JP2021171738A - Sterilization nano capsule, grape-shaped particle aggregate, disinfection sterilization filter and production method thereof - Google Patents

Sterilization nano capsule, grape-shaped particle aggregate, disinfection sterilization filter and production method thereof Download PDF

Info

Publication number
JP2021171738A
JP2021171738A JP2020079530A JP2020079530A JP2021171738A JP 2021171738 A JP2021171738 A JP 2021171738A JP 2020079530 A JP2020079530 A JP 2020079530A JP 2020079530 A JP2020079530 A JP 2020079530A JP 2021171738 A JP2021171738 A JP 2021171738A
Authority
JP
Japan
Prior art keywords
epoxy resin
bactericidal
fine particles
solution
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020079530A
Other languages
Japanese (ja)
Other versions
JP6868916B1 (en
Inventor
国銘 黄
Guo Ming Huang
利明 福島
Toshiaki Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eleten Ltd
Original Assignee
Eleten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eleten Ltd filed Critical Eleten Ltd
Priority to JP2020079530A priority Critical patent/JP6868916B1/en
Priority to CN202110464863.4A priority patent/CN113558047A/en
Application granted granted Critical
Publication of JP6868916B1 publication Critical patent/JP6868916B1/en
Publication of JP2021171738A publication Critical patent/JP2021171738A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/46Compounds containing quaternary nitrogen atoms
    • D06M13/463Compounds containing quaternary nitrogen atoms derived from monoamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • D06M15/555Epoxy resins modified by compounds containing phosphorus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/52Epoxy resins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Paper (AREA)

Abstract

To provide a technique of a disinfection sterilization filter capable of reducing without limit, affection of medicine to a human body while exhibiting a required disinfection sterilization effect, and maintaining a disinfection sterilization effect for a long term.SOLUTION: A sterilization nano capsule 1 used for producing a disinfection sterilization filter of the invention comprises: nano meter sized nuclear fine particles 2 including a quaternary ammonium salt and aqueous epoxy resin; and cationic and aqueous coating layers 3 each of which covers a surface of the nuclear fine particle 2, and includes calcium carbonate and aqueous epoxy resin. The aqueous epoxy resin is an epoxy resin in which a terminal of a molecule is modified with alkyl-phosphate ester.SELECTED DRAWING: Figure 1

Description

本発明は、PP(ポリプロピレン)等の高分子材料からなるナノファイバーに、被覆層を有する薬剤のナノカプセルを付着させたブドウ状微粒集合体と、これを用いた消毒殺菌フィルターの技術に関する。 The present invention relates to a grape-like fine particle aggregate in which nanocapsules of a drug having a coating layer are attached to nanofibers made of a polymer material such as PP (polypropylene), and a technique for a disinfectant sterilization filter using the same.

近年、注目されているナノファイバーは、それ自体の物性に基づく単独利用のみならず、複合材料の分野では、汎用品、フィルター材料、エレクトロニクス部品、自動車用部品、医療・バイオ材料など、幅広い分野で実用化されつつあり、応用開発も盛んに行われている。 In recent years, nanofibers, which have been attracting attention in recent years, are not only used independently based on their own physical characteristics, but also in a wide range of fields such as general-purpose products, filter materials, electronic parts, automobile parts, medical / biomaterials, etc. in the field of composite materials. It is being put to practical use, and application development is being actively carried out.

ナノファイバーの主な特徴は、1)超比表面積効果(吸着性が高い、接着力が強い、分子認識性が高い)、2)ナノサイズ効果(低圧力損失、高透明性)、3)超分子配列効果(高強度、高電気伝導性、高熱伝導性)等が挙げられ、先端技術を支える材料として、世界各国で広範な分野での開発が活発に行われている(非特許文献1参照)。 The main features of nanofibers are 1) supramolecular surface area effect (high adsorptivity, strong adhesive force, high molecular recognition), 2) nanosize effect (low pressure loss, high transparency), 3) supramolecular effect. The molecular arrangement effect (high strength, high electrical conductivity, high thermal conductivity), etc. are mentioned, and as a material supporting advanced technology, development in a wide range of fields is being actively carried out in various countries around the world (see Non-Patent Document 1). ).

ナノファイバーの製造法(紡糸法)にはいくつかの方法があり、それぞれ対象となる材料や、ナノファイバーの繊維径、時間当たりの生産効率などが違うことから、用途に応じた紡糸方法が選択されている。 There are several methods for manufacturing nanofibers (spinning method), and each has different target materials, nanofiber fiber diameter, production efficiency per hour, etc., so the spinning method is selected according to the application. Has been done.

主な紡糸法としては、高分子を溶媒に溶かして静電気力の反発により紡糸するエレクトロスピニング法、海島構造を持つ2種類の高分子の混合物から1種類のみを溶解して残りの微細繊維を取り出す複合溶融紡糸法、溶融樹脂をエアーで延伸するメルトブロー法、炭素酸化物と水素ガスを気相中で反応させる化学気相成長(CVD)法などが挙げられる。このうち、溶剤が不要で安全性が高いメルトブロー法は、低コストでナノファイバーを大量生産できることに加え、様々な樹脂原料を製造できることが特徴となっている。 The main spinning methods are an electrospinning method in which a polymer is dissolved in a solvent and spun by repulsion of electrostatic force, and only one type is dissolved from a mixture of two types of polymers having a sea-island structure to extract the remaining fine fibers. Examples include a composite melt spinning method, a melt blow method in which a molten resin is stretched with air, and a chemical vapor phase growth (CVD) method in which a carbon oxide and hydrogen gas are reacted in a gas phase. Of these, the melt blow method, which does not require a solvent and is highly safe, is characterized in that nanofibers can be mass-produced at low cost and various resin raw materials can be produced.

一方、マイクロカプセルの作製技術は1950年代のノンカーボン複写紙の製品化に始まり、70年代半ばで急速な発展を遂げた。 On the other hand, the technology for producing microcapsules began with the commercialization of carbonless copy paper in the 1950s, and rapidly developed in the mid-1970s.

マイクロカプセルは医薬品、農薬、食品、塗料、インク、接着剤など多岐にわたる領域で応用されている(非特許文献2、非特許文献3、特許文献1参照)。 Microcapsules are applied in a wide range of fields such as pharmaceuticals, pesticides, foods, paints, inks, and adhesives (see Non-Patent Document 2, Non-Patent Document 3, and Patent Document 1).

マイクロカプセル化による主な効果は、液体などの芯材を固定する形態安定化、周囲の物質と芯材物質との反応や混合を防ぐ隔離効果、芯材の保存効果、毒性や臭気などの遮蔽効果、芯材の放出を抑制する効果などが挙げられ、前述の多岐用途で使用されている。 The main effects of microencapsulation are morphological stabilization to fix the core material such as liquid, isolation effect to prevent reaction and mixing of surrounding substances and core material, storage effect of core material, shielding of toxicity and odor, etc. It is used in the above-mentioned various applications because of its effects and the effect of suppressing the release of the core material.

カプセル化の技法は機械的方法(オリフィス法)、物理的方法(相分離法など)、化学的方法(界面重合法など)の三つに大別され、それぞれの技法に適した芯材、壁材が使用される。 Encapsulation techniques are roughly divided into three methods: mechanical method (orifice method), physical method (phase separation method, etc.), and chemical method (interfacial polymerization method, etc.). The material is used.

従来から、殺菌成分、鎮痛成分、消臭成分、香料成分、抗酸化成分、スキンケア成分などを内包したマイクロカプセルは、衛生用紙、湿布、芳香剤、消臭剤、農薬など様々な分野で使用されている(特許文献2〜4等参照)。 Conventionally, microcapsules containing bactericidal ingredients, analgesic ingredients, deodorant ingredients, fragrance ingredients, antioxidant ingredients, skin care ingredients, etc. have been used in various fields such as sanitary papers, poultices, air fresheners, deodorants, and pesticides. (Refer to Patent Documents 2 to 4 and the like).

これら各種成分の中で、殺菌剤として現在広い分野で使用されているのが、陽イオン性界面活性剤(第4級アンモニウム塩)である。プラス電荷を持つ陽イオン性界面活性剤は、マイナスの電荷を持つ細菌表面への吸着速度が速く、迅速な殺菌効果の発現が見られるという優れた特徴を持っている。 Among these various components, a cationic surfactant (quaternary ammonium salt) is currently used as a disinfectant in a wide range of fields. The positively charged cationic surfactant has an excellent feature that the adsorption rate to the negatively charged bacterial surface is high and a rapid bactericidal effect is exhibited.

第4級アンモニウム塩の作用機構として、二つの作用があると報告されている。 It has been reported that there are two actions as the action mechanism of the quaternary ammonium salt.

一つは、「細胞膜の物理的破壊」であり、アンモニウム分子のカチオンが細菌表面のアニオン部位と結合し、疎水的相互作用により細胞膜を物理的に破壊するという作用である(非特許文献4)。もう一つは、「細菌の代謝機能阻害」であり、第4級アンモニウム塩が細菌に強力に吸着反応し、細胞内の酵素を阻害することにより、代謝機能(成長)を抑制阻止するという作用である(非特許文献5)。 One is "physical destruction of the cell membrane", which is an action in which the cation of the ammonium molecule binds to the anion site on the bacterial surface and physically destroys the cell membrane by hydrophobic interaction (Non-Patent Document 4). .. The other is "inhibition of metabolic function of bacteria", in which quaternary ammonium salts strongly adsorb to bacteria and inhibit intracellular enzymes, thereby suppressing and inhibiting metabolic function (growth). (Non-Patent Document 5).

従来、殺菌成分、鎮痛成分、消臭成分、香料成分、抗酸化成分、スキンケア成分などを内包したマイクロカプセル化の技法は種々検討され、実用化されているが、主な技法としては既述したように、機械的方法(オリフィス法)、物理的方法(相分離法など)、化学的方法(界面重合法など)が挙げられる。 Conventionally, various microencapsulation techniques containing bactericidal ingredients, analgesic ingredients, deodorant ingredients, fragrance ingredients, antioxidant ingredients, skin care ingredients, etc. have been studied and put into practical use, but the main techniques have already been described. As described above, mechanical methods (opero method, etc.), physical methods (phase separation method, etc.), and chemical methods (interfacial polymerization method, etc.) can be mentioned.

これらマイクロカプセル化の技術のうち、オリフィス法では、各種成分(芯物質)を含んだポリマー溶液を二重管から硬化液に滴下してマイクロカプセルを作製している。 Among these microencapsulation techniques, in the orifice method, a polymer solution containing various components (core substances) is dropped from a double tube into a curing liquid to prepare microcapsules.

相分離法では、包む必要のある芯材を壁材が含まれた有機溶液中に分散させることで、芯材の周囲を包み覆わせるが、その際、溶液のpH値、濃度、温度等の条件を調整し、カプセル芯表面に壁材を徐々に堆積させる必要がある。 In the phase separation method, the core material that needs to be wrapped is dispersed in an organic solution containing a wall material to wrap and cover the periphery of the core material. At that time, the pH value, concentration, temperature, etc. of the solution are determined. It is necessary to adjust the conditions and gradually deposit the wall material on the surface of the capsule core.

界面重合法では、芯物質を含む疎水性有機溶剤と水との界面で重合反応を起こさせてマイクロカプセルを作製している。 In the interfacial polymerization method, microcapsules are produced by causing a polymerization reaction at the interface between a hydrophobic organic solvent containing a core substance and water.

上述したマイクロカプセル化の技法は、いずれの技法でも工業生産において、工程が複雑になり量産は難しいという問題がある。 The above-mentioned microencapsulation technique has a problem that the process is complicated and mass production is difficult in industrial production.

近年、このようなマイクロカプセルの代替として上述したナノファイバーを用いた新たな機能性複合材料(素子)が要望されているが、未だ実現には至っていない。 In recent years, a new functional composite material (element) using the above-mentioned nanofibers has been demanded as an alternative to such microcapsules, but has not yet been realized.

一方、昨今新型ウィルスによるインフルエンザ、肺炎等の感染症が流行し、今後も流行の拡大が危惧されている。 On the other hand, infectious diseases such as influenza and pneumonia caused by the new virus have recently become prevalent, and there is concern that the epidemic will continue to spread in the future.

