JP2021177158A - Spectroscope - Google Patents

Spectroscope Download PDF

Info

Publication number
JP2021177158A
JP2021177158A JP2020082871A JP2020082871A JP2021177158A JP 2021177158 A JP2021177158 A JP 2021177158A JP 2020082871 A JP2020082871 A JP 2020082871A JP 2020082871 A JP2020082871 A JP 2020082871A JP 2021177158 A JP2021177158 A JP 2021177158A
Authority
JP
Japan
Prior art keywords
wavelength
light
diffraction grating
dispersion element
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020082871A
Other languages
Japanese (ja)
Other versions
JP2021177158A5 (en
JP7472637B2 (en
Inventor
亮二 平岡
Ryoji Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2020082871A priority Critical patent/JP7472637B2/en
Publication of JP2021177158A publication Critical patent/JP2021177158A/en
Publication of JP2021177158A5 publication Critical patent/JP2021177158A5/ja
Application granted granted Critical
Publication of JP7472637B2 publication Critical patent/JP7472637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

To make it possible to take out, from a spectroscope, a sufficient quantity of primary diffraction light within a wide wavelength range.SOLUTION: A spectroscope 100 of the present invention comprises: a diffraction grating 2 that is arranged in a housing 1 and disperses light incident from an entrance 11 and emits light with a target wavelength from an exit 12; a rotation drive mechanism 5 that rotates the diffraction grating; storage units 74, 75 that store an operation expression for calculating the rotation angle position of the diffraction grating corresponding to the target wavelength; and a control unit 7 that causes the rotation drive mechanism to rotate a wavelength dispersion element so that the diffraction grating is located at a predetermined rotation angle position. The diffraction grating and the rotation drive mechanism are configured in the housing such that in a state in which the diffraction grating is located at a rotation angle position corresponding to a first wavelength, an optical axis of light directed from the diffraction grating to the exit when light including light with the first wavelength is made incident from the entrance passes through a predetermined range at the center of the exit, and in a state in which the diffraction grating is located at a rotation angle position corresponding to a second wavelength, an optical axis of light directed from the diffraction grating to the exit when light including light with the second wavelength is made incident from the entrance passes through a predetermined range of the exit.SELECTED DRAWING: Figure 1

Description

本発明は、紫外可視光分光光度計や原子吸光分光光度計等の分光光度計、波長可変単色光源(Tunable Monochromatic Light Source)等に組み込まれる分光器に関する。 The present invention relates to a spectroscope incorporated in a spectrophotometer such as an ultraviolet visible light spectrophotometer, an atomic absorption spectrophotometer, a tunable monochromatic light source, and the like.

試料の定性・定量分析を行う装置として紫外可視光分光光度計や原子吸光分光光度計等の分光光度計が知られている。分光光度計は、所定の波長の単色光を試料に照射し、そのときの透過光量を測定することで所定波長における吸光度を求め、試料の定性・定量分析を行う。分光光度計では、所定波長の単色光を得るために通常、分光器(モノクロメータ)が用いられている。 Spectrophotometers such as an ultraviolet visible light spectrophotometer and an atomic absorption spectrophotometer are known as devices for performing qualitative and quantitative analysis of a sample. The spectrophotometer irradiates a sample with monochromatic light of a predetermined wavelength and measures the amount of transmitted light at that time to obtain the absorbance at the predetermined wavelength and performs qualitative and quantitative analysis of the sample. In a spectrophotometer, a spectroscope (monochromator) is usually used to obtain monochromatic light having a predetermined wavelength.

分光器は、入口スリット及び出口スリットを有する筐体、該筐体内に収容された回折格子(波長分散素子)、入口スリットから入射した光に対する回折格子の角度を変えるための回転駆動機構を備えており、入口スリットから入射した光を回折格子に照射し、該回折格子で波長分散された光のうち特定の方向に進む光のみを出口スリットから取り出す。回折格子の回転角度位置を適宜の位置に調整することにより任意の目的とする波長(目的波長)の単色光を取り出すことができる(特許文献1)。回折格子の回転角度位置は通常、波長を変数とする演算式に基づき算出される。前記演算式は、分光器偏角(回折格子の入射光と出射光がなす角度)や回折格子の溝間隔等をパラメータとするものであり、分光器毎に設定される。 The spectroscope includes a housing having an inlet slit and an exit slit, a diffraction grating (wavelength dispersing element) housed in the housing, and a rotation driving mechanism for changing the angle of the diffraction grating with respect to the light incident from the inlet slit. The light incident from the inlet slit is irradiated to the diffraction grating, and only the light traveling in a specific direction out of the light wavelength-dispersed by the diffraction grating is taken out from the exit slit. By adjusting the rotation angle position of the diffraction grating to an appropriate position, monochromatic light of an arbitrary target wavelength (target wavelength) can be extracted (Patent Document 1). The rotation angle position of the diffraction grating is usually calculated based on an arithmetic expression with the wavelength as a variable. The calculation formula has parameters such as the spectroscopic deviation angle (the angle formed by the incident light and the outgoing light of the diffraction grating), the groove spacing of the diffraction grating, and the like, and is set for each spectroscope.

特開2013-253820号公報Japanese Unexamined Patent Publication No. 2013-253820

このような分光器では、入口スリットや出口スリット、回折格子、回転駆動機構等を筐体に取り付ける際には取り付け誤差が発生する。そこで、取り付け誤差を校正するために、製品を工場から出荷する前に様々な調整作業が行われる。 In such a spectroscope, an attachment error occurs when attaching an inlet slit, an outlet slit, a diffraction grating, a rotation drive mechanism, or the like to a housing. Therefore, in order to calibrate the mounting error, various adjustment work is performed before the product is shipped from the factory.

調整作業の一つに回折格子で波長分散された光の光軸の調整作業がある。これは、He−Neレーザ等を光源として用い、該光源から入口スリットを通して筐体内に入射するレーザ光(He−Neレーザの場合、波長632.8nm)の回折光が出口スリットのほぼ中央を通過するように、回折格子の回折溝の方向及びあおり方向(回折溝の方向と垂直な方向)の傾きを調整する作業である。具体的には、筐体の入口スリットのすぐ外側に的(まと)部材を設置し、光源からの光が的部材の中央に入射することを目視で確認した後、的部材を取り除き、該光源からの光を入口スリットから筐体内に入射させる。次に、筐体の出口スリットの外側に的(まと)部材を配置し、0次光が的部材の中央に入射するように目視で確認しつつ、回折格子のあおり方向の傾きを調整する。その後、1次回折光が的部材の中央に入射するように、回折格子の溝方向の傾きを調整する。 One of the adjustment works is the adjustment work of the optical axis of light whose wavelength is dispersed by a diffraction grating. This uses a He-Ne laser or the like as a light source, and the diffracted light of the laser light (in the case of a He-Ne laser, the wavelength is 632.8 nm) incident on the housing through the inlet slit passes almost through the center of the exit slit. As described above, it is a work of adjusting the inclination of the diffraction groove direction and the tilting direction (direction perpendicular to the direction of the diffraction groove) of the diffraction lattice. Specifically, a target member is installed just outside the entrance slit of the housing, and after visually confirming that the light from the light source is incident on the center of the target member, the target member is removed and the target member is removed. The light from the light source is incident on the housing through the inlet slit. Next, a target member is placed outside the exit slit of the housing, and the inclination of the diffraction grating in the tilting direction is adjusted while visually confirming that the 0th-order light is incident on the center of the target member. .. After that, the inclination of the diffraction grating in the groove direction is adjusted so that the primary diffracted light is incident on the center of the target member.

