JP2021173760A - 波長掃引型光干渉断層画像撮影システム - Google Patents

波長掃引型光干渉断層画像撮影システム Download PDF

Info

Publication number
JP2021173760A
JP2021173760A JP2021071183A JP2021071183A JP2021173760A JP 2021173760 A JP2021173760 A JP 2021173760A JP 2021071183 A JP2021071183 A JP 2021071183A JP 2021071183 A JP2021071183 A JP 2021071183A JP 2021173760 A JP2021173760 A JP 2021173760A
Authority
JP
Japan
Prior art keywords
light
scan
wavelength
sampling
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021071183A
Other languages
English (en)
Other versions
JP7171812B2 (ja
Inventor
ミゲル エンジェル プレシアド
Miguel Angel Preciado
チャッコ リホ ヴァルゲス
Varughese Chacko Lijo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optos PLC
Original Assignee
Optos PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optos PLC filed Critical Optos PLC
Publication of JP2021173760A publication Critical patent/JP2021173760A/ja
Application granted granted Critical
Publication of JP7171812B2 publication Critical patent/JP7171812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • G01B9/02028Two or more reference or object arms in one interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02043Imaging of the Fourier or pupil or back focal plane, i.e. angle resolved imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02084Processing in the Fourier or frequency domain when not imaged in the frequency domain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Signal Processing (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】光干渉断層画像撮影システムの分野に関し、特に、波長掃引型OCTシステムを提供する。【解決手段】対象物70の領域90を撮像する波長掃引型OCTシステムであって、可変波長のビーム80を生成する掃引光源10と、前記対象物を横切って前記ビームを走査するスキャン素子40と、前記対象物によって散乱された光を参照光と組み合わせることによって干渉光を生成する干渉計410と、前記散乱光と前記参照光との干渉によって生じる電気信号Sを生成する光検出器50と、帯域通過フィルタモジュール420と、フィルタ処理後の電気信号をサンプリングするサンプリングデータ取得モジュール440とを含む波長掃引型OCTシステム。サンプリングデータ取得モジュールは、フィルタ処理後の電気信号に対する帯域通過サンプリングを実行する。【選択図】図5