感染予防の一つとして、従来より、外出時に衛生マスクを着用することが推奨されている。衛生マスクとしては、ガーゼマスク及び不織布マスクがあるが(非特許文献6)、ガーゼマスクはマスク本体が目の粗いガーゼよりなるため、ここからウィルス等の病原菌が侵入し、感染予防の効果は低いと言われている。 As one of the prevention of infection, it has been conventionally recommended to wear a hygiene mask when going out. As sanitary masks, there are gauze masks and non-woven fabric masks (Non-Patent Document 6), but since the mask body is made of coarse-grained gauze, pathogens such as viruses invade from here and the effect of preventing infection is low. Is said to be.

一方、不織布マスクはマスク本体が目の細かい不織布よりなるため、ガーゼマスクに比べて感染予防の効果はあると言われているが、それでもなお、感染予防の効果が疑問視されている。 On the other hand, the non-woven fabric mask is said to be more effective in preventing infection than the gauze mask because the mask body is made of fine-grained non-woven fabric, but the effect of preventing infection is still questioned.

また、従来のマスクは空気中に漂う汚染粒子をろ過するだけのものである。例えばN95型マスクは0.3μm以上の粒子の95%以上を除去することができる(非特許文献7)。 Also, conventional masks only filter contaminated particles floating in the air. For example, the N95 type mask can remove 95% or more of particles having a size of 0.3 μm or more (Non-Patent Document 7).

空気中の大部分の細菌と真菌胞子の直径は0.7〜10μmであり、それらは空気中の粉塵粒子に付着している。人がマスクを着けて呼吸すると、空気中の粒子や病原菌がマスクの表面に付着する。マスクにはろ過効果はあるが、マスクの表面や繊維中には生きている病原菌が留まっている。マスクを一定時間着けることで、呼吸によりマスクの湿度が高くなり、これにより細菌が増殖して徐々に鼻腔粘膜や口腔粘膜へと侵食し、人体への感染を引き起こす。 Most bacterial and fungal spores in the air have a diameter of 0.7-10 μm and are attached to dust particles in the air. When a person wears a mask and breathes, particles and pathogens in the air adhere to the surface of the mask. Although the mask has a filtering effect, live pathogens remain on the surface and fibers of the mask. By wearing the mask for a certain period of time, the humidity of the mask increases due to breathing, which causes bacteria to multiply and gradually erode into the nasal mucosa and oral mucosa, causing infection of the human body.

そのため、マスク本体に病原菌捕捉剤を用いた衛生マスクが提案されている(特許文献5)。 Therefore, a sanitary mask using a pathogen scavenger for the mask body has been proposed (Patent Document 5).

しかしながら、単に病原菌を捕捉しただけでは、マスク本体中で病原菌が増殖し、咳やくしゃみにより、却って病原菌を周囲にまき散らすことになる。また、マスク本体を手で触ると、手に病原菌が付着して口や目の粘膜から人体に侵入することになる。したがって、病原菌捕捉剤を用いた衛生マスクの効果も疑問視されている。 However, if the pathogen is simply captured, the pathogen grows in the mask body, and the pathogen is rather scattered around by coughing or sneezing. In addition, when the mask body is touched by hand, pathogens adhere to the hands and invade the human body through the mucous membranes of the mouth and eyes. Therefore, the effect of sanitary masks using pathogen scavengers has also been questioned.

このため、病原菌捕捉剤ではなく、病原菌そのものを不活性化させる薬剤を用いることも提案されている(特許文献6)。抗病原菌剤として、金属酸化物の水和物よりなる微粒子が用いられている。この微粒子はヒドロキシラジカルを発生することによって、病原菌を不活性化させる。しかしながら、この金属酸化物の水和物は、二酸化炭素や水分と反応することによって、活性が低下することが知られている。 Therefore, it has been proposed to use a drug that inactivates the pathogen itself instead of a pathogen scavenger (Patent Document 6). As an antipathogenic agent, fine particles made of a hydrate of a metal oxide are used. These fine particles inactivate pathogens by generating hydroxyl radicals. However, it is known that the activity of the hydrate of this metal oxide decreases by reacting with carbon dioxide and water.

すなわち、マスクを着けた直後は十分な活性を有しているが、着けている時間が長くなるに従い、その効果が低下することが懸念される。 That is, although it has sufficient activity immediately after wearing the mask, there is a concern that the effect will decrease as the wearing time becomes longer.

したがって、抗病原菌活性が8時間以上持続する、つまり朝から晩まで着けている間、殺菌効果が持続するようなマスクの開発が非常に望まれている。 Therefore, it is highly desired to develop a mask in which the antipathogenic activity lasts for 8 hours or more, that is, the bactericidal effect lasts from morning till night.

平成27年度 特許出願技術動向調査報告書「ナノファイバー」:特許庁2015 Patent Application Technology Trend Survey Report "Nanofiber": Japan Patent Office 「Micro−encapsulation」:Wikipedia 2008年2月"Micro-encapsulation": Wikipedia February 2008 調査レポート「マイクロカプセル」:東レリサーチセンター 2013年9月Survey Report "Microcapsules": Toray Research Center September 2013 「防菌防黴」:高麗寛紀 1995、Vol.23"Antibacterial and Moldproof": Hiroki Korai 1995, Vol.23 「防菌防黴の化学」:堀口博、三共出版(1982)"Chemistry of antibacterial and antifungal": Hiroshi Horiguchi, Sankyo Publishing (1982) 日本衛生材料工業連合会ウェッブサイト、衛生関連製品、「マスクについて」Japan Sanitary Materials Industry Association website, hygiene related products, "About masks" CDC Guidelines : NIOSH Particulate Respirator Selection and Use.CDC Guidelines: NIOSH Particulate Respirator Selection and Use. 「薬の相互作用としくみ」:杉山正康、日経BP社(2016)"Drug Interaction and Mechanism": Masayasu Sugiyama, Nikkei BP (2016)

特開昭62−146584号公報Japanese Unexamined Patent Publication No. 62-146584 特開平2−300301号公報Japanese Unexamined Patent Publication No. 2-3301 特開2004−324026号公報Japanese Unexamined Patent Publication No. 2004-324026 特開2006−291425号公報Japanese Unexamined Patent Publication No. 2006-291425 特開平5−115572号公報Japanese Unexamined Patent Publication No. 5-115572 特開2008~37814号公報Japanese Unexamined Patent Publication No. 2008-37814

本発明は、このような従来の技術の課題を解決するためになされたもので、その目的とするところは、求められる消毒殺菌効果を有しながら薬物の人体への影響を限りなく小さくすることができ、また消毒殺菌効果を長時間持続させることができる消毒殺菌フィルターの技術を提供することにある。 The present invention has been made to solve the problems of such conventional techniques, and an object of the present invention is to minimize the influence of a drug on the human body while having the required disinfecting and sterilizing effect. It is an object of the present invention to provide a disinfectant sterilization filter technology capable of sustaining the disinfectant sterilization effect for a long period of time.

上記目的を達成するためになされた本発明は、第4級アンモニウム塩及び水性エポキシ樹脂を含有するナノメートルサイズの核微粒子と、前記核微粒子の表面を覆うように設けられ、炭酸カルシウム及び水性エポキシ樹脂を含有する陽イオン性で水性の被覆層とを有し、前記水性エポキシ樹脂が、分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂である殺菌性ナノカプセルである。
本発明は、前記第4級アンモニウム塩がベンジルドデシルジメチルアンモニウム・ブロミドである殺菌性ナノカプセルである。
本発明は、前記水性エポキシ樹脂が、五酸化リン変性エポキシ樹脂である殺菌性ナノカプセルである。
本発明は、上記記載の殺菌性ナノカプセルが高分子系ナノファイバー集合体の表面に付着しているブドウ状微粒集合体である。
本発明は、前記高分子系ナノファイバー集合体の構成材料がポリプロピレンナノファイバーであるブドウ状微粒集合体である。
本発明は、木質繊維からなり通気性を有する用紙に殺菌性ナノカプセルが配合された乾燥状態の消毒殺菌フィルターであって、前記殺菌性ナノカプセルが、第4級アンモニウム塩及び分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂を含有する核微粒子を有し、前記核微粒子の表面に薄膜部が設けられている消毒殺菌フィルターである。
本発明は、密閉可能な容器内に、第4級アンモニウム塩溶液と水性エポキシ樹脂溶液とを原料供給ノズルからそれぞれ噴霧して混合溶液の液滴を作製するとともに、ナノサイズの微細な送風口を有する送風ノズルから前記容器内に常温の圧縮空気を送り込むことにより、前記混合溶液の液滴を微粒化してナノサイズの核微粒子用液滴を作製する工程と、前記容器内に前記送風ノズルから圧縮空気を常温から温度を上昇させながら送り込むことにより、前記核微粒子用液滴を乾燥固化して核微粒子を作製する工程とを有する核微粒子作製工程と、前記容器内において、前記原料供給ノズルを用い、炭酸カルシウムと水性エポキシ樹脂との混合物溶液を、上記混合物溶液を核微粒子に対して四方から霧状に吹きかけるとともに、前記送風ノズルから常温の空気を前記容器内に送り込んで前記核微粒子を容器内で分散させることにより、前記核微粒子の表面を覆うように、陽イオン性で水性の被覆層を設ける被覆層作製工程とを有し、前記水性エポキシ樹脂が、分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂である殺菌性ナノカプセルの製造方法である。
本発明は、前記ナノサイズの核微粒子用液滴を作製する工程において、前記第4級アンモニウム塩溶液として、ベンジルドデシルジメチルアンモニウム・ブロミドのエタノール溶液を用い、前記水性エポキシ樹脂溶液として、五酸化リン変性エポキシ樹脂のN−メチルピロリドン溶液を用い、前記被覆層作製工程において、前記炭酸カルシウムと水性エポキシ樹脂との混合物溶液として、炭酸カルシウムと五酸化リン変性エポキシ樹脂との混合物のN−メチルピロリドン溶液を用いる殺菌性ナノカプセルの製造方法である。
本発明は、上記いずれかの方法によって得られた殺菌性ナノカプセルを、表面を陰イオン化処理を施した高分子系ナノファイバーの当該表面に静電気力によって付着させる工程を有するブドウ状微粒集合体の製造方法である。
本発明は、上記記載の方法によって得られたブドウ状微粒集合体を、スラリー状の紙料に分散させ、水を使用する工程を含む所定の製紙工程によって、木質繊維からなり通気性を有する用紙に前記殺菌性ナノカプセルが配合された乾燥状態の消毒殺菌フィルターを製造する方法であって、前記水を使用する工程において、前記殺菌性ナノカプセルが水に触れる間、前記被覆層によって前記核微粒子の水との接触を阻止するとともに当該被覆層を溶出させ、当該被覆層が完全に溶出する前に、前記水を使用する工程を終了させる消毒殺菌フィルターの製造方法である。
The present invention made to achieve the above object is provided to cover the surface of nanometer-sized nuclear fine particles containing a quaternary ammonium salt and an aqueous epoxy resin, and calcium carbonate and an aqueous epoxy. It is a bactericidal nanocapsule having a cationic and water-based coating layer containing a resin, and the water-based epoxy resin is an epoxy resin in which the end of a molecule is modified with an alkyl phosphate ester.
The present invention is a bactericidal nanocapsule in which the quaternary ammonium salt is benzyldodecyldimethylammonium bromide.
In the present invention, the aqueous epoxy resin is a bactericidal nanocapsule which is a phosphorus pentoxide modified epoxy resin.
The present invention is a grape-like fine particle aggregate in which the above-mentioned bactericidal nanocapsules are attached to the surface of a polymer-based nanofiber aggregate.
The present invention is a grape-like fine particle aggregate in which the constituent material of the polymer-based nanofiber aggregate is polypropylene nanofiber.
The present invention is a dry disinfectant sterilization filter in which bactericidal nanocapsules are blended in a breathable paper made of wood fibers, wherein the bactericidal nanocapsules are quaternary ammonium salts and the terminal of the molecule is alkyl. It is a disinfectant sterilization filter having nuclear fine particles containing an epoxy resin modified with a phosphoric acid ester, and a thin film portion is provided on the surface of the nuclear fine particles.
In the present invention, a quaternary ammonium salt solution and an aqueous epoxy resin solution are sprayed from a raw material supply nozzle into a sealable container to prepare droplets of a mixed solution, and a nano-sized fine air outlet is provided. A step of atomizing the droplets of the mixed solution to produce nano-sized droplets for nuclear fine particles by blowing compressed air at room temperature into the container from the blower nozzle having the blower nozzle, and compression from the blower nozzle into the container. A nuclear fine particle manufacturing step including a step of drying and solidifying the nuclear fine particle droplets by sending air while raising the temperature from room temperature to prepare the nuclear fine particles, and using the raw material supply nozzle in the container. , A mixture solution of calcium carbonate and an aqueous epoxy resin is sprayed on the nuclear fine particles in a mist form from all sides, and normal temperature air is blown into the container from the blower nozzle to blow the nuclear fine particles into the container. It has a coating layer manufacturing step of providing a cationic and aqueous coating layer so as to cover the surface of the nuclear fine particles by dispersing with, and the aqueous epoxy resin has an alkyl phosphate at the end of the molecule. This is a method for producing bactericidal nanocapsules, which are modified epoxy resins.
In the present invention, in the step of producing the nano-sized droplets for nuclear fine particles, an ethanol solution of benzyldodecyldimethylammonium bromide is used as the quaternary ammonium salt solution, and phosphorus pentoxide is used as the aqueous epoxy resin solution. Using an N-methylpyrrolidone solution of a modified epoxy resin, in the coating layer preparation step, as a mixture solution of the calcium carbonate and the aqueous epoxy resin, an N-methylpyrrolidone solution of a mixture of calcium carbonate and a phosphorus pentoxide modified epoxy resin. It is a method for producing a bactericidal nanocapsule using.
The present invention comprises a step of adhering a bactericidal nanocapsule obtained by any of the above methods to the surface of a polymer-based nanofiber whose surface has been anionized by electrostatic force. It is a manufacturing method.
The present invention is a paper made of wood fibers and having breathability by a predetermined paper making process including a step of dispersing the grape-like fine particle aggregates obtained by the above method in a slurry-like paper material and using water. A method for producing a dry disinfectant sterilization filter in which the bactericidal nanocapsules are blended with water. This is a method for producing a disinfectant sterilization filter, which prevents contact with water and elutes the coating layer, and terminates the step of using the water before the coating layer is completely eluted.

