JP2021171720A - Method for producing selective permeable membrane and method for treating water - Google Patents

Method for producing selective permeable membrane and method for treating water Download PDF

Info

Publication number
JP2021171720A
JP2021171720A JP2020078340A JP2020078340A JP2021171720A JP 2021171720 A JP2021171720 A JP 2021171720A JP 2020078340 A JP2020078340 A JP 2020078340A JP 2020078340 A JP2020078340 A JP 2020078340A JP 2021171720 A JP2021171720 A JP 2021171720A
Authority
JP
Japan
Prior art keywords
selective permeable
permeable membrane
producing
water
polyfunctional amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020078340A
Other languages
Japanese (ja)
Inventor
孝博 川勝
Takahiro Kawakatsu
侑 藤村
Yu FUJIMURA
大輔 佐伯
Daisuke Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Shinshu University NUC
Original Assignee
Kurita Water Industries Ltd
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Shinshu University NUC filed Critical Kurita Water Industries Ltd
Priority to JP2020078340A priority Critical patent/JP2021171720A/en
Publication of JP2021171720A publication Critical patent/JP2021171720A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for producing a selective permeable membrane having high water permeability and high salt blocking property.SOLUTION: The method for producing the selective permeable membrane comprises: a step of forming a dense layer on a surface of a water-permeable base material by interfacially polymerizing a polyfunctional amine monomer and a polyfunctional acid chloride monomer on the surface of the water-permeable base material; and a hydrolysis step of imparting a charged group to the dense layer by hydrolyzing an ester bond after interfacial polymerization, wherein at least a part of the polyfunctional amine monomer during the interfacial polymerization is esterified by an organic compound having a hydroxy group.SELECTED DRAWING: Figure 1

Description

本発明は、水処理分野で使用される選択性透過膜の製造方法に係り、緻密層を有する選択性透過膜の製造方法に関する。 The present invention relates to a method for producing a selective permeable membrane used in the field of water treatment, and relates to a method for producing a selective permeable membrane having a dense layer.

海水、かん水の淡水化や、工業用水および超純水の製造、排水回収などの分野で、選択性透過膜として、逆浸透(RO)膜やナノ濾過(NF)膜が広く用いられている。RO膜処理は、イオンや低分子有機物を高度に除去できるという利点を有するが、精密濾過(MF)膜や限外濾過(UF)膜と比べ、高い運転圧力を必要とする。NF膜はRO膜よりは高い運転圧力を要しないが、イオンや低分子有機物の除去性がRO膜よりも劣る。 Reverse osmosis (RO) membranes and nanofiltration (NF) membranes are widely used as selective permeable membranes in fields such as desalination of seawater and brackish water, production of industrial water and ultrapure water, and wastewater recovery. RO membrane treatment has the advantage of being able to highly remove ions and low molecular weight organic substances, but requires higher operating pressure than microfiltration (MF) membranes and ultrafiltration (UF) membranes. The NF membrane does not require a higher operating pressure than the RO membrane, but its ability to remove ions and small molecule organic substances is inferior to that of the RO membrane.

高透水性を有するNF膜の開発は盛んに行われているが、既存のNF膜の透過流束は11LMH/bar、NaCl阻止率50%程度である。 Although NF membranes having high water permeability have been actively developed, the permeation flux of existing NF membranes is 11 LMH / bar and the NaCl inhibition rate is about 50%.

非特許文献1には、界面重合法によりRO膜表面に緻密層を形成することが記載されている。 Non-Patent Document 1 describes that a dense layer is formed on the surface of an RO film by an interfacial polymerization method.

膜学実験シリーズ第III巻人工膜編、日本膜学会編、p.26−30,1993Membrane Experiment Series Vol. III, Artificial Membrane, Japan Membrane Society, p. 26-30, 1993

界面重合法で緻密層を形成させた選択性透過膜において、透水性と塩阻止性にはトレードオフの関係があり、高透水性と高い塩阻止性を有する膜を作製することは困難であった。本発明は、高透水性と高い塩阻止性を有する選択性透過膜の製造方法を提供することを課題とする。 In a selective permeable membrane in which a dense layer is formed by an interfacial polymerization method, there is a trade-off relationship between water permeability and salt blocking property, and it is difficult to prepare a membrane having high water permeability and high salt blocking property. rice field. An object of the present invention is to provide a method for producing a selective permeable membrane having high water permeability and high salt blocking property.

本発明は、次を要旨とする。 The gist of the present invention is as follows.

[1] 多官能アミンモノマーと多官能酸クロライドモノマーを透水性基材の表面で界面重合させることによって該透水性基材の表面に緻密層を形成する工程を有する選択性透過膜の製造方法であって、界面重合の際の多官能アミンモノマーの少なくとも一部がヒドロキシ基を有する有機化合物によってエステル化されたものであり、界面重合の後にエステル結合を加水分解させることにより該緻密層に荷電基を与える加水分解工程を有することを特徴とする選択性透過膜の製造方法。 [1] A method for producing a selective permeable film, which comprises a step of forming a dense layer on the surface of a water-permeable base material by interfacially polymerizing a polyfunctional amine monomer and a polyfunctional acid chloride monomer on the surface of the water-permeable base material. At least a part of the polyfunctional amine monomer during interfacial polymerization is esterified with an organic compound having a hydroxy group, and the dense layer is charged with a charged group by hydrolyzing the ester bond after interfacial polymerization. A method for producing a selective permeable membrane, which comprises a hydrolysis step of providing an ester.

