JP2021175340A - Status determination method and status determination device of secondary battery - Google Patents

Status determination method and status determination device of secondary battery Download PDF

Info

Publication number
JP2021175340A
JP2021175340A JP2020079980A JP2020079980A JP2021175340A JP 2021175340 A JP2021175340 A JP 2021175340A JP 2020079980 A JP2020079980 A JP 2020079980A JP 2020079980 A JP2020079980 A JP 2020079980A JP 2021175340 A JP2021175340 A JP 2021175340A
Authority
JP
Japan
Prior art keywords
relaxation
battery module
discharge
battery
charge rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020079980A
Other languages
Japanese (ja)
Other versions
JP7089547B2 (en
Inventor
洋輔 室田
Yosuke Murota
良介 須藤
Ryosuke Sudo
直 石野
Sunao Ishino
均 鈴木
Hitoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020079980A priority Critical patent/JP7089547B2/en
Priority to CN202110360455.4A priority patent/CN113594561B/en
Publication of JP2021175340A publication Critical patent/JP2021175340A/en
Application granted granted Critical
Publication of JP7089547B2 publication Critical patent/JP7089547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a status determination method and a status determination device of a secondary battery to solve a problem that determination accuracy of remaining capacity difference of a battery module is insufficient in the conventional status determination method.SOLUTION: A status determination method according to the present invention includes: a discharging step (S2) for discharging a battery module to a determination charge rate range that fulfills a condition where a slope of changing in battery voltage with respect to an average charge rate becomes an average charge rate that is larger than the slope of the battery voltage with respect to the average charge rate in a range where the average charge rate is estimated to be 45% to 55%, and the average charge rate is not to be the average charge rate 0%; a relaxation speed calculation step (S3) for calculating a relaxation speed which is a speed of increase of the battery voltage when electrodes of the battery module are opened, in the battery module after completing the discharge step; and a determination step (S4) for determining that one or more of the plurality of cells are ;;defective when the relaxation speed measured in the relaxation speed calculation step is smaller than a preset determination threshold value.SELECTED DRAWING: Figure 3

Description

本発明は、例えば、複数の二次電池を接続した電池モジュールを含む組電池に対する二次電池の状態判定方法及び状態判定装置に関する。 The present invention relates to, for example, a method for determining the state of a secondary battery and a state determining device for an assembled battery including a battery module to which a plurality of secondary batteries are connected.

複数の二次電池セルを直列接続した電池モジュールを、さらに積層直列接続した車両用電池パックでは、温度ばらつきに起因してパック内或いはモジュール内のセル間で正極容量のばらつきが生じる。このようなセル間のばらつきが生じると、走行中に一部のセルか過放電され、モジュールが出力する電池電圧が低下する。このような不具合が生じた電池パックは、市場から回収されるが、このような電池パックは一部セルに不具合があるのみでそのほとんどは再利用が可能である。そこで、セル間ばらつきが生じた電池パックから不具合が生じた電池モジュールを選別する方法が特許文献1に提案されている。 In a vehicle battery pack in which a battery module in which a plurality of secondary battery cells are connected in series and further stacked and connected in series, the positive electrode capacity varies between the cells in the pack or the module due to the temperature variation. When such a variation occurs between cells, some cells are over-discharged during traveling, and the battery voltage output by the module decreases. Battery packs with such defects are recovered from the market, but such battery packs have only some defects in the cells and most of them can be reused. Therefore, Patent Document 1 proposes a method of selecting a defective battery module from a battery pack having variations between cells.

特許文献1に記載の二次電池の劣化判定装置は、複数の単電池が直列接続されてなる電池モジュールの状態を判定する。特許文献1の劣化判定装置は、電池モジュールを所定の容量になるまで放電させる放電回路と、所定の容量になった電池モジュールについて、端子間を開放した後、端子間の電圧が上昇する速度である緩和速度を取得する緩和速度計算部と、取得した緩和速度のうちから拡散抵抗部分に対応する緩和速度を特定し、この特定した緩和速度が予め設定した判定用閾値よりも小さいことに基づいて電池モジュールの劣化した状態として複数の単電池の間で残容量にばらつきが生じていると判定する判定部とを備える。 The deterioration determination device for a secondary battery described in Patent Document 1 determines the state of a battery module in which a plurality of single batteries are connected in series. The deterioration determination device of Patent Document 1 is a discharge circuit that discharges a battery module to a predetermined capacity, and a battery module having a predetermined capacity at a speed at which the voltage between the terminals rises after the terminals are opened. Based on the relaxation speed calculation unit that acquires a certain relaxation speed and the relaxation speed corresponding to the diffusion resistance portion from the acquired relaxation speeds, the specified relaxation speed is smaller than the preset determination threshold value. It is provided with a determination unit for determining that the remaining capacity varies among a plurality of single batteries as a deteriorated state of the battery module.

特開2018−156759号公報JP-A-2018-156759

特許文献1に記載の劣化判定装置では、電池モジュールを所定の電池容量まで放電させ、放電後の電池の緩和速度に基づき複数の単電池間の残量量にばらつきが生じているかを判定する。しかしながら、電池は、放電条件の違いにより緩和速度に違いが生じるという特徴があるところ、特許文献1では、放電条件については、明確にしていない。このような放電条件の違いにより、特許文献1に記載の劣化判定装置では、良品と判定されるセル間の残容量ばらつきの電池モジュールを不良品と判定してしまう誤判定が生じる範囲が大きくなる問題がある。 In the deterioration determination device described in Patent Document 1, the battery module is discharged to a predetermined battery capacity, and it is determined whether or not there is a variation in the remaining amount among a plurality of single batteries based on the relaxation speed of the battery after discharge. However, the battery is characterized in that the relaxation speed differs depending on the discharge condition, but Patent Document 1 does not clarify the discharge condition. Due to such a difference in discharge conditions, in the deterioration determination device described in Patent Document 1, the range in which a battery module having a variation in remaining capacity between cells determined to be a non-defective product is determined to be a defective product becomes large. There's a problem.

本発明は、上記事情に鑑みてなされたものであり、複数の二次電池が直列されるように構成される電池モジュールの残容量差判定の判定精度を高めることを目的とするものである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the determination accuracy of the residual capacity difference determination of a battery module configured so that a plurality of secondary batteries are connected in series.

本発明の二次電池の状態判定方法の一態様は、複数の単電池を直列接続して構成される電池モジュールの状態を判定する二次電池の状態判定方法であって、良品と判定された前記電池モジュールの平均充電率と電池電圧との関係を示すグラフにおいて、前記平均充電率に対する前記電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の前記平均充電率に対する電池電圧の傾きよりも大きくなる平均充電率、かつ、前記平均充電率が0%とならない平均充電率となる条件を満たす判定充電率範囲まで前記電池モジュールを放電させる放電工程と、前記放電工程が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態としたときの前記電池電圧の上昇速度である緩和速度を算出する緩和速度算出工程と、前記緩和速度算出工程で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断工程と、を有する。 One aspect of the secondary battery status determination method of the present invention is a secondary battery status determination method for determining the status of a battery module configured by connecting a plurality of cells in series, and is determined to be a non-defective product. In the graph showing the relationship between the average charge rate of the battery module and the battery voltage, the average charge in the range in which the slope of the change in the battery voltage with respect to the average charge rate is estimated to be 45% to 55%. A discharge step of discharging the battery module to a determination charge rate range that satisfies a condition that the average charge rate is larger than the gradient of the battery voltage with respect to the rate and the average charge rate is not 0%, and the discharge. With respect to the battery module for which the process has been completed, the relaxation speed calculation step for calculating the relaxation speed, which is the rising speed of the battery voltage when the electrode of the battery module is opened, and the relaxation speed calculation step measured in the relaxation speed calculation step. It has a determination step of determining that one of the plurality of cells is defective when the relaxation speed is smaller than a preset determination threshold.

また、本発明の二次電池の状態判定方法の一態様は、複数の単電池が直列接続されてなる電池モジュールの状態を判定する二次電池の状態判定方法であって、前記電池モジュールの平均充電率が、前記複数の単電池の残容量のばらつきが良品範囲内とされる前記電池モジュールにおいて、放電停止後の電池電圧の緩和現象中の予め設定された判定期間内の電池電圧の回復速度である緩和速度が予め設定される緩和速度閾値以上となる判定充電率範囲となるまで前記電池モジュールを放電させる放電工程と、前記放電工程が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態として前記緩和速度を計測する緩和速度算出工程と、前記緩和速度算出工程で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断工程と、を有する。 Further, one aspect of the secondary battery state determination method of the present invention is a secondary battery state determination method for determining the state of a battery module in which a plurality of cells are connected in series, and is an average of the battery modules. In the battery module whose charging rate is such that the variation in the remaining capacity of the plurality of cells is within the good product range, the recovery speed of the battery voltage within a preset determination period during the relaxation phenomenon of the battery voltage after the discharge is stopped. The electrodes of the battery module are opened for the discharge step of discharging the battery module until the relaxation speed is equal to or higher than the preset relaxation speed threshold and within the determination charge rate range, and for the battery module for which the discharge step has been completed. When the relaxation speed calculation step for measuring the relaxation speed and the relaxation speed measured in the relaxation speed calculation step are smaller than the preset determination threshold value, one of the plurality of cells is defective. It has a judgment process for judging.