薬力学において、薬物には治療効果と副作用があり(非特許文献8参照)、一般的には治療効果が大きいとき、同様にその副作用も大きいとされる。 In pharmacodynamics, a drug has a therapeutic effect and a side effect (see Non-Patent Document 8), and generally, when the therapeutic effect is large, the side effect is also considered to be large.

しかし、本発明の消毒殺菌フィルターに用いる殺菌性ナノカプセルは、ナノメートルサイズの大きさを有している一方で、第4級アンモニウム塩を含有し高い殺菌作用を有していることから、従来技術に比べて殺菌性成分の配合量を極限まで減少することができ、その結果、求められる消毒殺菌効果を有しながら、人体に有害な薬剤の成分がppm以下のレベルになり、人体への悪影響のない製品を供給することができる。 However, the bactericidal nanocapsules used in the disinfectant sterilization filter of the present invention have a nanometer-sized size, but contain a quaternary ammonium salt and have a high bactericidal action. Compared to technology, the amount of bactericidal components can be reduced to the utmost limit, and as a result, the components of chemicals that are harmful to the human body are at the level of ppm or less while having the required disinfecting and sterilizing effect, and are applied to the human body. It is possible to supply products without adverse effects.

また、本発明の消毒殺菌フィルターは、殺菌性ナノカプセルの核微粒子が水性エポキシ樹脂を含有し、水溶性を有していることから、使用する際、核微粒子が水分に触れることによって溶解し、第4級アンモニウム塩が溶け出して殺菌性が発現する。 Further, in the disinfectant sterilization filter of the present invention, since the nuclear fine particles of the bactericidal nanocapsules contain an aqueous epoxy resin and have water solubility, the nuclear fine particles dissolve when they come into contact with water when used. The quaternary ammonium salt dissolves and bactericidal properties are exhibited.

例えば、本発明の消毒殺菌フィルターを衛生マスクに装着して使用すると、呼吸の際人の口から放出される息に含まれる水分が通気性の用紙を通過する際、殺菌性ナノカプセルの核微粒子の第4級アンモニウム塩が溶け出して殺菌性が発現し、細菌のような病原菌を不活性化させる。 For example, when the disinfectant sterilization filter of the present invention is attached to a sanitary mask and used, the nuclei fine particles of the bactericidal nanocapsules when the water contained in the breath released from the human mouth during breathing passes through the breathable paper. The quaternary ammonium salt of the above is dissolved to develop bactericidal properties and inactivate pathogenic bacteria such as bacteria.

そして、本発明の消毒殺菌フィルターを装着した衛生マスクによれば、病原菌の侵入を防止するだけではなく、呼吸の際息を吸うことによって消毒殺菌フィルター表面に付着した病原菌を不活性化することができる。 According to the sanitary mask equipped with the disinfectant sterilization filter of the present invention, it is possible not only to prevent the invasion of pathogens but also to inactivate the pathogens adhering to the surface of the disinfectant sterilizer filter by inhaling during breathing. can.

さらに、本発明の殺菌性ナノカプセルは、核微粒子に含まれる水性エポキシ樹脂が、分子の末端がアルキルリン酸エステルで変性されており、これにより核微粒子に含まれる第4級アンモニウム塩が徐々に溶け出すことから、本発明の作用効果を長時間持続させることができる。 Further, in the bactericidal nanocapsule of the present invention, the aqueous epoxy resin contained in the nuclear fine particles is modified with an alkyl phosphate ester at the end of the molecule, whereby the quaternary ammonium salt contained in the nuclear fine particles is gradually released. Since it dissolves, the action and effect of the present invention can be sustained for a long time.

本発明に係る殺菌性ナノカプセルの構成例を模式的に示す断面図A cross-sectional view schematically showing a configuration example of a bactericidal nanocapsule according to the present invention. 本発明に係る消毒殺菌フィルターの製造方法の例を示すフロー図A flow chart showing an example of a method for manufacturing a disinfectant sterilization filter according to the present invention. (a):本発明に係る高分子系ナノファイバーの例の外観を示す正面図 (b):同高分子系ナノファイバーの側面図 (c):同高分子系ナノファイバーの外観を示す正面図 (d):図3(c)のA−A線断面図(A): Front view showing the appearance of an example of the polymer nanofiber according to the present invention (b): Side view of the polymer nanofiber (c): Front view showing the appearance of the polymer nanofiber. (D): sectional view taken along line AA of FIG. 3 (c). 本発明に係るブドウ状微粒集合体を模式的に示す説明図Explanatory drawing which shows typically the grape-like fine grain aggregate which concerns on this invention. (a)(b):本発明に係る消毒殺菌フィルターの使用方法を示す図で、図5(a)は正面図、図5(b)は、図5(a)のA−A線断面図(A) (b): A diagram showing a method of using the disinfectant sterilization filter according to the present invention, FIG. 5 (a) is a front view, and FIG. 5 (b) is a sectional view taken along line AA of FIG. 本発明に係る消毒殺菌フィルターの他の実施の形態を示す斜視説明図Explanatory perspective view showing another embodiment of the disinfectant sterilization filter according to the present invention. (a)(b):同実施の形態の消毒殺菌フィルターを衛生マスクに装着する手順を示す説明図(その1)(A) (b): Explanatory drawing showing a procedure for attaching the disinfectant sterilization filter of the same embodiment to a sanitary mask (No. 1). (a)(b):同実施の形態の消毒殺菌フィルターを衛生マスクに装着する手順を示す説明図(その2)(A) (b): Explanatory drawing showing a procedure for attaching the disinfectant sterilization filter of the same embodiment to a sanitary mask (Part 2). 表面処理後のPPナノファイバーの分析結果を示すIRスペクトルIR spectrum showing the analysis results of PP nanofibers after surface treatment 本実施例のブドウ状微粒集合体を示す写真Photograph showing the grape-like fine particle aggregate of this example

以下、本発明の好ましい実施の形態を図面を参照して詳細に説明する。
図1は、本発明に係る殺菌性ナノカプセルの構成例を模式的に示す断面図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a configuration example of a bactericidal nanocapsule according to the present invention.

図1に示すように、本発明の殺菌性ナノカプセル1は、核微粒子2と、核微粒子2の表面を覆うように設けられた陽イオン性の被覆層3とを有している。 As shown in FIG. 1, the bactericidal nanocapsule 1 of the present invention has a nuclear fine particle 2 and a cationic coating layer 3 provided so as to cover the surface of the nuclear fine particle 2.

ここで、核微粒子2は、第4級アンモニウム塩(例えばベンジルドデシルジメチルアンモニウム・ブロミド)及び水性エポキシ樹脂を含有し、ナノメートルサイズ(180〜250nm)のほぼ球状の微粒子からなる。 Here, the nuclear fine particles 2 contain a quaternary ammonium salt (for example, benzyldodecyldimethylammonium bromide) and an aqueous epoxy resin, and are composed of nanometer-sized (180 to 250 nm) substantially spherical fine particles.

本発明で使用される水性エポキシ樹脂は、エポキシ樹脂の分子鎖中に親水性分子セグメントを引き入れることにより、水中でより溶解・分散しやすくなるようにしたものである。 The aqueous epoxy resin used in the present invention has hydrophilic molecular segments drawn into the molecular chain of the epoxy resin so that it can be more easily dissolved and dispersed in water.

具体的には、本発明に使用される水性エポキシ樹脂は、例えばビスフェノールA型のエポキシ樹脂に例えば五酸化リンを反応させることによって、分子の末端がアルキルリン酸エステルで変性されたものである。 Specifically, the aqueous epoxy resin used in the present invention is one in which the terminal of the molecule is modified with an alkyl phosphate ester, for example, by reacting a bisphenol A type epoxy resin with, for example, phosphorus pentoxide.

アルキルリン酸エステルは一種の陰イオン型水性エポキシ樹脂であり、その乳液安定性は良好である。 Alkyl phosphate ester is a kind of anionic aqueous epoxy resin, and its emulsion stability is good.

本発明では、ベンジルドデシルジメチルアンモニウム・ブロミドと同等の殺菌性を有する第4級アンモニウム塩やジクロロイソシアヌル酸ナトリウムなどの消毒殺菌剤を使用することもできる。 In the present invention, a disinfectant disinfectant such as a quaternary ammonium salt or sodium dichloroisocyanurate having a bactericidal property equivalent to that of benzyldodecyldimethylammonium bromide can also be used.

被覆層3は、後述する製紙工程における水を使用する調整工程及び抄造工程において、核微粒子2が水に触れることを阻止するためのものである。 The coating layer 3 is for preventing the nuclear fine particles 2 from coming into contact with water in the adjustment step and the papermaking step using water in the papermaking step described later.

被覆層3は、炭酸カルシウムと、上述した分子の末端がアルキルリン酸エステルで変性された水性エポキシ樹脂を含む混合物からなり、その厚さは約20nmである。 The coating layer 3 is composed of a mixture containing calcium carbonate and an aqueous epoxy resin in which the ends of the above-mentioned molecules are modified with an alkyl phosphate ester, and the thickness thereof is about 20 nm.

図2は、本発明に係る消毒殺菌フィルターの製造方法の例を示すフロー図である。
以下、図1〜図4を参照して本発明の方法の例を説明する。
FIG. 2 is a flow chart showing an example of a method for manufacturing a disinfectant sterilization filter according to the present invention.
Hereinafter, an example of the method of the present invention will be described with reference to FIGS. 1 to 4.

[殺菌性ナノカプセルの製造工程]
<殺菌性ナノカプセルの核微粒子の作製工程>
核微粒子の作製工程(図2プロセスP1)では、まず、第4級アンモニウム塩溶液を調製する。
[Manufacturing process of bactericidal nanocapsules]
<Process for producing nuclear fine particles of bactericidal nanocapsules>
In the process of producing nuclear fine particles (process P1 of FIG. 2), first, a quaternary ammonium salt solution is prepared.

本実施の形態においては、第4級アンモニウム塩として、ベンジルドデシルジメチルアンモニウム・ブロミド(Benzyldodecyldimethylammmonium BHromide CAS:7281-04-1)の1%エタノール溶液を使用する。 In this embodiment, a 1% ethanol solution of benzyldodecyldimethylammmonium BHromide CAS: 7281-04-1 is used as the quaternary ammonium salt.

本発明では、ベンジルドデシルジメチルアンモニウム・ブロミドの代わりに、ベンジルドデシルジメチルアンモニウムクロリド、ベンザルコニウムクロリド、ベンゼトニウムクロリドなどの第4級アンモニウム塩のほか、ジクロロイソシアヌル酸ナトリウムなどの殺菌剤も使用可能である。 In the present invention, instead of benzyldodecyldimethylammonium bromide, a quaternary ammonium salt such as benzyldodecyldimethylammonium chloride, benzalkonium chloride, benzethonium chloride, or a bactericidal agent such as sodium dichloroisocyanurate can be used. ..