[2] 前記エステル化されている多官能アミンモノマーがジアミノ安息香酸のエステル、ジアミノベンゼンスルホン酸のエステル、ジアミノベンゼンホスホン酸のエステル、及びジアミノブチルホスホン酸のエステルの少なくとも1種である[1]に記載の選択性透過膜の製造方法。 [2] The esterified polyfunctional amine monomer is at least one of a diaminobenzoic acid ester, a diaminobenzenesulfonic acid ester, a diaminobenzenephosphonic acid ester, and a diaminobutylphosphonic acid ester [1]. The method for producing a selective permeable membrane according to.

[3] 前記荷電基がカルボキシ基である[1]又は[2]に記載の選択性透過膜の製造方法。 [3] The method for producing a selective permeable membrane according to [1] or [2], wherein the charged group is a carboxy group.

[4] 前記エステル化されている多官能アミンモノマーがジアミノ安息香酸メチルである[1]に記載の選択性透過膜の製造方法。 [4] The method for producing a selective permeable membrane according to [1], wherein the esterified polyfunctional amine monomer is methyl diaminobenzoate.

[5] 前記多官能酸クロライドモノマーが、トリメシン酸、フタル酸又はフマル酸の酸クロライドである[1]〜[4]のいずれかの選択性透過膜の製造方法。 [5] The method for producing a selective permeable membrane according to any one of [1] to [4], wherein the polyfunctional acid chloride monomer is an acid chloride of trimesic acid, phthalic acid or fumaric acid.

[6] エステル結合を加水分解させる方法が、pH10以上のアルカリ性溶液に接触させる方法である[1]〜[5]のいずれかに記載の選択性透過膜の製造方法。 [6] The method for producing a selective permeable membrane according to any one of [1] to [5], wherein the method for hydrolyzing the ester bond is a method for contacting with an alkaline solution having a pH of 10 or higher.

[7] 前記加水分解工程の後に、前記選択性透過膜にカチオン性高分子を吸着させるカチオン性高分子吸着工程を有する[1]〜[6]のいずれかに記載の選択性透過膜の製造方法。 [7] Production of the selective permeable membrane according to any one of [1] to [6], which comprises a cationic polymer adsorption step of adsorbing the cationic polymer to the selective permeable membrane after the hydrolysis step. Method.

[8] 前記加水分解工程の後に、前記選択性透過膜にリン脂質を吸着させるリン脂質吸着工程を有する[1]〜[7]のいずれかに記載の選択性透過膜の製造方法。 [8] The method for producing a selective permeable membrane according to any one of [1] to [7], which comprises a phospholipid adsorption step of adsorbing phospholipids on the selective permeable membrane after the hydrolysis step.

[9] [1]〜[8]のいずれかに記載の方法によって製造された選択性透過膜を用いて被処理水を膜分離処理する工程を有する水処理方法。 [9] A water treatment method comprising a step of membrane separation treatment of water to be treated using a selective permeable film produced by the method according to any one of [1] to [8].

本発明によると、高透水性と高い塩阻止性を有した選択性透過膜を製造することができる。 According to the present invention, a selective permeable membrane having high water permeability and high salt blocking property can be produced.

本発明方法により製造された選択性透過膜の作用機構は以下の通りである。 The mechanism of action of the selective permeable membrane produced by the method of the present invention is as follows.

界面重合法により選択性透過膜の膜表面に荷電基を導入するに際し、アニオン荷電をエステル基でマスクして界面重合を行い、その後、エステル基を加水分解させて、アニオン性の荷電基を生成させる。アニオン性の荷電基が導入されていることで、緻密性が同じでも塩阻止性が向上するため、高い透水性の選択性透過膜が得られる。 When introducing a charged group onto the membrane surface of a selective permeable membrane by the interfacial polymerization method, the anionic charge is masked with an ester group to perform interfacial polymerization, and then the ester group is hydrolyzed to generate an anionic charged group. Let me. Since the anionic charged group is introduced, the salt blocking property is improved even if the density is the same, so that a highly water-permeable selective permeable membrane can be obtained.

作製した膜表面にカチオン性高分子を吸着させることで、カチオン性の荷電基を導入することができる。また、チャネル物質を導入した脂質二分子膜を形成させることで、塩阻止性を向上させることができる。 By adsorbing a cationic polymer on the surface of the prepared membrane, a cationic charged group can be introduced. In addition, the salt inhibitory property can be improved by forming a lipid bilayer membrane into which a channel substance is introduced.

平膜試験装置の構成図である。It is a block diagram of a flat film test apparatus. 平膜試験装置の断面図である。It is sectional drawing of the flat film test apparatus. 実験結果を示すグラフである。It is a graph which shows the experimental result.

本発明の選択性透過膜の製造方法では、多官能アミンモノマーと多官能酸クロライドモノマーを透水性基材の表面で界面重合させることによって該透水性基材の表面に緻密層を形成する。本発明では、界面重合の際の多官能アミンモノマーの少なくとも一部がヒドロキシ基を有する有機化合物によってエステル化されたものであり、界面重合の後にエステル結合を加水分解させることにより該緻密層に荷電基を与える。 In the method for producing a selective permeable membrane of the present invention, a dense layer is formed on the surface of the water permeable base material by interfacial polymerization of a polyfunctional amine monomer and a polyfunctional acid chloride monomer on the surface of the water permeable base material. In the present invention, at least a part of the polyfunctional amine monomer during interfacial polymerization is esterified with an organic compound having a hydroxy group, and the dense layer is charged by hydrolyzing the ester bond after interfacial polymerization. Give a group.

[透水性基材]
本発明で用いる透水性基材は、MF膜、UF膜、RO膜、NF膜などのいずれでもよい。
[Water permeable base material]
The water-permeable substrate used in the present invention may be any of MF membrane, UF membrane, RO membrane, NF membrane and the like.

