption rate is calculated from the difference in glucose concentration, and the glucose consumption rate is used in the culture chamber. A method for evaluating a cell growth state, which comprises estimating the number of cells.
さらに前記貯留室から排出される前記培地の乳酸濃度を測定し、当該乳酸濃度から乳酸産生速度を算出し、前記グルコース消費速度及び前記乳酸産生速度から前記培養室内の細胞の代謝挙動を推定することを特徴とする請求項12に記載の細胞生育状態の評価方法。 Further, the lactic acid concentration of the medium discharged from the storage chamber is measured, the lactic acid production rate is calculated from the lactic acid concentration, and the metabolic behavior of cells in the culture chamber is estimated from the glucose consumption rate and the lactic acid production rate. 12. The method for evaluating a cell growth state according to claim 12. 請求項12又は13に記載の細胞生育状態の評価方法を用い、前記細胞の生育状態を評価し、前記細胞の生育状態の評価結果に基づき前記貯留室又は前記培養室に前記培地を供給する方法を制御することを特徴とする請求項9〜11のいずれか1項に記載の細胞培養方法。 A method of evaluating the growth state of the cells using the method for evaluating the growth state of the cells according to claim 12 or 13, and supplying the medium to the storage chamber or the culture chamber based on the evaluation result of the growth state of the cells. The cell culture method according to any one of claims 9 to 11, wherein the cell culture method is characterized by controlling.
JP2020097103A 2020-06-03 2020-06-03 Cell culture container, cell culture method and evaluation method of cell growth state Pending JP2021185877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097103A JP2021185877A (en) 2020-06-03 2020-06-03 Cell culture container, cell culture method and evaluation method of cell growth state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097103A JP2021185877A (en) 2020-06-03 2020-06-03 Cell culture container, cell culture method and evaluation method of cell growth state

Publications (1)

Publication Number Publication Date
JP2021185877A true JP2021185877A (en) 2021-12-13

Family

ID=78850380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097103A Pending JP2021185877A (en) 2020-06-03 2020-06-03 Cell culture container, cell culture method and evaluation method of cell growth state

Country Status (1)

Country Link
JP (1) JP2021185877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145957A1 (en) * 2022-01-31 2023-08-03 Jsr株式会社 Method for manufacturing intravascular indwelling device, holder for manufacturing intravascular indwelling device, and method for evaluating intravascular indwelling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145957A1 (en) * 2022-01-31 2023-08-03 Jsr株式会社 Method for manufacturing intravascular indwelling device, holder for manufacturing intravascular indwelling device, and method for evaluating intravascular indwelling device

Similar Documents

Publication Publication Date Title
US11708554B2 (en) Expanding cells in a bioreactor
US10577576B2 (en) System for expanding cells
EP2129764B1 (en) Cell expansion system and methods of use
CN110267526B (en) Method and system for real-time assessment of cells in a packaged device before and after transplantation
JP6039547B2 (en) Method of reseeding grown adherent cells in a hollow fiber bioreactor system
EP0725134A2 (en) Flexible bioreactor for therapeutic cells
JP2009521907A (en) Bioreactor for cell and tissue culture
US20230174917A1 (en) Cell Growth With Mechanical Stimuli
WO2009099066A1 (en) Biodevice
JP2021185877A (en) Cell culture container, cell culture method and evaluation method of cell growth state
JP2023505025A (en) Alternating tangential flow bioreactor with hollow fiber system and method of use
JP5956340B2 (en) Filtration apparatus and filtration system
JP2022040796A (en) Cell culture device and cell culture method