一方、本発明では、第4級アンモニウム塩の凝固剤の高分子材料として、水性エポキシ樹脂を使用する。 On the other hand, in the present invention, an aqueous epoxy resin is used as the polymer material of the quaternary ammonium salt coagulant.

水性エポキシ樹脂の原料エポキシ樹脂としては、汎用に供給されているビスフェノールA型(CAS:25068-38-6)のものを使用することができるが、本発明では、分子の末端に2個以上のエポキシ基を有するものであれば、これに限定されることはない。 As the raw material epoxy resin for the water-based epoxy resin, a bisphenol A type (CAS: 25068-38-6) supplied for general purposes can be used, but in the present invention, two or more at the end of the molecule. It is not limited to this as long as it has an epoxy group.

本実施の形態では、エポキシ樹脂を親水化させるために、リン酸化剤である五酸化リン(CAS:1314-56-3)を使用する。 In this embodiment, phosphorus pentoxide (CAS: 1314-56-3), which is a phosphorylating agent, is used to make the epoxy resin hydrophilic.

なお、アルキルリン酸エステルを形成するものであれば、五酸化リンに限定されることはない。 In addition, as long as it forms an alkyl phosphate ester, it is not limited to phosphorus pentoxide.

本実施の形態における五酸化リンによるエポキシ樹脂の水性化は、以下の反応式で示される。 The water-based conversion of the epoxy resin by phosphorus pentoxide in the present embodiment is shown by the following reaction formula.

Figure 2021171738
Figure 2021171738

上記化学式で示されるように、本実施の形態に使用される水性エポキシ樹脂は、分子の末端が五酸化リンでエステル変性されたビスフェノールA型エポキシ樹脂である。 As shown by the above chemical formula, the aqueous epoxy resin used in this embodiment is a bisphenol A type epoxy resin in which the terminal of the molecule is ester-modified with phosphorus pentoxide.

以下、本明細書では、当該樹脂を「五酸化リン変性エポキシ樹脂」と称する。 Hereinafter, in the present specification, the resin is referred to as "phosphorus pentoxide modified epoxy resin".

この水性エポキシ樹脂を得るには、まず、N−メチルピロリドン又はアセトンによって溶解させたエポキシ樹脂に、五酸化リンを加えて加熱しながら溶解させる。 To obtain this aqueous epoxy resin, first, phosphorus pentoxide is added to an epoxy resin dissolved with N-methylpyrrolidone or acetone and dissolved while heating.

エポキシ樹脂と五酸化リンのモル比は、1:1から2:1の間で調合するとよい。 The molar ratio of epoxy resin to phosphorus pentoxide may be formulated between 1: 1 and 2: 1.

そして、得られた溶液に水酸化カリウム(KOH)を加えて溶液を中性にする。これにより本実施の形態で使用する、五酸化リン変性エポキシ樹脂溶液を得る。 Then, potassium hydroxide (KOH) is added to the obtained solution to neutralize the solution. As a result, a phosphorus pentoxide-modified epoxy resin solution used in the present embodiment is obtained.

本実施の形態では、例えば、次のような処理装置を用いて核微粒子2を作製する。 In the present embodiment, for example, the nuclear fine particles 2 are produced using the following processing apparatus.

この処理装置は、密閉可能な容器を有し、溶液を容器内に噴霧する複数の原料供給ノズルと、容器内に圧縮空気を導入する送風ノズルとを有している。 This processing device has a container that can be sealed, and has a plurality of raw material supply nozzles that spray a solution into the container, and a blower nozzle that introduces compressed air into the container.

送風ノズルには、直径がナノサイズ(150〜250nm)の微細な送風孔(針孔)が多数設けられており、これらの送風孔から容器内に所定温度の圧縮空気を送り込むようになっている。 The blower nozzle is provided with a large number of fine blower holes (needle holes) having a diameter of nano size (150 to 250 nm), and compressed air having a predetermined temperature is blown into the container from these blower holes. ..

容器内には圧力計が設けられており、処理装置は、この圧力計において得られた容器内の圧力に基づいて所定の圧力になるまで容器内に圧縮空気を送り込むことができるように構成されている。 A pressure gauge is provided in the container, and the processing device is configured to be able to send compressed air into the container until a predetermined pressure is reached based on the pressure in the container obtained by this pressure gauge. ing.

このような処理装置を用いて核微粒子2を作製するには、ベンジルドデシルジメチルアンモニウム・ブロミドの1%エタノール溶液と、上述した五酸化リン変性エポキシ樹脂のN−メチルピロリドン溶液とを原料供給ノズルから処理装置の容器内にそれぞれ噴霧する。 In order to prepare nuclear fine particles 2 using such a treatment apparatus, a 1% ethanol solution of benzyldodecyldimethylammonium bromide and an N-methylpyrrolidone solution of the phosphorus pentoxide modified epoxy resin described above are used from a raw material supply nozzle. Spray each into the container of the processing device.

ベンジルドデシルジメチルアンモニウム・ブロミドの添加量は水性エポキシ樹脂の約10,000分の1と極めて少量にする。 The amount of benzyldodecyldimethylammonium bromide added is extremely small, about 1 / 10,000 of that of the aqueous epoxy resin.

これと同時に、ナノサイズの微細な送風孔を有する送風ノズルから容器内に常温の圧縮空気を送り込む。 At the same time, compressed air at room temperature is blown into the container from a blower nozzle having nano-sized fine blower holes.

上述した工程を約8〜12分間にわたって行う。 The above steps are carried out for about 8-12 minutes.

これによりベンジルドデシルジメチルアンモニウム・ブロミドの溶液の液滴と五酸化リン変性エポキシ樹脂溶液の液滴とが混合され、送風ノズルから容器内に圧縮空気を送り込むことによって混合溶液の液滴が微粒化する。 As a result, the droplets of the solution of benzyldodecyldimethylammonium bromide and the droplets of the phosphorus pentoxide-modified epoxy resin solution are mixed, and the droplets of the mixed solution are atomized by blowing compressed air into the container from the blower nozzle. ..

密閉可能な容器内には、容器内の温度調整を行うために湿度センサーが設けられており、この湿度センサーにおいて測定された容器内の湿度に基づき、上記溶液の混合完了後に送風の温度を徐々に上昇させる。 A humidity sensor is provided in the container that can be sealed to adjust the temperature inside the container, and based on the humidity inside the container measured by this humidity sensor, the temperature of the blast is gradually adjusted after the mixing of the above solutions is completed. Raise to.

例えば、約10分間で容器内に送り込む空気の温度を25℃から86℃まで上昇させ、微粒子中の液体を揮散させることにより、ベンジルドデシルジメチルアンモニウム・ブロミドと五酸化リン変性エポキシ樹脂との混合物の液滴微粒子を固形化させ、乾燥させる。 For example, by raising the temperature of the air sent into the container from 25 ° C. to 86 ° C. in about 10 minutes and volatilizing the liquid in the fine particles, a mixture of benzyldodecyldimethylammonium bromide and phosphorus pentoxide-modified epoxy resin is used. The droplet particles are solidified and dried.

湿度センサーにおいて測定された値によって容器内温度が一定基準に達したと判断した時点で容器内への送風を停止する。これによりナノサイズの核微粒子2が得られる。 When it is determined that the temperature inside the container has reached a certain standard based on the value measured by the humidity sensor, the ventilation into the container is stopped. As a result, nano-sized nuclear fine particles 2 are obtained.

なお、五酸化リン変性エポキシ樹脂の代わりに他の水溶液樹脂を使用することもできる。 In addition, another aqueous solution resin can be used instead of the phosphorus pentoxide modified epoxy resin.

<被覆層の形成工程>
上記プロセスP1で得られた核微粒子2の表面を覆う被覆層3を形成する(図2プロセスP2)。
<Covering layer forming process>
A coating layer 3 covering the surface of the nuclear fine particles 2 obtained in the above process P1 is formed (FIG. 2, process P2).

本実施の形態では、被覆層3の材料として、例えば、炭酸カルシウムと上記核微粒子2の作製工程で使用した五酸化リン変性エポキシ樹脂とを溶剤であるN−メチルピロリドン又はアセトンに溶解させた混合物溶液を用いる。 In the present embodiment, as the material of the coating layer 3, for example, a mixture of calcium carbonate and the phosphorus pentoxide-modified epoxy resin used in the production step of the nuclear fine particles 2 dissolved in N-methylpyrrolidone or acetone as a solvent. Use a solution.

ただし、分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂であれば、他の樹脂を使用することもできる。 However, other resins can be used as long as the end of the molecule is an epoxy resin modified with an alkyl phosphate ester.

前記工程と同様に、この被覆層の形成工程においても五酸化リン変性エポキシ樹脂の代わりに他の水溶液樹脂を使用することもできる。 Similar to the above step, in the step of forming the coating layer, another aqueous solution resin can be used instead of the phosphorus pentoxide modified epoxy resin.

炭酸カルシウムの配合量は、五酸化リン変性エポキシ樹脂に対して5〜15%にするとよい。 The blending amount of calcium carbonate is preferably 5 to 15% with respect to the phosphorus pentoxide modified epoxy resin.

そして、容器内において、原料供給ノズルを用い、上記混合物溶液を核微粒子2に対して四方から霧状に吹きかけるとともに、送風ノズルから常温の空気を容器内に送り込んで核微粒子2を容器内で分散させる。 Then, in the container, the raw material supply nozzle is used to spray the mixture solution onto the nuclear fine particles 2 in a mist form from all sides, and air at room temperature is blown into the container from the blower nozzle to disperse the nuclear fine particles 2 in the container. Let me.

本工程で用いる炭酸カルシウムは微小粒子を陽イオン化させる働きを有し、後述するように、陰イオン化処理を施した高分子系ナノファイバー集合体の表面に殺菌性ナノカプセルを付着させて高分子系ナノファイバーとイオン的に結び付くことによって、第4級アンモニウム塩を含む殺菌性ナノカプセル1の分散安定性を向上させる効果がある。 Calcium carbonate used in this step has a function of cationizing fine particles, and as will be described later, a polymer-based nanocapsule is attached to the surface of an anionized polymer-based nanofiber aggregate. By ionically binding to the nanofibers, it has the effect of improving the dispersion stability of the bactericidal nanocapsules 1 containing the quaternary ammonium salt.

本工程は、核微粒子2の量にもよるが、例えば約20分行う。 This step is carried out, for example, for about 20 minutes, although it depends on the amount of the nuclear fine particles 2.

[高分子系ナノファイバー集合体の製造工程]
図3(a)〜(d)は、本発明に用いる高分子系ナノファイバーを模式的示すもので、図3(a)及び図3(c)は、同高分子系ナノファイバーの外観を示す正面図、図3(b)は、同高分子系ナノファイバーの側面図、図3(d)は、図3(c)のA−A線断面図である。
[Manufacturing process of polymer nanofiber aggregate]
3 (a) to 3 (d) schematically show the polymer-based nanofibers used in the present invention, and FIGS. 3 (a) and 3 (c) show the appearance of the polymer-based nanofibers. A front view, FIG. 3 (b) is a side view of the polymer nanofiber, and FIG. 3 (d) is a cross-sectional view taken along the line AA of FIG. 3 (c).

本発明に用いる高分子系ナノファイバー4は、高分子材料から構成されるナノファイバー(直径が1nmから1μm未満の繊維状物質)で、両端部が開口しているものである(以下、適宜「ナノファイバー」という。)。 The polymer-based nanofiber 4 used in the present invention is a nanofiber (a fibrous substance having a diameter of 1 nm to less than 1 μm) composed of a polymer material, and has openings at both ends (hereinafter, appropriately referred to as “ It is called "nanofiber").

ここで、ナノファイバー4を構成する高分子材料としては、繊維状に製造することが可能で、水、脂肪酸アミド、次亜塩素酸、エタノール、イソブチルトリエトキシシラン、エチルアセテートに溶解しないものを用いることが好ましい。 Here, as the polymer material constituting the nanofiber 4, a material that can be produced in the form of fibers and is insoluble in water, fatty acid amide, hypochlorous acid, ethanol, isobutyltriethoxysilane, and ethyl acetate is used. Is preferable.

このような高分子材料としては、例えば、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PU(ポリウレタン)等の熱可塑性樹脂からなるものがあげられる。 Examples of such a polymer material include those made of a thermoplastic resin such as PP (polypropylene), PET (polyethylene terephthalate), PE (polyethylene), and PU (polyurethane).