[緻密層の形成]
選択性透過膜の塩阻止性を向上させる手段の一つとして、膜の流入側の表面に荷電基を有する緻密層を形成することが挙げられる。膜の緻密性が同じであっても、荷電基が膜表面にあると、荷電反発によって塩阻止性は高くなる。
[Formation of dense layer]
One of the means for improving the salt blocking property of the selective permeable membrane is to form a dense layer having a charged group on the surface on the inflow side of the membrane. Even if the density of the film is the same, if the charged group is on the surface of the film, the salt blocking property is enhanced by the charge repulsion.

界面重合法によって荷電基を有する緻密層を形成するに際して、荷電基であるカルボキシ基、スルホン基、リン酸基などのアニオン性基、あるいは2〜4級アミノ基などのカチオン性基を有するモノマーを用いる場合、油相に溶解させる酸クロライドモノマーにこれらの荷電基を導入すると、油相への溶解度が低下するため、界面重合が出来なくなってしまう。多官能アミンモノマーに荷電基を導入した場合においては、水相への溶解度は問題ないが、界面重合の際の油相への移動が起こり難くなり、充分な界面重合が行われないという問題が生じる。 When forming a dense layer having a charged group by an interfacial polymerization method, a monomer having an anionic group such as a carboxy group, a sulfone group or a phosphoric acid group, or a monomer having a cationic group such as a 2 to 4th amino group is used. When used, if these charged groups are introduced into the acid chloride monomer to be dissolved in the oil phase, the solubility in the oil phase is lowered, so that interfacial polymerization cannot be performed. When a charged group is introduced into the polyfunctional amine monomer, the solubility in the aqueous phase is not a problem, but the transfer to the oil phase during interfacial polymerization is difficult to occur, and there is a problem that sufficient interfacial polymerization is not performed. Occurs.

本発明は、かかる問題を解決すべく、荷電基であるアニオン性基をヒドロキシ基を有する化合物でエステル化した多官能アミンモノマーを用いて多官能酸クロライドモノマーと界面重合させる。その結果、界面重合の際にはアニオン性基はマスクされているため、親水性が過剰になることは無く、油相への移動が制限されず、界面重合反応を進行させることが可能となる。 In order to solve this problem, the present invention interpolymerizes an anionic group, which is a charged group, with a polyfunctional acid chloride monomer using a polyfunctional amine monomer esterified with a compound having a hydroxy group. As a result, since the anionic group is masked during the interfacial polymerization, the hydrophilicity is not excessive, the movement to the oil phase is not restricted, and the interfacial polymerization reaction can proceed. ..

作製した緻密層への荷電性の付与は、エステル化されている部分を加水分解することによって行う。アルカリ性水溶液や酸性水溶液に接触させると、ヒドロキシ基を有する化合物が加水分解して乖離して、アニオン性の荷電基が膜表面に生成する。 Chargeability is imparted to the produced dense layer by hydrolyzing the esterified portion. When contacted with an alkaline aqueous solution or an acidic aqueous solution, the compound having a hydroxy group is hydrolyzed and dissociated, and an anionic charged group is generated on the film surface.

本発明における界面重合による緻密層の形成は、荷電基であるアニオン性基をヒドロキシ基を有する化合物でエステル化した多官能アミンモノマーを用いること以外は従来(非特許文献1など)の界面重合法と同様に方法により行うことができる。 The formation of a dense layer by interfacial polymerization in the present invention is a conventional interfacial polymerization method (Non-Patent Document 1 and the like) except that a polyfunctional amine monomer in which an anionic group as a charged group is esterified with a compound having a hydroxy group is used. It can be done by the same method as above.

例えば、透水性基材の流入側表面の全面に多官能アミンを溶解させた水溶液を供給し、該水溶液をドレンした後にエアーブローすること等により過剰の水溶液を除去した後に、該水溶液が付着した透水性基材の表面の全面に、多官能酸クロライドを溶解させたヘキサン溶液を供給する。該ヘキサン溶液の供給後、0.1〜3分程度この状態に保持し、その後、該ヘキサン溶液をドレンすることによりヘキサン溶液を除去し、80〜140℃で1〜30min乾燥及び熱処理を行う。 For example, an aqueous solution in which a polyfunctional amine is dissolved is supplied to the entire surface of the water-permeable substrate on the inflow side, the aqueous solution is drained, and then an air blow is performed to remove the excess aqueous solution, and then the aqueous solution adheres. A hexane solution in which polyfunctional acid chloride is dissolved is supplied over the entire surface of the water-permeable substrate. After supplying the hexane solution, it is kept in this state for about 0.1 to 3 minutes, and then the hexane solution is removed by draining the hexane solution, and drying and heat treatment are performed at 80 to 140 ° C. for 1 to 30 minutes.