ところで、取り回し自由度の高さから、筐体に対する光の入出射に光ファイバが用いられる場合がある。この場合、大光量を必要としない装置に組み込まれる分光器においては、高価なバンドルファイバではなく、汎用の光ファイバがFCコネクタやSMAコネクタ等の一般的なコネクタを用いて筐体に接続される。ところが、上述した光軸調整作業を行った分光器では、コネクタを用いて出口スリットに光ファイバを接続した場合に、該出口スリットから取り出される1次回折光の光量が低下し、分光光度計に組み込んだ場合に所定の分析精度や分析感度を得るために十分な光量が得られないことがあった。 By the way, due to the high degree of freedom of handling, an optical fiber may be used for entering and exiting light to and from the housing. In this case, in a spectroscope incorporated in a device that does not require a large amount of light, a general-purpose optical fiber is connected to the housing using a general connector such as an FC connector or an SMA connector instead of an expensive bundle fiber. .. However, in the spectroscope that has undergone the optical axis adjustment work described above, when the optical fiber is connected to the outlet slit using a connector, the amount of primary diffracted light taken out from the outlet slit decreases, and the spectrophotometer is incorporated into the spectrophotometer. In that case, a sufficient amount of light may not be obtained in order to obtain a predetermined analysis accuracy and analysis sensitivity.

本発明が解決しようとする課題は、光軸調整に用いられた波長に限らず、様々な波長において十分な光量の1次回折光を分光器から取り出すことができるようにすることである。 An object to be solved by the present invention is to enable the spectroscope to extract a sufficient amount of primary diffracted light at various wavelengths, not limited to the wavelength used for adjusting the optical axis.

上記課題を解決するために成された本発明に係る分光器は、
入口及び出口を有する筐体と、
前記筐体内に配置された、前記入口から入射した光を波長分散して目的波長の光を前記出口から出射させる波長分散素子と、
前記波長分散素子を回転する回転駆動機構と、
前記目的波長に対応する前記波長分散素子の回転角度位置を算出するための演算式を記憶する記憶部と、
前記演算式から算出された回転角度位置に前記波長分散素子が位置するように前記回転駆動機構に該波長分散素子を回転させる制御部とを備え、
第1の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第1波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の中央の所定範囲を通過し、且つ、前記第1の波長とは異なる波長である第2の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第2波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の前記所定範囲を通過するように、前記筐体内に前記波長分散素子及び回転駆動機構が設定されているものである。
The spectroscope according to the present invention made to solve the above problems is
A housing with an entrance and an exit,
A wavelength dispersion element arranged in the housing, which disperses the light incident from the inlet and emits the light of a target wavelength from the outlet.
A rotary drive mechanism that rotates the wavelength dispersion element,
A storage unit that stores an arithmetic expression for calculating the rotation angle position of the wavelength dispersion element corresponding to the target wavelength, and a storage unit.
The rotation drive mechanism is provided with a control unit for rotating the wavelength dispersion element so that the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula.
In a state where the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula with the first wavelength as the target wavelength, the wavelength when light including the light of the first wavelength is incident from the inlet. Calculated from the above formula with the second wavelength, which is a wavelength different from the first wavelength, that the optical axis of light from the dispersion element toward the outlet passes through the central predetermined range of the outlet and is different from the first wavelength. In a state where the wavelength dispersion element is located at the rotation angle position, when light containing the light of the second wavelength is incident from the inlet, the optical axis of the light from the wavelength dispersion element toward the outlet is the outlet. The wavelength dispersion element and the rotation drive mechanism are set in the housing so as to pass through the predetermined range.

ここで、前記第1波長の光を含む光、前記第2波長の光を含む光は、単色光及び多色光(多波長光)のいずれでもよく、指向性を有する光、無指向性の光のどちらでもよい。指向性を有する光としては、レーザ光、スリット等を用いて機械的に指向性を付与した光等が挙げられる。また、前記第1波長の光を含む光と前記第2波長の光を含む光は、同じでもよく異なっていてもよい。 Here, the light containing the light of the first wavelength and the light containing the light of the second wavelength may be either monochromatic light or multicolored light (multiwavelength light), and are directional light and omnidirectional light. Either is fine. Examples of the light having directivity include light that is mechanically imparted with directivity by using laser light, a slit, or the like. Further, the light containing the light of the first wavelength and the light containing the light of the second wavelength may be the same or different.

本発明に係る分光器は、次のようにして得られる。
製品を工場から出荷する前の光軸調整において、まずは、第1の波長を目的波長として設定する。これにより、回転駆動機構は、演算式から算出された第1の波長に対応する回転角度位置に波長分散素子が位置するように該波長分散素子を回転させる。そして、この状態で前記第1の波長の光を含む光を前記入口から入射させると、その光は前記波長分散素子によって波長分散され、その分散された光の一部である第1の波長の光が前記波長分散素子から前記出口に向かって進行するため、その光の光軸が該出口の中央の所定範囲を通過するように、波長分散素子及び回転駆動機構の配置を調整する。続いて、第2の波長についても、第1の波長と同じ手順で、波長分散素子から出口に向かう第2の波長の光の光軸が該出口の中央の所定範囲を通過するように、波長分散素子及び回転駆動機構の配置を調整する。このとき、波長分散素子及び回転駆動機構の配置を変更しなくても、波長分散素子によって分散されて出口に向かう第2波長の光の光軸が該出口の中央の所定範囲を通過する場合は、光軸調整作業を終了する。一方、第2の波長を目的波長に設定したときに波長分散素子及び回転駆動機構の配置を変更した場合は、再度、第1の波長を目的波長に設定して上述した作業を行い、第1の波長が波長分散素子によって分散されて出口に向かう光の光軸が出口の所定範囲を通過するか否かを確認する。そして、その光の光軸が出口の所定範囲を通過した場合は、光軸調整作業を終了する。要するに、第1及び第2の波長の光が波長分散素子によって分散されて出口に向かう光の両方が該出口の中央の所定範囲を通過したことが確認された時点で光軸調整作業は終了する。
The spectroscope according to the present invention is obtained as follows.
In adjusting the optical axis before shipping the product from the factory, first, the first wavelength is set as the target wavelength. As a result, the rotation drive mechanism rotates the wavelength dispersion element so that the wavelength dispersion element is located at the rotation angle position corresponding to the first wavelength calculated from the calculation formula. Then, when light containing the light of the first wavelength is incident from the inlet in this state, the light is wavelength-dispersed by the wavelength-dispersing element, and the light of the first wavelength which is a part of the dispersed light is used. Since the light travels from the wavelength dispersion element toward the outlet, the arrangement of the wavelength dispersion element and the rotation drive mechanism is adjusted so that the optical axis of the light passes through a predetermined range in the center of the outlet. Subsequently, for the second wavelength, in the same procedure as for the first wavelength, the wavelength is such that the optical axis of the light of the second wavelength from the wavelength dispersion element toward the outlet passes through a predetermined range in the center of the outlet. Adjust the arrangement of the dispersion element and the rotation drive mechanism. At this time, even if the arrangement of the wavelength dispersion element and the rotation drive mechanism is not changed, when the optical axis of the light of the second wavelength dispersed by the wavelength dispersion element and heading toward the outlet passes through the predetermined range in the center of the outlet. , Finish the optical axis adjustment work. On the other hand, when the arrangement of the wavelength dispersion element and the rotation drive mechanism is changed when the second wavelength is set to the target wavelength, the first wavelength is set to the target wavelength again and the above-mentioned work is performed to perform the first operation. It is confirmed whether or not the optical axis of the light directed to the outlet is passed through the predetermined range of the outlet after the wavelength of the light is dispersed by the wavelength dispersion element. Then, when the optical axis of the light passes through the predetermined range of the outlet, the optical axis adjustment work is completed. In short, the optical axis adjustment work ends when it is confirmed that the light of the first and second wavelengths is dispersed by the wavelength dispersion element and both the light toward the outlet has passed through the predetermined range in the center of the outlet. ..