本発明の場合、ナノファイバー4の材料は特に限定されることはないが、ファイバーの製造のし易さ、並びに、集合体を構成した場合に柔らかさが得られる観点からは、ポリプロピレンからなるものを好適に用いることができる。 In the case of the present invention, the material of the nanofiber 4 is not particularly limited, but it is made of polypropylene from the viewpoint of ease of manufacturing the fiber and obtaining softness when the aggregate is formed. Can be preferably used.

ナノファイバー4の紡糸法としては、溶剤が不要で安全性が高く、低コストで大量生産可能なメルトブロー法が好ましい。 As the spinning method of nanofiber 4, a melt blow method that does not require a solvent, has high safety, and can be mass-produced at low cost is preferable.

図3(a)〜(d)に示すように、本発明に用いる高分子系ナノファイバー4は、内部が空洞の構成、すなわち、その長手方向に沿うように形成された中空部5を有している。 As shown in FIGS. 3A to 3D, the polymer-based nanofiber 4 used in the present invention has a hollow structure inside, that is, a hollow portion 5 formed along the longitudinal direction thereof. ing.

この場合、高分子系ナノファイバー4としては、ファイバーの内径が外径の約1/2のものを好適に使用することができる。 In this case, as the polymer-based nanofiber 4, those having an inner diameter of about 1/2 of the outer diameter of the fiber can be preferably used.

具体的には、外径が20〜1000nmで、内径が10〜500nmの中空のナノファイバーが好ましい。 Specifically, hollow nanofibers having an outer diameter of 20 to 1000 nm and an inner diameter of 10 to 500 nm are preferable.

<高分子系ナノファイバーの表面処理工程>
本発明の高分子系ナノファイバー4を用いてブドウ状微粒集合体を作製するには、まず、図2のプロセスP3に示すように、高分子系ナノファイバー4の表面処理(陰イオン化処理)工程を行う。
<Surface treatment process of polymer nanofibers>
In order to prepare a grape-like fine particle aggregate using the polymer-based nanofiber 4 of the present invention, first, as shown in the process P3 of FIG. 2, a surface treatment (anionization treatment) step of the polymer-based nanofiber 4 I do.

本発明では、ナノファイバー4の表面処理の材料として、例えば脂肪酸アミドと、次亜塩素酸を用いることができる。 In the present invention, for example, fatty acid amide and hypochlorous acid can be used as the surface treatment material for the nanofiber 4.

ここで、脂肪酸アミドは、ナノファイバー4の表面部分(外側の表面部分4a及び内側の表面部分4b:図3(a)〜(d)参照)を脱脂するために用いるものである。 Here, the fatty acid amide is used for degreasing the surface portion of the nanofiber 4 (outer surface portion 4a and inner surface portion 4b: see FIGS. 3A to 3D).

本発明の場合、ナノファイバー4の表面の脱脂に用いる脂肪酸アミドの種類は特に限定されることはないが、ヤシ脂肪酸ジエタノールアミドを用いることが好ましい。 In the case of the present invention, the type of fatty acid amide used for degreasing the surface of the nanofiber 4 is not particularly limited, but it is preferable to use coconut fatty acid diethanolamide.

ヤシ脂肪酸ジエタノールアミドは、非イオン系界面活性剤としてシャンプー、洗顔料等に広く使用されており、容易に入手することができることから好ましいものである。 Palm fatty acid diethanolamide is widely used as a nonionic surfactant in shampoos, facial cleansers and the like, and is preferable because it can be easily obtained.

なお、脱脂効果のあるものであれば、他の脂肪酸アミドや、界面活性剤等も使用することができる。 Other fatty acid amides, surfactants, and the like can also be used as long as they have a degreasing effect.

一方、次亜塩素酸は、上記脱脂処理によって高分子系ナノファイバー4の表面に付着しているヤシ脂肪酸ジエタノールアミドと反応し、カルボキシル基と水酸基がナノファイバーの表面を覆うことで陰イオン化することによって、陽イオン化された殺菌性ナノカプセル1との親和性を向上させることができる。 On the other hand, hypochlorous acid reacts with the coconut fatty acid diethanolamide adhering to the surface of the polymer nanofiber 4 by the above degreasing treatment, and the carboxyl group and the hydroxyl group cover the surface of the nanofiber to be anionized. Therefore, the affinity with the cationically ionized bactericidal nanocapsules 1 can be improved.

本発明においては、本処理を行う材料として、特に次亜塩素酸に限られるものではないが、汎用に使用されている材料であり、入手が容易であるという観点からは、次亜塩素酸を用いることが好ましい。 In the present invention, the material to be subjected to this treatment is not particularly limited to hypochlorous acid, but from the viewpoint of being a material used for general purposes and being easily available, hypochlorous acid is used. It is preferable to use it.

上記脂肪酸アミドと次亜塩素酸を用いてナノファイバー4の表面処理を行う場合には、例えば以下のような処理を行う。 When surface treatment of nanofiber 4 is performed using the above fatty acid amide and hypochlorous acid, for example, the following treatment is performed.

まず、所定量のナノファイバー4を脂肪酸アミドの水溶液に分散させ、例えば100℃程度の温度で30〜40分間煮沸する。 First, a predetermined amount of nanofibers 4 is dispersed in an aqueous solution of fatty acid amide, and boiled at a temperature of, for example, about 100 ° C. for 30 to 40 minutes.

この煮沸工程後、ナノファイバー4を水洗し、遠心分離器を用いて例えば数分間(2000rpm程度)脱水し、その後、60℃程度の温度で30分間程度乾燥させる。 After this boiling step, the nanofibers 4 are washed with water, dehydrated for, for example, several minutes (about 2000 rpm) using a centrifuge, and then dried at a temperature of about 60 ° C. for about 30 minutes.

乾燥後の所定量のナノファイバー4を次亜塩素酸水溶液(濃度8g/L)に分散させ、pHを5〜5.5に保ちながら、30℃程度の温度で1時間程度撹拌し、ナノファイバー4の表面に付着している脂肪酸アミドに対し次亜塩素酸を反応させる。 A predetermined amount of the dried nanofibers 4 are dispersed in an aqueous hypochlorous acid solution (concentration: 8 g / L), and the nanofibers are stirred at a temperature of about 30 ° C. for about 1 hour while maintaining the pH at 5 to 5.5. Hypochlorous acid is reacted with the fatty acid amide adhering to the surface of No. 4.

そして、反応完了後のナノファイバー4を常圧でろ過し、遠心分離器で数分間(2000rpm程度)脱水した後、60℃程度の温度で30分間程度乾燥させる。 Then, the nanofiber 4 after the reaction is completed is filtered at normal pressure, dehydrated for several minutes (about 2000 rpm) with a centrifuge, and then dried at a temperature of about 60 ° C. for about 30 minutes.

さらに、上述した表面処理後のナノファイバー4を、微粉砕機を用い、2〜5mm(平均3mm)の長さに粉砕する(図2プロセスP4)。 Further, the above-mentioned surface-treated nanofibers 4 are pulverized to a length of 2 to 5 mm (average 3 mm) using a fine pulverizer (FIG. 2, process P4).

これにより例えばPPからなる高分子系ナノファイバー4の集合体を得る。 As a result, for example, an aggregate of polymer nanofibers 4 made of PP is obtained.

[ブドウ状微粒集合体の製造工程]
<殺菌性ナノカプセルの高分子系ナノファイバーへの付着工程>
上述したプロセスP1〜P2によって得られた殺菌性ナノカプセル1を、上記ナノファイバー4の集合体の表面に付着させることにより、ブドウ状微粒集合体を作製する(図2プロセスP5)。
[Manufacturing process of grape-like fine particle aggregate]
<Process of attaching bactericidal nanocapsules to polymer nanofibers>
The bactericidal nanocapsules 1 obtained by the above-mentioned processes P1 and P2 are attached to the surface of the above-mentioned nanofiber 4 aggregate to prepare a grape-like fine particle aggregate (FIG. 2, process P5).

本工程を行う理由は、殺菌性ナノカプセル1をそのままの状態で消毒殺菌フィルターの作製工程において木質繊維と結合させようとすると、処理室内で殺菌性ナノカプセル1がほとんど浮遊してしまい、木質繊維と結合しにくいからであり、本工程を行うことによって、木質繊維に対し、殺菌性ナノカプセル1が付着した高分子系ナノファイバー4を安定して分散させることができる。 The reason for performing this step is that if the bactericidal nanocapsules 1 are to be combined with the wood fibers in the process of producing the disinfectant sterilization filter as they are, the bactericidal nanocapsules 1 will almost float in the treatment room, and the wood fibers will be floated. By performing this step, the polymer-based nanofibers 4 to which the bactericidal nanocapsules 1 are attached can be stably dispersed in the wood fibers.

本工程では、まず、負に帯電させて陰イオン化させた高分子系ナノファイバー4を真空槽内に配置し、次いで、上述した殺菌性ナノカプセル1をこの真空槽内に配置する。 In this step, first, the negatively charged and anionized polymer nanofibers 4 are placed in the vacuum chamber, and then the above-mentioned bactericidal nanocapsules 1 are placed in the vacuum chamber.

炭酸カルシウムを含む被覆層3が形成された殺菌性ナノカプセル1は、正電荷を帯びて陽イオン化しており、この殺菌性ナノカプセル1を真空槽内に配置し、静電気力によって高分子系ナノファイバー4の集合体に迅速に付着させる。 The bactericidal nanocapsules 1 on which the coating layer 3 containing calcium carbonate is formed are positively charged and cationized. The bactericidal nanocapsules 1 are placed in a vacuum chamber, and the polymer-based nanocapsules are generated by electrostatic force. Quickly attach to the aggregate of fibers 4.

上述した工程によって、図4に示すように、高分子系ナノファイバー4の表面に第4級アンモニウム塩を含有する殺菌性ナノカプセル1が多数付着しているブドウ状微粒集合体6が得られる。 By the above-mentioned steps, as shown in FIG. 4, a grape-like fine particle aggregate 6 in which a large number of bactericidal nanocapsules 1 containing a quaternary ammonium salt are attached to the surface of the polymer-based nanofibers 4 is obtained.

本明細書において、「ブドウ状」とは、穂軸に多数の実が付いている果実のブドウのように、軸に多数の粒子が付着している形態をいう。 As used herein, the term "grape-like" refers to a form in which a large number of particles are attached to a shaft, such as a fruit grape having a large number of fruits on the cob.

なお、本発明では、高分子系ナノファイバー4の代わりにナノパルプ繊維を真空槽内に入れて殺菌性ナノカプセル1と結合させることもできる。 In the present invention, nanopulp fibers may be placed in a vacuum chamber instead of the polymer-based nanofibers 4 and bonded to the bactericidal nanocapsules 1.

<消毒殺菌フィルターの作製工程>
上記ブドウ状微粒集合体6を用い、例えば100℃以上の加熱を行う工程を含む所定の製紙方法により、例えば一枚の紙に上記ブドウ状微粒集合体6が配合された消毒殺菌フィルターを作製する(図3プロセスP6)。
<Manufacturing process of disinfectant sterilization filter>
Using the grape-like fine particle aggregate 6, for example, a disinfectant sterilization filter in which the grape-like fine particle aggregate 6 is blended in one sheet of paper is produced by a predetermined papermaking method including a step of heating at 100 ° C. or higher. (FIG. 3 process P6).

本実施の形態では、まず、各種の原料木材をパルプ化する工程を行い、その後、以下の調整工程を行う。 In the present embodiment, first, various raw material woods are pulped, and then the following adjustment steps are performed.

調整工程では、各種パルプを混合し、リファイナーという装置を用いて叩解(こうかい)し、上述したブドウ状微粒集合体6を分散させるとともに所定の薬品を添加する。この調整工程を経たパルプは、スラリー状で紙料と呼ばれる。 In the adjusting step, various pulps are mixed and beaten using a device called a refiner to disperse the above-mentioned grape-like fine particle aggregate 6 and add a predetermined chemical. The pulp that has undergone this adjustment step is in the form of a slurry and is called a paper material.

さらに、公知の抄造工程、塗工工程、仕上げ・加工工程を経ることにより、通気性を有する用紙にブドウ状微粒集合体6が配合された本発明の消毒殺菌フィルターが得られる。 Further, by undergoing a known papermaking step, coating step, finishing / processing step, the disinfectant sterilization filter of the present invention in which the grape-like fine particle aggregate 6 is blended with a breathable paper can be obtained.