また、本発明の二次電池の状態判定装置の一態様は、複数の単電池を直列接続して構成される電池モジュールの状態を判定する二次電池の状態判定装置であって、良品と判定された前記電池モジュールの平均充電率と電池電圧との関係を示すグラフにおいて、前記平均充電率に対する前記電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の前記平均充電率に対する電池電圧の傾きよりも大きくなる平均充電率、かつ、前記平均充電率が0%とならない平均充電率となる条件となる判定充電率範囲まで前記電池モジュールを放電させる放電制御部と、前記放電制御部による放電が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態としたときの前記電池電圧の上昇速度である緩和速度を算出する緩和速度算出部と、前記緩和速度算出部で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断部と、を有する。 Further, one aspect of the secondary battery status determination device of the present invention is a secondary battery status determination device for determining the status of a battery module configured by connecting a plurality of cells in series, and determining that the product is non-defective. In the graph showing the relationship between the average charge rate of the battery module and the battery voltage, the slope of the change in the battery voltage with respect to the average charge rate is in the range in which the average charge rate is estimated to be 45% to 55%. A discharge control unit that discharges the battery module to a determination charge rate range that is a condition that the average charge rate is larger than the gradient of the battery voltage with respect to the average charge rate and the average charge rate is not 0%. With respect to the battery module that has been discharged by the discharge control unit, a relaxation speed calculation unit that calculates the relaxation speed, which is the rate of increase of the battery voltage when the electrodes of the battery module are opened, and the relaxation speed calculation unit. It has a determination unit for determining that one of the plurality of cells is defective when the relaxation speed measured by the unit is smaller than a preset determination threshold value.

本発明の二次電池の状態判定方法及び状態判定装置では、放電条件をより厳密に設定することで複数の単電池の単電池間の残容量ばらつきの検出精度を向上させる。 In the state determination method and the state determination device of the secondary battery of the present invention, the detection accuracy of the residual capacity variation among the cells of a plurality of cells is improved by setting the discharge conditions more strictly.

本発明の二次電池の状態判定方法及び状態判定装置によれば、電池モジュールの不具合判定精度を高めることができる。 According to the state determination method and the state determination device for the secondary battery of the present invention, the defect determination accuracy of the battery module can be improved.

実施の形態1にかかる状態判定システムのブロック図である。It is a block diagram of the state determination system which concerns on Embodiment 1. FIG. 電池モジュールにおける残容量ばらつきを説明する図である。It is a figure explaining the variation of the remaining capacity in a battery module. 実施の形態1にかかる状態判定方法の流れを説明するフローチャートである。It is a flowchart explaining the flow of the state determination method which concerns on Embodiment 1. FIG. 電池モジュールの電池容量と電池電圧との関係を説明するグラフである。It is a graph explaining the relationship between the battery capacity of a battery module, and a battery voltage. 電池モジュールにおける電圧緩和現象中の電圧変化を説明するグラフである。It is a graph explaining the voltage change during the voltage relaxation phenomenon in a battery module. 電池モジュールにおける分極緩和時電圧を説明するグラフである。It is a graph explaining the voltage at the time of polarization relaxation in a battery module. 実施の形態1にかかる状態判定方法における緩和速度定数を説明する図である。It is a figure explaining the relaxation rate constant in the state determination method which concerns on Embodiment 1. FIG. モジュール内充電率差と緩和速度定数との関係を説明するグラフである。It is a graph explaining the relationship between the charge rate difference in a module, and the relaxation rate constant. 参考例にかかる状態判別方法と実施の形態1にかかる状態判定方法とにおける誤判定範囲の違いを説明する図である。It is a figure explaining the difference of the erroneous determination range between the state determination method which concerns on a reference example, and the state determination method which concerns on Embodiment 1. FIG. 実施の形態1にかかる状態判別方法における判定充電率範囲を説明する図である。It is a figure explaining the determination charge rate range in the state determination method which concerns on Embodiment 1. FIG. 電池モジュールに対する放電レートの違いによる放電停止時の平均残容量の違いを説明する図である。It is a figure explaining the difference in the average remaining capacity at the time of discharge stop due to the difference in the discharge rate with respect to a battery module. 実施の形態2にかかる状態判定方法の放電工程の流れを説明する図である。It is a figure explaining the flow of the discharge process of the state determination method which concerns on Embodiment 2. FIG.

説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。 In order to clarify the explanation, the following description and drawings have been omitted or simplified as appropriate. In addition, each element described in the drawing as a functional block that performs various processes can be composed of a CPU, a memory, and other circuits in terms of hardware, and a program loaded in the memory in terms of software. It is realized by such as. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any of them. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.

また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In addition, the programs described above can be stored and supplied to a computer using various types of non-transitory computer readable medium. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory) CD-Rs, CDs. -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be supplied to the computer by various types of transient computer readable medium. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

実施の形態1
実施の形態1にかかる状態判定システム1は、市場から回収した車両用電池パックに含まれる電池モジュールの状態を判定し、電池モジュールが良品か否かを判定する。より具体的には、電池モジュールは、複数の単電池が直列接続されたものである。そして、実施の形態1にかかる状態判定システム1では、電池モジュールに含まれる複数の単電池間の残容量のばらつきが一定量以上と判定された電池モジュールを不良品と判定する。
Embodiment 1
The state determination system 1 according to the first embodiment determines the state of the battery module included in the vehicle battery pack collected from the market, and determines whether or not the battery module is a non-defective product. More specifically, the battery module is one in which a plurality of single batteries are connected in series. Then, in the state determination system 1 according to the first embodiment, the battery module in which the variation in the remaining capacity among the plurality of cells included in the battery module is determined to be a certain amount or more is determined as a defective product.

図1に実施の形態1にかかる状態判定システムのブロック図を示す。図1に示す例では、検査対象として電池モジュール30を示した。図1に示す例では、電池モジュール30は、単電池30a〜30fの6つの単電池を直列接続したものである。電池モジュール30に含まれる単電池は、2つ以上であればよく個数は適宜設定できる。 FIG. 1 shows a block diagram of the state determination system according to the first embodiment. In the example shown in FIG. 1, the battery module 30 is shown as an inspection target. In the example shown in FIG. 1, the battery module 30 is formed by connecting six cells of the cells 30a to 30f in series. The number of single batteries included in the battery module 30 may be set as long as it is two or more.

実施の形態1にかかる状態判定システム1では、電池モジュール30に含まれる単電池間の残容量差が一定量以上となる電池モジュール30を不良品として検出する。そこで、状態判定システム1では、状態判定装置10を用いる。また、状態判定装置10は、電池モジュール30の充電状態の制御及びモニタのために、放電回路20、電流計21、電圧計22を用いる。つまり、放電回路20、電流計21、電圧計22は、状態判定装置10の一部としてとらえることが出来る。 In the state determination system 1 according to the first embodiment, the battery module 30 in which the remaining capacity difference between the cells included in the battery module 30 is a certain amount or more is detected as a defective product. Therefore, in the state determination system 1, the state determination device 10 is used. Further, the state determination device 10 uses a discharge circuit 20, an ammeter 21, and a voltmeter 22 for controlling and monitoring the charge state of the battery module 30. That is, the discharge circuit 20, the ammeter 21, and the voltmeter 22 can be regarded as a part of the state determination device 10.

放電回路20は、電池モジュール30から電流を引き抜く放電を行う。放電回路20が放電において引き抜く放電電流の大きさ及び放電時間は、状態判定装置10内の放電制御部12により制御される。電流計21は、放電回路20が電池モジュール30から引き抜く放電電流の実測値を計測して放電制御部12に与える。電圧計22は、電池モジュール30の電池電圧の電圧値を計測して、状態判定装置10の放電制御部12及び緩和速度算出部13に与える。 The discharge circuit 20 discharges by drawing a current from the battery module 30. The magnitude and discharge time of the discharge current drawn by the discharge circuit 20 during discharge are controlled by the discharge control unit 12 in the state determination device 10. The ammeter 21 measures the measured value of the discharge current drawn from the battery module 30 by the discharge circuit 20 and gives it to the discharge control unit 12. The voltmeter 22 measures the voltage value of the battery voltage of the battery module 30 and gives it to the discharge control unit 12 and the relaxation speed calculation unit 13 of the state determination device 10.