ここで、第1の波長及び第2の波長とは、所定の条件を満たす波長であることが好ましい。所定の条件については後述する。また、波長分散素子としては回折格子、プリズム等が挙げられる。波長分散素子が回折格子の場合の光軸調整作業は、1次回折光の光軸が出口の中央の所定範囲を通過するように、回折格子の溝方向の傾き、溝方向と垂直な方向であって回折格子の格子面に沿う方向の傾きを調整することになる。波長分散素子から出口に向かう光の光軸が該出口の中央の所定範囲を通過したことは、出口付近に的部材を配置し、その的部材に形成される光のスポットの位置を目視で確認してもよく、出口の所定範囲から出射される光の光量を検出器で検出し、光量が最大となることをもって確認してもよい。 Here, the first wavelength and the second wavelength are preferably wavelengths that satisfy predetermined conditions. The predetermined conditions will be described later. Further, examples of the wavelength dispersion element include a diffraction grating and a prism. When the wavelength dispersion element is a diffraction grating, the optical axis adjustment work is the inclination of the diffraction grating in the groove direction and the direction perpendicular to the groove direction so that the optical axis of the primary diffraction light passes through a predetermined range in the center of the outlet. Therefore, the inclination in the direction along the lattice plane of the diffraction grating is adjusted. The fact that the optical axis of light from the wavelength dispersion element toward the outlet has passed a predetermined range in the center of the outlet means that a target member is placed near the outlet and the position of the light spot formed on the target member is visually confirmed. Alternatively, the amount of light emitted from a predetermined range of the outlet may be detected by a detector and confirmed by maximizing the amount of light.

本発明に係る分光器では、2つの異なる波長を目的波長としたときに、波長分散素子から出口に向かう目的波長の光の光軸が出口の中央の所定範囲を通過するように波長分散素子及び回転駆動機構が配置されているため、光軸調整に用いられた波長に限らず、様々な目的波長において十分な光量の光を取り出すことができる。 In the spectroscope according to the present invention, when two different wavelengths are set as target wavelengths, the wavelength dispersive element and the wavelength dispersive element so that the optical axis of the light of the target wavelength from the wavelength dispersive element to the outlet passes through a predetermined range in the center of the outlet. Since the rotation drive mechanism is arranged, it is possible to extract a sufficient amount of light at various target wavelengths, not limited to the wavelength used for adjusting the optical axis.

本発明に係る分光器の一実施例を示す概略構成図。The schematic block diagram which shows one Example of the spectroscope which concerns on this invention. 出口スリット付近における1次回折光のスポットを示す図。The figure which shows the spot of the primary diffracted light near the exit slit. 直径が200nmのレーザ光を入口スリットから筐体に入射させたときの出口スリット付近に形成される1次回折光のスポットの大きさを示すグラフ。The graph which shows the size of the spot of the primary diffracted light formed in the vicinity of the exit slit when the laser beam of 200 nm diameter is incident on the housing through the inlet slit. 光軸調整方法の違いによる、0次光に対する1次回折光の強度比率の変化を示すグラフ。The graph which shows the change of the intensity ratio of the 1st order diffracted light with respect to 0th order light by the difference of the optical axis adjustment method. 光軸調整の手順を示すフローチャート。A flowchart showing the procedure of adjusting the optical axis.

以下、本発明に係る分光器の一実施例について図面を参照して説明する。
図1は、本実施例の分光器100の概略構成図である。分光器100は、入口11及び出口12を備える筐体1と、該筐体1の内部に配置された波長分散素子としての回折格子2、第1反射面33及び第2反射面34を有するミラー3、前記回折格子2を回転させる回転駆動機構5、前記回折格子の回転位置が機械原点位置にあることを検出する原点センサ6、制御部7、入力部8を備えている。
Hereinafter, an embodiment of the spectroscope according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of the spectroscope 100 of this embodiment. The spectroscope 100 is a mirror having a housing 1 having an inlet 11 and an outlet 12, a diffraction grating 2 as a wavelength dispersion element arranged inside the housing 1, a first reflecting surface 33, and a second reflecting surface 34. 3. It includes a rotation drive mechanism 5 for rotating the diffraction grating 2, an origin sensor 6 for detecting that the rotation position of the diffraction grating is at the machine origin position, a control unit 7, and an input unit 8.

回転駆動機構5は、ステッピングモータと該ステッピングモータの出力軸の回転を所定の減速比で減速させて回折格子2を回転駆動する減速機構を備える。原点センサ6は例えば反射式の光電式スイッチから成り、これと回折格子2に設けられた突起(図示せず)によって、回折格子2が機械原点に位置することが検出される。原点センサ6の検出信号は制御部7に出力される。 The rotation drive mechanism 5 includes a stepping motor and a reduction mechanism for rotationally driving the diffraction grating 2 by decelerating the rotation of the output shaft of the stepping motor at a predetermined reduction ratio. The origin sensor 6 is composed of, for example, a reflection type photoelectric switch, and the protrusion (not shown) provided on the diffraction grating 2 detects that the diffraction grating 2 is located at the mechanical origin. The detection signal of the origin sensor 6 is output to the control unit 7.

筐体1の入口11及び出口12にはそれぞれ取付マウント13、14が設けられており、各マウントに入口スリット131及び出口スリット141がそれぞれ着脱可能に装着されている。 Mounting mounts 13 and 14 are provided at the inlet 11 and the outlet 12 of the housing 1, respectively, and the inlet slit 131 and the outlet slit 141 are detachably mounted on each mount.

筐体1内の出口12の近傍にはフィルタ装置9が配置されている。詳しい図示は省略するが、フィルタ装置9は、円盤91と、該円盤91の外周縁に沿って配置された複数の開口と、これら複数の開口のうち1個を除く複数の開口のそれぞれに取り付けられた光学フィルタ92(図1では1個の光学フィルタのみ示す)と、円盤91を回転するための回転ダイヤル93と回転ダイヤル93の回転位置を検出する回転位置センサ94とを備えている。光学フィルタ92としては、回折格子2からの1次回折光を透過させ、該1次回折光よりも短波長の高次光をカットする次数分離フィルタが用いられる。複数の光学フィルタ92には、それぞれ透過波長帯域が異なる次数分離フィルタが選定される。回転位置センサ94の検出信号は制御部7に出力される。回転ダイヤル93は筐体1の外側に配置されており、該回転ダイヤル93を手動で回転させることにより円盤91が回転され、それにより、回折格子2から出口12に向かう光の光路上に光学フィルタ92のいずれかが配置された状態と開口が配置された状態に切り替えることができる。 A filter device 9 is arranged in the vicinity of the outlet 12 in the housing 1. Although detailed illustration is omitted, the filter device 9 is attached to each of the disk 91, a plurality of openings arranged along the outer peripheral edge of the disk 91, and a plurality of openings other than one of the plurality of openings. It is provided with an optical filter 92 (only one optical filter is shown in FIG. 1), a rotation dial 93 for rotating the disk 91, and a rotation position sensor 94 for detecting the rotation position of the rotation dial 93. As the optical filter 92, a degree separation filter that transmits the first-order diffracted light from the diffraction grating 2 and cuts the higher-order light having a wavelength shorter than that of the first-order diffracted light is used. For the plurality of optical filters 92, order separation filters having different transmission wavelength bands are selected. The detection signal of the rotation position sensor 94 is output to the control unit 7. The rotary dial 93 is arranged on the outside of the housing 1, and the disk 91 is rotated by manually rotating the rotary dial 93, whereby an optical filter is placed on the optical path of light from the diffraction grating 2 toward the outlet 12. It is possible to switch between the state in which any of 92 is arranged and the state in which the opening is arranged.