上述の製紙工程において、殺菌性ナノカプセル1の被覆層3は、殺菌性ナノカプセル1が調整工程及び抄造工程で水に触れる間(約2時間)溶出しつつ外側の層を保持することによって、内側の核微粒子2が水に触れるのを阻止する働きをする。 In the above-mentioned papermaking process, the coating layer 3 of the bactericidal nanocapsule 1 retains the outer layer while being eluted while the bactericidal nanocapsule 1 is in contact with water in the adjusting step and the making step (about 2 hours). It works to prevent the inner nuclear fine particles 2 from coming into contact with water.

したがって、被覆層3が完全に溶出する前に、水を使用する調整工程及び抄造工程を終了させる必要がある。 Therefore, it is necessary to complete the adjustment step and the papermaking step using water before the coating layer 3 is completely eluted.

そして、調整工程及び抄造工程が終了した時点では、被覆層3は、核微粒子2の表面において、きわめて薄い層として又は島状に残っているものである(薄膜部)。 When the adjusting step and the papermaking step are completed, the coating layer 3 remains on the surface of the nuclear fine particles 2 as an extremely thin layer or in an island shape (thin film portion).

図5(a)(b)は、本発明の消毒殺菌フィルターの使用方法を示す図で、図5(a)は正面図、図5(b)は、図5(a)のA−A線断面図である。 5 (a) and 5 (b) are views showing how to use the disinfectant sterilization filter of the present invention, FIG. 5 (a) is a front view, and FIG. 5 (b) is a line AA of FIG. 5 (a). It is a cross-sectional view.

図5(a)(b)に示すように、本発明の消毒殺菌フィルター13は、2層構造の衛生マスク10の内部に配置されるものである。 As shown in FIGS. 5A and 5B, the disinfectant sterilization filter 13 of the present invention is arranged inside the sanitary mask 10 having a two-layer structure.

この衛生マスク10は不織布からなり、例えば人の顔面側の内側部と、反対側の外側部が対向する縁部及びその両側の縁部において圧着され、これにより形成される空間内に配置されている。 The sanitary mask 10 is made of a non-woven fabric, and is arranged in a space formed by, for example, crimping the inner portion on the face side of a person and the outer portion on the opposite side at the opposite edges and the edges on both sides thereof. There is.

このような構成の衛生マスク10は、マスク製造工場で作製することができるが、衛生マスク10の縁部のうち一つの縁部を開くようにし、上記空間内に例えば使用者が開口部を介して消毒殺菌フィルター13を挿入するように構成することも可能である。 The sanitary mask 10 having such a configuration can be manufactured in a mask manufacturing factory, but one of the edges of the sanitary mask 10 is opened so that, for example, a user can enter the space through an opening. It is also possible to configure the disinfectant sterilization filter 13 to be inserted.

なお、本発明は、衛生マスクとして、NISOH(米国労働安全衛生研究所)が規格で定めたN95マスクやサージカルマスクに適用可能である。 The present invention can be applied to N95 masks and surgical masks defined by NISOH (American Occupational Safety and Health Research Institute) as sanitary masks.

本実施の形態の消毒殺菌フィルター13を使用した衛生マスク10は、人が着用して呼吸する際に口から放出される水分により、核微粒子2中の殺菌剤が溶出し、その消毒殺菌効果を発揮する。 In the sanitary mask 10 using the disinfectant sterilization filter 13 of the present embodiment, the disinfectant in the nuclear fine particles 2 is eluted by the water released from the mouth when a person wears and breathes, and the disinfectant sterilization effect is exhibited. Demonstrate.

さらに呼吸することによって消毒殺菌フィルター表面の湿度が増加するから、殺菌性ナノカプセルの第4級アンモニウム塩の放出量が大きくなり、これにより消毒殺菌効果が加速する。 Further breathing increases the humidity on the surface of the disinfectant sterilization filter, which increases the amount of quaternary ammonium salt released from the bactericidal nanocapsules, which accelerates the disinfectant sterilization effect.

そして、殺菌性ナノカプセル1の核微粒子2に含まれる水性エポキシ樹脂は、分子の末端がアルキルリン酸エステルで変性されており、これにより核微粒子2に含まれる第4級アンモニウム塩が徐々に溶け出すことから、本発明の作用効果を長時間(約20時間)持続させることができる。 The aqueous epoxy resin contained in the nuclear fine particles 2 of the bactericidal nanocapsules 1 has the terminal of the molecule modified with an alkyl phosphate ester, whereby the quaternary ammonium salt contained in the nuclear fine particles 2 is gradually dissolved. Therefore, the action and effect of the present invention can be sustained for a long time (about 20 hours).

なお、本発明は、上記実施の形態には限られず、種々の変更を行うことができる。 The present invention is not limited to the above embodiment, and various modifications can be made.

図6〜図8は、本発明に係る消毒殺菌フィルターの他の実施の形態を示す説明図で、図6は斜視図、図7(a)(b)及び図8(a)(b)は、本実施の形態の消毒殺菌フィルターを衛生マスクに装着する手順を示す説明図である。 6 to 8 are explanatory views showing another embodiment of the disinfectant sterilization filter according to the present invention, FIG. 6 is a perspective view, and FIGS. 7 (a) and 7 (b) and 8 (a) and 8 (b) are views. , It is explanatory drawing which shows the procedure of attaching the disinfection sterilization filter of this embodiment to a sanitary mask.

図6に示すように、本実施の形態の消毒殺菌フィルター20は、矩形状の一対の用紙21の対向する両縁部を例えばエンボス加工によって圧着したものである。 As shown in FIG. 6, the disinfectant sterilization filter 20 of the present embodiment is obtained by crimping the opposing edges of a pair of rectangular sheets of paper 21 by, for example, embossing.

用紙21としては、例えば2枚重ね又は3枚重ねのティッシュペーパーを用いることができる。 As the paper 21, for example, two-ply or three-ply tissue paper can be used.

各用紙21には、上述したブドウ状微粒集合体が配合されている。 Each paper 21 contains the above-mentioned grape-like fine particle aggregate.

本実施の形態では、一対の対向する両縁部に圧着部22が設けられ、これにより例えば人の指で一方の用紙21の中央部分を摘んで引き上げた場合に圧着部22の両端部の間の挿入口23が開いて衛生マスク15を挿入できるように構成されている。 In the present embodiment, the crimping portions 22 are provided on both opposite edges of the pair, so that, for example, when the central portion of one of the papers 21 is picked up by a human finger and pulled up, between both ends of the crimping portions 22. The insertion port 23 is opened so that the sanitary mask 15 can be inserted.

すなわち、消毒殺菌フィルター20の挿入口23は、一般的な衛生マスク15を耳かけ16の側から挿入できるような大きさに形成されている(図7(a)参照)。 That is, the insertion port 23 of the disinfection sterilization filter 20 is formed in a size such that a general sanitary mask 15 can be inserted from the side of the ear hook 16 (see FIG. 7A).

さらに、一対の用紙21の内側の部分には、挿入口23を閉じた状態で衛生マスク15を収容保持する袋状の収容部24が設けられている。 Further, a bag-shaped accommodating portion 24 for accommodating and holding the sanitary mask 15 with the insertion port 23 closed is provided on the inner portion of the pair of papers 21.

この収容部24は、衛生マスク15を収容した際にその本体部分が概ね覆われる大きさに形成されている(図7(b)参照)。 The accommodating portion 24 is formed in a size that substantially covers the main body portion when the sanitary mask 15 is accommodating (see FIG. 7B).

本実施の形態の消毒殺菌フィルター20を衛生マスク15に装着するには、まず、図7(a)(b)に示すように、挿入口23を開いた状態で(図6参照)衛生マスク15を挿入口23から収容部24内に挿入する。 In order to attach the disinfectant sterilization filter 20 of the present embodiment to the sanitary mask 15, first, as shown in FIGS. 7 (a) and 7 (b), the sanitary mask 15 is opened with the insertion port 23 (see FIG. 6). Is inserted into the accommodating portion 24 from the insertion port 23.

その後、図8(a)(b)に示すように、消毒殺菌フィルター15の圧着部22が設けられた側の両縁部をそれぞれ折り返して衛生マスク15に密着するようにし、その状態で衛生マスク15と共に人の顔に装着して使用する。 After that, as shown in FIGS. 8A and 8B, both edges of the disinfectant sterilization filter 15 on the side where the crimping portion 22 is provided are folded back so as to be in close contact with the sanitary mask 15. It is used by attaching it to a person's face together with 15.

この場合、消毒殺菌フィルター20の折り返し部分を人の顔の側に向けるようにすれば、この折り返し部分が人の顔に密着して元に戻らないので都合がよい。 In this case, if the folded portion of the disinfectant sterilization filter 20 is directed toward the human face, the folded portion is in close contact with the human face and cannot be restored, which is convenient.

一方、上記実施の形態では、殺菌性ナノカプセル1の成分として殺菌成分を使用しているが、その他の鎮痛成分、消臭成分、香料成分、抗酸化成分、スキンケア成分等を用い、消毒殺菌以外の用途にも使用することができる。 On the other hand, in the above embodiment, a bactericidal component is used as a component of the bactericidal nanocapsule 1, but other analgesic components, deodorant components, fragrance components, antioxidant components, skin care components, etc. are used, other than disinfecting and sterilizing. It can also be used for various purposes.

さらに、本発明の消毒殺菌フィルターは、マスク以外にも、食品工場や医薬品工場での空気清浄装置、クリーンルーム用フィルター、水回り用フィルター、圧縮空気用などの各種用途に適用可能である。 Further, the disinfectant sterilization filter of the present invention can be applied to various applications such as an air purifier in a food factory or a pharmaceutical factory, a filter for a clean room, a filter for water circulation, and a compressed air, in addition to a mask.

以下、実施例で本発明を例証するが、本発明を限定することを意図するものではない。
また、特に断らない限り、以下に記載する%は重量%を示す。
Hereinafter, the present invention will be illustrated in Examples, but it is not intended to limit the present invention.
Unless otherwise specified,% described below indicates% by weight.

[殺菌性ナノカプセルの作製]
まず、ビスフェノールA型エポキシ樹脂(商品名:E-20、南通星辰合成材料有限会社製、エポキシ当量:450-560)と五酸化リン(湖北襄陽高隆▲りん▼加工有限会社製工業薬品)をN-メチルピロリドン(天津市光復精細加工有限会社製試薬グレード)に溶解させ、五酸化リン変性エポキシ樹脂溶液を調製した。
[Preparation of bactericidal nanocapsules]
First, bisphenol A type epoxy resin (trade name: E-20, manufactured by Nantsu Seishin Synthetic Materials Co., Ltd., epoxy equivalent: 450-560) and phosphorus pentoxide (Hubei Shoyo Takataka ▲ phosphorus ▼ processing limited industrial chemicals) A phosphorus pentoxide-modified epoxy resin solution was prepared by dissolving it in N-methylpyrrolidone (reagent grade manufactured by Tianjin City Photo-Redefinition Processing Co., Ltd.).

この場合、エポキシ樹脂と五酸化リンのモル比は1.6:1に調合した。 In this case, the molar ratio of epoxy resin to phosphorus pentoxide was prepared at 1.6: 1.

そして、得られた溶液に、水酸化カリウム(KOH)を加えて溶液を中性にし、これにより本実施例で使用する五酸化リン変性エポキシ樹脂溶液を得た。 Then, potassium hydroxide (KOH) was added to the obtained solution to neutralize the solution, thereby obtaining a phosphorus pentoxide-modified epoxy resin solution used in this example.

この五酸化リン変性エポキシ樹脂溶液12kgを処理装置の原料供給ノズルから所定の密閉可能な容器内に噴霧するとともに、ベンジルドデシルジメチルアンモニウム・ブロミド(江西徳成製薬社製)の1%エタノール溶液120gを同一容器内の原料供給ノズルから容器内に噴霧し、さらに常温の空気を送風ノズルの直径150〜250nmの微細な送風孔から容器内に送り込むことにより、容器内において各溶液を多数の微粒子状態にして流動させ、これにより五酸化リン変性エポキシ樹脂溶液の液滴とベンジルドデシルジメチルアンモニウム・ブロミド溶液の液滴を混合させるとともに、この混合溶液の液滴を微粒化させた。 12 kg of this phosphorus pentoxide-modified epoxy resin solution is sprayed into a predetermined sealable container from the raw material supply nozzle of the processing apparatus, and 120 g of a 1% ethanol solution of benzyldodecyldimethylammonium bromide (manufactured by Tokunari Kosei Pharmaceutical Co., Ltd.) is the same. By spraying air from the raw material supply nozzle in the container into the container and then blowing air at room temperature into the container through a fine air vent with a diameter of 150 to 250 nm, each solution is made into a large number of fine particles in the container. The mixture was allowed to flow, whereby the droplets of the phosphorus pentoxide-modified epoxy resin solution and the droplets of the benzyldodecyldimethylammonium bromide solution were mixed, and the droplets of this mixed solution were atomized.