状態判定装置10は、記憶部11、放電制御部12、緩和速度算出部13、判断部14を有する。状態判定装置10は、例えば、コンピュータのようなプログラムを実行可能な演算処理部を有する装置である。そして、放電制御部12、緩和速度算出部13、判断部14は、プログラムにより実装することも可能である。また、記憶部11は、例えば、ハードディスク等の不揮発性の記憶装置であって、事前に決定される判定閾値Sth及び放電終止電圧DSの値が格納される。 The state determination device 10 includes a storage unit 11, a discharge control unit 12, a relaxation speed calculation unit 13, and a determination unit 14. The state determination device 10 is a device having an arithmetic processing unit capable of executing a program such as a computer. The discharge control unit 12, the relaxation speed calculation unit 13, and the determination unit 14 can also be implemented by a program. Further, the storage unit 11 is, for example, a non-volatile storage device such as a hard disk, and stores the values of the determination threshold value Sth and the discharge end voltage DS, which are determined in advance.

放電制御部12は、後述する放電工程における処理を行うものである。放電制御部12は、良品と判定された電池モジュール30の平均充電率と電池電圧との関係を示すグラフ(後述する図4)において、平均充電率に対する電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の平均充電率に対する電池電圧の傾きよりも大きくなる平均充電率、かつ、平均充電率が0%とならない平均充電率となる条件となる判定充電率範囲まで放電回路20を用いて電池モジュールを放電させる。また、別の観点では、放電制御部12は、電池モジュール30の平均充電率が、複数の単電池の残容量のばらつきが良品範囲内とされる電池モジュール30において、放電停止後の電池電圧の緩和現象中の予め設定された判定期間内の電池電圧変化の速度が大きいほど値が大きくなる緩和速度定数が予め設定される緩和速度閾値(例えば、定数閾値)以上となる判定充電率範囲となるまで電池モジュールを放電させる。なお、放電制御部12の動作、緩和速度定数、判定充電率範囲、判定閾値、定数閾値についての詳細は後述する。 The discharge control unit 12 performs processing in the discharge process described later. In the graph showing the relationship between the average charge rate and the battery voltage of the battery module 30 determined to be a non-defective product (FIG. 4 described later), the discharge control unit 12 determines that the slope of the change in the battery voltage with respect to the average charge rate is the average charge rate. Judgment charge rate range that is a condition that the average charge rate is larger than the slope of the battery voltage with respect to the average charge rate in the range estimated to be 45% to 55%, and the average charge rate is not 0%. The battery module is discharged using the discharge circuit 20 until. From another viewpoint, the discharge control unit 12 determines that the average charge rate of the battery module 30 is the battery voltage after the discharge is stopped in the battery module 30 in which the variation in the remaining capacity of the plurality of single batteries is within the good product range. The value increases as the rate of battery voltage change within the preset determination period during the relaxation phenomenon increases. The relaxation rate constant is within the determination charge rate range that is equal to or greater than the preset relaxation rate threshold (for example, constant threshold). Discharge the battery module until. The details of the operation of the discharge control unit 12, the relaxation rate constant, the determination charge rate range, the determination threshold value, and the constant threshold value will be described later.

緩和速度算出部13は、緩和速度算出工程における処理を行う。緩和速度算出部13は、放電工程が完了した電池モジュール30について、電池モジュールの電極を開放状態としたときの電池電圧の上昇速度である緩和速度が大きいほど値が大きくなる緩和速度定数を算出する。詳しくは後述するが、緩和速度定数は、緩和速度に比例する値である。 The relaxation speed calculation unit 13 performs processing in the relaxation speed calculation step. The relaxation rate calculation unit 13 calculates a relaxation rate constant whose value increases as the relaxation rate, which is the rate of increase of the battery voltage when the electrodes of the battery module are opened, increases for the battery module 30 for which the discharge process has been completed. .. As will be described in detail later, the relaxation rate constant is a value proportional to the relaxation rate.

判断部14は、緩和速度算出部13で計測された緩和速度定数が予め設定した判定閾値よりも小さい場合に複数の単電池のいずれかに不良があると判断する。ここで、電池モジュール30の不良とは、本実施の形態では、電池モジュール30に含まれる複数の単電池の間の残容量の差が一定量以上となる状態であり、この複数の単電池の間の残容量差をモジュール内充電率差と以下では称す。 The determination unit 14 determines that one of the plurality of cells is defective when the relaxation rate constant measured by the relaxation rate calculation unit 13 is smaller than the preset determination threshold value. Here, the defect of the battery module 30 is a state in which the difference in the remaining capacity between the plurality of cell cells included in the battery module 30 is a certain amount or more in the present embodiment, and the defect of the battery module 30 is a state of the plurality of cell cells. The difference in the remaining capacity between them is referred to as the difference in the charge rate in the module below.

ここで、このモジュール内充電率差について詳細に説明する。そこで、図2に電池モジュールにおける残容量ばらつきを説明する図を示す。図2では、良品と判定される電池モジュール30(図2の上図)と不良品と判定される電池モジュール30(図2の下図)とを示した。また、図2では、残容量として残された電力の量をハッチング領域として示した。 Here, the charge rate difference in the module will be described in detail. Therefore, FIG. 2 shows a diagram for explaining the variation in the remaining capacity of the battery module. FIG. 2 shows a battery module 30 determined to be a non-defective product (upper figure of FIG. 2) and a battery module 30 determined to be a defective product (lower figure of FIG. 2). Further, in FIG. 2, the amount of electric power left as the remaining capacity is shown as a hatching region.

図2に示すように、良品と判定される電池モジュール30では、単電池30a〜30fの残容量に大きな差はなく、放電が進んでもいずれかの単電池に過放電状態が発生することはない。一方、不良品と判定される電池モジュール30では、単電池30eが他の単電池よりも残容量が少ない。このようにモジュール内充電率差が大きくなると、残容量が他の単電池よりも少ない単電池30eが他の単電池よりも先に空になり、過放電状態となる。 As shown in FIG. 2, in the battery module 30 determined to be a non-defective product, there is no large difference in the remaining capacities of the cells 30a to 30f, and even if the discharge progresses, no over-discharge state occurs in any of the cells. .. On the other hand, in the battery module 30 determined to be a defective product, the cell 30e has a smaller remaining capacity than the other cells. When the difference in charge rate in the module becomes large in this way, the cell 30e having a smaller remaining capacity than the other cell is emptied before the other cell, resulting in an over-discharged state.

このような、一部の単電池の過放電が発生すると、電池モジュール30が出力する電池電圧が低下するため、問題となる。実施の形態1にかかる状態判定システム1では、このような、一部の単電池の残容量が他の単電池よりも残容量が少なくなっている電池モジュール30を不良品として判定するものである。 When such over-discharging of some of the cells occurs, the battery voltage output by the battery module 30 decreases, which causes a problem. In the state determination system 1 according to the first embodiment, such a battery module 30 in which the remaining capacity of some cells is smaller than that of other cells is determined as a defective product. ..

モジュール内充電率差が大きな電池モジュール30と、モジュール内充電率差が小さな電池モジュール30とでは、複数の単電池の平均充電率が低い状態において、放電後に発生する電圧緩和現象中の電圧変化に差が生じる。そして、実施の形態1にかかる状態判定システム1では、モジュール内充電率差が大きな電池モジュール30と、モジュール内充電率差が小さな電池モジュール30と、の緩和現象中の違いが大きくなる平均充電率の範囲で緩和現象中の電圧を計測することで、より精度の高い不良電池モジュールの判定を行う。以下では、実施の形態1にかかる状態判定システム1における処理について詳細に説明する。 In the battery module 30 having a large difference in the charging rate in the module and the battery module 30 having a small difference in the charging rate in the module, the voltage change during the voltage relaxation phenomenon that occurs after discharging when the average charging rate of the plurality of single batteries is low. There is a difference. Then, in the state determination system 1 according to the first embodiment, the average charge rate during the relaxation phenomenon between the battery module 30 having a large difference in the charge rate in the module and the battery module 30 having a small difference in the charge rate in the module becomes large. By measuring the voltage during the relaxation phenomenon within the range of, the defective battery module can be determined with higher accuracy. Hereinafter, the processing in the state determination system 1 according to the first embodiment will be described in detail.