Description

本実施態様は、一般的に、光干渉断層画像撮影(OCT:Optical Coherence Tomography)システムの分野に関し、特に、波長掃引型OCTシステムに関する。
波長掃引型OCTはフーリエドメインOCTの一形態であり、これにより、検出された干渉信号のフーリエ分析を通して、網膜または眼の他の部分の反射深度プロファイルを得ることができる。この十分に確立された技術は、例えば、眼の画像診断、血管内画像診断、腫瘍学(例えば、腹腔鏡OCT、内視鏡OCTおよび気管支鏡OCT)、皮膚科(皮膚組織を画像化するため)および歯科の医療分野など、様々な異なる分野で使用されている。また、波長掃引型OCTは、非破壊試験(NDT:Non-Destructive Testing)、材料の厚さ測定(例えば、半導体ウエハの厚さ測定)、表面粗さ特性評価、表面および断面画像診断および体積損失測定などの種々の非医療用途を有する。
例えば、図1は、眼の網膜を撮像するために使用される従来の眼科用の波長掃引型OCTシステムの概略図である。図示された波長掃引型OCTシステムは、掃引光源10と、ビームスプリッタ20と、参照ミラー30と、スキャン素子40と、光検出器50と、サンプリングデータ取得モジュール60とを備える干渉計を有する。掃引光源10によって生成された光ビームは、ビームスプリッタ20によって2つのビームに分割され、第1のビームは干渉計の参照アーム(参照アーム)に沿って参照ミラー30に誘導され、第2のビームは干渉計のサンプルアームに沿って被験者の眼70の網膜に向かって誘導される。スキャン素子40は、サンプルアーム内の光ビーム80を眼70の目標スキャン領域90に向け、眼70からの後方散乱光を干渉計内に導くように制御される。次に、参照アーム及びサンプルアームに沿って進む後方反射光を光検出器50で結合し、干渉光信号を生成する。掃引光源10によって生成された光の波長(典型的には、波長可変レーザまたはスペクトルの線幅が狭い他の光源の形態で提供される)は、目標スキャン領域90内の各スキャン位置について、幅のある波長にわたって高速に波長掃引され、生成された干渉光信号は、波長掃引の間に、光検出器50によって検出される。光検出器50の出力、すなわち、図1に概略的に示される干渉図95は、サンプリングデータ取得モジュール60によってサンプリングされ、次に、サンプリングされた電気信号の逆フーリエ変換が計算されて、網膜の構造に関する情報を奥行き方向に提供するAスキャンデータが得られる。このように、Aスキャンは、目標スキャン領域90内の各スキャン位置に対して、単一波長の波長掃引を用いて取得することができる。
本発明の第1の態様によれば、対象の領域を画像化するための波長掃引型光干渉断層画像撮影(OCT)システムが提供され、このシステムは、時間とともに波長が変化する光のビームを生成するように構成された掃引光源と、対象物を横切るように光のビームをスキャンするように構成されたスキャン素子とを含む。波長掃引型OCTシステムは、サンプルアームと参照アームとを有する干渉計をさらに含み、ビームが対象物の領域によって散乱され、ビームが対象物を横切って走査された結果、対象物の領域によって散乱され、サンプルアームに沿って伝搬する光と、ビームからの光が参照アームに沿って伝搬する光とを組み合わせることによって、波長掃引型OCTシステムの使用中に干渉光信号を生成するように構成される。波長掃引型OCTシステムは、前記干渉光信号を受け、前記干渉光信号を示す電気信号を生成するように構成される光検出器をさらに備え、前記電気信号は、周波数帯域に渡って広がる周波数成分を含み、前記周波数成分は、前記対象物の前記領域によって散乱され、前記サンプルアームに沿って伝搬する前記光の干渉によって生じ、前記ビームからの前記光は、前記参照アームに沿って伝搬する。波長掃引型OCTシステムは、電気信号を帯域通過フィルタリングすることによってフィルタ処理後の電気信号を生成するように構成される帯域通過フィルタモジュールと、フィルタ処理後の電気信号のサンプリングデータを取得するように構成されるサンプリングデータ取得モジュールとをさらに含む。波長掃引型OCTシステムは、帯域通過フィルタモジュールが電気信号から周波数帯域に渡って広がる周波数成分の少なくとも一部を抽出するように、帯域通過フィルタモジュールの通過帯域を設定するように構成された制御モジュールを備え、制御モジュールは、さらに、サンプリングデータ取得モジュールがフィルタ処理後の電気信号を帯域通過サンプリングして、対象物の領域の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号の複数のサンプリングデータを取得するように、サンプリングデータ取得モジュールのサンプリングレートを設定するように構成される。
次に、例示的な実施形態を、下記に示された添付図面を参照して、非限定的な例のみを用いて詳細に説明する。異なる図において示された参照番号は、特に指定がない限り、同一または機能的に類似した要素を示すものとする。
従来の眼科用の波長掃引型OCTシステムの概略図である。 従来の眼科用の波長掃引型OCTシステムの光検出器によって生成された電気信号に基づく3つの異なる干渉画像を示す図である。 波長掃引型OCTイメージングにおいて光検出器によって検出された電気信号をアンダーサンプリングするときに生じる、本明細書で特定される第1の問題を示す図(図3(A))、波長掃引型OCTイメージングにおいて光検出器によって検出された電気信号をアンダーサンプリングするときに生じる、本明細書で特定される第2の問題を示す図(図3(B))、波長掃引型OCT撮像において光検出器によって検出された電気信号をアンダーサンプリングする場合に発生する、本明細書で識別される第3の問題を示す図(図3(C))、及び、波長掃引型OCT撮像における光検出器によって検出された電気信号をアンダーサンプリングするときに生じる、本明細書で特定される第4の問題を示す図(図3(D))である。 従来の眼科用の波長掃引型OCTシステムの光検出器によって検出された電気信号がアンダーサンプリングされた場合の、OCT画像におけるエイリアシングの影響を示す図である。 本明細書の第1実施形態による眼科用の波長掃引型OCTシステムの模式図である。 図5の眼科用の波長掃引型OCTシステムによって撮像することができる、網膜の断面の形態の眼の領域を例示する図である。 第1の実施例における制御モジュールのハードウェア実現例を示す図である。 第1の実施形態による眼科用の波長掃引型OCTシステムの第1の実施形態の概略図である。 第1の実施形態による、フィルタの配列と、フィルタの配列からフィルタを選択して光検出器からの電気信号をフィルタリングするスイッチとを有する帯域通過フィルタモジュールの一例を示す図である。 図10(A)は第1の実施形態による眼科用の波長掃引型撮影システムの光検出器によって生成される干渉図を示す図、及び、図10(B)は図9(A)の干渉画像のサンプルに対して逆離散フーリエ変換を実行することによる眼の深さ情報の決定を示す図である。 本明細書の実施形態の断層画像データ生成モジュールによって、眼の軸方向における2つの異なる深さに対応する2つのAスキャングループを組み合わせることによるAスキャンの配列の生成を例示する図である。 眼の領域を照明する光のスキャン角度に基づいて、帯域通過フィルタモジュールの通過帯域およびサンプリングデータ取得モジュールのサンプリングレートを決定するために使用することができるルックアップテーブルの非限定的な実施例を示す図である。 本明細書の第2の実施形態による眼科用の波長掃引型OCTシステムの実現の例を示す図であり、ここでシステムは、第2のフィルタモジュールおよび第2のサンプリングデータ取得モジュールを採用している。 本明細書の第2の実施形態の眼科用の波長掃引型OCTシステムを使用して、2つのサブバンドにわたって2つの別々の信号として取得される周波数帯域に渡って広がる信号のスペクトル図である。 Aスキャンデータの第1のサブセットからのデータをAスキャンの第1のAスキャン素子のセットにマッピングし、Aスキャンデータの第2のサブセットからAスキャン素子の第2のセットにデータをマッピングするマッピングの非限定的な例を示す図である。 本明細書の別の実施形態による波長掃引型OCTシステムの概略図であり、本システムは、他の構成要素の中でも、異なる経路遅延を有する複数の光学遅延ラインから1つの光学遅延ラインを選択するための微小電気機械スイッチを含む干渉計を含む。
図1を参照して上述した従来の波長掃引型OCTシステムでは、干渉図95の周波数は、サンプルアーム内の光と干渉計の参照アーム内の光との間の光路差に正比例する。さらに、掃引光源10の周波数がメガヘルツの範囲にまで増加すると、得られた干渉図95スケールにおける周波数は比例して増加する。
取得することができる最も高い周波数信号は、ほとんどの場合、光検出器50の帯域幅および掃引光源10のコヒーレンス長に依存するが、実際には、サンプリングデータ取得モジュール60のサンプリングレートが、しばしば制限要因となる。干渉図95の周波数が増加するにつれて、画像化可能な眼70内の網膜または他の構造の最大深さは、サンプリングデータ取得モジュール60の最大サンプリングレートにより大きく制限されることになる。また、サンプリングデータ取得モジュール60の最大サンプリングレートには限界があるため、ナイキスト基準に準拠した干渉図95のサンプリングデータを取得することができない場合、すなわち干渉図95に含まれる最高周波数成分の2倍以上のレートで取得できない場合が多い。
図2は、図1の従来の波長掃引型OCTシステムの光検出器50によって測定された3つの異なる干渉図を示す。各干渉図における横軸は波数を表し、縦軸は光検出器50によって検出される干渉光信号のパワーを表す。図2の干渉図は、参照アーム内を伝搬する光とサンプルアーム内の光との光路差(図2の左から右に増加する)の異なる値についてそれぞれ得られたものである。図2に示すように、より大きな光路差は、波数軸に沿ったより高い振動周波数を有する干渉図をもたらす。単一の周波数信号(単一の網膜層によって引き起こされる干渉に対応する)を有する干渉図の場合、干渉図の周波数は、掃引光源10の波長掃引速度と、参照アームとサンプルアームとの間の光路差との積に比例する。
従来、検出される干渉図95の周波数を減少させるために、参照アームは、典型的には、参照ミラー30を動かすことによって、サンプルアーム信号と参照アーム信号との間の相対的遅延を減少させるように調整される。しかしながら、この目的のために採用された機械的ミラー移動機構は、光路差を瞬時に調整することができず、この制限は、画像捕捉プロセスの遅延をもたらす。この問題に照らして、本発明者は、光検出器50によって検出される干渉信号の高周波成分を、サンプリングデータを処理して深さプロファイルを決定する前に、目の中の標的領域からの反射OCT光によって引き起こされる光検出器によって検出される帯域通過信号を、第1のナイキストゾーンに効果的に周波数変換させるために、帯域通過サンプリング(アンダーサンプリングとも呼ばれる)を使用することによって取得することができることを認識/発見した。
図3(A)乃至図3(D)は、光検出器によって検出される波長掃引型OCT干渉光信号をアンダーサンプリングする場合に生じることが判明した幾つかの実際的な課題を示す概略スペクトル図である。図3(A)において、第3のナイキストゾーン内の信号310は、眼70内の目標となる領域90によって反射されたOCT光から生じる対象信号である。fsのレートで図3(A)の信号をアンダーサンプリングすると、信号310は、第1のナイキストゾーン内の信号315にエイリアス(alias)することになり、これは、信号310に対応する深度プロファイルが、取得されたサンプリングデータから正しく決定できないことを意味する。図4は、光検出器によって検出された信号がアンダーサンプリングされた場合の、OCT画像におけるエイリアシングの影響をさらに示す。図4のX方向はスキャンの横方向(すなわち、網膜の表面に沿った方向)を示し、Z方向は眼70の軸/深さ方向(すなわち、光ビームの伝播方向に沿った方向)を示す。図4において、眼70のより深い領域に対応する高周波成分は、より低い周波数成分(「より浅い」領域に対応する周波数成分)にエイリアスし、また、臨界的なサンプリングのために、ナイキスト周波数においてエイリアシングも発生する。
図3(B)は、帯域通過信号320が2つのナイキストゾーンの間に存在する例を示す。この場合には、信号320がfsのレートでアンダーサンプリングされると、第2のナイキストゾーン内の信号320の部分は、第1のナイキストゾーン内の信号320の部分にエイリアスする。同様の問題は、図3(C)の例で起こる。ここでは、信号330の帯域幅は、与えられたサンプリングレートについてナイキストゾーンのサイズを超える。この場合、エイリアシングは避けられない。図3は、干渉計によって生成された干渉光信号の周波数が、光検出器のカットオフ周波数を超えるため、光検出器50によって取得できない例を図示している。
サンプリングレートの制限によって発生する最大撮像範囲の制限を解消するために、波長可変アンチエイリアシングフィルタモジュールが、眼70の深さ方向の異なる領域に対応した検出された電気信号中から異なる周波数成分を選択するために本明細書の実施形態において採用される。さらに、帯域通過サンプリング基準に従ってサンプリングデータが取得されるために、調節可能なサンプリングレートを有するサンプリングデータ取得モジュールが、対象の周波数バンドに基づくサンプリングレートを使用して、フィルタ処理後の電気信号のサンプリングデータを取得するために使用される。この方法では、例えば、網膜スキャンの間、より深度の高い網膜層から生じる電気信号の高周波成分を、第1のナイキストゾーンに効果的に「包み込む」ことができ、したがって、サンプリングデータ取得モジュールのサンプリングレートに関する要件が著しく緩和される。ここに記載される少なくともいくつかの実施形態に従って、1つ又は複数の波長掃引型OCTシステムは、このようにして、サンプリングデータ取得モジュール60の最大サンプリングレートによって(少なくとも部分的に)制限されることによって本来は測定できない網膜深度に対する反射率プロファイルを獲得するために、帯域通過サンプリングを採用する。
眼70の軸方向に沿った領域のサイズによって、サンプリングデータ取得モジュール60の最大サンプリングレートの半分を超える帯域幅を有する通過帯域信号が得られる場合には、帯域通過サンプリング理論に従って、フィルタバンクを採用することにより、信号をサブバンドに分離し、各サブバンドにおける信号のサンプリングデータを、適切なサンプリングレートを使用して取得することができる。
さらに、帯域通過サンプリングは、光検出器によって生成される高周波信号を取得することを可能にする一方、この解決法は、参照アームとサンプルアームとの間の光路遅延が、光検出器のカットオフ周波数(光検出器の出力電流が、低周波応答から3dB減少する周波数として定義される)を上回る周波数成分を有する干渉光信号を発生させるという大きな問題を解消することができない。光検出器に起因するこの制限を解消するために、本願発明者は、光スイッチを用いてそれぞれ異なる光学遅延を有する複数の光学遅延ラインのうちから1つの光学遅延ラインを選択することにより経路遅延の高速調節を行う方法を発見したので、以下において説明する。
本実施形態のうちの少なくとも一部に基づく波長掃引型OCTシステムのもう1つの利点は、撮像領域内の網膜の湾曲によって引き起こされる少なくともいくつかの画像アーチファクトが抑制または排除されるOCTイメージスキャンを可能にすることである。これは、超広視野(UWF)OCTスキャンに特に関連がある。
次に、本実施形態について、添付の図を参照して詳細に説明する。
図5は、第1の実施形態に基づく、眼70の領域90を撮像するための眼科用の波長掃引型OCT(SS−OCT)撮影システム400の模式図である。図6は、図5における波長掃引型OCTシステム400によって撮像される眼70の領域90を図示し、また、システム400のスキャン素子40および光(「光ビーム80」とも呼ばれる)のビーム80を示す。図6に示すように、本実施形態のように、眼70の領域90は、眼70の網膜85の断面である。さらに、領域90は、本実施形態のように、波長掃引型OCTシステム400の撮像軸に沿って眼70の深さ方向に拡張していて(すなわち、眼科用の波長掃引型OCTシステム400の使用中に眼70に入射する光のビーム80の伝搬方向に沿って拡張していて)、したがって、眼90の軸方向として定義される。
図5に図示されるように、眼科用の波長掃引型OCTシステム400は、時間の経過とともに変化する波長の光のビーム80を生成するように構成された掃引光源10を含む。掃引光源10は、本実施形態のように、単色光の波長がある範囲の波長値にわたって掃引される間、実質的な単色光を出力する。眼科用の波長掃引型OCTシステムは、眼70を横切る光のビーム80を走査するように動作可能なスキャン素子40も有する。
眼科用の波長掃引型OCTシステム400は、さらに、サンプルアーム414と参照アーム412を有する干渉計410を備える。干渉計410は、眼70によって散乱され、サンプルアーム414に沿って伝播されている掃引光源10からの光(この光は図1の中でLで示されている)と、参照アーム412に沿って伝播される掃引光源10からの光(この光は図1の中でL標識されている)とを合成することによって、眼科用の波長掃引型OCTシステム400の使用中に干渉光信号(図1では光干渉信号がLintで示されている)を生成するように構成されている。
眼科用の波長掃引型OCTシステム400は、干渉光信号を受け取り、干渉光信号を示す電気信号を生成するように構成される光検出器50をさらに備える。電気信号は、眼70の領域90によって散乱された掃引光源10からの光と、参照アーム412に沿って伝搬する掃引光源10からの光との干渉によって生じる周波数帯域に渡って広がる周波数成分を含む。例えば、電気信号は、本実施形態のように、光検出器50によって測定される干渉信号の出力を示す。
眼科用の波長掃引型OCTシステム400は、電気信号を帯域通過フィルタリングすることによってフィルタ処理後の電気信号を生成するように構成される帯域通過フィルタモジュール420をさらに含む。眼科用の波長掃引型OCTシステム400は、さらに、フィルタ処理後の電気信号のサンプリングデータを取得するように構成されたサンプリングデータ取得モジュール440を含む。
さらに、眼科用の波長掃引型OCTシステム400は、帯域通過フィルタモジュール420が、周波数帯域に渡って広がる周波数成分の少なくとも一部を電気信号Sから抽出するように、帯域通過フィルタモジュール420の通過帯域を設定するように構成された制御モジュール430を備え、制御モジュール430は、サンプリングデータ取得モジュール440がフィルタ処理後の電気信号SFを帯域通過サンプリングして、眼70の領域90の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号SFの複数のサンプリングデータを取得するように、サンプリングデータ取得モジュール440のサンプリングレートを設定するようにさらに構成される。
図7は、本発明の一実施形態における信号処理装置500を、プログラム可能な信号処理ハードウェアの形で実現している例を示している。本発明の一実施形態では、信号処理装置500は、図5の制御モジュール430を構成することができる。信号処理装置500は、インタフェースモジュール510を備え、このインタフェースモジュール510は、装置500が制御モジュール430を構成する場合、フィルタ制御信号を帯域通過フィルタモジュール420(図5)に出力してその通過帯域を設定し、サンプリング制御信号をサンプリングデータ取得モジュール440(図5)に出力してそのサンプリングレートを設定するためのものである。信号処理装置500はさらに、装置500全体を制御するためのプロセッサ(CPU/FPGA)520(および制御モジュール430、装置500が制御モジュール430を形成する場合)、ワーキングメモリ530(例えばランダムアクセスメモリ)、およびプロセッサ520によって実行されたときにプロセッサ520に装置500(および制御モジュール430)の処理動作を実行させるコンピュータ可読命令を含むコンピュータプログラムを格納する命令格納領域540を含む。命令格納領域540は、コンピュータ可読命令が予めロードされたROM(例えば、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)またはフラッシュメモリ)を含むことができる。または、命令格納領域540は、RAMまたは同様な種類のメモリを含み、コンピュータ読取可能な命令を、例えば、CD−ROMなどのコンピュータ読取可能な保存媒体550、またはコンピュータ読取可能な命令を保持するコンピュータ読取可能な信号660などのコンピュータプログラム製品から、RAMまたは同様な種類のメモリに入力するようにしても良い。
本実施形態では、プロセッサ520、ワーキングメモリ530、および命令格納領域540を含むような図7に示されるハードウェア構成要素の組合せにより、制御モジュール430の機能が実現されるように構成される。
図8は、第1の実施形態による眼科用の波長掃引型OCT(SS−OCT)システム600の構造例を示す図であり、システム600は、図5のシステム400と同じ構成要素を含み、Aスキャンデータ生成モジュール610と断層画像データ生成モジュール620も含む。図8では、掃引光源10は、1以上のAスキャン測定位置のAスキャン測定位置ごとに、ある範囲の波長にわたって出力光の波長を掃引するように構成される。従って、掃引光源10は、その波長が経時的に変化する光を出力する。時間tにおいて掃引光源10によって出力される光の波数をk(t)と表現すると、波数k(t)は、線形に掃引され、k(t)=k0+δk×tと書くことができる。ここで、k0は、掃引開始時の開始波数であり、δk=Δk/Δtは、出力光の周波数が掃引される際の速度であり、Δkは、波数が掃引中に変化する範囲であり、Δtは掃引の継続時間である。掃引光源10の線幅(すなわち、掃引光源10によって生成される光のスペクトルの半値幅(FWHM)などの幅)は光のコヒーレンス長、つまり、波長掃引型OCTシステム600の撮像深度を決定し、一方、波長/波数掃引範囲は、軸方向分解能を決定する。
図8の眼科用の波長掃引型OCTシステム600は、眼70の領域90を横切って光ビーム80を走査するように動作可能であるスキャン素子40をさらに備える。スキャン素子40は、本実施形態のように、H検流計ミラーとV検流計ミラーとを有する2ミラースキャナ構成の形態をとることができ、光ビーム80を水平方向及び垂直方向に走査する光学配置で網膜85上に設けられる。スキャン素子40を形成する2つの検流計ミラーは、例えば、波長掃引型OCTシステム600(図示せず)の制御装置の制御下で、それぞれのモータによって回転され、光ビーム80の光路を変化させて、撮像される網膜85上の位置を変化させるように構成される。本実施形態では、眼70内にスキャンされる光ビーム80のスキャン角度は、H検流計ミラーおよびV検流計ミラーの傾斜角度(θ、φ)に依存し、ここで、角度θは、H検流計ミラーの傾斜角度であり、角度φは、V検流計ミラーの傾斜角度である。傾斜角度θ、φは、それぞれ、H検流計ミラーおよびV検流計ミラーのそれぞれの回転軸を中心とした回転角度を示す。本実施形態のスキャン素子40は、2つの走査ミラーを採用しているが、例えば、2つの直交軸を中心に回転可能な単一の走査ミラーのような、1つまたは複数のスキャン素子による別の構成を使用してもよい。
干渉計410は、図8の本実施形態のように、掃引光源10からの光を2つのビームに分割し、第1のビームを参照アーム412(図5)に向けるように配置された光カプラ/ビームスプリッタ20を更に含み、ここでの1つの実施例では、参照ミラー30(図8)を含み、第2のビームをサンプルアーム414(図5)に向ける。例えば、掃引光源10から放射された光は、第1の光ファイバを介して光カプラ(例えばスプリッタ20)に供給され、参照光と信号光に分割される。参照光は、第2の光ファイバを介して参照アーム412(ミラー30を備える)に導波されてもよく、一方、信号光は、第3の光ファイバを介してスキャン素子40に導波されてもよい。
参照アーム412では、参照ミラー30が参照アーム412に沿った同じ光路を介して参照光を光カプラ20に戻し、参照光を反射させる。参照ミラー30は、本実施形態のように、参照光の光軸方向に移動可能な可動ミラーであってもよいし、参照ミラー30の位置を光軸に沿って移動させることで参照光の光路の長さを調整できるようにしてもよい。しかしながら、参照ミラー30は、各Aスキャン測定に対して固定位置に維持されることになる。
スキャン素子40からの光を眼70に向けるために、1つ以上の光誘導要素(図示されていない)を使用してもよい。光誘導構成要素は、例えば、スキャン素子40から眼70へ光を誘導するように配置された1つ以上のミラーおよび/またはレンズであってよく、このような構成に限定されるものではない。さらに、本実施形態のスキャン素子40は、網膜によって散乱されている(本明細書では、「サンプルアーム戻しライト」と称する)サンプルアーム414から、第4の光ファイバ(図示されていない)を介して光カップラ20へ光を誘導するように構成されている。
サンプルアーム414に沿って伝播するサンプルアーム414の戻り光は、光検出器50において参照アーム412に沿って伝播する参照光と重ね合わされる。
光検出器50は、本実施形態のように、検出された干渉光信号の強度に基づいて電気信号を生成させる。一例として、N層の網膜層を有する眼70の領域90において、各層が網膜表面から深さznを有する場合、波数kの光検出器50の光検出器電流ID(k)は、以下の式によって表現される。
Figure 2021173760