制御部7は回転駆動機構5の動作を制御するものであって、波長移動制御部71、初期化制御部72、係数設定部73、係数記憶部74、演算式記憶部75などを機能ブロックとして備える。係数記憶部74には、初期化制御部72による初期化処理に使用されるオフセットパルス数C1、並びに波長移動制御部71による波長移動処理に用いられる光学マウント補正係数C2及びフィルタ補正係数C3が記憶されている。また、演算式記憶部75には、波長原点にある回折格子2を目的波長に対応する回転角まで回転させるために必要なステッピングモータの駆動パルス数を算出するための演算式が記憶されている。この演算式は、波長移動制御部71による波長移動処理に用いられる。前記係数記憶部74及び演算式記憶部75が本発明の記憶部に相当する。 The control unit 7 controls the operation of the rotation drive mechanism 5, and has a wavelength movement control unit 71, an initialization control unit 72, a coefficient setting unit 73, a coefficient storage unit 74, an arithmetic storage unit 75, and the like as functional blocks. Be prepared. The coefficient storage unit 74 stores the number of offset pulses C1 used for the initialization processing by the initialization control unit 72, the optical mount correction coefficient C2 and the filter correction coefficient C3 used for the wavelength movement processing by the wavelength movement control unit 71. Has been done. Further, the arithmetic expression storage unit 75 stores an arithmetic expression for calculating the number of driving pulses of the stepping motor required to rotate the diffraction grating 2 at the wavelength origin to the rotation angle corresponding to the target wavelength. .. This calculation formula is used for the wavelength movement processing by the wavelength movement control unit 71. The coefficient storage unit 74 and the arithmetic expression storage unit 75 correspond to the storage unit of the present invention.

なお、上記の制御部7の実体はパーソナルコンピュータであり、該コンピュータにインストールされた専用の制御ソフトウェアをコンピュータ上で動作させることで上記各機能ブロックの機能が実現される。したがって、入力部8はキーボードやマウス等のポインティングデバイスを含む。 The substance of the control unit 7 is a personal computer, and the functions of the respective function blocks are realized by operating the dedicated control software installed on the computer on the computer. Therefore, the input unit 8 includes a pointing device such as a keyboard and a mouse.

オフセットパルス数C1は、回折格子2を機械原点から波長原点まで移動させるために必要なステッピングモータの駆動パルス数である。オフセットパルス数C1は、装置個体毎に異なった値である。また、波長原点は、目的波長が0nmであると仮定したときの回折格子2の回転位置である。 The number of offset pulses C1 is the number of drive pulses of the stepping motor required to move the diffraction grating 2 from the origin of the machine to the origin of the wavelength. The offset pulse number C1 is a value different for each device. The wavelength origin is the rotational position of the diffraction grating 2 assuming that the target wavelength is 0 nm.

光学マウント補正係数C2及びフィルタ補正係数C3は、波長原点から目的波長に対応する回転位置まで回折格子2を回転駆動するために必要なパルス数の算出に用いられる。光学マウント補正係数C2及びフィルタ補正係数C3は装置個体毎に異なった値である。フィルタ補正係数C3は、光学フィルタ92の種類毎に異なった値であり、係数記憶部74には、円盤91が有する光学フィルタ92の種類と同じ数のフィルタ補正係数C3が記憶されている。 The optical mount correction coefficient C2 and the filter correction coefficient C3 are used to calculate the number of pulses required to rotationally drive the diffraction grating 2 from the wavelength origin to the rotation position corresponding to the target wavelength. The optical mount correction coefficient C2 and the filter correction coefficient C3 are different values for each device. The filter correction coefficient C3 is a different value for each type of the optical filter 92, and the coefficient storage unit 74 stores the same number of filter correction coefficients C3 as the type of the optical filter 92 included in the disk 91.

波長原点から目的波長に対応する回転位置まで回折格子2を移動させるために必要なステッピングモータの駆動パルス数は以下の演算式(1)を用いて算出される。
P=θ/Res ・・・ (1)
式(1)において、Pは駆動パルス数を、θ(deg)は目的波長に対応する回折格子2の回転角を、Res(deg/pulse)は回折格子2の角度分解能を表している。
The number of drive pulses of the stepping motor required to move the diffraction grating 2 from the wavelength origin to the rotation position corresponding to the target wavelength is calculated using the following calculation formula (1).
P = θ / Res ・ ・ ・ (1)
In the equation (1), P represents the number of drive pulses, θ (deg) represents the rotation angle of the diffraction grating 2 corresponding to the target wavelength, and Res (deg / pulse) represents the angular resolution of the diffraction grating 2.

また、回折格子2の回転角θは、以下の式(2)から求められる。
θ={arcsin(K ×(1+C2)× W1)/π × 180}×C3 ・・・(2)
式(2)中、Kは光学マウント定数を、W1は目的波長を表している。光学マウント定数Kは、回折格子2の偏角、溝本数等によって決まる、装置固有の値である。また、式(2)中、C2、C3は、それぞれ上述した光学マウント補正係数、フィルタ補正係数を表している。
Further, the rotation angle θ of the diffraction grating 2 is obtained from the following equation (2).
θ = {arcsin (K × (1 + C2) × W1) / π × 180} × C3 ・ ・ ・ (2)
In equation (2), K represents the optical mount constant and W1 represents the target wavelength. The optical mount constant K is a value peculiar to the apparatus, which is determined by the declination angle of the diffraction grating 2, the number of grooves, and the like. Further, in the equation (2), C2 and C3 represent the above-mentioned optical mount correction coefficient and filter correction coefficient, respectively.