アニオン性荷電基をヒドロキシ基を有する化合物でエステル化させた多官能アミンモノマーとしては、ジアミノ安息香酸のエステル、ジアミノベンゼンスルホン酸のエステル、ジアミノベンゼンホスホン酸のエステル、ジアミノブチルホスホン酸のエステルなどが挙げられる。具体的には、3,5−ジアミノ安息香酸メチル、3,4−ジアミノ安息香酸メチル、2,5−ジアミノ安息香酸メチル、3,5−ジアミノ安息香酸エチル、3,4−ジアミノ安息香酸エチル、2,5−ジアミノ安息香酸エチル、2,4−ジアミノベンゼンスルホン酸メチル、3,4−ジアミノベンゼンスルホン酸メチル、2,4−ジアミノベンゼンスルホン酸エチル、3,4−ジアミノベンゼンスルホン酸エチル、1,4−ジアミノブチルホスホン酸ジメチルなどが挙げられる。 Examples of the polyfunctional amine monomer obtained by esterifying an anionic charged group with a compound having a hydroxy group include an ester of diaminobenzoic acid, an ester of diaminobenzenesulfonic acid, an ester of diaminobenzenephosphonic acid, and an ester of diaminobutylphosphonic acid. Can be mentioned. Specifically, methyl 3,5-diaminobenzoate, methyl 3,4-diaminobenzoate, methyl 2,5-diaminobenzoate, ethyl 3,5-diaminobenzoate, ethyl 3,4-diaminobenzoate, Ethyl 2,5-diaminobenzoate, methyl 2,4-diaminobenzenesulfonate, methyl 3,4-diaminobenzenesulfonate, ethyl 2,4-diaminobenzenesulfonate, ethyl 3,4-diaminobenzenesulfonate, 1, , 4-Diaminobutylphosphonate dimethyl and the like.

エステル化した多官能アミンモノマー水溶液中のエステル化した多官能アミンモノマーの濃度は0.1〜5wt%、特に0.2〜2wt%程度が好ましい。透水性基材の表面に付着させるエステル化した多官能アミンモノマーの量は0.01〜2mg/cm、特に0.02〜1mg/cm程度が好ましいが、これに限定されない。 The concentration of the esterified polyfunctional amine monomer in the esterified polyfunctional amine monomer aqueous solution is preferably 0.1 to 5 wt%, particularly preferably about 0.2 to 2 wt%. The amount of the esterified polyfunctional amine monomer attached to the surface of the water-permeable substrate is preferably 0.01 to 2 mg / cm 2, particularly 0.02 to 1 mg / cm 2, but is not limited thereto.

上記アニオン性荷電基をヒドロキシ基を有する化合物でエステル化させた多官能アミンモノマーとその他の多官能アミンモノマーを混在させても良い。その他の多官能アミンモノマーとしては、1,2−ジアミノベンゼン、1,3−ジアミノベンゼン、1,4−ジアミノベンゼン、エチレンジアミン、1,3−ジアミノプロパン、1,2−ジアミノプロパン、ヘキサメチレンジアミン、ピペラジンなどが挙げられる。 A polyfunctional amine monomer in which the anionic charged group is esterified with a compound having a hydroxy group and another polyfunctional amine monomer may be mixed. Other polyfunctional amine monomers include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, ethylenediamine, 1,3-diaminopropane, 1,2-diaminopropane, hexamethylenediamine, etc. Examples include piperazine.

多官能酸クロライドモノマーとしては、トリメシン酸、フタル酸、フマル酸の酸クロライドなどが挙げられる。具体的には、トリメシン酸クロライド(1,3,5−ベンゼントリカルボニルトリクロライド)、1,3−ベンゼンジカルボニルジクロライド、1,4−ベンゼンジカルボニルジクロライド、フマリルクロライドなどである。 Examples of the polyfunctional acid chloride monomer include trimesic acid, phthalic acid, and acid chloride of fumaric acid. Specific examples thereof include trimesic acid chloride (1,3,5-benzenetricarbonyltrichloride), 1,3-benzenedicarbonyldichloride, 1,4-benzenedicarbonyldichloride, and fumalyl chloride.

多官能酸クロライドモノマーを溶解させる溶媒は、ヘキサンの他、ヘプタン、ベンゼン、トルエン、イソプロピルアルコール等も用いることができる。多官能酸クロライドモノマー溶液の濃度は0.01〜1wt%程度が好ましい。エステル化した多官能アミンモノマー1モルに対して供給する多官能酸クロライドモノマーのモル量は0.01〜1モル程度が好ましい。 As the solvent for dissolving the polyfunctional acid chloride monomer, heptane, benzene, toluene, isopropyl alcohol and the like can be used in addition to hexane. The concentration of the polyfunctional acid chloride monomer solution is preferably about 0.01 to 1 wt%. The molar amount of the polyfunctional acid chloride monomer supplied with respect to 1 mol of the esterified polyfunctional amine monomer is preferably about 0.01 to 1 mol.

エステル化されている部分の加水分解を行うためのアルカリ水溶液としては、NaOH、KOHなどの0.01〜1N程度の水溶液が好適である。加水分解を行うための酸水溶液としては、HCl、HNO、HSOなどの0.01〜1N程度の水溶液が好適である。 As the alkaline aqueous solution for hydrolyzing the esterified portion, an aqueous solution of about 0.01 to 1N such as NaOH and KOH is suitable. As the acid aqueous solution for hydrolyzing, an aqueous solution of about 0.01 to 1N such as HCl, HNO 3 , H 2 SO 4 is suitable.

アルカリ水溶液又は酸水溶液によってエステルの加水分解を行うには、上記重合反応によりポリマー層が形成された基材表面にアルカリ又は酸水溶液を接触させる。アルカリ又は酸水溶液を接触させる方法としては、非加圧接触方法が好適である。この非加圧接触方法は、膜を所定の溶液に浸漬したり、セルやベッセルに設置された膜に所定の溶液を通液、静置することにより行われる。 In order to hydrolyze the ester with an alkaline aqueous solution or an acid aqueous solution, the alkali or acid aqueous solution is brought into contact with the surface of the base material on which the polymer layer is formed by the above polymerization reaction. As a method of contacting an alkaline or acid aqueous solution, a non-pressurized contact method is preferable. This non-pressurized contact method is performed by immersing the membrane in a predetermined solution, or passing a predetermined solution through a membrane installed in a cell or vessel and allowing it to stand.