ここで、S(k)は、波数kの関数として定義される掃引光源10の光パワースペクトル密度であり、Rnは、n番目の網膜層の反射率であり、RRは、参照ミラー30の反射率である。干渉光信号の検出強度の経時的なプロットは、図2に示したような干渉図に対応する。
したがって、光検出器50によって検出される電気信号は、干渉光信号の電力、つまり干渉光信号の強度を示す。本実施形態では、光検出器50は、各フォトダイオードの光電流が互いに減算されるように直列に接続された2つのフォトダイオードからなる平衡型光検出器の形態をとる。しかしながら、光検出器50は、代わりに、任意の基準点検出器の形成をとってもよい。
図8において、掃引光源10の波長が掃引されている間に、干渉光のパワーが光検出器50によって繰り返し検出され、この値に対応する電気信号が光検出器50によって生成される。掃引によってカバーされる複数の波長の各波長に対応して光検出器50によって生成される電気信号のそれぞれの値は、その波長に対する網膜の反射率プロファイルを示す。図1および図2を参照して説明されるように、電気信号は、網膜85の異なる層からの後方散乱光に起因する周波数成分を含み、より深い層はより高い周波数成分を生じさせる。
図8において、光検出器50によって生成された電気信号は、帯域通過フィルタモジュール420に提供され、これは、本実施形態のように、周波数帯域における電気信号の周波数成分を抽出し、周波数帯域外の信号を実質的に減衰させることによって、フィルタ処理後の電気信号SFを生成するように構成されてもよい。しかしながら、他の実施形態では、帯域通過フィルタモジュール420は、周波数帯域の全体にわたる周波数成分を抽出するように構成されていなくてもよく、代わりに、周波数帯域のサブバンドのみにおいて周波数成分を抽出してもよい。
図8において、サンプリングデータ取得モジュール440は、眼70の領域90の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号の複数のサンプリングデータを取得するように構成される。本実施形態では、サンプリングデータ取得モジュール440は、周波数帯域内の電気信号を帯域通過サンプリングすることによって周波数帯域内の電気信号のサンプリングデータを、複数のサンプリングデータとして取得するように構成される。より具体的には、中心周波数fCとBの帯域幅を有する周波数帯域について、帯域通過サンプリングとは、以下の基準に従ってサンプリングレートfsを選択することを意味する。
Figure 2021173760
ここで、nは、選択されたサンプリングレートfsに対して、シャノン−ナイキストの基準nfs>2Bfsが確実に満たされるような正の整数である。
式(2)で定義される帯域通過サンプリング定理に基づいてサンプリングレートfsを選択することにより、サンプリングによって生じる帯域通過信号のスペクトル画像と重複することなく、周波数帯域内の信号を第1のナイキストゾーンに周波数変換することができるので、エイリアシングは回避される。なお、式(2)では特定の変数を用いて表現されている、異なる変数(例えば、帯域通過信号が通過する範囲である周波数帯域の上限および下限)を用いて、帯域通過サンプリング定理も異なるように提示することができ、なお同じ定理を表すことに留意されたい。
上述の帯域通過サンプリング定理は、式(2)の基準を満足する任意のfsを選択することによって、帯域通過信号を正確にサンプリングして再構成することができることを示しているが、非理想的な帯域通過フィルタおよび使用されているサンプリングレートクロック生成器の不安定性のために実現上の制約が追加的に発生する場合があることに留意されたい。より詳細には、理想的な帯域通過フィルタ(すなわち、Sincフィルタまたはブリックウォール(brick-wall)フィルタ)は実際には実現することができないので、fsを選択する際には、帯域通過フィルタモジュール420の遷移帯域(通過帯域と阻止帯域との間の帯域)を考慮する必要がある。より低いサンプリングレートfsを選択した場合、隣接するナイキストゾーン内の信号コンテンツが対象の周波数帯域内の信号にエイリアスしないことを確実にするためには、帯域通過フィルタモジュール420は、その遷移帯域内でより急峻なロールオフを有することが必要になる場合がある。
本実施形態では、帯域通過サンプリング後に、ナイキスト境界と対象の周波数帯域内の信号のスペクトル画像との間に確実にガードバンドが存在するようにするためには、式(2)におけるfsの最大及び最小値は、nが特定の値の場合には使用できない。これは、式(2)のfsを最大値に設定すると、周波数帯域内の信号のスペクトル画像がナイキスト境界にfsの整数倍で直接当接することにつながるからである。さらに、式(2)のfsを最小値に設定すると、周波数帯の信号のスペクトル画像がナイキスト境界に0.5fs、1.5fs、2.5fs等で直接当接することになる。したがって、制御モジュール430は、本実施形態のように、サンプリング制御信号を提供して、より具体的には、与えられたnの値について、式(2)の最大および最小サンプリングレートの平均であるサンプリングレートfsを使用して、サンプリングデータ取得モジュール440に周波数帯域内の信号のサンプリングデータを取得させるようにしている。より具体的には、サンプリングレートfsは下記のように示される。
Figure 2021173760
式(3)に従ってサンプリングレートを設定することにより、信号の各スペクトル画像の両側にガードバンドを作ることができる。ガードバンドで発生する任意のエイリアシングは対象の信号を歪ませないため、フィルタの制約が緩和され、より高いロールオフファクタを持つフィルタを使用することができるようになる。ただし、サンプリングレートfsは、式(3)のような特定の式に限定されるものではないことに留意すべきである。むしろ、式(2)における最大値と最小値との間の任意の中間値は、周波数帯域内の信号のスペクトル画像がナイキスト境界から離れることを可能にし、その結果、エイリアシングに対するガードバンドを提供する。いくつかの実施形態において、サンプリング制御信号は、サンプリングデータ取得モジュール440に、
Figure 2021173760

という式を満たし、fs>2Bを満たすようないずれかの正の奇数の整数のサンプリングレートfsでサンプリングデータを取得させる。式(4)で定義されたサンプリングレートfsを使用すると、第1のナイキストゾーンにおいてアンダーサンプリングされた信号は0.25fsを中心として配置されることになる。サンプリングレートを式(4)に基づいて設定することは、元のスペクトルのスペクトル反転を直接的に補正できるという利点がある。具体的には、式(2)においてnを奇数の整数に選択した場合(対象の信号が偶数のナイキストゾーン(例えば、第2、第4、第6のナイキストゾーンなど)に配置される場合と等価)、第1のナイキストゾーンに周波数シフトされたアンダーサンプリングされた信号は、元の信号の負のスペクトルと同じスペクトル形状になるようにスペクトル反転される。対象の周波数帯域の信号のスペクトルがその中心周波数について対称でない場合、スペクトル反転に対して正しい順に取得したサンプリングデータに対して追加処理を行う必要がある。式(4)に示したサンプリングレートを用いてサンプリングデータを取得する場合、アンダーサンプリングされた信号のスペクトルは0.25fsを中心としたものとなり、取得した時間領域サンプリングデータに、プラスとマイナスが交互に発生するシーケンスを乗算することにより、スペクトル反転を正しく行うことができる。プラスとマイナスが交互に発生するシーケンス(例えば、1、−1、1、−1)は、(−1)Pと表現することができ、ここでPは時間領域における離散サンプリングデータの数である。離散時間サンプリングデータに(−1)Pを乗算することにより、第1のナイキストゾーンにおいてアンダーサンプリングされた信号のスペクトルは0.25fs周辺で反転する。これにより、第1のナイキストゾーンにおいてアンダーサンプリングされた信号のスペクトルは、対象の周波数帯における元の信号のスペクルと同じスペクトル方向を持つようになる。
いくつかの実施形態において、サンプリングデータ取得モジュール440は、
Figure 2021173760