続いて、実施の形態1にかかる状態判定方法の流れについて詳細に説明する。図3に実施の形態1にかかる状態判定方法の流れを説明するフローチャートを示す。図3に示すように、実施の形態1にかかる状態判定方法では、市場から回収された車両用電池パックから電池モジュール30を取り出し、当該電池モジュール30を検査対象とする(ステップS1)。 Subsequently, the flow of the state determination method according to the first embodiment will be described in detail. FIG. 3 shows a flowchart for explaining the flow of the state determination method according to the first embodiment. As shown in FIG. 3, in the state determination method according to the first embodiment, the battery module 30 is taken out from the vehicle battery pack collected from the market, and the battery module 30 is inspected (step S1).

次いで、電池モジュール30に対して放電処理を行う放電工程を行う(ステップS2)。この放電工程では、放電制御部12により放電制御を行うが、この放電制御についての詳細については後述する。次いで、放電工程の終了直後から発生する電圧緩和現象中の電池電圧の変化から緩和速度定数を算出する緩和速度算出工程を行う(ステップS3)。この緩和速度算出工程では、緩和速度算出部13が緩和速度定数の算出を行うが、緩和速度定数をどのように算出するかは後述する。 Next, a discharge step of performing a discharge process on the battery module 30 is performed (step S2). In this discharge step, the discharge control unit 12 performs discharge control, and details of this discharge control will be described later. Next, a relaxation rate calculation step of calculating the relaxation rate constant from the change in the battery voltage during the voltage relaxation phenomenon that occurs immediately after the end of the discharge process is performed (step S3). In this relaxation rate calculation step, the relaxation rate calculation unit 13 calculates the relaxation rate constant, and how to calculate the relaxation rate constant will be described later.

次いで、判断部14が緩和速度算出工程で算出された緩和速度定数と予め設定した判定閾値とを比較して検査対象の電池モジュール30が良品か否かを判定する良品判定工程を行う(ステップS4)。この良品判定工程では、緩和速度定数が判定閾値以上であれば電池モジュール30は良品であると判定し、緩和速度定数が判定閾値よりも小さければ電池モジュール30は不良品であると判定する。そして、良品と判定された電池モジュール30は、再利用可能と判断され(ステップS5)、不良品と判定された電池モジュール30は、再利用不可能と判断される(ステップS6)。 Next, the determination unit 14 performs a non-defective product determination step of comparing the relaxation rate constant calculated in the relaxation speed calculation step with a preset determination threshold value to determine whether or not the battery module 30 to be inspected is a non-defective product (step S4). ). In this non-defective product determination step, if the relaxation rate constant is equal to or greater than the determination threshold value, the battery module 30 is determined to be a non-defective product, and if the relaxation rate constant is smaller than the determination threshold value, the battery module 30 is determined to be a defective product. Then, the battery module 30 determined to be a non-defective product is determined to be reusable (step S5), and the battery module 30 determined to be a defective product is determined to be non-reusable (step S6).

ここで、放電工程についてより詳細に説明する。まず、図4に電池モジュールの電池容量と電池電圧との関係を説明するグラフを示す。図4に示すグラフは、横軸を電池モジュール30の平均残容量とし、縦軸を電池モジュール30の電池電圧とした。図4に示すように、電池モジュール30では、平均充電率に対する電池電圧の変化が小さいプラトー領域が存在する。そして、プラトー領域よりも平均充電率が高い側と低い側とのそれぞれに、プラトー領域よりも平均充電率に対する電圧変化が大きくなる非プラトー領域が存在する。実施の形態1にかかる状態判定システム1では、非プラトー領域のうちプラトー領域よりも平均充電率が低い側にある非プラトー領域に着目して放電を行う。 Here, the discharge process will be described in more detail. First, FIG. 4 shows a graph for explaining the relationship between the battery capacity of the battery module and the battery voltage. In the graph shown in FIG. 4, the horizontal axis represents the average remaining capacity of the battery module 30, and the vertical axis represents the battery voltage of the battery module 30. As shown in FIG. 4, in the battery module 30, there is a plateau region in which the change in the battery voltage with respect to the average charge rate is small. Then, on each of the side where the average charge rate is higher and the side where the average charge rate is lower than the plateau region, there is a non-plateau region in which the voltage change with respect to the average charge rate is larger than that in the plateau region. In the state determination system 1 according to the first embodiment, the discharge is performed focusing on the non-plateau region on the side where the average charge rate is lower than the plateau region among the non-plateau regions.

なお、本明細書における平均残容量は、良品と判定される電池モジュール30において計測される平均残容量である。不良品と判定される電池モジュール30においてもこの良品から予め取得された平均残容量に基づく放電制御を行うものとする。 The average remaining capacity in the present specification is the average remaining capacity measured in the battery module 30 determined to be a non-defective product. Even in the battery module 30 determined to be a defective product, discharge control is performed based on the average remaining capacity obtained in advance from this non-defective product.

続いて、電池モジュール30における電圧緩和現象について説明する。図5に電池モジュール30における電圧緩和現象中の電圧変化を説明するグラフを示す。図5に示すように、電池モジュール30では、放電を停止した後に電池電圧が回復する電圧緩和現象が発生する。この電圧緩和現象は、単電池の内部抵抗及び正極の寄生容量に起因して発生する。そして、電池モジュール30では、放電停止時の平均残容量の違いにより、電圧緩和現象により放電停止後に電池電圧が回復する速度と、回復後の電圧(例えば、タイミングt3時点の電圧であって、以下、分極緩和時電圧OCVと称す。)と、に違いが生じる。 Subsequently, the voltage relaxation phenomenon in the battery module 30 will be described. FIG. 5 shows a graph for explaining the voltage change during the voltage relaxation phenomenon in the battery module 30. As shown in FIG. 5, in the battery module 30, a voltage relaxation phenomenon occurs in which the battery voltage recovers after the discharge is stopped. This voltage relaxation phenomenon occurs due to the internal resistance of the cell and the parasitic capacitance of the positive electrode. Then, in the battery module 30, the rate at which the battery voltage recovers after the discharge is stopped due to the voltage relaxation phenomenon and the voltage after the recovery (for example, the voltage at the timing t3, which is the voltage at the timing t3, are as follows, due to the difference in the average remaining capacity when the discharge is stopped. , The voltage at the time of polarization relaxation is referred to as OCV.)

より具体的には、放電停止時の平均残容量を以下で説明する実施の形態1で対象とする平均残容量(例えば、判定充電率範囲)よりも多くすると分極緩和時電圧OCVは高くなり、少なくすると分極緩和時電圧OCVは低くなる(タイミングt3)。また、タイミングt0を放電停止時とするとタイミングt0から第1の時間が経過したタイミングt1から、タイミングt0から第1の時間よりも長い第2の時間が経過したタイミングt2までの電池電圧の変化の傾きに違いが生じる。より具体的には、放電停止時の平均残容量を判定充電率範囲よりも多くした場合及び少なくした場合は、タイミングt1〜t2の期間(以下、判定期間と称す)の電池電圧の変化の傾きは、平均残容量を判定充電率範囲とした場合よりも小さくなる。そして、後述する緩和速度定数は、判定期間中の電池電圧の傾きが大きいほど小さくなるという特徴を有する。 More specifically, when the average remaining capacity when the discharge is stopped is larger than the average remaining capacity (for example, the determination charge rate range) targeted in the first embodiment described below, the polarization relaxation voltage OCV becomes high. When it is reduced, the voltage OCV at the time of polarization relaxation becomes low (timing t3). Further, assuming that the timing t0 is the discharge stop time, the change in the battery voltage from the timing t1 in which the first time elapses from the timing t0 to the timing t2 in which the second time longer than the first time elapses from the timing t0. There is a difference in tilt. More specifically, when the average remaining capacity at the time of discharge stop is larger or smaller than the judgment charge rate range, the slope of the change in the battery voltage during the period t1 to t2 (hereinafter referred to as the judgment period). Is smaller than when the average remaining capacity is set as the determination charge rate range. The relaxation rate constant, which will be described later, has a feature that the larger the slope of the battery voltage during the determination period, the smaller the relaxation rate constant.