そして、容器内に設置してある湿度センサーで容器内の湿度を測定しながら、送り込む空気の温度を10分間で25℃から86℃に徐々に上げていき、五酸化リン変性エポキシ樹脂と、ベンジルドデシルジメチルアンモニウム・ブロミドの混合物を固化乾燥させた。 Then, while measuring the humidity inside the container with the humidity sensor installed inside the container, the temperature of the air to be sent is gradually raised from 25 ° C to 86 ° C in 10 minutes, and the phosphorus pentoxide-modified epoxy resin and benzyl are used. The mixture of dodecyldimethylammonium bromide was solidified and dried.

湿度センサーの測定値によって容器内の温度が一定基準に達した時点で送風を停止し、これにより上記混合物からなる核微粒子が多数得られた。得られた核微粒子の径は180〜250nmであった。 When the temperature inside the container reached a certain standard according to the measured value of the humidity sensor, the ventilation was stopped, and as a result, a large number of nuclear fine particles composed of the above mixture were obtained. The diameter of the obtained nuclear fine particles was 180 to 250 nm.

その後、上述した水性エポキシ樹脂と炭酸カルシウムとを含む混合物のN−メチルピロリドン溶液を、常温で噴霧ノズルから容器内に噴霧し、上記核微粒子の表面を覆うように陽イオン性で水性の被覆層を形成した。 Then, an N-methylpyrrolidone solution of a mixture containing the above-mentioned aqueous epoxy resin and calcium carbonate is sprayed into the container from a spray nozzle at room temperature, and a cationic, aqueous coating layer is applied so as to cover the surface of the above-mentioned nuclear fine particles. Was formed.

炭酸カルシウムは水性エポキシ樹脂に対し10%使用した。 Calcium carbonate was used at 10% with respect to the aqueous epoxy resin.

そして、上記処理装置の原料供給ノズルを用い、容器内において、上記混合物溶液を核微粒子に対して四方から約20分間霧状に吹きかけ、送風ノズルから常温の空気を容器内に送り込みながら核微粒子を分散させた。 Then, using the raw material supply nozzle of the processing apparatus, the mixture solution is sprayed on the nuclear fine particles in a mist form from all sides for about 20 minutes in the container, and the nuclear fine particles are blown into the container while air at room temperature is sent from the blower nozzle into the container. Distributed.

形成された被覆層の厚さは約20nmであった。 The thickness of the formed coating layer was about 20 nm.

以上の工程により、本実施例の殺菌性ナノカプセルが得られた。 Through the above steps, the bactericidal nanocapsules of this example were obtained.

[PPナノファイバーの表面処理]
まず、外径20〜100nmのPPからなる中空のナノファイバー(宏丞ナノテクノロジー社製)を用意した。このPPナノファイバーは、両端部が開口しているものである。
[Surface treatment of PP nanofibers]
First, hollow nanofibers (manufactured by Kosuke Nanotechnology Co., Ltd.) made of PP having an outer diameter of 20 to 100 nm were prepared. This PP nanofiber has both ends open.

そして、このPPナノファイバー25gを1L(リットル)のヤシ脂肪酸ジエタノールアミド溶液(Anway社製Coconut Diethanol Amide RSAW 6501を1g、水1Lに添加したもの)に分散させ、100℃で30〜40分間煮沸した。 Then, 25 g of this PP nanofiber was dispersed in 1 L (liter) of a coconut fatty acid diethanolamide solution (1 g of Coconut Dietanol Amide RSAW 6501 manufactured by Amway, added to 1 L of water), and boiled at 100 ° C. for 30 to 40 minutes. ..

煮沸後、PPナノファイバーを水洗し、遠心分離器で3分間(2000rpm)脱水した後、60℃で30分間乾燥させた。 After boiling, the PP nanofibers were washed with water, dehydrated in a centrifuge for 3 minutes (2000 rpm), and then dried at 60 ° C. for 30 minutes.

乾燥後のPPナノファイバー25gを1Lの次亜塩素酸水溶液(濃度8g/L)に分散させ、pHを5〜5.5に保持しながら、30℃で1時間撹拌した。 After drying, 25 g of PP nanofibers was dispersed in 1 L of a hypochlorous acid aqueous solution (concentration: 8 g / L), and the mixture was stirred at 30 ° C. for 1 hour while maintaining the pH at 5 to 5.5.

反応完了後のPPナノファイバーを常圧でろ過し、遠心分離器で3分間(2000rpm)脱水を行った。脱水後、60℃で30分間乾燥させた。 After the reaction was completed, the PP nanofibers were filtered under normal pressure and dehydrated in a centrifuge for 3 minutes (2000 rpm). After dehydration, it was dried at 60 ° C. for 30 minutes.

赤外線分光計(IR)を用いて表面処理後のPPナノファイバーの分析を行った。その結果を図9に示す。 The PP nanofibers after the surface treatment were analyzed using an infrared spectrometer (IR). The result is shown in FIG.

図9のIRスペクトルに示すように、3000〜2500の範囲内に見られるピーク及び1770〜1700の強いシングルピークは、カルボキシル基が存在していることを示し、このことから本実施例のPPナノファイバーは表面処理がなされていることを確認した。 As shown in the IR spectrum of FIG. 9, peaks in the range of 3000 to 2500 and strong single peaks of 1770 to 1700 indicate the presence of a carboxyl group, which indicates that the PP nanos of this example are present. It was confirmed that the fiber was surface-treated.

そして、上述した表面処理後のPPナノファイバーを、微粉砕機を用いて長さ2〜5mm(平均3mm)に粉砕した。これにより所定の長さのPPナノファイバー集合体を得た。 Then, the PP nanofibers after the surface treatment described above were pulverized to a length of 2 to 5 mm (average 3 mm) using a fine pulverizer. As a result, PP nanofiber aggregates having a predetermined length were obtained.

[ブドウ状微粒集合体の作製]
負に帯電させて陰イオン化させた上記PPナノファイバー集合体を、上述した真空槽内に配置した。
[Preparation of grape-like fine particle aggregate]
The negatively charged and anionized PP nanofiber aggregates were placed in the vacuum chamber described above.

そして、殺菌性ナノカプセルを、この真空槽内に配置し、直径20〜100nm、長さ2〜5mm(平均3mm)、総重量20gのPPナノファイバー集合体と混合して、ブドウ状微粒集合体を得た。 Then, the bactericidal nanocapsules are placed in this vacuum chamber and mixed with PP nanofiber aggregates having a diameter of 20 to 100 nm, a length of 2 to 5 mm (average 3 mm), and a total weight of 20 g to form grape-like fine particle aggregates. Got

図10は、得られた本実施例のブドウ状微粒集合体を示す写真である。 FIG. 10 is a photograph showing the obtained grape-like fine particle aggregates of this example.

本実施例のブドウ状微粒集合体は固体状のもので、図10に示すように、微細な構成要素の集まりとして得られる。 The grape-like fine particle aggregate of this example is a solid state, and is obtained as a collection of fine constituent elements as shown in FIG.

[ブドウ状微粒集合を配合した消毒殺菌フィルターの作製]
上記ブドウ状微粒集合体をパルプスラリーに添加し、上述した製紙工程により消毒殺菌フィルター用衛生用紙(サイズ:210mmx190mm)を複数枚作製した。
[Preparation of disinfectant sterilization filter containing grape-like fine particle aggregate]
The above-mentioned grape-like fine particle aggregate was added to the pulp slurry, and a plurality of sanitary papers (size: 210 mm × 190 mm) for a disinfectant sterilization filter were prepared by the above-mentioned papermaking process.

この衛生用紙のサンプルを用いて、中国衛生規格GB 15979-2002に従い、バイオケミカルインキュベーターで大腸菌の殺菌テストを行った。 Using this sample of sanitary paper, a sterilization test of Escherichia coli was performed in a biochemical incubator in accordance with Chinese hygiene standard GB 15979-2002.

この場合、サンプルは3枚重ねの衛生用紙を用いて試験を行った。その結果を表1に示す。 In this case, the sample was tested using three layers of sanitary paper. The results are shown in Table 1.

なお、試験は第三者分析機関であるCCIC Traceability Co. Ltd.によるものである。 The test is conducted by CCIC Traceability Co. Ltd., a third-party analytical institution.

下記の表1に示すように、本発明の衛生用紙のサンプルは、木質繊維であるパルプに対してごく微量の第4級アンモニウム塩を添加することにより、1枚で十分な殺菌作用を示す結果が得られた。そして、この衛生用紙は、使用の際に例えば3枚重ねて1組で用いることによって、きわめて高い殺菌効果(殺菌率90%以上)を発揮することができる。 As shown in Table 1 below, the sample of the sanitary paper of the present invention shows a sufficient bactericidal action by adding a very small amount of quaternary ammonium salt to pulp which is a wood fiber. was gotten. Then, when this sanitary paper is used, for example, by stacking three sheets and using it as a set, an extremely high sterilizing effect (sterilization rate of 90% or more) can be exhibited.

Figure 2021171738
Figure 2021171738

表1に示すように、本発明の効果を確認することができた。 As shown in Table 1, the effect of the present invention could be confirmed.

なお、本発明の消毒殺菌フィルターは、例えば河之江造機株式会社製のベストフォーマヤンキー抄紙機(BF−1000:高速モデル)を用いることにより、大量に生産することができる。 The disinfectant sterilization filter of the present invention can be mass-produced by using, for example, the Best Former Yankee Paper Machine (BF-1000: high-speed model) manufactured by Kawanoe Zoki Co., Ltd.

この装置を用いれば、例えば幅276cmの紙製フィルターを、800−1000m/分の速度でロール状に製造することができる。 Using this device, for example, a paper filter having a width of 276 cm can be produced in a roll shape at a speed of 800-1000 m / min.

1……殺菌性ナノカプセル
2……核微粒子
3……被覆層
4……高分子系ナノファイバー
4a…外側の表面部分
4b…内側の表面部分
5……中空部
6……ブドウ状微粒集合体
10…衛生マスク
13…消毒殺菌フィルター
1 ... Sterilizing nanocapsules 2 ... Nuclear fine particles 3 ... Coating layer 4 ... Polymer nanofibers 4a ... Outer surface part 4b ... Inner surface part 5 ... Hollow part 6 ... Grape-like fine particle aggregate 10 ... Sanitary mask 13 ... Disinfectant sterilization filter

Claims (10)