という式を満たし、fs>2Bを満たすようないずれかの正の偶数の整数のサンプリングレートfsでサンプリングを行うように構成されていても良い。式(5)に基づいてサンプリングレートを設定すると、第1のナイキストゾーンにおいてアンダーサンプリングされた信号は、対象の周波数帯域の元の信号と同じ向きになる。したがって、これによりスペクトルの逆転を修正するための追加的な処理が不要となる。
図8に戻って、帯域通過フィルタモジュール420は、本実施形態のように、中心周波数を調整可能な通過帯域を有する波長可変帯域通過フィルタを備えるようにしても良い。制御モジュール430は、眼科用の波長掃引型OCTシステム600の使用中に、眼70に入射する光のビーム80の伝播方向に沿った領域90の位置を示す位置インジケータIに基づいて、通過帯域の中心周波数を調整することによって、帯域通過フィルタモジュール420の通過帯域を設定するように構成され、眼70の領域90の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号の複数のサンプリングデータを取得する。領域の位置を示す位置インジケータIは、制御モジュール430に提供されてもよく、あるいは、制御モジュール430によって決定されてもよい。例えば、制御モジュール430は、撮像のためにユーザによって選択された眼の領域に基づいて位置インジケータIを導出してもよいし、または特徴検出アルゴリズムを通じて識別されてもよい。
通過帯域を調整することが可能な(モジュール420のための)フィルタ、つまり通過帯域調整可能フィルタを使用することによって、眼70の深さ方向の異なる領域に対応した検出された電気信号の周波数成分を得ることができる。下限のカットオフ周波数がfLであり上限のカットオフ周波数がfH(フィルタ出力が最大ゲイン値から−3dB低下する−3dBカットオフ周波数に相当)であ帯域通過フィルタの場合、本実施形態のように中心周波数fCをfLとfHの算術平均として定義することができるが、場合によっては2値の幾何平均として計算することもできる。フィルタの帯域幅は、2つのカットオフ周波数の差fH−fLとして定義され、帯域通過フィルタの通過帯域はfLからfHの間の周波数範囲として定義される。
いくつかの実施形態において、波長可変帯域通過フィルタは、代替的または追加的に調整可能な帯域幅を有し、制御モジュール430は、光のビーム80の伝播方向に沿った領域90の大きさを示す範囲インジケータIに基づいて波長可変帯域通過フィルタの帯域幅を調整することにより、帯域通過フィルタモジュール420の通過帯域を設定するようにさらに構成されてもよい。電気信号の周波数成分は、網膜の反射層の分布に依存するため、帯域通過フィルタの帯域幅は、深さプロファイルを得ることができる波長掃引型OCTシステムの軸方向(又は光ビームの伝播方向)に沿った範囲を規定し、この範囲は範囲インジケータIに基づいて設定されている。したがって、範囲インジケータIの対応する値を介して波長可変帯域通過フィルタの帯域幅をより広く設定することにより、眼70のより大きな断面からの反射率情報を抽出することができる。加えて、調節可能な帯域幅を有する波長可変帯域通過フィルタを使用することにより、フィルタは、対象領域から反射された光によって引き起こされる電気信号の周波数成分のみを通過させることができ、それにより、低下したサンプリングレートを使用して、フィルタ処理後の電気信号の帯域通過サンプリングを実行することができる。
波長可変帯域通過フィルタ420を実際に実現する際にはこのような形態に制限されず、当業者に知られている多くの異なる形態の1つをとることができる。例えば、波長可変帯域通過フィルタは、本実施形態のように、フィルタの通過帯域を調整するための調整要素として波長可変MEMSキャパシタを採用する波長可変プレーナフィルタの形態をとることができる。しかし、例えば、キャビティフィルタ(Cavity Filter)、弾性表面波フィルタ、受動LCフィルタ、または能動フィルタなど、任意の適切な調整可能フィルタを使用してもよい。さらに、MEMSキャパシタの代わりに、例えば、デジタル調整可能キャパシタ、イットリウム鉄ガーネットフェリ磁性体またはバラクタダイオードなどの、別の適切な調整素子を使用してもよい。
本実施形態における帯域通過フィルタモジュール420は、波長可変帯域通過フィルタを備えるが、他の実施形態の帯域通過フィルタモジュール420´は、代わりに、それぞれが異なる中心周波数の異なる通過帯域を有する複数の波長固定帯域通過フィルタを備えてもよい。その場合、制御モジュール430は、複数の波長固定帯域通過フィルタの中から1つの波長固定帯域通過フィルタを選択して帯域通過フィルタモジュール420´の通過帯域を設定して、電気信号Sを帯域通過フィルタリングして、フィルタ処理後の電気信号SFを生成するように構成されてもよい。本発明の一実施形態では、眼科用の波長掃引型OCTシステム600の使用中に、眼70に入射する光80のビームの伝播方向に沿った領域90の位置を示す位置インジケータIに基づいて選択が行われ、眼70の領域90の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号の複数のサンプリングデータが取得される。
一例として、帯域通過フィルタモジュール420´は、図9の実施形態に例示されるように、n個の波長固定フィルタ424−1〜424−nの配列を有するフィルタバンク422と、波長固定フィルタ424−1〜424−nの配列の中から単一の波長固定フィルタを選択して、光検出器50からの電気信号Sのフィルタ処理を行って、フィルタ処理後の電気信号SFを生成するスイッチ426とを備える。いくつかの実施形態において、フィルタバンク422内の波長固定フィルタの配列における各フィルタは、実質的に同じ帯域幅であるが、異なる中心周波数を有している。さらに、複数の波長固定フィルタ424−1〜424−nの中心周波数は、各波長固定フィルタの通過帯域が、実質的に、周波数軸に沿ってフィルタバンク422の別の波長固定フィルタの通過帯域に実質的に隣接するように、互いに実質的に等距離で離間されてもよい。いくつかの実施形態では、スペクトル重複は、波長固定フィルタの通過帯域と、フィルタバンク422内の別の波長固定フィルタの通過帯域との間に配置されてもよい。この重複は、第1の波長固定フィルタによって出力されるフィルタリング処理後の信号が臨界的にサンプリングされる場合、第1の波長固定フィルタの通過帯域と重複する通過帯域を有する第2の波長固定フィルタを選択することによって、ナイキスト周波数に対応する深度情報を依然として得ることができることを保証し得る。
フィルタバンクを実際に実現する際の構成は、上述したような例に限定されるものではない。例えば、他の実施形態では、フィルタバンク内の波長固定フィルタの配列は、同じ中心周波数を有し、異なる所定の帯域幅を有するようにしても良い。この場合、フィルタバンク内の異なるフィルタを選択することにより、眼70内の異なるサイズの領域90からの反射OCT光によって生じる異なる範囲の周波数を選択することになる。さらに、他のいくつかの実施形態において、フィルタバンクは、波長可変フィルタと波長固定フィルタを混合して含めるようにしても良い。
図10(A)は、光検出器50によって生成される電気信号の概略図であり、この信号は、干渉光の検出されたパワーと掃引光源10の波数との関係を示した干渉図によって表される。
時間の経過に伴う電気信号がw(t)として示され、サンプリングデータ取得モジュール440のサンプリングレートがfs=1/Tsで示され、ここでTsがサンプリング間隔である場合、サンプリングされた信号Is(t)は下記の式により示される。
Figure 2021173760
眼科用のSS−OCTシステム600は、図8の実施形態のように、さらに、Aスキャンデータ生成モジュール610を含み、このモジュールは、サンプリングデータ取得モジュール440によって取得された信号I(t)のサンプリングデータの逆フーリエ変換を計算することによってAスキャンデータを生成するように構成されている。特に、眼科用の波長掃引型OCTシステムについては、深さ反射プロファイルまたは距離情報は、波数にわたって検出された電気信号の逆フーリエ変換によって決定することができる。式(1)における検出強度ID(k)の逆フーリエ変換により、次式が得られる。
Figure 2021173760
ここで、γ(zn)は、光源S(k)のパワースペクトル密度の逆フーリエ変換であるコヒーレンス関数である。一例として、電気信号のサンプリングデータがi(m)、m=0、1、2、・・・、M−1と示された場合、データシーケンスの逆離散フーリエ変換(IDFT)は、次式で与えられる。
Figure 2021173760
ここで、A(l)は、AスキャンのAスキャン素子にマッピングされるデータポイント、例えば、データポイントMの配列によって定義されるAスキャンのl番目のデータ要素を表している。IDFT演算の出力は複素数値であるので、各A(l)値の大きさのみを取得して反映情報として表す。計算効率を向上させるため、Aスキャンデータ生成モジュール610は、本実施形態のように、高速フーリエ変換アルゴリズムを用いてサンプリングデータi(m)のIDFTを演算するようにしても良い。一例として、図10(B)は、図10(A)において検出された電気信号のサンプリングデータに対して逆フーリエ変換を行って得られる深度に対する強度のプロットを示す。Aスキャンデータ生成モジュール610は、図7に示される装置500における構成のような信号処理ハードウェアを使用して実現することができる。
本実施形態では、帯域通過フィルタモジュール420の通過帯域の調整およびサンプリングデータ取得モジュール440のサンプリングレートの調整により、走査位置を、参照アーム412のいかなる機械的移動も必要とせずに、波長掃引型OCTシステム600の軸方向(すなわち、光ビームの伝搬方向に沿って)に調整することが可能になる。さらに、参照アーム412の機械的調整は、一般的には、走査中には行うことができない。上述したような方法を用いることにより、眼70の深さ方向の撮像領域を瞬時に変更することができる。これは、眼60の広視野OCTスキャンを実施する場合に、スキャンのグループ間で調整ができるので有利である。
さらに、帯域通過サンプリングが使用されない場合、サンプリングデータ取得モジュール440は、対象の周波数帯域内の最大周波数成分の少なくとも2倍のレートでサンプリングすることが要求される。このことは、撮像が実行される最大軸方向の深度を制限し、演算上非効率となる場合がある。しかし、光検出器50によって生成された電気信号を帯域通過サンプリングすることによって、電気信号のサンプリングデータを取得するためのサンプリングレートを大幅に低減することができる。しかし、サンプリングデータ取得モジュール440の帯域幅は、同じ周波数成分を有する対応する電気信号Sを生成するためには、干渉光信号内の対象となる最高周波数成分を捕捉するのに十分に高いことが依然として要求される。
いくつかの実施形態では、スキャン素子40は、そのスキャン角度(θ、φ)を変化させることによって掃引光源10によって生成される光ビーム80を走査するように構成される。Aスキャンデータ生成モジュール610は、さらに、スキャン角度(θ、φ)の様々な数値に対して、サンプリングデータ取得モジュール440によって取得されたフィルタリングされた電気信号SFのサンプリングデータの逆フーリエ変換を計算することによって、複数のAスキャンのスキャンデータDA-SCANを生成するように構成されている。複数のAスキャンの各Aスキャンは、スキャンで撮像された眼70内の複数の領域のそれぞれの領域からサンプリングデータ取得モジュール440によって取得されたフィルタ処理後の電気信号SFのサンプリングデータに基づいている。
眼科用の波長掃引型OCTシステム600の断層画像データ生成モジュール620は、Aスキャンを配列化して断層画像データを生成して、Aスキャンの配列を形成するように構成されている。ここで、配列中の各AスキャンのAスキャン素子は、配列の第1の方向(Y)に沿って配置され、Aスキャンは、配列の第2の方向(X)に配置される。さらに、断層画像データ生成モジュール620は、断層画像データを生成する際に、配列中の他のAスキャンと比較して、第1方向(Y)に沿った配列中の各Aスキャンのオフセット量によってオフセットされるように配置されている。このオフセット量は、軸方向の領域の位置を示す位置に基づいており、この領域が画像化されてAスキャンが得られている。配列は、本実施形態のように、Bスキャンを構成する2次元配列であってもよいが、Cスキャンを構成する3次元配列は同様に形成されてもよい。さらに、配列の第1および第2の方向は、配列の第1および第2の次元にそれぞれ対応してもよい。
図11は、断層画像データ生成モジュール620が、網膜の深さ方向の異なる位置にある領域に対応する2つのAスキャンのグループを合成することによって断層画像データを生成する例を示している。図11では、Aスキャンの第1のグループ820は、帯域通過フィルタモジュール420の通過帯域を1〜1.05GHzに設定し、撮影システム600のスキャン位置を、眼70の網膜85上の第1の側方位置に向けることによって得られる。Aスキャンの第2のグループ830は、帯域通過フィルタモジュール420の通過帯域を1.05〜1.1GHzに設定し、眼科用の波長掃引型OCTシステム600のスキャン位置を、網膜85上の第2の異なる側方位置に向けることによって得られる。したがって、Aスキャンの2つのグループは、軸方向の異なる深さ位置における断面だけでなく、眼70の異なる側方位置にも対応する。図11において、各Aスキャン815は、複数のAスキャン素子810を含む。Aスキャンのグループにおける各Aスキャン素子810の位置は、第1のグループ820の場合、a11...a54によって示され、第2のグループ830の場合には、b11...b54によって示される。
図11において、断層画像データ生成モジュール620は、第1のグループ820および第2のグループ830を配列化することによって、Aスキャンの配列850を生成する。図11に示されるように、Aスキャンの配列850内のAスキャン素子は、配列850のY次元に配列され、ここで、配列のY次元は、より低いY座標値を有するAスキャン素子よりも、より高いY座標値を有するAスキャン素子が網膜85の表面下のより深い位置に対応するように、眼科用の波長掃引型OCTシステム600の撮像軸に沿った(すなわち、光ビームの伝播方向における眼70の深さ方向に沿った)軸方向に対応する。一方、異なるAスキャンは配列850のX次元に配列されている。配列850のX次元は、より高いX座標値を有するAスキャン素子が網膜の表面をさらに横切る位置に対応するように、眼科用の波長掃引型OCTシステム600の横断走査方向(すなわち、網膜85の表面を横切る側方方向)に対応する。
Aスキャンの第2のグループ830は、帯域通過フィルタモジュール420の通過帯域を、(第1のグループ820を生成するために使用される周波数帯域と比較して)より高い周波数帯域に設定することによって得られるので、Aスキャンの第2のグループ830は、したがって、第1のグループ820と比較して、網膜85の表面下のより深い領域に対応する。したがって、第1のグループ820および第2のグループ830を配列化して配列850を形成する場合、本実施形態のように、断層画像データ生成モジュール620は、第1のグループ820を、配列850のY次元に沿って、第2のグループ830に対して所定量だけオフセットさせる。断層画像データ生成モジュール620は、本実施形態例の場合と同様に、グループ820を生成するために撮像された眼70の領域の位置を示す位置インジケータに基づいて、グループ820に対するオフセット量を決定する。一例として、図11では、眼のより浅い位置からの(光ビームの伝搬方向に沿った)反射OCT光に基づいて生成されるAスキャンのグループに、より大きなオフセット量が適用される。いくつかの実施形態において、眼科用の波長掃引型OCTシステム600は、眼70内の様々な位置に対するオフセット量の所定のマッピングを記憶しておくようにしても良い。
配列850では、空の位置を、他の生成されたAスキャンを用いて埋めるようにしても良く、その詳細は本実施形態に関連しない。配列850において、2つのグループ820および830は、網膜85を横切る異なる側方位置に対応するため、X方向に沿って配列化される。しかし、生成されたAスキャンのグループが、網膜70の下の異なる深さの領域であるが、眼70の中で同じ側方位置の領域に対応する場合、断層画像データ生成モジュール620は、代わりに2つのグループのAスキャンをY方向に配列化することによって、配列を形成することができる。
走査レーザが横方向(すなわち、網膜85の表面に沿った方向)に掃引されている間に、網膜85内の対象の層の変動が予め分かっている場合、対象の層を「追従する」ために、帯域通過フィルタモジュール420の通過帯域とサンプリングデータ取得モジュール440のサンプリングレートとを、予め分かっている変動に基づいて調整するようにしても良い。より詳細に説明すると、本実施形態の変形例では、制御モジュール430は、帯域通過サンプリングモジュール420の通過帯域およびサンプリングデータ取得モジュール440のサンプリングレートを、OCTスキャン中に眼70の領域90を照射する光のスキャン角度(θ、φ)とともに、予め設定された通過帯域とサンプリングレートの変動を用いて調整することにより、眼科用の波長掃引型OCTシステム600が、眼70の領域90、例えば、網膜85の表面から実質的に一定の厚さである網膜85の断面を撮像するように構成されてもよい。予め設定された変動は、本実施形態のように、例えば網膜の特定の湾曲、または網膜85の下の特定の層のような、眼70の既知の幾何学構造に基づくことが可能である。