また、別の観点から電圧緩和現象を説明する。図6に電池モジュールにおける分極緩和時電圧を説明するグラフを示す。図6に示すグラフは、横軸を放電後の電池モジュール30の平均残容量、縦軸を電池モジュール30の電池電圧としたものである。図6に示すように、放電終了後の電池電圧と分極緩和時電圧OCVとの差電圧は、平均残容量によって異なる。また、図6では図5で示したタイミングt1、t2時の電池電圧についても示した。タイミングt1、t2との差電圧を見ると、やはり平均残容量により違いがあり、図6の中央付近の条件が最もタイミングt1、t2の電圧差が大きくなっている。タイミングt1、t2の最も電圧差が大きくなっているところが、図5で説明した実施の形態1で対象とする判定充電率範囲の範囲内の条件である。 Moreover, the voltage relaxation phenomenon will be described from another viewpoint. FIG. 6 shows a graph for explaining the voltage during polarization relaxation in the battery module. In the graph shown in FIG. 6, the horizontal axis represents the average remaining capacity of the battery module 30 after discharge, and the vertical axis represents the battery voltage of the battery module 30. As shown in FIG. 6, the difference voltage between the battery voltage after the end of discharge and the polarization relaxation voltage OCV differs depending on the average remaining capacity. Further, FIG. 6 also shows the battery voltages at the timings t1 and t2 shown in FIG. Looking at the difference voltage between the timings t1 and t2, there is also a difference depending on the average remaining capacity, and the voltage difference between the timings t1 and t2 is the largest under the condition near the center of FIG. The place where the voltage difference between the timings t1 and t2 is the largest is the condition within the range of the determination charge rate range targeted by the first embodiment described with reference to FIG.

続いて、緩和速度定数について説明する。そこで、図7に実施の形態1にかかる状態判定方法における緩和速度定数を説明する図を示す。図7には、放電状態から放電休止後の電池電圧変化グラフ、領域Aの電池電圧変化グラフの拡大図、緩和速度定数のグラフを示した。 Next, the relaxation rate constant will be described. Therefore, FIG. 7 shows a diagram for explaining the relaxation rate constant in the state determination method according to the first embodiment. FIG. 7 shows a graph of the battery voltage change from the discharged state to the state where the discharge is stopped, an enlarged view of the battery voltage change graph of the region A, and a graph of the relaxation rate constant.

放電状態から放電休止後の電圧変化グラフを参照すると、放電により電池電圧は低下し、放電を休止した直後から電圧緩和現象が発生して電池電圧が上昇する。そして、図7では、良品と不良品との両方についてグラフを示した。放電状態から放電休止後の電圧変化グラフを参照すると、良品と不良品とでは電圧緩和現象後の文化良く緩和時電圧OCVは、ほぼ同じになる。 Looking at the voltage change graph from the discharged state to the state after the discharge is stopped, the battery voltage drops due to the discharge, and the voltage relaxation phenomenon occurs immediately after the discharge is stopped and the battery voltage rises. Then, in FIG. 7, a graph is shown for both a non-defective product and a defective product. Looking at the voltage change graph from the discharged state to the state after discharge suspension, the voltage OCV at the time of relaxation is almost the same between the non-defective product and the defective product because of the good culture after the voltage relaxation phenomenon.

一方、放電休止時点から電池電圧が上昇する期間を領域Aとし、この領域Aの部分を拡大した図を領域Aの電池電圧変化グラフの拡大図として示す。この領域Aの電池電圧変化グラフを参照すると、良品と不良品では分極緩和時電圧OCVに至るまでの電圧変化に差があることがわかる。具体的には、不良品の電池モジュール30では、良品の電池モジュール30に比べて電圧緩和現象中の電圧上昇速度が早くなる。そして、タイミングt1、t2との間の判定期間における良品と不良品とでは、良品の電池モジュール30の電池電圧の傾きが不良品の電池モジュール30よりも大きくは大きな違いが出る。 On the other hand, the period in which the battery voltage rises from the time when the discharge is stopped is defined as the region A, and an enlarged view of the portion of the region A is shown as an enlarged view of the battery voltage change graph of the region A. With reference to the battery voltage change graph in this region A, it can be seen that there is a difference in the voltage change up to the polarization relaxation voltage OCV between the non-defective product and the defective product. Specifically, the defective battery module 30 has a faster voltage rise rate during the voltage relaxation phenomenon than the non-defective battery module 30. Then, the inclination of the battery voltage of the non-defective battery module 30 is larger than that of the defective battery module 30 between the non-defective product and the defective product in the determination period between the timings t1 and t2.

そして、この領域Aについての緩和速度定数aのグラフを参照する。この緩和速度定数のグラフでは、横軸を放電休止時点からの経過時間の平方根分の1(1/√時間)とし、縦軸を電池電圧としたものである。緩和速度定数aは、時間に対する電池電圧の変化の傾きが急峻になる不良品の方が小さくなる。図7に示す例では、良品の傾きαが不良品の傾きβよりも大きくなっている。そして、この傾きから緩和速度定数は算出される。実施の形態1では、タイミングt1〜t2の間の緩和速度に基づき緩和速度定数を算出するそのため、実施の形態1では緩和速度定数は、緩和速度の大きさに比例したものとなる。 Then, the graph of the relaxation rate constant a for this region A is referred to. In the graph of the relaxation rate constant, the horizontal axis is 1 / square root (1 / √ hours) of the elapsed time from the time when the discharge is stopped, and the vertical axis is the battery voltage. The relaxation rate constant a is smaller for defective products in which the slope of the change in battery voltage with time is steep. In the example shown in FIG. 7, the slope α of the non-defective product is larger than the slope β of the defective product. Then, the relaxation rate constant is calculated from this inclination. In the first embodiment, the relaxation rate constant is calculated based on the relaxation rate between the timings t1 to t2. Therefore, in the first embodiment, the relaxation rate constant is proportional to the magnitude of the relaxation rate.

より具体的に緩和速度定数の算出方法について説明する。緩和速度算出部13では、まず、放電休止後に設定される判定期間内の時間当たりの電池電圧の変化量を緩和速度[V/s]として算出する。そして、緩和速度算出部13は、電池電圧と判定時間の長さの平方根分の1(1/√t)との関係に基づき緩和速度定数aを算出する。緩和速度定数aは、判定期間の長さをt、電圧変化をΔE(t−t)としたときに(1)式から導き出される定数である。

Figure 2021175340
A method for calculating the relaxation rate constant will be described more specifically. The relaxation speed calculation unit 13 first calculates the amount of change in the battery voltage per hour within the determination period set after the discharge is stopped as the relaxation speed [V / s]. Then, the relaxation rate calculation unit 13 calculates the relaxation rate constant a based on the relationship between the battery voltage and 1 / square root (1 / √t) of the length of the determination time. The relaxation rate constant a is a constant derived from Eq. (1) when the length of the determination period is t and the voltage change is ΔE (t 2- t 1).
Figure 2021175340

ここで、Iは放電電流、τは電流印加時間、nは反応に係わる電子数、Vmはモル体積、Fはファラデー定数、Aは反応表面積、dE/dyは判定期間中の電池電圧の傾き、Dは拡散係数である。 Here, I is the discharge current, τ is the current application time, n is the number of electrons involved in the reaction, Vm is the molar volume, F is the Faraday constant, A is the reaction surface area, and dE / dy is the slope of the battery voltage during the determination period. D is the diffusion coefficient.

続いて、緩和速度定数aとモジュール内充電率差について説明する。図8にモジュール内充電率差と緩和速度定数との関係を説明するグラフを示す。図8では、実施の形態1にかかる状態判定方法において算出される緩和速度定数aに加えて比較例にかかる緩和速度定数aのグラフも示した。参考例は、特許文献1に記載のように、平均充電率が0%付近になるまで放電した後に計測される電圧変化から算出したものである。 Subsequently, the relaxation rate constant a and the difference in the charge rate in the module will be described. FIG. 8 shows a graph for explaining the relationship between the charge rate difference in the module and the relaxation rate constant. In FIG. 8, in addition to the relaxation rate constant a calculated in the state determination method according to the first embodiment, a graph of the relaxation rate constant a according to the comparative example is also shown. As described in Patent Document 1, the reference example is calculated from the voltage change measured after discharging until the average charge rate becomes close to 0%.

図8に示すように、緩和速度定数aは、モジュール内充電率差が小さいほど大きくなる。そして、実施の形態1にかかる状態判定方法では、モジュール内充電率差に対する緩和速度定数aの傾きが大きくなる。このようにモジュール内充電率差に対する緩和速度定数aの傾きを大きくすることで、誤判定が生じる範囲を小さくすることができる。 As shown in FIG. 8, the relaxation rate constant a becomes larger as the difference in charge rate in the module is smaller. Then, in the state determination method according to the first embodiment, the slope of the relaxation rate constant a with respect to the difference in the charge rate in the module becomes large. By increasing the slope of the relaxation rate constant a with respect to the difference in charge rate in the module in this way, the range in which erroneous determination occurs can be reduced.