上記構成の分光器100は、工場から出荷される前に光軸調整のための作業が行われる。以下、図5を参照して光軸調整方法について説明する。光軸調整作業は、光軸調整に用いる2つの異なる波長(第1波長λ1及び第2波長λ2)を求めるための第1工程と、第1工程で求められた2つの波長(λ1,λ2)を用いて回折格子2及び回転駆動機構5の配置を調整するための第2工程とを含む。なお、以下に説明する光軸調整作業では、主に、回折格子2の溝方向の傾きが調整される。回折格子2の溝方向の傾きの調整作業に先立ち行われる、回折格子2のあおり方向の傾きを調整する作業は従来と同じであるため、説明を省略する。 The spectroscope 100 having the above configuration is subjected to work for adjusting the optical axis before being shipped from the factory. Hereinafter, the optical axis adjusting method will be described with reference to FIG. The optical axis adjustment work consists of a first step for obtaining two different wavelengths (first wavelength λ1 and a second wavelength λ2) used for optical axis adjustment, and two wavelengths (λ1, λ2) obtained in the first step. Includes a second step for adjusting the arrangement of the diffraction grating 2 and the rotation drive mechanism 5 using the above. In the optical axis adjusting work described below, the inclination of the diffraction grating 2 in the groove direction is mainly adjusted. Since the work of adjusting the inclination of the diffraction grating 2 in the tilting direction, which is performed prior to the work of adjusting the inclination of the diffraction grating 2 in the groove direction, is the same as the conventional one, the description thereof will be omitted.

(1)第1工程
まず、筐体1の入口11の取付マウント13から入口スリット131を取り外し、ハロゲンランプ等の白色光源を単芯光ファイバを介して取付マウント13に接続する。そして、前記白色光源が出射する光を単芯光ファイバを通して筐体1内に入射させる。また、筐体1の出口12の取付マウント14から出口スリット141を取り外し、代わりにフォトダイオードアレイセンサ(以下「フォトセンサ」という)を設置する。そして、光源から出射可能な光の波長範囲内の複数の波長を目的波長として設定し、回転駆動機構5を制御して回折格子2を回転させながら、複数の目的波長のそれぞれについて、その1次回折光の前記フォトセンサの受光面におけるスポットの画像を得る(ステップ101)。次に、スポットの画像から該スポットの大きさを求める(ステップ102)。スポットの大きさは、フォトセンサの受光面におけるスポットの画像を二値化処理等してスポットの形状を確定し、確定された形状から自動的に算出してもよく、前記スポットの画像を表示画面に表示させ、該画像の大きさを手動で測定してもよい。
(1) First Step First, the inlet slit 131 is removed from the mounting mount 13 at the inlet 11 of the housing 1, and a white light source such as a halogen lamp is connected to the mounting mount 13 via a single-core optical fiber. Then, the light emitted by the white light source is incident into the housing 1 through the single-core optical fiber. Further, the exit slit 141 is removed from the mounting mount 14 of the outlet 12 of the housing 1, and a photodiode array sensor (hereinafter referred to as “photo sensor”) is installed instead. Then, a plurality of wavelengths within the wavelength range of the light that can be emitted from the light source are set as target wavelengths, and while controlling the rotation drive mechanism 5 to rotate the diffraction grating 2, the first next time for each of the plurality of target wavelengths. An image of a spot on the light receiving surface of the photosensor of the diffraction grating is obtained (step 101). Next, the size of the spot is obtained from the image of the spot (step 102). The spot size may be determined by binarizing the image of the spot on the light receiving surface of the photo sensor to determine the shape of the spot and automatically calculating from the determined shape, and the image of the spot is displayed. It may be displayed on the screen and the size of the image may be measured manually.

図2は、コア径が200nmの単芯光ファイバを使って光源からの光を筐体1に入射させた場合に、複数の目的波長について得られた1次回折光のスポットの大きさを示している。また、図3は、目的波長を400nm, 550nm, 650nm, 750nm, 800nmに設定したときの1次回折光のスポットの画像を示している。ここでは、スポットの大きさは、図3に示すスポット画像の縦方向の長さ(スポット高さ(mm))を意味している。スポット画像の縦方向は、回折格子2の溝の幅方向(溝が並ぶ方向)に対応する。図2及び図3から、目的波長によってスポットの大きさが異なること、200nmから900nmの波長範囲において2個の極小値が存在することがわかる。このように目的波長によってスポットの高さが異なる理由は、入口11から出口12に至るまでの光学系に種々の収差が存在するためであり、1次回折光のスポットの高さが小さい波長は、非点収差が小さい波長を表す。 FIG. 2 shows the sizes of spots of primary diffracted light obtained for a plurality of target wavelengths when light from a light source is incident on the housing 1 using a single-core optical fiber having a core diameter of 200 nm. There is. Further, FIG. 3 shows an image of a spot of the primary refraction light when the target wavelengths are set to 400 nm, 550 nm, 650 nm, 750 nm, and 800 nm. Here, the size of the spot means the length of the spot image shown in FIG. 3 in the vertical direction (spot height (mm)). The vertical direction of the spot image corresponds to the width direction of the grooves of the diffraction grating 2 (the direction in which the grooves are lined up). From FIGS. 2 and 3, it can be seen that the spot size differs depending on the target wavelength and that there are two minimum values in the wavelength range of 200 nm to 900 nm. The reason why the spot height differs depending on the target wavelength is that various aberrations exist in the optical system from the inlet 11 to the outlet 12, and the wavelength at which the spot height of the primary diffracted light is small is defined as the wavelength. Represents a wavelength with small astigmatism.

光軸作業の作業者は、ステップ102で得られた結果に基づき、光源の波長範囲に含まれる任意の異なる2つの波長(これら2つの波長の一方が本発明の第1の波長に、他方が第2の波長に相当する。)を光軸調整用の波長として選択する。光軸調整用の波長としては、図3のグラフにおいて極小値を示す2つの波長を選択することが、以下に述べる理由から好ましい。つまり、図3のグラフにおいて極小値を示すことが、「所定の条件を満たすこと」を意味する。 Based on the results obtained in step 102, the operator of the optical axis work can use any two different wavelengths included in the wavelength range of the light source (one of these two wavelengths is the first wavelength of the present invention and the other is. (Corresponding to the second wavelength) is selected as the wavelength for adjusting the optical axis. As the wavelength for adjusting the optical axis, it is preferable to select two wavelengths showing the minimum values in the graph of FIG. 3 for the reasons described below. That is, showing the minimum value in the graph of FIG. 3 means "satisfying a predetermined condition".

出口12付近におけるスポットの高さが小さい1次回折光の場合に該スポットが出口12と全く重ならない状態にあるときの光軸の位置と、出口12付近におけるスポット高さが大きい1次回折光の場合に該スポットが出口12と全く重ならない状態になるときの光軸の位置とを比べると、スポット高さが小さい1次回折光の方が出口12の中央部からの距離が短くなる。このことは、スポット高さが小さい1次回折光は、その光軸の位置が出口12の中央から少しずれるだけで、出口12から出射できなくなる(つまり分光器100から取り出すことができなくなる)こと、したがって、光軸の位置を厳格に調整する必要があることを意味する。スポット高さが最小値となる波長の1次回折光は、最も厳格に光軸調整を行う必要があるため、このような波長の1次回折光を使って光軸調整を行えば、光軸調整に用いた波長に限らず、広い波長範囲の1次回折光を出口12から取り出すことができる。 In the case of primary diffracted light with a small spot height near the outlet 12, the position of the optical axis when the spot does not overlap with the outlet 12 at all, and in the case of primary diffracted light with a large spot height near the outlet 12. Compared with the position of the optical axis when the spot does not overlap the outlet 12 at all, the primary diffracted light having a smaller spot height has a shorter distance from the central portion of the outlet 12. This means that the primary diffracted light having a small spot height cannot be emitted from the outlet 12 (that is, cannot be taken out from the spectroscope 100) even if the position of the optical axis is slightly deviated from the center of the outlet 12. Therefore, it means that the position of the optical axis needs to be adjusted strictly. Since it is necessary to rigorously adjust the optical axis of the primary diffracted light of the wavelength at which the spot height is the minimum value, if the optical axis is adjusted using the primary diffracted light of such a wavelength, the optical axis can be adjusted. Not limited to the wavelength used, the primary diffracted light in a wide wavelength range can be extracted from the outlet 12.