より詳細に説明すると、図5に戻って参照すると、眼70は、網膜上の点Aの近傍から後方散乱された光が、網膜上の点Bの近傍から後方散乱された光よりも、サンプルアーム414においてより大きな距離を進行するように、特定の湾曲を有するようになっていることが分かる。その結果、眼科用の波長掃引型OCTシステム600は、A点付近よりもB点付近の方が網膜85のさらに下をスキャンすることになる。これは、A点付近よりもB点付近の方が、最大撮像範囲(すなわち、参照アーム412の経路長と掃引光源10のコヒーレンス長によって決定される干渉が生じる最大の深さ)が、A点付近よりもB点付近の方が網膜85内にさらに伸びているためである。これにより、網膜85のA点付近の撮像断面は、B点付近の撮像断面と比較して、より薄い厚さとなる。A点付近の領域のOCTスキャンをB点付近の領域のOCTスキャンと合成した場合、対象の眼70の層は、全体のOCT画像を横断して、実質的に水平に伸びていない可能性がある。さらに、眼70の幾何学構造は患者ごとに異なり、全ての患者に適した方法で撮影システムを構成することが困難な場合がある。
上述したような問題は、制御モジュール430が、予め分かっている眼70の幾何学構造に基づいて帯域通過フィルタモジュール420の通過帯域を動的に調整することによって解決することができ、眼70の幾何学構造は、初期スキャンを実施することによって知ることが可能である。この幾何学構造は、例えば、眼70の様々な領域、または網膜85の表面の特定の湾曲、または網膜85の表面の下の層を撮像する場合、サンプルアーム414内を光が進行する距離によって特徴付けられることができる。このようにして知ることができた眼70の幾何学構造に基づいて、眼科用の波長掃引型OCTシステムのスキャン角度θごとに適切な通過帯域を設定することができる。一例として、図5に戻って参照すると、後方散乱光は、点Bから反射されたときよりも点Aから反射されたときに、サンプルアーム414に沿って長い距離を進行するので、制御モジュール430は、より小さなスキャン角度(例えば、図5の点Aの近傍)に対応する網膜85の中心領域をスキャンするときに、より高い中心周波数を有する帯域通過フィルタモジュール420の通過帯域を設定するように構成することができる。さらに、後方散乱光は、点Aと比較して点Bからの方がより短い距離を進行するので、制御モジュール430は、より大きなスキャン角度に対応する網膜85の周辺領域をスキャンする場合、通過帯域の中心周波数をより低い値に設定する。通過帯域が調整されたことにより、制御モジュール430は、帯域通過サンプリング定理に従ってサンプリングレートを調整するようにしても良い。したがって、スキャン角度とサンプリングデータ取得モジュール440のサンプリングレートとの予め設定された変動またはマッピングを使用するようにしても良い。この予め設定された変動の、通過帯域とスキャン角度によるサンプリングレートは、ルックアップテーブルのような任意の適切な形態で保存されるか、提供されるようにしても良い。
図12は、OCTスキャン中に眼70の領域90を照射する光のスキャン角度(θ、φ)に基づいて、帯域通過フィルタモジュール420の通過帯域およびサンプリングデータ取得モジュール440のサンプリングレートを決定するために使用されるルックアップテーブルの非限定的な一例を示す。図12に示されるように、表の各欄の値は、それぞれのスキャン角度値の組み合わせに対応し、スキャン角度値の組み合わせ毎に、選択すべき通過帯域(PB)およびにサンプリングレート(Fs)を示すデータを保存している。
上述した実施形態において、帯域通過フィルタモジュール420の帯域幅は、眼70内の対象の領域90に対応する全ての周波数帯域を捕捉できるように十分に広いものと仮定している。しかし、周波数帯域に対応する軸方向に沿った領域90の物理的サイズが、帯域通過サンプリングされるべき帯域幅において広すぎる場合、代わりに、周波数帯域を横切る信号を、フィルタバンクを使用することによって別個のサブバンドで取得するようにし、複数のサンプリングデータ取得モジュールが、より低いサンプリングレートで各サブバンドにおける信号のサンプリングデータを取得するようにしても良い。
別の実施形態による波長掃引型OCTシステム(400および/または600)の変形例を、図13を参照して説明する。この実施形態は、図8に示されるものと同様の構成要素(光検出器50、帯域通過フィルタモジュール420、およびサンプリングデータ取得モジュール440を含む)を有する波長掃引型OCTシステム900を含み、また、制御モジュール430´、フィルタモジュール910(以下においては「第2のフィルタモジュール910」とも呼ばれる)、サンプリングデータ取得モジュール920(以下においては「第2のサンプリングデータ取得モジュール920」とも呼ばれる)、Aスキャンデータ生成モジュール610´、および断層画像データ生成モジュール620´を含み、これらの機能は以下において説明する。説明の都合上、図13には、掃引光源10、干渉計410及び(図5に示した)スキャン素子40は示されていない。
第2のフィルタモジュール910は、光検出器50から受信された電気信号Sに対してフィルタ処理を行うことによって、第2のフィルタ処理後の電気信号SF2を生成するように構成されている。さらに、本実施形態の波長掃引型OCTシステム900は、(図13の断層画像データ生成モジュール620´のおかげで)OCT画像データを生成するために使用される(モジュール910から受信された)第2のフィルタ処理後の電気信号の第2の複数のサンプリングデータI2(t)を取得するように構成されている第2のサンプリングデータ取得モジュール920をさらに含む。制御モジュール430´は、さらに、帯域通過フィルタモジュール420の通過帯域を設定するように構成され、帯域通過フィルタモジュール420は、(光検出器50から受信された)電気信号Sの周波数成分を、周波数帯域の第1のサブバンド内で抽出し、第1のサブバンド外の信号を実質的に減衰させる。さらに、本実施形態では、制御モジュール430´は、さらに、周波数帯域の第1のサブバンドにおいて、(帯域通過フィルタモジュール420から受信された)フィルタ処理後の電気信号SFの周波数成分を帯域通過サンプリングすることによって、サンプリングデータ取得モジュール440が複数のサンプリングデータI1(t)(例えば、第1の複数のサンプリングデータ)を取得するように、サンプリングデータ取得モジュール440のサンプリングレートを設定するように構成されている。第1のサブバンドは、眼70の領域90の第1のサブ領域に対応し、第1のサブバンドに渡って広がる周波数成分は、眼70の領域90の第1のサブ領域によって散乱された掃引光源10からの光の干渉によって引き起こされ、掃引光源10からの光は、参照アーム412に沿って伝搬する。
さらに、これらの変形例では、制御モジュール430´は、さらに、第2のフィルタモジュール910の通過帯域を設定するように構成され、第2のフィルタモジュール910は、第1のサブバンドと部分的に重複する周波数帯域の第2のサブバンドにおける電気信号Sの周波数成分を抽出し、第2のサブバンドは、領域90の第2のサブ領域に対応する。さらに、第1のサブバンドと第2のサブバンドとの間の部分的重複は、第1のサブ領域と第2のサブ領域の間の重複領域に相当する。第2のサブバンドに渡って広がる周波数成分は、眼70の領域90の第2のサブ領域によって散乱された掃引光源10からの光と、参照アーム412に沿って伝搬している掃引光源10からの光との干渉によって生じる。
さらに、制御モジュール430´は、第2のサンプリングデータ取得モジュール920が第1のサンプリングレートとは異なる第2のサンプリングレートを使用して第2のサブバンド内の電気信号の周波数成分をサンプリングすることによって第2の複数のサンプリングデータI2(t)を取得するように、第2のサンプリングデータ取得モジュール920の第2のサンプリングレートを設定するようにさらに構成される。
図14は、図13の構成要素を用いることによって、周波数帯域1000に渡って広がる信号と、サンプリングデータ取得モジュール440の最大サンプリングレートの半分を超える帯域幅とを、周波数帯域1000の2つのそれぞれのサブバンドに及ぶ2つの別々の信号として取得することができる方法の例を示している。図14の振幅−周波数プロット1110を参照すると、制御モジュール430´は、電気信号の周波数成分を周波数帯域1000のサブバンド1120に通過させるように、第2のフィルタモジュール910の通過帯域を設定する。次いで、サブバンド1120内の信号は、サブバンド1120の帯域幅の2倍であるサンプリングレートfs1で臨界的にサンプリングされる。図14の振幅−周波数プロット1130において、制御モジュール430´はまた、帯域通過フィルタモジュール420の通過帯域を設定して、電気信号Sの周波数成分を周波数帯域1000のサブバンド1140に通過させる。ここで、サブバンド1140は、部分的にサブバンド1120と重なり、サブバンド1120に含まれない周波数帯域1000の残りの部分を含む。サブバンド1140内の信号の周波数成分は、本実施形態のように、サンプリングレートfs1よりも低いサンプリングレートfs2を使用して帯域通過サンプリングされてもよい。さらに、本実施形態では、サブバンド1120とサブバンド1140との間にスペクトルオーバーラップ1150が存在し、これにより、サンプリングレートfs1のためのナイキスト境界がサブバンド1140内に含まれ、サンプリングレートfs2のためのナイキスト境界がサブバンド1120内に含まれる。このスペクトルオーバーラップは、臨界周波数0.5fs1に対応する反射率情報がサブバンド1140内の周波数成分のサンプリングデータによって提供され得ることを確実にする。同様に、臨界周波数0.5fs2に対応する反射率情報は、サブバンド1120内の周波数成分のサンプリングデータによって提供される。この方法では、一つのサブバンド内の信号の重要なサンプリングによって引き起こされる任意のエイリアシングは、もう一方のサブバンド内の信号のために取得されたサンプリングデータで修正することができる。ここで使用される用語「臨界周波数」は技術用語であり、いかなる方法においても本発明の範囲を限定することを意図していないことに留意すべきである。
また、図14は、周波数帯域1000内の信号を低域通過信号であるように図示し、第2のフィルタモジュール910が低域通過フィルタであるように図示しているが、その代わりに、結果として、周波数帯域が帯域通過信号であってもよく、第2のフィルタモジュール910が帯域通過フィルタであってもよい。さらに、図13および14に示された実施形態は、周波数帯域を(2つのフィルタモジュールおよび2つのサンプリングデータ取得モジュールを使用することにより)2つのサブバンドに分割し、周波数帯域も同様に、N(Nは2よりも大きい整数)個のフィルタモジュールを使用して、N個のサブバンドに分割するようにしても良く、それぞれのフィルタモジュールは、特定のサブバンドに対応する通過帯域を有し、臨界的なサンプリングによるいずれかのエイリアシングを修正することができるようにするために、隣接するサブバンド間にスペクトル重複が配置されている。
図13を参照して、上記実施形態に戻って説明すると、Aスキャンデータ生成モジュール610´は、(第1のサブバンドにおけるサンプリング周波数成分によって取得される)第1の複数のサンプリングデータI1(t)の逆フーリエ変換を計算することにAスキャンデータの第1のサブセット(C1,C2,...CM)を生成し、(第2のサブバンドにおけるサンプリング周波数成分によって取得される)第2の複数のサンプリングデータの逆フーリエ変換を計算することにAスキャンデータの第2のサブセット(d1,d2,...dN)を生成して、AスキャンにおけるAスキャンデータを生成するように構成されている。さらに、断層画像データ生成モジュール620´は、眼科用の波長掃引型OCTシステムの使用中に、眼70に入射した光のビーム80の伝播方向に沿った第1のサブ領域の位置に基づいて、Aスキャンデータの第1のサブセットからのデータをAスキャンの第1の複数のAスキャン素子にマッピングすることにより第1の複数のサンプリングデータと第2の複数のサンプリングデータを取得して、Aスキャンを生成するように構成されている。断層画像データ生成モジュール620´は、さらに、光のビーム80の伝播方向に沿った第2のサブ領域の位置に基づいて、Aスキャンデータの第2のサブセットからのデータをAスキャンの第2の複数のAスキャン素子にマッピングすることによりAスキャンを生成するように構成されていても良い。一例として、Aスキャンの各Aスキャン素子はAスキャンのピクセルを表し、Aスキャン素子に割り当てられたAスキャンデータの振幅はピクセルの強度を表す。Aスキャンデータは、光ビーム80の伝搬方向である眼70の軸方向に沿って測定された強度値を表すので、Aスキャンデータの各データポイントは、特定の周波数、または眼70の軸方向の特定の深度に対応する。したがって、Aスキャンデータの各データポイントは、データポイントが対応する眼70の領域に基づいて、対応するAスキャン素子にマッピングすることができる。
図15は、Aスキャンデータの第1のサブセット(C1,C2,...CM)からのデータをAスキャン960の第1の複数のAスキャン素子962へマッピングし、Aスキャンデータの第2のサブセット(d1,d2,...dN)からのデータをAスキャン960の第2の複数のAスキャン素子964にマッピングする非限定的な例を示す。図15において、Aスキャン960の各Aスキャン素子966は、Aスキャンのピクセルに対応し、光ビーム80の伝搬方向における眼70内の異なる深さ位置に対応する。Aスキャンデータの第1のサブセット(C1,C2,...CM)および第2のサブセット(d1,d2,...dN)が眼70の深さ方向の反射率情報を表しているので、第1のサブセット(C1,C2,...CM)からのデータポイント、および第2のサブセット(d1,d2,...dN)からのデータは、データポイントが対応する眼70の領域(特に領域の深さ)に基づいて、対応するAスキャン素子にマッピングされる。
図14に戻って説明すると、ナイキスト周波数で正確な深さ情報が得られるようにするために、ナイキスト周波数0.5fs1に対応するAスキャン素子は、サンプリングレートfs2を用いた帯域通過サンプリング後に周波数0.5fs1がマッピングされる周波数に対応したAスキャンデータの第2のサブセットからのデータポイントが割り当てられる。同様に、ナイキスト周波数0.5fs2に対応するAスキャン素子は、サンプリングレートfs1を用いた帯域通過サンプリング後に周波数0.5fs2がマッピングされる周波数に対応したAスキャンデータの第1のサブセットからのデータポイントが割り当てられる。第1のサブバンドと第2のサブバンドの間のスペクトル重複の領域については、Aスキャンデータの第1のサブセットまたはAスキャンデータの第2のサブセットのいずれかからのスペクトル重複の領域に対応するデータポイントが、Aスキャンにおける対応するAスキャン素子にマッピングされる。
図13を参照すると、いくつかの実施形態では、制御モジュール430´は、眼科用の波長掃引型OCTシステム900の使用中に眼70に入射する光のビーム80の伝搬方向に沿った第1のサブ領域の位置に基づいて、帯域通過フィルタモジュール420の通過帯域およびサンプリングデータ取得モジュール440のサンプリングレートを設定して、眼70の領域の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号の複数のサンプリングデータを取得するようにさらに構成されている。さらに、制御モジュール430´は、光80のビームの伝播方向に沿った第2のサブ領域の位置を示す位置インジケータILに基づいて、第2のフィルタモジュール910の通過帯域と第2のサンプリングデータ取得モジュール920の第2のサンプリングレートを設定するように構成されている。位置インジケータIは、制御モジュール430´に提供されてもよく、あるいは、制御モジュール430´によって決定されてもよい。例えば、制御モジュール430´は、位置インジケータILを、撮像のためにユーザによって選択された眼の領域に基づいて導出するようにしても良いし、または特徴検出アルゴリズムを通じて識別するようにしても良い。制御モジュール430´は、本実施形態のように、第2のサブ領域の(入射光のビーム80の伝搬方向における)位置と第2のフィルタモジュール910の通過帯域との間のマッピングを用いて、第2のフィルタモジュール910の通過帯域を設定するようにしても良い。いくつかの実施形態では、制御モジュール430´は、光のビーム80の伝搬方向に沿った第2のサブ領域のサイズと第2のフィルタモジュール910の通過帯域との間のマッピングを使用して、通過帯域を設定するようにさらに構成されてもよい。第2のサンプリングレートは、帯域通過サンプリング定理に基づく変換アルゴリズムまたはサンプリングレートマッピングへの通過帯域を用いることによって、第2のフィルタモジュール910の通過帯域から決定しても良い。
図13において、帯域通過フィルタモジュール420は、例えば、波長可変フィルタとして、または、1つのフィルタを選択することが可能な複数の波長固定フィルタの配列として、上述したいずれかの実施形態において説明したような任意の方法で実現される。さらに、第2のフィルタモジュール910は、中心周波数を調整可能な通過帯域を有する波長可変フィルタを含んでもよく、制御モジュール430´は、さらに、眼科用の波長掃引型OCTシステム900の使用中に眼70に入射する光のビーム80の伝搬方向に沿った第2のサブ領域の位置に基づいて、波長可変フィルタの通過帯域の中心周波数を調整して、フィルタ処理後の電気信号の第2の複数のサンプリングデータを取得するように構成される。制御モジュール430´は、第2のサブ領域の位置と波長可変フィルタの通過帯域の中心周波数との間のマッピングを使用して、通過帯域の中心周波数を調整するように構成されてもよい。いくつかの例示的な実施形態では、波長可変帯域通過フィルタは、代替として、または加えて、波長可変帯域幅を有してもよく、制御モジュール430は、光のビーム80の伝搬方向に沿った第2のサブ領域のサイズを示す範囲インジケータに基づいて、波長可変フィルタの帯域幅を調整するようにさらに構成されてもよい。制御モジュール430´は、いくつかの実施形態において、第2のサブ領域のサイズと第2の波長可変フィルタの帯域幅との間のマッピングを使用して、通過帯域の帯域幅を調整するように構成されていても良い。