そこで、図9に参考例にかかる状態判別方法と実施の形態1にかかる状態判定方法とにおける誤判定範囲の違いを説明する図を示す。図9においても図8で説明した参考例を実施の形態1にかかる状態判別方法の比較例として示した。図9に示すように、状態判別を行う場合、測定誤差を考慮して緩和速度定数aの理想曲線である中央値に対して、信頼区間上限値と信頼区間下限値を設ける。そして、もっとも悪い条件である信頼区間上限値に対して不良品の見落としがないように、緩和速度定数aに対する判定閾値Sthを設定する。判断部14は、緩和速度定数aが判定閾値Sthよりも小さければ不良品と判定して、緩和速度定数aが判定閾値Sth以上であれば良品との判定を行う。 Therefore, FIG. 9 shows a diagram for explaining the difference in the erroneous determination range between the state determination method according to the reference example and the state determination method according to the first embodiment. Also in FIG. 9, the reference example described in FIG. 8 is shown as a comparative example of the state determination method according to the first embodiment. As shown in FIG. 9, when the state is determined, the confidence interval upper limit value and the confidence interval lower limit value are set with respect to the median value which is the ideal curve of the relaxation rate constant a in consideration of the measurement error. Then, the determination threshold value Sth for the relaxation rate constant a is set so that the defective product is not overlooked with respect to the confidence interval upper limit value, which is the worst condition. The determination unit 14 determines that the product is defective if the relaxation rate constant a is smaller than the determination threshold value Sth, and determines that the product is good if the relaxation rate constant a is equal to or greater than the determination threshold value Sth.

そして、図9を参照すると、モジュール内充電率差に対する緩和速度定数aの傾きを大きくしたことで、同じ幅の信頼性区間のマージンを確保した場合でも、実施の形態1の方が比較例よりも誤判定範囲が小さくなる。ここで、緩和速度定数aのモジュール内充電率差を大きくするためには、放電を休止する充電率及び放電条件が大きく影響する。そこで、以下で、放電を休止する充電率及び放電条件について詳細に説明する。 Then, referring to FIG. 9, even when the margin of the reliability section having the same width is secured by increasing the slope of the relaxation rate constant a with respect to the difference in the charge rate in the module, the first embodiment is more than the comparative example. However, the erroneous judgment range becomes smaller. Here, in order to increase the difference in the charge rate in the module of the relaxation rate constant a, the charge rate at which the discharge is stopped and the discharge condition have a great influence. Therefore, the charging rate and the discharging conditions for suspending the discharging will be described in detail below.

図10に実施の形態1にかかる状態判別方法における判定充電率範囲を説明する図を示す。図10に示すグラフは、良品と判定される電池モジュール30について、電池モジュール30の平均残容量に対する緩和速度定数aをプロットしたものである。図10に示すように、緩和速度定数aは、平均残容量が1%〜3%の範囲で他の平均残容量となる場合よりも高くなる。したがって、緩和速度定数aのモジュール内充電率差に対する傾きを高くする場合、平均残容量が1%〜3%程度となる放電終止電圧DSを設定することが好ましい。以下の説明では、図10に示した平均残容量が1%〜3%となる範囲を判定充電率範囲と称す。なお、放電を停止させる平均残容量の範囲については、図10に示すグラフに示した緩和速度閾値(例えば、定数閾値)を実際の状態判定処理の前段階で決定し、当該定数閾値に基づき設定する。 FIG. 10 shows a diagram illustrating a determination charge rate range in the state determination method according to the first embodiment. The graph shown in FIG. 10 is a plot of the relaxation rate constant a with respect to the average remaining capacity of the battery module 30 for the battery module 30 determined to be a non-defective product. As shown in FIG. 10, the relaxation rate constant a is higher than the case where the average remaining capacity is in the range of 1% to 3% and becomes another average remaining capacity. Therefore, when increasing the slope of the relaxation rate constant a with respect to the difference in the charging rate in the module, it is preferable to set the discharge end voltage DS in which the average remaining capacity is about 1% to 3%. In the following description, the range in which the average remaining capacity shown in FIG. 10 is 1% to 3% is referred to as a determination charge rate range. Regarding the range of the average remaining capacity for stopping the discharge, the relaxation speed threshold value (for example, the constant threshold value) shown in the graph shown in FIG. 10 is determined in the stage before the actual state determination process and set based on the constant threshold value. do.

続いて、放電工程における放電レート及び状態判定処理の対象とする電池モジュール30の温度について説明する。そこで、図11に電池モジュールに対する放電レートの違いによる放電停止時の平均残容量の違いを説明する図を示す。図11に示すように、放電レートを低く設定した場合(放電電流を小さくした場合)、電池電圧が放電終止電圧DSに達したときに電池モジュール30の平均残容量が判定充電率範囲の下限を下回る。放電レートを低く、かつ、放電開始時の電池モジュール30の温度を高温に設定した場合には、この傾向がさらに顕著になる。一方、放電レートを高く設定した場合(放電電流を大きくした場合)、電池電圧が放電終止電圧DSに達したときに電池モジュール30の平均残容量が判定充電率範囲の上限を上回る。放電レートを高く、かつ、放電開始時の電池モジュール30の温度を低温に設定した場合には、この傾向がさらに顕著になる。このようなことから、放電レートと放電開始時の電池モジュール30の温度を適切に設定することが重要になる。 Subsequently, the discharge rate in the discharge step and the temperature of the battery module 30 to be subjected to the state determination process will be described. Therefore, FIG. 11 shows a diagram for explaining the difference in the average remaining capacity when the discharge is stopped due to the difference in the discharge rate with respect to the battery module. As shown in FIG. 11, when the discharge rate is set low (when the discharge current is reduced), the average remaining capacity of the battery module 30 determines the lower limit of the determined charge rate range when the battery voltage reaches the discharge end voltage DS. Below. This tendency becomes even more remarkable when the discharge rate is low and the temperature of the battery module 30 at the start of discharge is set to a high temperature. On the other hand, when the discharge rate is set high (when the discharge current is increased), the average remaining capacity of the battery module 30 exceeds the upper limit of the determined charge rate range when the battery voltage reaches the discharge end voltage DS. This tendency becomes even more remarkable when the discharge rate is high and the temperature of the battery module 30 at the start of discharge is set to a low temperature. For this reason, it is important to appropriately set the discharge rate and the temperature of the battery module 30 at the start of discharge.

ここで、適切な放電条件は、放電レートをC/3〜7C、放電開始時の電池モジュール30の温度を10℃〜60℃程度であり、より好ましくは、放電レートをC/2〜5C、放電開始時の電池モジュール30の温度を20℃〜50℃程度である。このような放電条件とすることで良好な傾きを有する緩和速度定数aが得られることがわかる。 Here, the appropriate discharge conditions are such that the discharge rate is C / 3 to 7C, the temperature of the battery module 30 at the start of discharge is about 10 ° C to 60 ° C, and more preferably the discharge rate is C / 2 to 5C. The temperature of the battery module 30 at the start of discharge is about 20 ° C to 50 ° C. It can be seen that the relaxation rate constant a having a good inclination can be obtained by setting such a discharge condition.

上記説明より、実施の形態1にかかる状態判別方法では、放電停止時の平均残容量を、良品と判定された電池モジュール30の平均充電率と電池電圧との関係を示すグラフにおいて、平均充電率に対する電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の平均充電率に対する電池電圧の傾きよりも大きくなる判定充電率範囲とする。また、別の観点では、実施の形態1にかかる状態判別方法では、放電停止時の平均残容量を、電池モジュール30の平均充電率が、複数の単電池の残容量のばらつきが良品範囲内とされる電池モジュールにおいて、放電停止後の電池電圧の緩和現象中の予め設定された判定期間内の電池電圧変化の速度が大きいほど値が小さくなる緩和速度定数が予め設定される緩和速度閾値(例えば、定数閾値)以上となる判定充電率範囲とする。これにより、実施の形態1にかかる状態判別方法では、モジュール内充電率差に対する緩和速度定数aの傾きを大きくし、誤判定範囲を小さくすることができる。そして、判定充電率範囲を平均残容量が1%〜3%の範囲に設定することでより緩和速度定数aの傾きをより大きくすることができる。 From the above description, in the state determination method according to the first embodiment, the average remaining capacity at the time of discharge stop is the average charge rate in the graph showing the relationship between the average charge rate of the battery module 30 determined to be a non-defective product and the battery voltage. The determined charge rate range is such that the gradient of the change in the battery voltage with respect to the relative is larger than the gradient of the battery voltage with respect to the average charge rate in the range in which the average charge rate is estimated to be 45% to 55%. From another point of view, in the state determination method according to the first embodiment, the average remaining capacity at the time of stopping the discharge, the average charge rate of the battery module 30, and the variation in the remaining capacity of the plurality of single batteries are within the good product range. In the battery module to be used, the relaxation rate constant (for example, the relaxation rate constant) in which the value becomes smaller as the rate of change in the battery voltage within the preset determination period during the relaxation phenomenon of the battery voltage after the discharge is stopped increases (for example). , Constant threshold) or more. As a result, in the state determination method according to the first embodiment, the inclination of the relaxation rate constant a with respect to the difference in the charge rate in the module can be increased, and the erroneous determination range can be reduced. Then, by setting the determination charge rate range to a range in which the average remaining capacity is 1% to 3%, the slope of the relaxation rate constant a can be further increased.