第4級アンモニウム塩及び水性エポキシ樹脂を含有するナノメートルサイズの核微粒子と、前記核微粒子の表面を覆うように設けられ、炭酸カルシウム及び水性エポキシ樹脂を含有する陽イオン性で水性の被覆層とを有し、
前記水性エポキシ樹脂が、分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂である殺菌性ナノカプセル。
Nanometer-sized nuclear fine particles containing a quaternary ammonium salt and an aqueous epoxy resin, and a cationic and aqueous coating layer provided so as to cover the surface of the nuclear fine particles and containing calcium carbonate and an aqueous epoxy resin. Have,
A bactericidal nanocapsule in which the aqueous epoxy resin is an epoxy resin in which the end of a molecule is modified with an alkyl phosphate ester.
前記第4級アンモニウム塩がベンジルドデシルジメチルアンモニウム・ブロミドである請求項1記載の殺菌性ナノカプセル。 The bactericidal nanocapsule according to claim 1, wherein the quaternary ammonium salt is benzyldodecyldimethylammonium bromide. 前記水性エポキシ樹脂が、五酸化リン変性エポキシ樹脂である請求項1又は2のいずれか1項記載の殺菌性ナノカプセル。 The bactericidal nanocapsule according to any one of claims 1 or 2, wherein the aqueous epoxy resin is a phosphorus pentoxide modified epoxy resin. 請求項1乃至3のいずれか1項記載の殺菌性ナノカプセルが高分子系ナノファイバー集合体の表面に付着しているブドウ状微粒集合体。 A grape-like fine particle aggregate in which the bactericidal nanocapsules according to any one of claims 1 to 3 are attached to the surface of the polymer-based nanofiber aggregate. 前記高分子系ナノファイバー集合体の構成材料がポリプロピレンナノファイバーである請求項4記載のブドウ状微粒集合体。 The grape-like fine particle aggregate according to claim 4, wherein the constituent material of the polymer-based nanofiber aggregate is polypropylene nanofiber. 木質繊維からなり通気性を有する用紙に殺菌性ナノカプセルが配合された乾燥状態の消毒殺菌フィルターであって、
前記殺菌性ナノカプセルが、第4級アンモニウム塩及び分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂を含有する核微粒子を有し、前記核微粒子の表面に薄膜部が設けられている消毒殺菌フィルター。
A dry disinfectant sterilization filter in which bactericidal nanocapsules are mixed with breathable paper made of wood fiber.
The bactericidal nanocapsule has nuclear fine particles containing a quaternary ammonium salt and an epoxy resin in which the terminal of the molecule is modified with an alkyl phosphate ester, and a thin film portion is provided on the surface of the nuclear fine particles. Sterilization filter.
密閉可能な容器内に、第4級アンモニウム塩溶液と水性エポキシ樹脂溶液とを原料供給ノズルからそれぞれ噴霧して混合溶液の液滴を作製するとともに、ナノサイズの微細な送風口を有する送風ノズルから前記容器内に常温の圧縮空気を送り込むことにより、前記混合溶液の液滴を微粒化してナノサイズの核微粒子用液滴を作製する工程と、前記容器内に前記送風ノズルから圧縮空気を常温から温度を上昇させながら送り込むことにより、前記核微粒子用液滴を乾燥固化して核微粒子を作製する工程とを有する核微粒子作製工程と、
前記容器内において、前記原料供給ノズルを用い、炭酸カルシウムと水性エポキシ樹脂との混合物溶液を、上記混合物溶液を核微粒子に対して四方から霧状に吹きかけるとともに、前記送風ノズルから常温の空気を前記容器内に送り込んで前記核微粒子を容器内で分散させることにより、前記核微粒子の表面を覆うように、陽イオン性で水性の被覆層を設ける被覆層作製工程とを有し、
前記水性エポキシ樹脂が、分子の末端がアルキルリン酸エステルで変性されたエポキシ樹脂である殺菌性ナノカプセルの製造方法。
A quaternary ammonium salt solution and an aqueous epoxy resin solution are sprayed from a raw material supply nozzle into a sealable container to prepare droplets of a mixed solution, and from a blower nozzle having a nano-sized fine air outlet. A step of atomizing the droplets of the mixed solution to produce nano-sized droplets for nuclear fine particles by sending compressed air at room temperature into the container, and a step of blowing compressed air from the air nozzle into the container from room temperature. A nuclear fine particle manufacturing step including a step of drying and solidifying the nuclear fine particle droplets to produce nuclear fine particles by feeding the droplet while raising the temperature, and a nuclear fine particle manufacturing step.
In the container, the raw material supply nozzle is used to spray a mixture solution of calcium carbonate and an aqueous epoxy resin on the nuclear fine particles in a mist form from all sides, and air at room temperature is blown from the blower nozzle. It has a coating layer manufacturing step of providing a cationic and water-based coating layer so as to cover the surface of the nuclear fine particles by feeding the nuclear fine particles into the container and dispersing the nuclear fine particles in the container.
A method for producing bactericidal nanocapsules, wherein the aqueous epoxy resin is an epoxy resin in which the end of a molecule is modified with an alkyl phosphate ester.
前記ナノサイズの核微粒子用液滴を作製する工程において、前記第4級アンモニウム塩溶液として、ベンジルドデシルジメチルアンモニウム・ブロミドのエタノール溶液を用い、前記水性エポキシ樹脂溶液として、五酸化リン変性エポキシ樹脂のN−メチルピロリドン溶液を用い、
前記被覆層作製工程において、前記炭酸カルシウムと水性エポキシ樹脂との混合物溶液として、炭酸カルシウムと五酸化リン変性エポキシ樹脂との混合物のN−メチルピロリドン溶液を用いる請求項7記載の殺菌性ナノカプセルの製造方法。
In the step of preparing the nano-sized droplets for nuclear fine particles, an ethanol solution of benzyldodecyldimethylammonium bromide was used as the quaternary ammonium salt solution, and a phosphorus pentoxide-modified epoxy resin was used as the aqueous epoxy resin solution. Using N-methylpyrrolidone solution,
The bactericidal nanocapsule according to claim 7, wherein in the coating layer preparation step, an N-methylpyrrolidone solution of a mixture of calcium carbonate and a phosphorus pentoxide modified epoxy resin is used as a mixture solution of the calcium carbonate and the aqueous epoxy resin. Production method.
請求項7又は8のいずれか1項記載の方法によって得られた殺菌性ナノカプセルを、表面を陰イオン化処理を施した高分子系ナノファイバーの当該表面に静電気力によって付着させる工程を有するブドウ状微粒集合体の製造方法。 Grape-like having a step of adhering the bactericidal nanocapsules obtained by the method according to any one of claims 7 or 8 to the surface of the polymer nanofibers whose surface has been anionized by electrostatic force. A method for producing a fine particle aggregate. 請求項9記載の方法によって得られたブドウ状微粒集合体を、スラリー状の紙料に分散させ、水を使用する工程を含む所定の製紙工程によって、木質繊維からなり通気性を有する用紙に前記殺菌性ナノカプセルが配合された乾燥状態の消毒殺菌フィルターを製造する方法であって、
前記水を使用する工程において、前記殺菌性ナノカプセルが水に触れる間、前記被覆層によって前記核微粒子の水との接触を阻止するとともに当該被覆層を溶出させ、当該被覆層が完全に溶出する前に、前記水を使用する工程を終了させる消毒殺菌フィルターの製造方法。
The grape-like fine particle aggregate obtained by the method according to claim 9 is dispersed in a slurry-like paper material, and the paper is made of wood fibers and has breathability by a predetermined papermaking process including a step of using water. A method for manufacturing a dry disinfectant sterilization filter containing bactericidal nanocapsules.
In the step of using water, while the bactericidal nanocapsules are in contact with water, the coating layer prevents the nuclear fine particles from coming into contact with water and elutes the coating layer, so that the coating layer is completely eluted. Prior, a method of manufacturing a disinfectant sterilization filter that terminates the step of using the water.
JP2020079530A 2020-04-28 2020-04-28 Sterilizing nanocapsules, grape-like fine particle aggregates, disinfecting sterilizing filters and manufacturing methods thereof Active JP6868916B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020079530A JP6868916B1 (en) 2020-04-28 2020-04-28 Sterilizing nanocapsules, grape-like fine particle aggregates, disinfecting sterilizing filters and manufacturing methods thereof
CN202110464863.4A CN113558047A (en) 2020-04-28 2021-04-28 Bactericidal nanocapsule, grape-like microparticle assembly, disinfection filter, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020079530A JP6868916B1 (en) 2020-04-28 2020-04-28 Sterilizing nanocapsules, grape-like fine particle aggregates, disinfecting sterilizing filters and manufacturing methods thereof

Publications (2)

Publication Number Publication Date
JP6868916B1 JP6868916B1 (en) 2021-05-12
JP2021171738A true JP2021171738A (en) 2021-11-01

Family

ID=75801800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020079530A Active JP6868916B1 (en) 2020-04-28 2020-04-28 Sterilizing nanocapsules, grape-like fine particle aggregates, disinfecting sterilizing filters and manufacturing methods thereof

Country Status (2)

Country Link
JP (1) JP6868916B1 (en)
CN (1) CN113558047A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843401B1 (en) * 2019-11-27 2021-03-17 エレテン株式会社 Grape-like fine particle aggregate, its manufacturing method, and sanitary paper

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059851A1 (en) * 1991-02-12 1992-08-13 Hung Y. Chao In-situ polymerization process for producing epoxy microcapsules
US5433953A (en) * 1994-01-10 1995-07-18 Minnesota Mining And Manufacturing Microcapsules and methods for making same
JP2006122672A (en) * 2004-09-30 2006-05-18 Daio Paper Corp Hygienic tissue paper
US20070149435A1 (en) * 2005-12-28 2007-06-28 Kimberly-Clark Worldwide, Inc. Cleansing composition including microencapsulated delivery vehicles
JP4783640B2 (en) * 2006-01-31 2011-09-28 大王製紙株式会社 Thin paper containing chemicals
JP5225591B2 (en) * 2007-02-16 2013-07-03 王子ネピア株式会社 Sanitary paper in containers and sanitary paper in packaging bags
US8178483B2 (en) * 2007-03-30 2012-05-15 Colgate-Palmolive Company Polymeric encapsulates having a quaternary ammonium salt and methods for producing the same
ATE554158T1 (en) * 2008-09-30 2012-05-15 Procter & Gamble COMPOSITION WITH MICRO CAPSULES
CN101978825B (en) * 2010-09-13 2013-08-14 扬州大学 Pyrethrin microcapsules and preparation method thereof
CN102579357B (en) * 2011-11-30 2013-05-22 天津大学 Magnet composite drug-carrying microspheres and preparation method thereof
JP6154275B2 (en) * 2013-09-27 2017-06-28 株式会社Lixil Antibacterial / antiviral coating and method for forming antibacterial / antiviral coating
CN104558006A (en) * 2013-10-17 2015-04-29 上海才水泉实业有限公司 Quaternary ammonium silane and preparation method thereof
CN105622895A (en) * 2015-06-01 2016-06-01 天津工业大学 Preparation method for epoxy resin emulsion
FR3051797A1 (en) * 2016-05-24 2017-12-01 Univ Claude Bernard Lyon EPOXY / THERMOPLASTIC COMPOSITE MATERIAL AND PROCESS FOR PREPARING THE SAME
JP6598333B2 (en) * 2017-12-25 2019-10-30 エレテン株式会社 Bactericidal polymer nanofiber aggregate and dry sanitary paper using the same

Also Published As

Publication number Publication date
JP6868916B1 (en) 2021-05-12
CN113558047A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
Andra et al. Emerging nanomaterials for antibacterial textile fabrication
Sun Antimicrobial textiles
CN101716362B (en) Bactericidal disinfectant material containing chlorine dioxide, and application thereof
Adhikari et al. Nanoceutical fabric prevents COVID-19 spread through expelled respiratory droplets: a combined computational, spectroscopic, and antimicrobial study
JP6868916B1 (en) Sterilizing nanocapsules, grape-like fine particle aggregates, disinfecting sterilizing filters and manufacturing methods thereof
Hadinejad et al. A novel vision of reinforcing nanofibrous masks with metal nanoparticles: antiviral mechanisms investigation
CN115997795A (en) Bactericide for cleaning and disinfecting factory conveying pipeline and preparation method and application thereof
Willian Silver nanoparticles (agnps) as effective disinfectants with natural source: a new inspiration
Riaz et al. Recent advances in development of antimicrobial textiles
GB2600143A (en) Nanoparticles for use in anti pathogenic applications
CN113731020B (en) Novel biological gel medical mask filter material and preparation method thereof
EP3957341B1 (en) Multilayer copper-based zeolite fiber medical material, protective equipment and manufacturing method
TW200944212A (en) Antibacterial nano silver particle/clay compound and the manufacturing method thereof
AU2021260108A1 (en) Antiviral and antibacterial composition
Maher et al. Nanotechnology‐Enhanced Face Masks: Future Scopes and Perspectives
KR20220011426A (en) Antispray Face Mask with Natural Antibacterial Substances and Method of Manufacturing the Same
JP6843401B1 (en) Grape-like fine particle aggregate, its manufacturing method, and sanitary paper
JP2018066090A (en) Natural antibacterial colophonium adsorber and the method thereof
KR102397497B1 (en) Ultrafine dust adsorption filter material composition method and mask manufacturing method with orther function
Venne et al. Innovations in Textile Technology Against Pathogenic Threats: A Review
Coetzee et al. Antiviral Finishes for Protection against SARS-CoV-2
EP3957202A1 (en) Method for producing anti-viral fiber product, and anti-viral mask obtained using same
US20230294026A1 (en) Anti-viral compositions and method of killing virus
Samantaray Recent advances in antiviral coatings on facemasks during the COVID-19 pandemic
BR102021007808A2 (en) DYNAMIC RESPIRATOR WITH MULTIFUNCTIONAL PROPERTIES TO PREVENT INFECTIOUS DISEASES WITH PROPERTIES OF SELF-CLEANING PROTECTION AND DRUG DELIVERY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200430

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6868916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250