いくつかの実施形態では、波長可変フィルタの代わりに、第2のフィルタモジュール910は、中心周波数が異なる通過帯域を有する複数の波長固定フィルタを含んでもよく、制御モジュール430´は、複数の波長固定フィルタの中から1つの波長固定フィルタを選択することによって、第2のフィルタモジュール910の通過帯域を設定するように構成される。本明細書の一実施形態では、それぞれの波長固定フィルタは、帯域通過フィルタまたはローパスフィルタであってもよく、選択は、眼科用の波長掃引型OCTシステムの使用中に眼70に入射する光のビームの伝搬方向に沿った第2のサブ領域の位置を示す位置インジケータに基づいて実行され、複数の第2のサンプリングデータを取得することができる。例えば、制御モジュール430´は、第2のサブ領域の位置と選択すべき波長固定フィルタとの間に予め決められたマッピングを用いて、波長固定フィルタを選択することができる。
上記の実施形態では、干渉計によって生成される干渉光信号における対象となる最大周波数成分が、光検出器の検出帯域幅内に収まっているとものと想定され、その結果、対応する周波数成分を有する電気信号が生成される。しかし、結果として生じる干渉信号が光検出器のカットオフ周波数を超える周波数成分を有するために、参照アームとサンプルアームとの間の経路遅延が十分に大きい場合、干渉光信号の周波数成分が光検出器のカットオフ周波数以下になるように、経路遅延を減少させるようにしても良い。上述したように、参照アームの遅延を調整するためには、従来では、ステッパモータ等を用いた参照ミラー30(図1)の物理的な移動を必要としていたため実現が遅くなっていた。
ここで、参照アーム遅延調整機構に関する別の実施形態について図14を参照して説明する。図14では、本実施形態に係る波長掃引型OCTシステム1300が示されており、システム1300は、光検出器50と、眼70をスキャンするスキャン素子40と、掃引光源10とを備えており、これらは、上述した対応する構成要素と同様であり、システム1300も、本実施形態に従って構成された干渉計を備えている。便宜上、図14には示されていないが、システム1300は、上述の実施形態の1つ以上に記載されているように、帯域通過フィルタモジュール、サンプリングデータ取得モジュールおよび制御モジュール、ならびに好ましくはAスキャンデータ生成モジュールおよび断層画像データ生成モジュールも含むことができる。本実施形態では、干渉計は、上述したようなビームスプリッタ20および参照ミラー30、ならびに光検出器50によって検出される干渉光信号の周波数を低減するために有用であり得る経路遅延の調整を、(機構412´を有しない参照アームと比較して)比較的高速に可能とする参照アーム遅延調整機構412´を含む。より具体的には、干渉計の参照アームを形成する図14に示す参照アーム遅延調整機構412´は、それぞれ異なる光路長を有する複数の光学遅延ライン1220−1〜1220−4を備える。参照アーム遅延調整機構412´は、さらに、マイクロ電気機械(MEM)スイッチ1210を含み、これは、1つ以上のマイクロミラーをその中で回転させることにより、複数の光学遅延ライン1220−1〜1220−4の中から1つの光学遅延ラインを選択するように構成される。参照アーム遅延調整機構412´を含む本実施形態では、制御モジュール430´は、眼70の領域90の画像を表すOCT画像データを生成するためにフィルタ処理後の電気信号SFの複数のサンプリングデータを取得するために、眼科用の波長掃引型OCTシステム1300の使用中に眼70に入射する光のビーム80の伝播方向に沿った領域90の位置を示す位置インジケータに基づいて、参照アーム調整信号を生成するように構成されてもよい。さらに、本実施形態の制御モジュール430は、参照アーム調整信号に基づいて、参照アーム遅延調整機構412´に沿って伝搬する光とサンプルアーム414に沿って伝搬する光との間に光学遅延を設定し、選択された光学遅延ラインを使用して、参照アーム遅延調整機構412´に沿って伝搬する光との間に光学遅延を設定するように、複数の光学遅延ライン1220−1〜1220−4の中から1つの光学遅延ラインを選択するように、MEMスイッチ1210を制御するように構成されてもよい。位置インジケータは、制御モジュール430´に提供されるか、またはその代わりに、ユーザによって選択されて画像化されるべき眼の領域に基づいて制御モジュール430´によって決定されるか、または特徴検出アルゴリズムによって識別されるようにしても良い。さらに、いくつかの実施形態において、制御モジュール430´は、MEMスイッチ1210を制御して、選択されるべき領域の位置と光学遅延ラインとの間の所定のマッピングに基づいて光学遅延ラインを選択するように構成されてもよい。
さらに、制御モジュール430は、(参照アーム遅延調整機構412´内の選択された光学遅延ライン内を伝搬する光と、サンプルアーム414内の光との干渉によって生じる)干渉光信号の周波数が光検出器50のカットオフ周波数よりも低くなるように、複数の光学遅延ライン1220−1〜1220−4の中から1つの光学遅延ラインを選択するようにMEMスイッチ1210を制御するように構成されてもよい。光学遅延ラインは、ファイバベース又は自由空間ベースであってもよい。
異なる光路長を有する複数の光学遅延ライン1220−1〜1220−4の中から1つの光学遅延ラインを選択することによってメカニズム412´の光路長を変更するMEMスイッチ1210を使用することによって、ほぼ瞬時に経路遅延を調整することが可能になる。本実施形態では、選択可能な光学遅延ラインの数は限られている。それにもかかわらず、MEMスイッチングを使用して達成される粗い経路長調整は、上述の実施形態で説明したように、帯域通過サンプリングで達成可能な撮像深さの微調整と組み合わせることができる。
他の実施形態において、別のタイプの高速光スイッチ(言い換えると、別の種類の高速光学ルータ)をMEMスイッチ1210の代わりに使用して、上述のように、複数の光学遅延ライン1220−1〜1220−4の中から1つの光学遅延ラインを選択することができることに注意すべきである。例えば、光スイッチ(図示せず)は、フォトニックスイッチ内の材料(例えば半導体ベースの材料)の非線形特性を利用することによって、光学遅延ライン1220−1〜1220−4の中から選択された1つの光学遅延ラインに光ビームを導くように構成されるフォトニックスイッチの代わりとして使用されても良い。他の実施形態では、光スイッチは、例えば、光スイッチ内の材料によって発揮される圧電効果を用いて、光学遅延ライン1220−1〜1220−4の中から選択された1つの光学遅延ラインに光のビームを導くようにすることができる。さらなる別の方法として、磁気光学効果を有する光スイッチをMEMスイッチ1210の代わりに使用することができる。
上述の実施形態は、眼の領域を撮像するための眼科用の波長掃引型OCTシステムに関するものであるが、ここに記載されている方法は、眼の撮像分野に適用する場合に限定されないことを認識すべきである。これらの方法は、眼以外を撮像対象とする波長掃引型OCTシステムに対して適用可能である。例えば、実施形態による波長掃引型OCTシステムは、心臓病学および血管内撮像(血管内OCT)、腫瘍学(腹腔鏡OCT、内視鏡OCTおよび気管支鏡OCT)、皮膚科学(皮膚組織をイメージングするため)または歯科学(歯科OCTスキャンを取得するため)においても使用することができる。さらに、画像化される対象は生物学的である必要はない。他の実施形態による波長掃引型OCTシステムは、材料厚測定(例えば、半導体ウエハの厚さ測定)、表面粗さ特性評価、表面および断面撮像、および種々の材料における体積損失測定などの産業応用において使用されてもよい。
ここで述べられた実施態様は、制限を回避し、少なくともそのいくつかはコンピュータ技術に特に基づいており、その性能が取得サンプリングレート制限によって制限されるもの、および/または性能制限を回避/低減するのに十分迅速に光学経路差を調整することができない等の従来の波長掃引型OCTシステムに関連している。本明細書に記載される例示的な態様により、例えば、(対象物の深さ方向の異なる領域に対応する)検出された電気信号内の異なる周波数成分が(例えば、波長可変アンチエイリアシングフィルタモジュールを使用して)選択され、帯域通過サンプリング基準に従って、対象の周波数帯域に基づくサンプリングレートを使用して(調節可能なサンプリングレートを有するサンプリングデータ取得モジュールを使用して)、フィルタ処理後の電気信号のサンプリングデータが取得される。この方法で、網膜スキャン中、例えば、より深い網膜層から生じる電気信号中の高周波成分を、第1のナイキストゾーンに「包み込む」ことができ、したがって、サンプリングレートの必要条件を有意に緩和する。その結果、ここに記載されている撮影システムの少なくとも一部は、サンプリングデータ取得モジュールの最大サンプリングレートによって(少なくとも部分的に)発生する従来の制限のために、本来は測定できなかった網膜深度の反射率プロファイルを取得することができる。また、本実施形態のうちの少なくとも一部は、例えば、複数の光学遅延ライン間の切り替え可能な選択を採用することによって、(従来のシステムに対して)より高速な経路遅延調整を行うことができる。さらに、本実施形態のうちの少なくとも一部は、撮像された領域内の眼の網膜の湾曲によって引き起こされる少なくともいくつかのアーチファクトを抑制または排除するOCT画像スキャンの取得を可能にする。ここに記載される実施態様の能力のために、少なくとも一部はコンピュータ技術に基づいており、ここに記載されている実施態様の一部は、コンピュータ処理を改善し(例えば、サンプリングレート要件を緩和させることを可能にし、従来よりも多くの網膜深度での反射率プロファイルの取得を可能にし、より速い経路−遅延調整を可能にし、望ましくないアーチファクトを抑制/排除し、結果としてコンピュータ処理および記憶保存要件を減少させることを可能にし)、OCTシステムに加えて、医療画像および医療機器の分野も改善する。
上述の説明では、実施形態のいくつかの実施態様を参照して例示的な側面を記述する。したがって、規格及び試験方法は、限定的なものではなく、例証的なものとみなすべきである。同様に図面において図示された図は、本実施形態における有用性や機能を強調したものであり、例示的な目的のみを示している。本実施形態における構造は、十分に柔軟で構成可能であり、添付された図に示された方法以外の方法で利用するこができるものである。
本明細書において示された実施例のソフトウェアの実施態様は、コンピュータプログラム、またはソフトウェア、例えば、1つの実施例において、それぞれが非一時的であり得る、機械がアクセス可能な媒体または機械が読み取れる媒体、命令格納、またはコンピュータが読み取れる保存装置などの製造物品に含まれるか、または保存された命令の配列または配列を有する1つ以上のプログラムとして提供されることがある。一時的でないマシンアクセス可能媒体、マシン読み取り可能媒体、命令格納領域、またはコンピュータ読み取り可能記憶装置上のプログラムまたは命令は、コンピュータシステムまたは他の電子装置をプログラムするために使用することができる。機械またはコンピュータで読取可能な媒体、命令格納、および保存装置には、フロッピーディスケット、光学ディスク、および磁気光学ディスク、または電子命令の保存または伝達に適した他のタイプの媒体/機械で読取可能な媒体/命令格納/保存装置が含まれるが、これらに限定されない。本明細書に記載される技術は、任意の特定のソフトウェア構成に限定されない。それらは、どのようなコンピューティングまたは処理環境においても適用可能であることを見いだす可能性がある。ここで使用される用語「コンピュータ可読性」、「機械可読媒体」、「命令格納」、及び「コンピュータ可読性保存装置」は、機械、コンピュータ、又はコンピュータ処理によって実行するための命令又は命令のシーケンスを保存、符号化又は伝達することが可能であり、かつ機械/コンピュータ/コンピュータ処理装置が本明細書に記載される方法のいずれか一つを実行するようにさせる任意の媒体を含む。さらに、操作を実行するか、または結果を引き起こすとして、ソフトウェアを1つまたは他の形(例えば、プログラム、手順、プロセス、応用、モジュール、ユニット、論理など)で表現することはソフトウェアについての会話において一般的である。このような表現は、単に、処理システムによるソフトウェアの実行がプロセッサに結果を生じさせるように動作させていることを表しているに過ぎない。
また、いくつかの実施形態は、特定用途向け集積回路、フィールドプログラマブルゲートアレイを予め準備することによって、または従来の構成要素回路の適切なネットワークを相互接続することによって、実施されてもよい。
いくつかの実施形態は、コンピュータプログラム製品を含む。コンピュータプログラム製品は、保存媒体または媒体、命令格納、または保存装置であってよく、それに保存されている、またはその中で命令が使用されて、本明細書に記載される実施形態の手順のいずれかを実行するために、コンピュータまたはコンピュータ処理装置を使用することができる。保存媒体/命令格納/保存装置は、例により、限定することなく、光学ディスク、ROM、EPROM、EEPROM、DRAM、VRAM、フラッシュメモリ、フラッシュメモリカード、磁気カード、光学カード、ナノシステム、分子メモリ集積回路、RAID、遠隔データ保存/保管/倉庫、及び/又は命令及び/又はデータの保存に適した任意の他のタイプの装置を含み得る。
コンピュータ可読媒体または媒体、命令格納領域、または記憶装置のいずれか1つに記憶されるいくつかの実現方法は、システムのハードウェアの両方を制御し、システムまたはマイクロプロセッサが本明細書に記載する実施形態の結果を利用して人間のユーザまたは他のメカニズムと対話できるようにするためのソフトウェアを含む。このようなソフトウェアには、デバイスドライバ、オペレーティングシステム、およびユーザアプリケーションが含まれるが、これらに限定されるものではない。最終的に、このようなコンピュータ読取可能媒体または保存装置は、上述のように、本発明の態様の例を実行するためのソフトウェアをさらに含む。
システムのプログラミングおよび/またはソフトウェアに含まれるのは、本明細書に記載する手順を実施するためのソフトウェアモジュールである。本明細書のいくつかの実施形態において、モジュールは、ソフトウェアを含むが、本明細書の他の実施形態においては、モジュールは、ハードウェア、またはハードウェアとソフトウェアの組合せを含むものである。
本発明の様々な実施形態は上記に記載されているが、それらは、一例によって提示されており、限定されるものではないことが理解されるべきである。関連技術の当業者にとっては、形態や詳細を容易に変更可能なことは明らかであろう。従って、本発明は、上記実施形態のいずれかによって限定されるべきではなく、以下の主張及びそれらの同等物に従ってのみ定義されるべきである。
さらに、要約書の目的は、特許庁及び一般の人々、特に特許用語又は法律用語又は表現法に精通していない当該技術分野の科学者、技術者及び実務者が、出願の技術的開示の性質及び本質を、迅速に検索することができるようにすることである。要約書は、ここに示された実施例の範囲に関して、いかなる方法においても限定されることを意図しているわけではない。また、特許請求の範囲に記載されたいずれの手順も、提示された順序で実施する必要がないものであることを理解されたい。
本願の明細書は多くの具体的な実施形態の詳細な構成を含むが、これらは、いかなる発明の範囲または特許請求の範囲に記載されるかもしれない範囲を制限するものとして解釈されるべきではなく、むしろ、本明細書に記載される特定の実施形態に特異的な特徴の記述として解釈されるべきである。別個の実施形態との関連でこの明細書に記載されている特定の特徴もまた、単一の実施形態において組み合わせて実現することができる。逆に、単一の実施形態との関連で記載されている様々な特徴は、複数の実施形態においても、別々に、または任意の適切な組み合わせにおいて実現することも可能である。さらに、このような特徴は、上記のように、ある組合せで作用し、当初主張されていたとしても、特許請求の範囲に記載された組合せからの1以上の特徴は、ある場合には組合せから切り出すことができ、特許請求の範囲に記載された組合せは、サブコンビネーションまたはサブコンビネーションの変形とすることができる。
特定の状況下では、多段階処理および並列処理が有利な場合がある。さらに、上述の実施形態における様々な構成要素の分離は、全ての実施形態においてそのような分離を必要とするものとして理解されるべきではなく、記載されたプログラム構成要素およびシステムは、一般に、単一のソフトウェア製品において一緒に統合され得るか、または複数のソフトウェア製品にパッケージされ得ることを理解すべきである。
現在、いくつかの例示的な実施形態および実施形態を記載していることを除けば、上記で説明した内容は例示的であり、限定的ではないことは明らかであり、一例により提示されているものである。特に、ここで示した例の多くは装置またはソフトウェア要素の特定の組合せを含むが、それらの要素は、同一の目的達成するために他の方法により組み合わされていても良い。1つの実施形態に関連してのみ議論される行為、要素および特徴は、他の実施形態または実施形態における同様の役割から除外されることを意図していない。
本明細書に記載される装置は、その特徴から逸脱することなく、他の特定の形態で具体化されても良い。上述の実施形態は、記載されたシステムおよび方法を限定するものではなく例示的に示したものである。つまり、本明細書に記載された装置の範囲は、上述の記載により示されるものではなく特許請求範囲の記載によって示され、特許請求の範囲に記載された内容と均等な範囲内における変形もその中に含まれるものである。