また、実施の形態1にかかる状態判別方法では、放電レートと放電開始時の電池モジュール30の温度とを適切に設定することで、放電停止時の平均残容量をより確実に平均残容量にすることができる。つまり、放電レートと放電開始時の電池モジュール30の温度とを適切に設定することで、より緩和速度定数aのモジュール内充電率差に対する傾きの精度を高めることができる。 Further, in the state determination method according to the first embodiment, the average remaining capacity at the time of stopping the discharge is more reliably set to the average remaining capacity by appropriately setting the discharge rate and the temperature of the battery module 30 at the start of the discharge. be able to. That is, by appropriately setting the discharge rate and the temperature of the battery module 30 at the start of discharge, the accuracy of the inclination of the relaxation rate constant a with respect to the difference in the charge rate in the module can be further improved.

実施の形態2
実施の形態2では、放電工程の別の形態について説明する。そこで、図12に実施の形態2にかかる状態判定方法の放電工程の流れを説明する図を示す。図12に示すように、実施の形態2では、2段階の放電処理を経て、電池モジュール30の平均残容量を判定充電率範囲とする。
Embodiment 2
In the second embodiment, another embodiment of the discharge process will be described. Therefore, FIG. 12 shows a diagram for explaining the flow of the discharge process of the state determination method according to the second embodiment. As shown in FIG. 12, in the second embodiment, the average remaining capacity of the battery module 30 is set as the determination charge rate range through the two-step discharge process.

より具体的には、実施の形態2にかかる放電処理では、第1の放電工程、電圧緩和工程、第2の放電工程の3つの工程により放電を行う。第1の放電工程では、判定充電率範囲よりも高い平均充電率まで予め決定された急速放電電流量で電池モジュール30を放電する。電圧緩和工程では、第1の放電工程停止後に電池モジュールに対する放電を停止して電池モジュール30の電池電圧を緩和させる。第2の放電工程では、電圧緩和工程後に第1の放電工程の急速放電電流よりも小さな放電電流で電池モジュールを判定充電率範囲まで放電する。この第2の放電工程における放電電流は、例えば、図11に示した適正範囲(放電レートがC/2〜5C、放電開始温度が20℃〜50℃)の条件内であることが好ましい。 More specifically, in the discharge process according to the second embodiment, the discharge is performed by three steps of a first discharge step, a voltage relaxation step, and a second discharge step. In the first discharge step, the battery module 30 is discharged with a predetermined amount of fast discharge current up to an average charge rate higher than the determined charge rate range. In the voltage relaxation step, after the first discharge step is stopped, the discharge to the battery module is stopped to relax the battery voltage of the battery module 30. In the second discharge step, after the voltage relaxation step, the battery module is discharged to the determination charge rate range with a discharge current smaller than the rapid discharge current in the first discharge step. The discharge current in this second discharge step is preferably within the appropriate range shown in FIG. 11 (discharge rate is C / 2 to 5C, discharge start temperature is 20 ° C to 50 ° C).

実施の形態2にかかる放電方法では、第1の放電処理により放電速度を高めることで状態判定処理に要する時間を短縮することができる。 In the discharge method according to the second embodiment, the time required for the state determination process can be shortened by increasing the discharge rate by the first discharge process.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記実施形態では、緩和速度を緩和速度定数に変換し、電池モジュールの不良の判断を行ったが、緩和速度定数に変換しなくてもよい。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, in the above embodiment, the relaxation rate is converted into the relaxation rate constant, and the defect of the battery module is determined, but it is not necessary to convert the relaxation rate into the relaxation rate constant.

1 状態判定システム
10 状態判定装置
11 記憶部
12 放電制御部
13 緩和速度算出部
14 判断部
20 放電回路
21 電流計
22 電圧計
30 電池モジュール
30a 単電池
Sth 判定閾値
DS 放電終止電圧
1 Status judgment system 10 Status judgment device 11 Storage unit 12 Discharge control unit 13 Relaxation speed calculation unit 14 Judgment unit 20 Discharge circuit 21 Ammeter 22 Voltmeter 30 Battery module 30a Single battery Sth Judgment threshold DS Discharge end voltage

Claims (8)