塩阻止性を向上させるために、上述の方法で、膜表面にアニオン荷電を導入した後にカチオン性高分子を吸着させ、カチオン荷電層を形成させてもよい。カチオン性高分子としては、ポリエチレンイミン、ポリジアリルジメチルアンモニウム、ボリビジルアミジンなどが挙げられる。 In order to improve the salt blocking property, the cationic polymer may be adsorbed after introducing anionic charge on the membrane surface by the above-mentioned method to form a cationically charged layer. Examples of the cationic polymer include polyethyleneimine, polydiallyldimethylammonium, and bolividylamidine.

塩阻止性を向上させるために、上述の方法で、膜表面にアニオン荷電やカチオン荷電を導入した後に、チャネル物質を含有する脂質二分子膜を形成させてもよい。 In order to improve the salt blocking property, a lipid bilayer membrane containing a channel substance may be formed after introducing anionic charges or cationic charges on the membrane surface by the above-mentioned method.

脂質には、カチオン性、アニオン性、中性脂質があり、カチオン性脂質としては、特に限定されるものではないが、1,2−ジオレオイル−3−トリメチルアンモニウムプロパン、1−パルミトイル−2−オレオイル−sn−グリセロ−3−エチルホスホコリン、3β−[N−(N’,N’−ジメチルアミノエタン)−カルバモイル]コレステロール塩酸塩などを用いることができる。アニオン性脂質としては、特に限定されるものではないが、1−パルミトイル−2−オレオイルホスファチジルグリセロール、1−パルミトイル−2−オレオイルホスファチジン酸、1−パルミトイル−2−オレオイルホスファチジルセリンなどを用いることができる。中性脂質としては、特に限定されるものではないが、1−パルミトイル−2−オレオイルホスファチジルコリン、1,2−ジオレオイルホスファチジルコリン、1,2−ジパルミトイルホスファチジルコリン、1−パルミトイル−2−オレオイルホスファチジルエタノールアミン、コレステロール、エルゴステロールなどを用いることができる。 Lipids include cationic, anionic, and neutral lipids, and the cationic lipids are not particularly limited, but 1,2-dioreoil-3-trimethylammonium propane and 1-palmitoyl-2-ole. Oil-sn-glycero-3-ethylphosphocholine, 3β- [N- (N', N'-dimethylaminoethane) -carbamoyl] cholesterol hydrochloride and the like can be used. The anionic lipid is not particularly limited, but 1-palmitoyl-2-oleoylphosphatidylglycerol, 1-palmitoyl-2-oleoylphosphatidylate, 1-palmitoyl-2-oleoil phosphatidylserine and the like are used. be able to. The neutral lipid is not particularly limited, but 1-palmitoyl-2-oleoylphosphatidylcholine, 1,2-dioreoil phosphatidylcholine, 1,2-dipalmitoylphosphatidylcholine, 1-palmitoyl-2-oleoyl. Phosphatidylethanolamine, cholesterol, ergosterol and the like can be used.

チャネル物質としては、例えば、アクアポリン、グラミシジン、アムホテリシンB、あるいはそれらの誘導体などを用いることができる。 As the channel substance, for example, aquaporin, grammicidin, amphotericin B, or a derivative thereof can be used.

チャネル物質の脂質二分子膜への導入方法としては、リポソーム調製段階にあらかじめ混合する方法や、製膜後に添加する方法などを用いることができる。 As a method for introducing the channel substance into the lipid bilayer membrane, a method of mixing in advance at the liposome preparation stage, a method of adding the channel substance after the membrane formation, or the like can be used.

[実施例1]
下記の基材の表面に下記の多官能アミンモノマー水溶液を付着させ、次いで下記の多官能酸クロライドヘキサン溶液を供給し、下記手順で界面重合反応及び脱エステル化反応させて選択性透過膜を製造し、膜性能評価した。
[Example 1]
The following polyfunctional amine monomer aqueous solution is adhered to the surface of the following base material, then the following polyfunctional acid chloride hexane solution is supplied, and the interfacial polymerization reaction and deesterification reaction are carried out according to the following procedure to produce a selective permeable membrane. Then, the membrane performance was evaluated.

<透水性基材>
ポリスルホン製限外濾過膜CF−30(日東電工)
<Water permeable base material>
Polysulfone ultrafiltration membrane CF-30 (Nitto Denko)

<多官能アミンモノマー水溶液>
1,3−ジアミノベンゼン 1.0wt%
ジアミノ安息香酸メチル 1.0wt%
(多官能アミンモノマーとして合計2.0wt%)
ドデシル硫酸ナトリウム 0.25wt%
イソプロピルアルコール 5.0Wt%
<Aqueous solution of polyfunctional amine monomer>
1,3-Diaminobenzene 1.0 wt%
Methyl diaminobenzoate 1.0 wt%
(Total 2.0 wt% as polyfunctional amine monomer)
Sodium dodecyl sulfate 0.25 wt%
Isopropyl alcohol 5.0 Wt%

<多官能酸クロライドヘキサン溶液>
トリメシン酸クロライド 0.15wt%
<Polyfunctional acid chloride hexane solution>
Trimesic acid chloride 0.15 wt%

<界面重合反応手順>
上記多官能アミンモノマー水溶液に上記基材を1min浸漬した後、水溶液をドレンし、エアーブローすることにより過剰な水溶液を膜面から除去した。次いで、この基材を多官能酸クロライドヘキサン溶液に15s浸漬した後、ヘキサン溶液をドレンすることにより過剰な該多官能酸クロライドヘキサン溶液を膜面から除去した。次いで、加熱処理を100℃で10min行った。
<Interfacial polymerization reaction procedure>
After immersing the base material in the polyfunctional amine monomer aqueous solution for 1 min, the aqueous solution was drained and air blown to remove the excess aqueous solution from the membrane surface. Next, this base material was immersed in a polyfunctional acid chloride hexane solution for 15 seconds, and then the excess polyfunctional acid chloride hexane solution was removed from the membrane surface by draining the hexane solution. Next, the heat treatment was carried out at 100 ° C. for 10 minutes.