Claims (16)

  1. 対象物(70)の領域(90)を画像化するための波長掃引型光干渉断層画像撮影(OCT)システム(400、600)であって、
    時間とともに波長が変化する光のビーム(80)を生成するように構成された掃引光源(10)と、
    前記対象物(70)を横切るように光のビーム(80)をスキャンするように構成されたスキャン素子(40)と、
    サンプルアーム(414)および参照アーム(412)を有し、前記対象物(70)の領域(90)によって散乱され、前記サンプルアーム(414)に沿って伝播することにより前記対象物を横切るようにスキャンされた光と、前記参照アーム(412)に沿って伝播したビーム(80)の光とを合成することにより、波長掃引型OCTシステム(400、600)の使用中において、干渉光信号を生成するように構成された干渉計(410)と、
    前記干渉光信号を受け取り、前記対象物の領域により散乱され前記サンプルアーム(414)に沿って伝播した光と、前記参照アーム(412)に沿って伝播したビーム(80)の光との干渉によって生じる周波数帯域(1000)に渡って広がる周波数成分を含むとともに前記干渉光信号を示す電気信号(S)を生成するように構成された光検出器(50)と、
    前記電気信号(S)を帯域通過フィルタリングすることによってフィルタ処理後の電気信号(SF)を生成するように構成された帯域通過フィルタモジュール(420)と、
    前記フィルタ処理後の電気信号(SF)のサンプリングデータを取得するように構成されたサンプリングデータ取得モジュール(440)と、
    前記電気信号(S)から前記周波数帯域(1000)に渡って広がる周波数成分の少なくとも一部を抽出するように前記帯域通過フィルタモジュール(420)の通過帯域を設定するとともに、前記フィルタ処理後の電気信号(SF)を帯域通過サンプリングすることにより、前記対象物(70)の領域(90)の画像を表すOCT画像データを生成するための前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するように前記サンプリングデータ取得モジュール(440)のサンプリングレートを設定するように構成された制御モジュール(430)と、
    を有する波長掃引型光干渉断層画像撮影システム。
  2. 前記帯域通過フィルタモジュール(420)が、通過帯域の中心周波数を調整可能な可変帯域通過フィルタを有し、前記制御モジュール(430)は、前記波長掃引型OCTシステム(400、600)の使用中に、前記対象物(70)に入射する光の前記ビーム(80)の伝播方向に沿った前記領域(90)の位置を示す位置インジケータに基づいて前記通過帯域の前記中心周波数を調整することによって前記帯域通過フィルタモジュール(420)の通過帯域を設定することにより、前記対象物(70)の領域(90)の画像を表す前記OCT画像データを生成するための前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するように構成された請求項1に記載の波長掃引型OCTシステム(400、600)。
  3. 前記帯域通過フィルタモジュール(420)が、帯域幅を調整可能な通過帯域を有する可変帯域通過フィルタを有し、前記制御モジュール(430)は、光のビーム(80)の伝搬方向に沿った前記領域(90)のサイズを示す範囲インジケータに基づいて前記通過帯域の帯域幅を調整することによって前記帯域通過フィルタモジュール(420)の通過帯域を設定するように構成される請求項1に記載の波長掃引型OCTシステム(400、600)。
  4. 前記帯域通過フィルタモジュール(420)は、それぞれが異なる通過帯域を有する複数の固定帯域通過フィルタを有し、前記制御モジュール(430)は、前記複数の固定帯域通過フィルタの中から1つの固定帯域通過フィルタを選択して前記電気信号(S)を帯域通過フィルタリングして前記フィルタ処理後の電気信号(SF)を生成することによって、前記帯域通過フィルタモジュール(420)の前記通過帯域を設定するように構成され、前記選択は、前記波長掃引型OCTシステム(400、600)の使用中に前記対象物(70)に入射する光線(80)の伝播方向に沿った領域(90)の位置を示す位置インジケータに基づいて実行され、前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得する請求項1に記載の波長掃引型OCTシステム(400、600)。
  5. 前記スキャン素子(40)は、前記スキャン素子(40)のスキャン角度を変化させることによって、前記掃引光源(10)によって生成された光ビームを走査するように構成され、
    スキャン角度を様々な値に変化させることにより前記サンプリングデータ取得モジュール(440)によって取得された前記フィルタ処理後の電気信号(SF)のサンプリングデータの逆フーリエ変換を計算することによって、複数のAスキャン(820、830)のスキャンデータを生成するように構成され、ここで、複数のAスキャン(820、830)の各Aスキャン(815)は、スキャンにおいて撮像された対象物(70)内の複数の領域のそれぞれの領域(90)から前記サンプリングデータ取得モジュール(440)によって取得された前記フィルタ処理後の電気信号(SF)のサンプリングデータに基づく、Aスキャンデータ生成モジュール(610)と、
    Aスキャン(820、830)を配列化してAスキャンの配列(850)を形成することによって断層画像データを生成するように構成された断層画像データ生成モジュール(620)とをさらに備え、
    配列(850)における各Aスキャン(815)のAスキャン素子(810)が配列(850)の第1の方向(Y)に沿って配置され、Aスキャン(820、830)が配列(850)の第2の方向(X)に配列化され、
    前記断層画像データ生成モジュール(620)は、前記断層画像データを生成する際に、前記配列(850)の各Aスキャン(815)を、前記配列(850)内の他のAスキャン(820、830)に対して前記第1の方向(Y)に沿ってあるオフセット量だけオフセットするように構成され、前記オフセット量は、前記対象物(70)の領域(90)の画像を表すOCT画像データを生成するための前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するために、前記波長掃引型OCTシステム(400、600)の使用中に前記対象物(70)に入射する光のビーム(80)の伝播方向に沿った領域(90)の位置を示す位置インジケータに基づく、
    請求項1から4のいずれか1項に記載の波長掃引型OCTシステム(600)。
  6. 前記電気信号(S)にフィルタ処理を実行することによって第2のフィルタ処理後の電気(SF2)信号を生成するように構成されたフィルタモジュール(910)と、
    前記第2のフィルタ処理後の電気信号(SF2)の第2の複数のサンプリングデータを取得するように構成された第2のサンプリングデータ取得モジュール(920)と、をさらに備え、
    前記制御モジュール(430)が、
    前記帯域通過フィルタモジュール(420)が周波数帯域(1000)の第1のサブバンド(1120)内の電気信号(S)の周波数成分を抽出し、前記第1のサブバンド(1120)外の電気信号(S)の周波数成分を実質的に減衰させるように前記帯域通過フィルタモジュール(420)の通過帯域を設定し、
    前記サンプリングデータ取得モジュール(440)が、対象物(70)の領域(90)の第1のサブ領域に対応する周波数帯域(1000)の第1のサブバンド(1120)における電気信号(S)の周波数成分を帯域通過サンプリングすることによって、複数のサンプリングデータを取得するように、前記サンプリングデータ取得モジュール(440)のサンプリングレートを設定し、
    前記フィルタモジュール(910)が、前記第1のサブバンド(1120)と部分的に重複する周波数帯(1000)の第2のサブバンド(1140)内の電気信号の周波数成分を抽出するように、前記フィルタモジュール(910)の通過帯域を設定し、
    前記第2のサンプリングデータ取得モジュール(920)が、第2のサンプリングレートを使用して前記第2のサブバンド(1140)内の電気信号の周波数成分をサンプリングすることによって第2の複数のサンプリングデータを取得するように、前記第2のサンプリングデータ取得モジュール(920)の第2のサンプリングレートを設定するように構成され、
    前記第2のサブバンド(1140)は、領域(90)の第2のサブ領域に対応し、前記第1のサブバンド(1120)と前記第2のサブバンド(1140)との間の部分的重複(1150)は、前記第1のサブ領域と前記第2のサブ領域との間の重複領域に対応し、
    前記第2のサンプリングレートは、前記第1のサンプリングレートとは異なる、
    請求項1から4のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
  7. 前記第1の複数のサンプリングデータの逆フーリエ変換を計算することによりAスキャンデータの第1のサブセットを生成し、
    前記第2の複数のサンプリングデータの逆フーリエ変換を計算することによりAスキャンデータの第2のサブセットを生成することにより、
    Aスキャン(815)のAスキャンデータを生成するように構成されたAスキャンデータ生成モジュール(610)をさらに備える請求項6に記載の波長掃引型OCTシステム(600)。
  8. 前記対象物(70)の領域(90)の画像を表すOCT画像データを生成するための前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するために、前記Aスキャンデータの第1のサブセットからのデータを、前記波長掃引型OCTシステム(600)の使用中に対象物(70)に入射した光のビーム(80)の伝播方向に沿った前記第1のサブ領域の位置に基づいて、Aスキャン(815)の第1の複数のAスキャン素子(810)にマッピングし、
    Aスキャンの前記第2のサブセットからのデータを、光のビーム(80)の伝播方向に沿った前記第2のサブ領域の位置に基づいて、Aスキャン(815)の第2の複数のAスキャン素子(810)にマッピングすることにより、
    前記Aスキャン(815)を生成するように構成された断層画像データ生成モジュール(620)をさらに含む請求項7に記載の波長掃引型OCTシステム(600)。
  9. 対象物(70)の領域(90)の画像を表すOCT画像データを生成するための前記フィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するために、前記波長掃引型OCTシステム(400、600)の使用中に前記対象物(70)に入射した光のビーム(80)の伝播方向に沿った前記第1のサブ領域の位置に基づいて、前記帯域通過フィルタモジュール(420)の通過帯域と前記サンプリングデータ取得モジュール(440)のサンプリングレートを設定し、
    光のビーム(80)の伝搬方向に沿った前記第2のサブ領域の位置に基づいて、前記フィルタモジュール(910)の通過帯域と前記第2のサンプリングデータ取得モジュール(920)の第2のサンプリングレートを設定するように、
    前記制御モジュール(430)がさらに構成されている請求項6から8のいずれか1項記載の波長掃引型OCTシステム(400、600)。
  10. 前記フィルタモジュール(910)が、中心周波数を調整可能な通過帯域を有する第2の波長可変フィルタを備え、前記制御モジュール(430)が、前記波長掃引型OCTシステム(400、600)の使用中に前記対象物(70)に入射する光の前記ビーム(80)の伝搬方向に沿った前記第2のサブ領域の位置に基づいて、前記第2の波長可変フィルタの前記通過帯域の前記中心周波数を調整することにより、前記フィルタ処理後の電気信号の前記第2の複数のサンプリングデータを取得するようにさらに構成される請求項6から9のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
  11. 前記第2の波長可変フィルタが、波長可変帯域幅を有し、前記制御モジュール(430)は、光のビーム(80)の伝搬方向に沿った前記第2のサブ領域のサイズを示す範囲インジケータに基づいて、前記第2の波長可変フィルタの帯域幅を調整するようにさらに構成される請求項10に記載の波長掃引型OCTシステム(400、600)。
  12. 前記フィルタモジュール(910)は、中心周波数が異なる通過帯域を有する第2の複数の波長固定帯域通過フィルタを備え、前記制御モジュール(430)は、前記第2の複数の波長固定帯域通過フィルタの中から1つの波長固定帯域通過フィルタを選択することによって前記フィルタモジュール(910)の通過帯域を設定するように構成され、前記選択は、前記波長掃引型OCTシステム(400、600)の使用中に、前記第2の複数のサンプリングデータを取得するために前記対象物(70)に入射した光のビーム(80)の伝搬方向に沿った前記第2のサブ領域の位置を示す位置インジケータに基づいて実行される請求項6から9のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
  13. 前記参照アーム(412)が複数の光学遅延ライン(1220−1〜1220−4)を含み、各光学遅延ラインが異なる光経路長を有し、かつ前記波長掃引型OCTシステム(400、600)がさらに光スイッチ(1210)を含み、
    前記制御モジュール(430)が、さらに、
    前記波長掃引型OCTシステム(400、600)の使用中に対象物に入射する光のビームの伝播方向に沿った領域(90)の位置を示す位置インジケータに基づいて、前記対象物(70)の領域(90)の画像を表すOCT画像データを生成するためのフィルタ処理後の電気信号(SF)の複数のサンプリングデータを取得するための参照アーム調整信号を生成し、
    前記参照アーム調整信号に基づいて前記光スイッチ(1210)を制御することにより、複数の光学遅延ライン(1220−1〜1220−4)の中から1つの光学遅延ラインを選択し、選択された光学遅延ラインを使用して前記参照アーム(412)内を光が伝搬することを可能にし、それによって、前記参照アーム(412)に沿って伝搬する光と前記サンプルアーム(414)に沿って伝搬する光との間に光学遅延を設定するように構成されている、
    請求項1から12のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
  14. 前記制御モジュール(430)が、前記光スイッチ(1210)を制御して、前記光学遅延ラインとして、干渉光信号の周波数が前記光検出器(50)のカットオフ周波数よりも低くなるように、前記複数の光学遅延ライン(1220−1〜1220−4)の中から1つの光学遅延ラインを選択するように構成された請求項13に記載の波長掃引型OCTシステム(400、600)。
  15. 前記対象物が眼であり、前記波長掃引型OCTシステムが眼科用の波長掃引型OCTシステムである請求項1から14のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
  16. 前記対象物が眼であり、
    前記スキャン素子(40)は、前記スキャン素子(40)のスキャン角度を変化させることによって、前記掃引光源(10)によって生成された光のビーム(80)を走査するように構成され、
    前記制御モジュール(430)は、スキャン角度に対して予め設定された通過帯域とサンプリングレートの変動を用いて、前記帯域通過フィルタモジュール(420)の通過帯域と前記サンプリングデータ取得モジュール(440)のサンプリングレートを調整することにより、前記サンプリングデータ取得モジュール(440)が、網膜(85)の表面から実質的に一定の厚さの網膜(85)の断面画像を形成するためのスキャンのスキャン方向に沿って、眼(70)の複数の領域(90)からサンプリングデータを取得するように構成される、
    請求項1から4のいずれか1項に記載の波長掃引型OCTシステム(400、600)。
JP2021071183A 2020-04-23 2021-04-20 波長掃引型光干渉断層画像撮影システム Active JP7171812B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20171060 2020-04-23
EP20171060.5 2020-04-23