複数の単電池を直列接続して構成される電池モジュールの状態を判定する二次電池の状態判定方法であって、
良品と判定された前記電池モジュールの平均充電率と電池電圧との関係を示すグラフにおいて、前記平均充電率に対する前記電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の前記平均充電率に対する電池電圧の傾きよりも大きくなる平均充電率、かつ、前記平均充電率が0%とならない平均充電率となる条件を満たす判定充電率範囲まで前記電池モジュールを放電させる放電工程と、
前記放電工程が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態としたときの前記電池電圧の上昇速度である緩和速度を算出する緩和速度算出工程と、
前記緩和速度算出工程で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断工程と、
を有する二次電池の状態判定方法。
This is a method for determining the status of a secondary battery, which determines the status of a battery module composed of a plurality of cells connected in series.
In the graph showing the relationship between the average charge rate and the battery voltage of the battery module determined to be a non-defective product, the slope of the change in the battery voltage with respect to the average charge rate is estimated to be 45% to 55% for the average charge rate. Discharge that discharges the battery module to a determination charge rate range that satisfies the condition that the average charge rate is larger than the gradient of the battery voltage with respect to the average charge rate in the range and the average charge rate is not 0%. Process and
With respect to the battery module for which the discharge step has been completed, a relaxation rate calculation step for calculating a relaxation rate, which is an increase rate of the battery voltage when the electrodes of the battery module are opened, and a relaxation rate calculation step.
A determination step of determining that one of the plurality of cells is defective when the relaxation rate measured in the relaxation rate calculation step is smaller than a preset determination threshold value.
A method for determining the state of a secondary battery having.
前記緩和速度算出工程では、前記緩和速度に基づき、前記緩和速度の計測時間の平方根分の1を横軸、前記計測時間中の電池電圧を縦軸とするグラフにおいて、前記計測時間中において予め決定した第1の時間と第2の時間との間の前記電池電圧の傾きである緩和速度定数を算出し、
前記判断工程では、前記緩和速度定数を用いて前記複数の単電池の良否判定を行う請求項1に記載の二次電池の状態判定方法。
In the relaxation speed calculation step, based on the relaxation speed, it is determined in advance during the measurement time in a graph in which 1 / square root of the measurement time of the relaxation speed is on the horizontal axis and the battery voltage during the measurement time is on the vertical axis. The relaxation speed constant, which is the slope of the battery voltage between the first time and the second time, is calculated.
The method for determining the state of a secondary battery according to claim 1, wherein in the determination step, the quality of the plurality of single batteries is determined using the relaxation rate constant.
前記第1の時間と前記第2の時間は、前記電池モジュールに対する放電処理後から前記放電処理後に発生する分極緩和現象が収束するまでの時間の間で設定される請求項2に記載の二次電池の状態判定方法。 The secondary according to claim 2, wherein the first time and the second time are set between the time after the discharge treatment for the battery module and the time until the polarization relaxation phenomenon generated after the discharge treatment converges. Battery status determination method. 前記放電工程は、良品と判定される前記電池モジュールの平均充電率が1%から3%の間となる状態で行う請求項1乃至3のいずれか1項に記載の二次電池の状態判定方法。 The method for determining the state of a secondary battery according to any one of claims 1 to 3, wherein the discharging step is performed in a state where the average charge rate of the battery module determined to be a non-defective product is between 1% and 3%. .. 前記放電工程は、
前記判定充電率範囲よりも高い平均充電率まで予め決定された急速放電電流量で前記電池モジュールを放電する第1の放電工程と、
前記第1の放電工程停止後に前記電池モジュールに対する放電を停止して前記電池モジュールの前記電池電圧を緩和させる電圧緩和工程と、
前記電圧緩和工程後に前記急速放電電流量よりも小さな放電電流量で前記電池モジュールを前記判定充電率範囲まで放電する第2の放電工程と、
を有する請求項1乃至4のいずれか1項に記載の二次電池の状態判定方法。
The discharge step is
A first discharge step of discharging the battery module with a predetermined amount of fast discharge current up to an average charge rate higher than the determined charge rate range.
A voltage relaxation step of stopping the discharge to the battery module after the first discharge step is stopped to relax the battery voltage of the battery module.
A second discharge step of discharging the battery module to the determined charge rate range with a discharge current amount smaller than the rapid discharge current amount after the voltage relaxation step.
The method for determining the state of a secondary battery according to any one of claims 1 to 4.
複数の単電池が直列接続されてなる電池モジュールの状態を判定する二次電池の状態判定方法であって、
前記電池モジュールの平均充電率が、前記複数の単電池の残容量のばらつきが良品範囲内とされる前記電池モジュールにおいて、放電停止後の電池電圧の緩和現象中の予め設定された判定期間内の電池電圧の回復速度である緩和速度が予め設定される緩和速度閾値以上となる判定充電率範囲となるまで前記電池モジュールを放電させる放電工程と、
前記放電工程が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態として前記緩和速度を計測する緩和速度算出工程と、
前記緩和速度算出工程で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断工程と、
を有する二次電池の状態判定方法。
It is a method of determining the state of a secondary battery that determines the state of a battery module in which a plurality of cells are connected in series.
The average charge rate of the battery module is within a preset determination period during the relaxation phenomenon of the battery voltage after the discharge is stopped in the battery module in which the variation in the remaining capacity of the plurality of cells is within the non-defective range. A discharge step of discharging the battery module until the relaxation speed, which is the recovery speed of the battery voltage, reaches the determination charge rate range in which the relaxation speed is equal to or higher than the preset relaxation speed threshold.
With respect to the battery module for which the discharge step has been completed, a relaxation speed calculation step of measuring the relaxation speed with the electrodes of the battery module open, and a relaxation speed calculation step.
A determination step of determining that one of the plurality of cells is defective when the relaxation rate measured in the relaxation rate calculation step is smaller than a preset determination threshold value.
A method for determining the state of a secondary battery having.
前記判定期間は、前記電池モジュールに対する放電処理後から前記放電処理後に発生する分極緩和現象が収束するまでの時間の間で設定される請求項6に記載の二次電池の状態判定方法。 The method for determining a state of a secondary battery according to claim 6, wherein the determination period is set between the time after the discharge process for the battery module and the time until the polarization relaxation phenomenon generated after the discharge process converges. 複数の単電池を直列接続して構成される電池モジュールの状態を判定する二次電池の状態判定装置であって、
良品と判定された前記電池モジュールの平均充電率と電池電圧との関係を示すグラフにおいて、前記平均充電率に対する前記電池電圧の変化の傾きが、平均充電率が45%〜55%と推定される範囲の前記平均充電率に対する電池電圧の傾きよりも大きくなる平均充電率、かつ、前記平均充電率が0%とならない平均充電率となる条件となる判定充電率範囲まで前記電池モジュールを放電させる放電制御部と、
前記放電制御部による放電が完了した前記電池モジュールについて、前記電池モジュールの電極を開放状態としたときの前記電池電圧の上昇速度である緩和速度を算出する緩和速度算出部と、
前記緩和速度算出部で計測された前記緩和速度が予め設定した判定閾値よりも小さい場合に前記複数の単電池のいずれかに不良があると判断する判断部と、
を有する二次電池の状態判定装置。
A secondary battery status determination device that determines the status of a battery module configured by connecting multiple cells in series.
In the graph showing the relationship between the average charge rate and the battery voltage of the battery module determined to be a non-defective product, the slope of the change in the battery voltage with respect to the average charge rate is estimated to be 45% to 55% for the average charge rate. Discharge that discharges the battery module to the determination charge rate range, which is a condition that the average charge rate is larger than the gradient of the battery voltage with respect to the average charge rate in the range and the average charge rate is not 0%. Control unit and
With respect to the battery module that has been discharged by the discharge control unit, a relaxation speed calculation unit that calculates a relaxation speed that is an increase speed of the battery voltage when the electrodes of the battery module are opened, and a relaxation speed calculation unit.
When the relaxation speed measured by the relaxation speed calculation unit is smaller than the preset determination threshold value, the determination unit determines that one of the plurality of cells is defective.
Secondary battery status determination device having.
JP2020079980A 2020-04-30 2020-04-30 Secondary battery status determination method and status determination device Active JP7089547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020079980A JP7089547B2 (en) 2020-04-30 2020-04-30 Secondary battery status determination method and status determination device
CN202110360455.4A CN113594561B (en) 2020-04-30 2021-04-02 Method and device for judging state of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020079980A JP7089547B2 (en) 2020-04-30 2020-04-30 Secondary battery status determination method and status determination device

Publications (2)

Publication Number Publication Date
JP2021175340A true JP2021175340A (en) 2021-11-01
JP7089547B2 JP7089547B2 (en) 2022-06-22

Family

ID=78238149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020079980A Active JP7089547B2 (en) 2020-04-30 2020-04-30 Secondary battery status determination method and status determination device

Country Status (2)

Country Link
JP (1) JP7089547B2 (en)
CN (1) CN113594561B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
JP2018156759A (en) * 2017-03-16 2018-10-04 プライムアースEvエナジー株式会社 State determination method of secondary cell and state determination device of secondary cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052418B2 (en) * 2000-02-15 2008-02-27 日立マクセル株式会社 Battery capacity detection method and apparatus, and battery pack
JP4649682B2 (en) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 Secondary battery state estimation device
JP5503318B2 (en) * 2010-02-05 2014-05-28 古河電気工業株式会社 Secondary battery charge acceptance limit detection method and apparatus
JP5393624B2 (en) * 2010-03-15 2014-01-22 カルソニックカンセイ株式会社 Battery capacity calculation device and battery capacity calculation method
JP2014139520A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Charging rate estimation device and charging rate estimation method
JP6221237B2 (en) * 2013-01-21 2017-11-01 株式会社豊田自動織機 CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
CN103969585B (en) * 2013-01-31 2018-03-30 国际商业机器公司 Assess method and apparatus, related system and the vehicle of the behaviour in service of battery
WO2015145616A1 (en) * 2014-03-26 2015-10-01 株式会社日立製作所 Lithium ion secondary battery control device and control method, and lithium ion secondary battery module
US20180024200A1 (en) * 2015-02-13 2018-01-25 Panasonic Intellectual Property Management Co., Ltd. Secondary battery state-of-charge estimating device and secondary battery state-of-charge estimating method
JP6895771B2 (en) * 2017-03-06 2021-06-30 古河電気工業株式会社 Storage battery deterioration judgment method and storage battery deterioration judgment device
JP2019169473A (en) * 2019-04-26 2019-10-03 トヨタ自動車株式会社 Method for manufacturing battery pack

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
JP2018156759A (en) * 2017-03-16 2018-10-04 プライムアースEvエナジー株式会社 State determination method of secondary cell and state determination device of secondary cell

Also Published As

Publication number Publication date
CN113594561B (en) 2024-02-02
JP7089547B2 (en) 2022-06-22
CN113594561A (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US10044199B2 (en) Electric storage system that detects voltage values of a plurality of electric storage elements
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
KR20180122429A (en) Power System
US10790677B2 (en) Battery cell balancing method and system
KR102391533B1 (en) Method for diagnosing a low voltage of a secondary cell and apparatus thereof
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
US20200064411A1 (en) Mobile platform, computer readable storage medium, battery and control method and system thereof
US20140365150A1 (en) Method and device for determining a charge state of an electric energy store
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
JP6753328B2 (en) Charge rate equalizer
CN111566494A (en) Battery aging process
CN112534626A (en) System and method for determining deterioration of secondary battery
JP7089547B2 (en) Secondary battery status determination method and status determination device
US20220311255A1 (en) Cell stabilizing method and system of energy storage system (ess)
US20240053411A1 (en) Storage battery management device and method for managing battery device
CN115343639A (en) Method for testing self-discharge of battery
JP7371037B2 (en) Inspection method and program for lithium ion secondary batteries
WO2023140277A1 (en) Electronic apparatus, and measuring method
KR102618037B1 (en) Battery diagnosis apparatus, battery diagnosis method, and battery diagnosis system
KR20230061046A (en) Battery diagnosis method and battery system using the same
US20240241188A1 (en) Apparatus and method for detecting defective battery cell
US20240230775A9 (en) Battery diagnosis method and battery system applying the same
KR102043645B1 (en) Method and System for Calculating Low Voltage Expression Level of a Secondary Battery
JP2023101844A (en) Inspection device for secondary battery and inspection method for secondary battery
JP2024080395A (en) Full charge capacity estimation method and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7089547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150