<脱エステル加水分解反応>
このようにしてポリマー層が形成された基材表面に0.1NNaOH水溶液を1日間、非加圧接触(具体的には、セルに設置した膜に該水溶液を通液する。)させた後、純水で洗浄することにより選択性透過膜を得た。
<Deester hydrolysis reaction>
A 0.1 N NaOH aqueous solution is brought into non-pressurized contact (specifically, the aqueous solution is passed through a film placed in a cell) on the surface of the base material on which the polymer layer is formed for one day. A selective permeable membrane was obtained by washing with pure water.

[実施例2]
多官能アミンモノマーとして、ピペラジン1.0wt%と3,5−ジアミノ安息香酸メチル1.0wt%を用いたこと、及び脱エステル加水分解反応のNaOH水溶液の非加圧接触日数を4日としたこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Example 2]
As the polyfunctional amine monomer, 1.0 wt% of piperazine and 1.0 wt% of methyl 3,5-diaminobenzoate were used, and the number of non-pressurized contact days of the NaOH aqueous solution of the deester hydrolysis reaction was set to 4 days. A selective permeable film was produced in the same manner as in Example 1 except for the above, and its performance was evaluated.

[実施例3]
多官能アミンモノマーとして、ピペラジン0.5wt%と3,5−ジアミノ安息香酸メチル1.5wt%を用いたこと、及び脱エステル加水分解反応のNaOH水溶液の非加圧接触日数を4日としたこと以外は実施例1と同様にして選択性透過膜を製造し性能評価を行った。
[Example 3]
As the polyfunctional amine monomer, 0.5 wt% of piperazine and 1.5 wt% of methyl 3,5-diaminobenzoate were used, and the number of non-pressurized contact days of the NaOH aqueous solution of the deester hydrolysis reaction was set to 4 days. A selective permeable film was produced in the same manner as in Example 1 except for the above, and its performance was evaluated.

[比較例1]
市販のスルホン化ポリエーテルスルホンNF膜NTR−7450(日東電工)を用い、性能評価を行った。
[Comparative Example 1]
Performance evaluation was performed using a commercially available sulfonated polyether sulfone NF membrane NTR-7450 (Nitto Denko).

[比較例2]
多官能アミンモノマーとして、1,3−ジアミノベンゼン2wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 2]
A selective permeable membrane was produced in the same manner as in Example 1 except that 1,3-diaminobenzene (2 wt%) was used as the polyfunctional amine monomer and the desester hydrolysis reaction was not carried out, and the performance was evaluated. went.

[比較例3]
多官能アミンモノマーとして、ピペラジン2wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 3]
A selective permeable membrane was produced in the same manner as in Example 1 except that 2 wt% of piperazine was used as the polyfunctional amine monomer and the desester hydrolysis reaction was not carried out, and the performance was evaluated.

[比較例4]
多官能アミンモノマーとして、1,3−ジアミノベンゼン1.0wt%と3,5−ジアミノ安息香酸1.0wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 4]
Example 1 and Example 1 except that 1.0 wt% of 1,3-diaminobenzene and 1.0 wt% of 3,5-diaminobenzoic acid were used as the polyfunctional amine monomer, and the desester hydrolysis reaction was not carried out. A selective permeable film was produced in the same manner, and its performance was evaluated.

[比較例5]
多官能アミンモノマーとして、ピペラジン1.0wt%と1,3−ジアミノベンゼン1.0wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 5]
Selective permeation in the same manner as in Example 1 except that 1.0 wt% of piperazine and 1.0 wt% of 1,3-diaminobenzene were used as the polyfunctional amine monomer and no desester hydrolysis reaction was carried out. A film was manufactured and its performance was evaluated.

[比較例6]
多官能アミンモノマーとして、ピペラジン0.5wt%と1,3−ジアミノベンゼン1.5wt%を用いたこと、及び脱エステル加水分解反応を行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 6]
Selective permeation in the same manner as in Example 1 except that 0.5 wt% of piperazine and 1.5 wt% of 1,3-diaminobenzene were used as the polyfunctional amine monomer and no deester hydrolysis reaction was carried out. A film was manufactured and its performance was evaluated.

[比較例7]
多官能アミンモノマーとして、1,3−ジアミノベンゼン1.0wt%と3,5−ジアミノ安息香酸メチル1.0wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 7]
Example 1 except that 1.0 wt% of 1,3-diaminobenzene and 1.0 wt% of methyl 3,5-diaminobenzoate were used as the polyfunctional amine monomer, and the desester hydrolysis reaction was not performed. A selective permeable membrane was produced in the same manner as in the above, and its performance was evaluated.

[比較例8]
多官能アミンモノマーとして、ピペラジン1.0wt%と3,5−ジアミノ安息香酸メチル1.0wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 8]
Selected in the same manner as in Example 1 except that 1.0 wt% of piperazine and 1.0 wt% of methyl 3,5-diaminobenzoate were used as the polyfunctional amine monomer, and the desester hydrolysis reaction was not carried out. A sexually permeable membrane was manufactured and its performance was evaluated.