Publications (2)

Publication Number Publication Date
JP2021173760A true JP2021173760A (ja) 2021-11-01
JP7171812B2 JP7171812B2 (ja) 2022-11-15

Family

ID=70417438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021071183A Active JP7171812B2 (ja) 2020-04-23 2021-04-20 波長掃引型光干渉断層画像撮影システム

Country Status (5)

Country Link
US (1) US20210348912A1 (ja)
EP (1) EP3900609B1 (ja)
JP (1) JP7171812B2 (ja)
DK (1) DK3900609T3 (ja)
ES (1) ES2929036T3 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117934866B (zh) * 2024-03-18 2024-05-28 板石智能科技(深圳)有限公司 一种白光干涉仪有效干涉图像提取方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268038A1 (en) * 2013-03-12 2014-09-18 Carl Zeiss Meditec, Inc. Systems and methods for variable depth optical coherence tomography imaging
JP2015114284A (ja) * 2013-12-13 2015-06-22 キヤノン株式会社 光干渉断層計
US20170122722A1 (en) * 2015-11-03 2017-05-04 Amo Wavefront Sciences, Llc Signal extraction systems and methods
US20180226773A1 (en) * 2003-10-27 2018-08-09 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668647B2 (en) * 2010-10-15 2014-03-11 The University Of British Columbia Bandpass sampling for elastography
US10184782B2 (en) * 2013-05-17 2019-01-22 Ninepoint Medical, Inc. Frequency-domain optical coherence tomography with extended field-of-view and reduction of aliasing artifacts
US10113857B2 (en) * 2015-02-27 2018-10-30 3Shape A/S Selective amplification of optical coherence tomography signals
ES2904844T3 (es) * 2017-11-02 2022-04-06 Alcon Inc Muestreo de doble flanco con reloj K para evitar solapamientos espectrales en tomografías de coherencia óptica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180226773A1 (en) * 2003-10-27 2018-08-09 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
US20140268038A1 (en) * 2013-03-12 2014-09-18 Carl Zeiss Meditec, Inc. Systems and methods for variable depth optical coherence tomography imaging
JP2015114284A (ja) * 2013-12-13 2015-06-22 キヤノン株式会社 光干渉断層計
US20170122722A1 (en) * 2015-11-03 2017-05-04 Amo Wavefront Sciences, Llc Signal extraction systems and methods

Also Published As

Publication number Publication date
DK3900609T3 (da) 2022-10-31
CN113545743A (zh) 2021-10-26
EP3900609B1 (en) 2022-10-05
EP3900609A1 (en) 2021-10-27
US20210348912A1 (en) 2021-11-11
JP7171812B2 (ja) 2022-11-15
ES2929036T3 (es) 2022-11-24

Similar Documents

Publication Publication Date Title
US11890052B2 (en) Frequency-domain interferometric based imaging systems and methods
JP5448353B2 (ja) 光干渉断層計を用いた画像形成方法、及び光干渉断層装置
JP2021003574A (ja) Oct光源および走査光学系を使用する2次元の共焦点撮像
JP6632266B2 (ja) 撮像装置
JP2018516375A (ja) 高分解能3dスペクトル領域光学撮像装置及び方法
WO2011050249A1 (en) Systems for comprehensive fourier domain optical coherence tomography (fdoct) and related methods
US20140268038A1 (en) Systems and methods for variable depth optical coherence tomography imaging
CN107567305B (zh) 摄像设备
WO2013025810A1 (en) Optical coherence tomography system having real-time artifact and saturation correction
JP2021173760A (ja) 波長掃引型光干渉断層画像撮影システム
JP7339447B2 (ja) ライン走査マイクロスコピー用の装置および方法
JP2022524547A (ja) 高速歯科用光コヒーレンストモグラフィシステム
JP7159408B2 (ja) 両眼光コヒーレンストモグラフィ撮像システム
JP5784100B2 (ja) 画像形成装置及び画像形成方法
CN113545743B (zh) 扫频源光学相干断层扫描成像系统
US20200281462A1 (en) Ophthalmic imaging apparatus, control method for ophthalmic imaging apparatus, and computer-readable medium
JP2017211192A (ja) 撮像装置及び撮像装置の制御方法
JP2017096884A (ja) 撮像装置
Grasel Exploring Frequency Domain OCT Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150