ただし、光軸調整用の2つの波長のうちの一方を極小値を示す波長(極小波長)にし、該極小波長とは異なる波長を他方の波長として選択しても良い。例えば、極小波長が2個存在し、且つそれら2個の極小波長の値が近接している場合は、光軸調整用の2つの波長のうちの一方を極小波長とし、他方を光源の波長範囲の端部付近の波長にすると良い。 However, one of the two wavelengths for adjusting the optical axis may be set to a wavelength showing a minimum value (minimum wavelength), and a wavelength different from the minimum wavelength may be selected as the other wavelength. For example, when there are two minimum wavelengths and the values of the two minimum wavelengths are close to each other, one of the two wavelengths for adjusting the optical axis is set as the minimum wavelength and the other is the wavelength range of the light source. The wavelength should be near the end of.

(2)第2工程
第1工程において光軸調整用の波長として選択された2個の波長を目的波長として設定する(ステップ103)。そして、回転駆動機構5を制御して回折格子2を回転させながら、2個の目的波長の各々について、その1次回折光が前記フォトセンサの受光面の所定範囲に入射した光量を検出する(ステップ104)。ステップ104の処理は、目的波長に対応する回転角度位置に回折格子2を位置させた状態で、回折格子2及び回転駆動機構5の配置を変更しつつ繰り返し行われる。これにより、フォトセンサの検出光量が最大となるように回折格子2の溝方向の傾きが調整される。この場合、光軸調整用の2個の波長のいずれにおいてもフォトセンサの検出光量が最大となることが好ましいが、2個の波長について得られたフォトセンサの検出光量の合計値が最大となれば、一方、あるいは両方の波長における検出光量は最大値でなくてもよい。
(2) Second Step Two wavelengths selected as wavelengths for adjusting the optical axis in the first step are set as target wavelengths (step 103). Then, while controlling the rotation drive mechanism 5 to rotate the diffraction grating 2, the amount of light whose primary diffracted light is incident on a predetermined range of the light receiving surface of the photosensor is detected for each of the two target wavelengths (step). 104). The process of step 104 is repeated while changing the arrangement of the diffraction grating 2 and the rotation drive mechanism 5 with the diffraction grating 2 positioned at the rotation angle position corresponding to the target wavelength. As a result, the inclination of the diffraction grating 2 in the groove direction is adjusted so that the amount of light detected by the photo sensor is maximized. In this case, it is preferable that the detected light amount of the photosensor is maximized at both of the two wavelengths for adjusting the optical axis, but the total value of the detected light amounts of the photosensors obtained at the two wavelengths can be maximized. For example, the amount of detected light at one or both wavelengths does not have to be the maximum value.

上記の方法で光軸調整が行われた後の分光器100を使って、白色光源から出射された光を筐体1に入射させ、回転駆動機構5を制御して回折格子2を回転させながら、複数の目的波長のそれぞれについて、その1次回折光の光量を検出したときに得られた結果を図4に示す。ここでは、図2に示すグラフの2個の極小波長を光軸調整用の波長とした。また、図4には、1つの波長の1次回折光で光軸調整が行われた従来の分光器を使って、同様に1次回折光の光量を検出した結果も併せて示されている。図4の横軸は目的波長(nm)を、縦軸は、0次光の光量に対する1次回折光の光量の比率を表している。この図からわかるように、従来の分光器に比べると本実施例の分光器は、1次回折光の光量が増加していた。 Using the spectroscope 100 after the optical axis adjustment is performed by the above method, the light emitted from the white light source is incident on the housing 1, and the rotation drive mechanism 5 is controlled to rotate the diffraction grating 2. The results obtained when the amount of the primary diffracted light of each of the plurality of target wavelengths is detected are shown in FIG. Here, the two minimum wavelengths in the graph shown in FIG. 2 are defined as wavelengths for adjusting the optical axis. In addition, FIG. 4 also shows the result of detecting the amount of light of the first-order diffracted light in the same manner using a conventional spectroscope whose optical axis is adjusted with the first-order diffracted light of one wavelength. The horizontal axis of FIG. 4 represents the target wavelength (nm), and the vertical axis represents the ratio of the amount of light of the first-order diffracted light to the amount of light of the 0th-order light. As can be seen from this figure, the spectroscope of this embodiment has an increased amount of primary diffracted light as compared with the conventional spectroscope.

なお、上記説明では、第1工程(光軸調整用の波長を求める工程)で用いる光源と第2工程(光軸調整工程)で用いる光源を同じにしたが、第2工程では、光軸調整用の波長付近のレーザ光(単色光)を出射するレーザを光源として用いてもよい。
また、光軸調整作業では、回折格子2と回転駆動機構5の配置だけでなく、ミラー3の姿勢(第1及び第2反射面33、34の傾き)を調整しても良い。
In the above description, the light source used in the first step (the step of obtaining the wavelength for adjusting the optical axis) and the light source used in the second step (the optical axis adjusting step) are the same, but in the second step, the optical axis is adjusted. A laser that emits laser light (monochromatic light) in the vicinity of the wavelength for use may be used as a light source.
Further, in the optical axis adjusting work, not only the arrangement of the diffraction grating 2 and the rotation driving mechanism 5 but also the posture of the mirror 3 (the inclinations of the first and second reflecting surfaces 33 and 34) may be adjusted.

また、上述した光軸調整方法では、筐体1の出口12から出射してくる光の光量をフォトセンサで測定したが、出口12の取付マウント14に所定のコア径の単芯の光ファイバを接続し、これを通過してくる光の光量を検出器で検出した結果が最大となるように回折格子2及び回転駆動機構5の配置を調整してもよい。この例では、光ファイバのコアが、出口12の中央の所定範囲に相当する。また、出口12付近に的部材を設置し、該的部材に形成された1次回折光のスポットが該的部材の中央の所定範囲内に位置するように回折格子2及び回転駆動機構5の配置を調整してもよい。 Further, in the above-mentioned optical axis adjustment method, the amount of light emitted from the outlet 12 of the housing 1 is measured by a photosensor, but a single-core optical fiber having a predetermined core diameter is attached to the mounting mount 14 of the outlet 12. The arrangement of the diffraction grating 2 and the rotation drive mechanism 5 may be adjusted so that the result of connecting and detecting the amount of light passing through the light amount with the detector is maximized. In this example, the core of the optical fiber corresponds to a predetermined range in the center of the outlet 12. Further, a target member is installed near the outlet 12, and the diffraction grating 2 and the rotation drive mechanism 5 are arranged so that the spot of the primary diffracted light formed on the target member is located within a predetermined range in the center of the target member. You may adjust.

上記実施形態はあくまでも本発明の一例にすぎず、本願請求項に記載の範囲で適宜変形、追加、削除等を行っても本発明に包含されることは明らかである。 It is clear that the above embodiment is merely an example of the present invention, and is included in the present invention even if it is appropriately modified, added, deleted, etc. within the scope of the claims of the present application.

[種々の態様]
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Various aspects]
It will be understood by those skilled in the art that the above-described exemplary embodiments are specific examples of the following embodiments.