[比較例9]
多官能アミンモノマーとして、ピペラジン0.5wt%と3,5−ジアミノ安息香酸メチル1.5wt%を用いたこと、及び脱エステル加水分解反応は行わなかったこと以外は実施例1と同様にして選択性透過膜を製造し、性能評価を行った。
[Comparative Example 9]
Selected in the same manner as in Example 1 except that 0.5 wt% of piperazine and 1.5 wt% of methyl 3,5-diaminobenzoate were used as the polyfunctional amine monomer, and the desester hydrolysis reaction was not performed. A sexually permeable membrane was manufactured and its performance was evaluated.

[膜性能評価試験]
図1,2に示す試験装置により、膜性能を評価した。
[Membrane performance evaluation test]
The film performance was evaluated by the test apparatus shown in FIGS. 1 and 2.

この試験装置において、膜供給水は、配管1よりポンプ2で、密閉容器3の平膜セル4の下側の原水室5に供給される。原水室5内はスターラー6で撹拌子を回転させることにより撹拌される。膜透過水は平膜セル4の上側の透過水室7を経て配管8より取り出される。濃縮水は配管9より取り出される。密閉容器3内の圧力は、配管9に設けた圧力計10と、濃縮水取出配管9に設けた圧力調整バルブ11により調整される。 In this test apparatus, the membrane supply water is supplied from the pipe 1 to the raw water chamber 5 below the flat membrane cell 4 of the closed container 3 by the pump 2. The inside of the raw water chamber 5 is stirred by rotating the stirrer with the stirrer 6. The membrane permeated water is taken out from the pipe 8 through the permeated water chamber 7 on the upper side of the flat membrane cell 4. The concentrated water is taken out from the pipe 9. The pressure in the closed container 3 is adjusted by a pressure gauge 10 provided in the pipe 9 and a pressure adjusting valve 11 provided in the concentrated water take-out pipe 9.

操作圧力0.75MPaで純水を供給水として透過流束を測定した。また、500mg/LのNaCl水溶液を供給水としたときの透過水の電気伝導度と濃縮水の電気伝導度から、下記式でNaClの阻止率を求めた。 The permeation flux was measured using pure water as the supply water at an operating pressure of 0.75 MPa. Further, the inhibition rate of NaCl was determined by the following formula from the electric conductivity of the permeated water and the electric conductivity of the concentrated water when a 500 mg / L NaCl aqueous solution was used as the feed water.

NaCl阻止率[%]=(1−透過水の電気伝導度/濃縮水の電気伝導度)×100 NaCl blocking rate [%] = (1-electric conductivity of permeated water / electric conductivity of concentrated water) x 100

[結果及び考察]
実施例1〜3及び比較例1〜9の性能評価結果を表1に示す。
[Results and discussion]
Table 1 shows the performance evaluation results of Examples 1 to 3 and Comparative Examples 1 to 9.

Figure 2021171720
Figure 2021171720

実施例1、2、3と比較例7、8、9の比較より、脱エステル加水分解反応により透水性が大幅に向上することが認められる。また、比較例5、6の通り、多官能アミンモノマーとしてアニオン性荷電基をヒドロキシ基を有する化合物でエステル化させた多官能アミンモノマーを用いない場合、脱エステル加水分解反応による透水性の向上は見られなかったことから、ポリアミドのアミド結合が脱エステル加水分解反応により切断されないことが認められる。 From the comparison between Examples 1, 2 and 3 and Comparative Examples 7, 8 and 9, it is confirmed that the water permeability is significantly improved by the deesteration hydrolysis reaction. Further, as in Comparative Examples 5 and 6, when a polyfunctional amine monomer obtained by esterifying an anionic charged group with a compound having a hydroxy group is not used as the polyfunctional amine monomer, the water permeability is improved by the deesteration hydrolysis reaction. Since it was not observed, it is recognized that the amide bond of polyamide is not cleaved by the deester hydrolysis reaction.

さらに、実施例1と比較例4の比較より、比較例4のカルボキシ基を有しカルボキシ基がエステル化されていない多官能アミンモノマーを用いた場合は、実施例1の脱エステル加水分解反応によりカルボキシ基を生成させた場合と比べ、透水性が著しく低く、あらかじめカルボキシ基をエステル化することが透水性向上に有効であることが認められる。 Further, from the comparison between Example 1 and Comparative Example 4, when a polyfunctional amine monomer having a carboxy group of Comparative Example 4 and the carboxy group was not esterified was used, the deesterification hydrolysis reaction of Example 1 was carried out. Compared with the case where the carboxy group is generated, the water permeability is remarkably low, and it is recognized that esterifying the carboxy group in advance is effective in improving the water permeability.

上記の各比較例と実施例の純水透過流束(Flux)とNaCl阻止率の関係を図3に示す。図3の通り、実施例1〜3では比較例1〜9で示される純水透過流束とNaCl阻止率のトレードオフの関係線よりも高い透水性と塩阻止性が得られている。 The relationship between the pure water permeation flux (Flux) and the NaCl inhibition rate of each of the above Comparative Examples and Examples is shown in FIG. As shown in FIG. 3, in Examples 1 to 3, water permeability and salt blocking property higher than the relationship line of the trade-off between the pure water permeation flux and the NaCl blocking rate shown in Comparative Examples 1 to 9 are obtained.