(第1項)本発明に係る分光器は、
入口及び出口を有する筐体と、
前記筐体内に配置された、前記入口から入射した光を波長分散して目的波長の光を前記出口から出射させる波長分散素子と、
前記波長分散素子を回転する回転駆動機構と、
前記目的波長に対応する前記波長分散素子の回転角度位置を算出するための演算式を記憶する記憶部と、
前記演算式から算出された回転角度位置に前記波長分散素子が位置するように前記回転駆動機構に該波長分散素子を回転させる制御部とを備え、
第1の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第1波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の中央の所定範囲を通過し、且つ、前記第1の波長とは異なる波長である第2の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第2波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の前記所定範囲を通過するように、前記筐体内に前記波長分散素子及び回転駆動機構が設定されている。
(Clause 1) The spectroscope according to the present invention is
A housing with an entrance and an exit,
A wavelength dispersion element arranged in the housing, which disperses the light incident from the inlet and emits the light of a target wavelength from the outlet.
A rotary drive mechanism that rotates the wavelength dispersion element,
A storage unit that stores an arithmetic expression for calculating the rotation angle position of the wavelength dispersion element corresponding to the target wavelength, and a storage unit.
The rotation drive mechanism is provided with a control unit for rotating the wavelength dispersion element so that the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula.
In a state where the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula with the first wavelength as the target wavelength, the wavelength when light including the light of the first wavelength is incident from the inlet. Calculated from the above formula with the second wavelength, which is a wavelength different from the first wavelength, that the optical axis of light from the dispersion element toward the outlet passes through the central predetermined range of the outlet and is different from the first wavelength. In a state where the wavelength dispersion element is located at the rotation angle position, when light containing the light of the second wavelength is incident from the inlet, the optical axis of the light from the wavelength dispersion element toward the outlet is the outlet. The wavelength dispersion element and the rotation drive mechanism are set in the housing so as to pass through the predetermined range.

第1項に記載の分光器によれば、2つの異なる波長を目的波長としたときに波長分散素子から出口に向かう各目的波長の光の光軸が該出口の中央の所定範囲を通過するように波長分散素子及び回転駆動機構が配置されているため、出口に光ファイバを接続し、該光ファイバを通じて光を出射させる構成において、光軸調整に用いられた波長に限らず、様々な目的波長において十分な光量の光を取り出すことができる。 According to the spectroscope according to the first item, when two different wavelengths are set as target wavelengths, the optical axis of light of each target wavelength from the wavelength dispersion element to the outlet passes through a predetermined range in the center of the outlet. Since a wavelength dispersion element and a rotation drive mechanism are arranged in the wavelength, in a configuration in which an optical fiber is connected to an outlet and light is emitted through the optical fiber, the wavelength is not limited to the wavelength used for the optical axis adjustment, and various target wavelengths are used. It is possible to extract a sufficient amount of light.

(第2項)第1項に記載の分光器において、前記波長分散素子が回折格子であり、前記第1の波長は、該第1の波長の光を含む多波長光の波長範囲内の複数の波長のそれぞれを目的波長として前記演算式から算出された回転角度位置に前記回折格子が位置する状態で、前記多波長光を前記入口から入射させたときに、前記回折格子から前記出口に向かう1次回折光の該出口における断面の大きさが最小となるときの波長とすることができる。 (Item 2) In the spectroscope according to the item 1, the wavelength dispersion element is a diffraction lattice, and the first wavelength is a plurality of wavelengths within a wavelength range of multi-wavelength light including light of the first wavelength. When the multi-wavelength light is incident from the inlet in a state where the diffraction grid is located at the rotation angle position calculated from the calculation formula with each of the wavelengths of It can be the wavelength at which the size of the cross section of the primary diffracted light at the outlet is minimized.

(第3項)第1項に記載の分光器において、前記波長分散素子が回折格子であり、前記第1の波長及び前記第2の波長は、該第1の波長の光及び該第2の波長の光を含む多波長光の波長範囲内の3個以上の波長のそれぞれを目的波長として前記演算式から算出された回転角度位置に前記回折格子が位置する状態で、前記多波長光を前記入口から入射させたときに前記回折格子から前記出口に向かう1次回折光の該出口における断面の大きさが、1番目及び2番目に小さいときの波長とすることができる。 (Item 3) In the spectroscope according to the first item, the wavelength dispersion element is a diffraction lattice, and the first wavelength and the second wavelength are the light of the first wavelength and the second wavelength. The multi-wavelength light is used in a state where the diffraction lattice is located at a rotation angle position calculated from the above calculation formula with each of three or more wavelengths within the wavelength range of the multi-wavelength light including the light of the wavelength as the target wavelength. It can be the wavelength at which the size of the cross section of the primary diffracted light from the diffractive grid toward the outlet when incident from the inlet is the first and second smallest.

前記回折格子から前記出口に向かう1次回折光の該出口における断面の大きさとは、断面の面積、断面の所定箇所(直径、周囲長)の長さ等をいう。1次回折光の結像位置が出口に近いほど、断面の大きさは小さくなる。断面が小さい1次回折光は、断面が大きい1次回折光に比べると、その光軸と出口の中央とのずれ量が小さくても該1次回折光が出口を通過できない場合があるため、光軸の位置を厳密に調整する必要がある。第2項及び第3項に記載の分光器では、出口における断面が小さくなるような波長の1次回折光を用いて光軸調整を行うため、該出口に光ファイバを接続した構成であっても、様々な波長において十分な光量の1次回折光を確実に光ファイバから取り出すことができる。 The size of the cross section of the primary diffracted light from the diffraction grating toward the outlet means the area of the cross section, the length of a predetermined portion (diameter, perimeter) of the cross section, and the like. The closer the image formation position of the first-order diffracted light is to the exit, the smaller the size of the cross section. Compared to the primary diffracted light having a large cross section, the primary diffracted light having a small cross section may not be able to pass through the outlet even if the amount of deviation between the optical axis and the center of the outlet is small. The position needs to be adjusted precisely. In the spectroscopes described in the second and third paragraphs, since the optical axis is adjusted by using the primary diffracted light having a wavelength that makes the cross section at the outlet smaller, even if the spectroscope is connected to the outlet, an optical fiber is connected. , It is possible to reliably extract a sufficient amount of primary diffracted light from the optical fiber at various wavelengths.

1…筐体
11…入口
12…出口
13a…入口スリット
14a…出口スリット
2…回折格子
5…回転駆動機構
7…制御部
74…係数記憶部
75…演算式記憶部
8…入力部
100…分光器
1 ... Housing 11 ... Inlet 12 ... Outlet 13a ... Inlet slit 14a ... Exit slit 2 ... Diffraction grating 5 ... Rotational drive mechanism 7 ... Control unit 74 ... Coefficient storage unit 75 ... Calculation type storage unit 8 ... Input unit 100 ... Spectrometer

Claims (3)

入口及び出口を有する筐体と、
前記筐体内に配置された、前記入口から入射した光を波長分散して目的波長の光を前記出口から出射させる波長分散素子と、
前記波長分散素子を回転する回転駆動機構と、
前記目的波長に対応する前記波長分散素子の回転角度位置を算出するための演算式を記憶する記憶部と、
前記演算式から算出された回転角度位置に前記波長分散素子が位置するように前記回転駆動機構に該波長分散素子を回転させる制御部とを備え、
第1の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第1波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の中央の所定範囲を通過し、且つ、前記第1の波長とは異なる波長である第2の波長を前記目的波長として前記演算式から算出された回転角度位置に前記波長分散素子が位置する状態において、前記第2波長の光を含む光を前記入口から入射させたときに前記波長分散素子から前記出口に向かう光の光軸が該出口の前記所定範囲を通過するように、前記筐体内に前記波長分散素子及び回転駆動機構が設定されている、分光器。
A housing with an entrance and an exit,
A wavelength dispersion element arranged in the housing, which disperses the light incident from the inlet and emits the light of a target wavelength from the outlet.
A rotary drive mechanism that rotates the wavelength dispersion element,
A storage unit that stores an arithmetic expression for calculating the rotation angle position of the wavelength dispersion element corresponding to the target wavelength, and a storage unit.
The rotation drive mechanism is provided with a control unit for rotating the wavelength dispersion element so that the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula.
In a state where the wavelength dispersion element is located at the rotation angle position calculated from the calculation formula with the first wavelength as the target wavelength, the wavelength when light including the light of the first wavelength is incident from the inlet. Calculated from the above formula with the second wavelength, which is a wavelength different from the first wavelength, that the optical axis of light from the dispersion element toward the outlet passes through the central predetermined range of the outlet and is different from the first wavelength. In a state where the wavelength dispersion element is located at the rotation angle position, when light containing the light of the second wavelength is incident from the inlet, the optical axis of the light from the wavelength dispersion element toward the outlet is the outlet. A spectroscope in which the wavelength dispersion element and the rotation drive mechanism are set in the housing so as to pass through the predetermined range.
請求項1に記載の分光器において、
前記波長分散素子が回折格子であり、
前記第1の波長が、該第1の波長の光を含む多波長光の波長範囲内の複数の波長のそれぞれを目的波長として前記演算式から算出された回転角度位置に前記回折格子が位置する状態で、前記多波長光を前記入口から入射させたときに、前記回折格子から前記出口に向かう1次回折光の該出口における断面の面積が最小となるときの波長である、分光器。
In the spectroscope according to claim 1,
The wavelength dispersion element is a diffraction grating,
The diffraction lattice is located at a rotation angle position calculated from the above calculation formula with each of a plurality of wavelengths within the wavelength range of the multi-wavelength light including the light of the first wavelength as target wavelengths. A spectroscope that is the wavelength at which the area of the cross section of the primary diffracted light from the diffractive lattice toward the outlet is minimized when the multi-wavelength light is incident from the inlet in the state.
請求項1に記載の分光器において、
前記波長分散素子が回折格子であり、
前記第1の波長及び前記第2の波長が、該第1の波長の光及び該第2の波長の光を含む多波長光の波長範囲内の3個以上の波長のそれぞれを目的波長として前記演算式から算出された回転角度位置に前記回折格子が位置する状態で、前記多波長光を前記入口から入射させたときに前記回折格子から前記出口に向かう1次回折光の該出口における断面の面積が、1番目及び2番目に小さいときの波長である、分光器。
In the spectroscope according to claim 1,
The wavelength dispersion element is a diffraction grating,
The first wavelength and the second wavelength have each of three or more wavelengths within the wavelength range of the multi-wavelength light including the light of the first wavelength and the light of the second wavelength as target wavelengths. The area of the cross section of the primary diffracted light from the diffractive lattice toward the outlet when the multi-wavelength light is incident from the inlet in a state where the diffractive lattice is located at the rotation angle position calculated from the calculation formula. Is the wavelength when is the first and second smallest, the spectroscope.
JP2020082871A 2020-05-08 2020-05-08 Spectrometer Active JP7472637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020082871A JP7472637B2 (en) 2020-05-08 2020-05-08 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020082871A JP7472637B2 (en) 2020-05-08 2020-05-08 Spectrometer

Publications (3)

Publication Number Publication Date
JP2021177158A true JP2021177158A (en) 2021-11-11
JP2021177158A5 JP2021177158A5 (en) 2022-09-26
JP7472637B2 JP7472637B2 (en) 2024-04-23

Family

ID=78409417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020082871A Active JP7472637B2 (en) 2020-05-08 2020-05-08 Spectrometer

Country Status (1)

Country Link
JP (1) JP7472637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228451A1 (en) * 2022-05-27 2023-11-30 浜松ホトニクス株式会社 Optical detector and spectroscopic measurement device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726359B (en) 2008-10-30 2011-09-28 北京信息科技大学 Multiple-grating monochrometer and calibration method thereof
JP5169897B2 (en) 2009-02-16 2013-03-27 株式会社島津製作所 Diffraction efficiency measuring instrument and diffraction efficiency measuring method
CN201476879U (en) 2009-09-07 2010-05-19 杭州远方光电信息有限公司 Fast spectrum analysis system with synchronous scanning and sampling
JP5864848B2 (en) 2010-10-28 2016-02-17 キヤノン株式会社 Spectral colorimeter and image forming apparatus having the same
CN202145147U (en) 2011-07-08 2012-02-15 上海市激光技术研究所 Measure apparatus of carbon dioxide laser wavelength
JP5873775B2 (en) 2012-07-25 2016-03-01 株式会社日立ハイテクノロジーズ Diffraction grating holder, diffraction grating evaluation apparatus, and measurement apparatus
CN103344416A (en) 2013-06-28 2013-10-09 中国科学院长春光学精密机械与物理研究所 Volume holographic transmission grating diffraction efficiency tester
US10317281B2 (en) 2015-12-29 2019-06-11 Oak Analytics Compact spectrometer
CN111006767B (en) 2019-12-26 2022-02-11 北京卓立汉光仪器有限公司 Grating rotation method and device for improving wavelength accuracy of spectrograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228451A1 (en) * 2022-05-27 2023-11-30 浜松ホトニクス株式会社 Optical detector and spectroscopic measurement device

Also Published As

Publication number Publication date
JP7472637B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
US7397561B2 (en) Spectroscopy system
EP0744599B1 (en) Optical spectrometer for detecting spectra in separate ranges
US7564547B2 (en) Spectroscopy system
JP2007534965A (en) Double-grating three-dimensional spectrograph with multidirectional diffraction
US6952260B2 (en) Double grating three dimensional spectrograph
US10732040B2 (en) Monolithically configured spectroscopic instrument
JP6428516B2 (en) Spectral detector
US5497230A (en) Spectroradiometer
US10782186B2 (en) Monochromator
US9546903B2 (en) Data knitting tandem dispersive range monochromator
JPS6156921A (en) Optical system for spectrum analyzer
EP2972153A1 (en) High resolution mems-based hadamard spectroscopy
JP7472637B2 (en) Spectrometer
US9551612B2 (en) Tandem dispersive range monochromator
JP2002031572A (en) Specroscope and optical spectrum analyzer equipped therewith
US5442440A (en) Spectroscope
CN112540459B (en) Optimization adjustment method of double-prism dispersion device
Battey et al. Compact holographic imaging spectrograph for process control applications
US10215635B2 (en) Data blending multiple dispersive range monochromator
JP2000337961A (en) Double monochromator and spectrophotometer using it
EP3574293A1 (en) Spectrometer and method for measuring the spectral characteristics thereof
JP4715215B2 (en) Wide wavelength range compact spectrometer
JPS63284429A (en) Spectro-photometer
JP2004069516A (en) Spectroscope
JP2002090220A (en) Multichannel spectroscope

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7472637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150