2 ポンプ
3 密閉容器
4 平膜セル
5 原水室
6 スターラー
7 透過水室
10 圧力計
2 Pump 3 Closed container 4 Flat membrane cell 5 Raw water chamber 6 Stirrer 7 Permeated water chamber 10 Pressure gauge

Claims (9)

多官能アミンモノマーと多官能酸クロライドモノマーを透水性基材の表面で界面重合させることによって該透水性基材の表面に緻密層を形成する工程を有する選択性透過膜の製造方法であって、
界面重合の際の多官能アミンモノマーの少なくとも一部がヒドロキシ基を有する有機化合物によってエステル化されたものであり、
界面重合の後にエステル結合を加水分解させることにより該緻密層に荷電基を与える加水分解工程を有することを特徴とする選択性透過膜の製造方法。
A method for producing a selective permeable membrane, which comprises a step of forming a dense layer on the surface of a water-permeable base material by interfacially polymerizing a polyfunctional amine monomer and a polyfunctional acid chloride monomer on the surface of the water-permeable base material.
At least a part of the polyfunctional amine monomer during interfacial polymerization is esterified with an organic compound having a hydroxy group.
A method for producing a selective permeable membrane, which comprises a hydrolysis step of imparting a charged group to the dense layer by hydrolyzing an ester bond after interfacial polymerization.
前記エステル化されている多官能アミンモノマーがジアミノ安息香酸のエステル、ジアミノベンゼンスルホン酸のエステル、ジアミノベンゼンホスホン酸のエステル、及びジアミノブチルホスホン酸のエステルの少なくとも1種である請求項1に記載の選択性透過膜の製造方法。 The first aspect of claim 1, wherein the esterified polyfunctional amine monomer is at least one of a diaminobenzoic acid ester, a diaminobenzenesulfonic acid ester, a diaminobenzenephosphonic acid ester, and a diaminobutylphosphonic acid ester. A method for producing a selective permeable membrane. 前記荷電基がカルボキシ基である請求項1又は2に記載の選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to claim 1 or 2, wherein the charged group is a carboxy group. 前記エステル化されている多官能アミンモノマーがジアミノ安息香酸メチルである請求項1に記載の選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to claim 1, wherein the esterified polyfunctional amine monomer is methyl diaminobenzoate. 前記多官能酸クロライドモノマーが、トリメシン酸、フタル酸又はフマル酸の酸クロライドである請求項1〜4のいずれかの選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to any one of claims 1 to 4, wherein the polyfunctional acid chloride monomer is an acid chloride of trimesic acid, phthalic acid or fumaric acid. エステル結合を加水分解させる方法が、pH10以上のアルカリ性溶液に接触させる方法である請求項1〜5のいずれかに記載の選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to any one of claims 1 to 5, wherein the method of hydrolyzing the ester bond is a method of contacting with an alkaline solution having a pH of 10 or higher. 前記加水分解工程の後に、前記選択性透過膜にカチオン性高分子を吸着させるカチオン性高分子吸着工程を有する請求項1〜6のいずれかに記載の選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to any one of claims 1 to 6, further comprising a cationic polymer adsorption step of adsorbing the cationic polymer on the selective permeable membrane after the hydrolysis step. 前記加水分解工程の後に、前記選択性透過膜にリン脂質を吸着させるリン脂質吸着工程を有する請求項1〜7のいずれかに記載の選択性透過膜の製造方法。 The method for producing a selective permeable membrane according to any one of claims 1 to 7, further comprising a phospholipid adsorption step of adsorbing phospholipids on the selective permeable membrane after the hydrolysis step. 請求項1〜8のいずれかに記載の方法によって製造された選択性透過膜を用いて被処理水を膜分離処理する工程を有する水処理方法。 A water treatment method comprising a step of membrane separation treatment of water to be treated using a selective permeable film produced by the method according to any one of claims 1 to 8.
JP2020078340A 2020-04-27 2020-04-27 Method for producing selective permeable membrane and method for treating water Pending JP2021171720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020078340A JP2021171720A (en) 2020-04-27 2020-04-27 Method for producing selective permeable membrane and method for treating water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020078340A JP2021171720A (en) 2020-04-27 2020-04-27 Method for producing selective permeable membrane and method for treating water

Publications (1)

Publication Number Publication Date
JP2021171720A true JP2021171720A (en) 2021-11-01

Family

ID=78281073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078340A Pending JP2021171720A (en) 2020-04-27 2020-04-27 Method for producing selective permeable membrane and method for treating water

Country Status (1)

Country Link
JP (1) JP2021171720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155342A (en) * 2022-05-31 2022-10-11 南京信息工程大学 Environment-friendly super-hydrophilic copolymer and preparation method of environment-friendly super-hydrophilic copolymer for oil-water separation net film
CN115318113A (en) * 2022-08-03 2022-11-11 清华大学 Nanofiltration membrane and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155342A (en) * 2022-05-31 2022-10-11 南京信息工程大学 Environment-friendly super-hydrophilic copolymer and preparation method of environment-friendly super-hydrophilic copolymer for oil-water separation net film
CN115155342B (en) * 2022-05-31 2023-04-25 南京信息工程大学 Environment-friendly super-hydrophilic copolymer and preparation method thereof for oil-water separation net film
CN115318113A (en) * 2022-08-03 2022-11-11 清华大学 Nanofiltration membrane and preparation method and application thereof
CN115318113B (en) * 2022-08-03 2023-10-31 清华大学 Nanofiltration membrane and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US8754139B2 (en) Polyamide membranes with fluoroalcohol functionality
Fang et al. Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
JP5835835B2 (en) Composite membrane with multilayer active layer
EP1958685A1 (en) Selective membrane having a high fouling resistance
KR20120083363A (en) Reverse osmosis composite membrane for boron removal
KR20100133366A (en) Process for producing diamine and polyamide
JP2021171720A (en) Method for producing selective permeable membrane and method for treating water
JP6265287B1 (en) Selective permeable membrane, production method thereof and water treatment method
JP4500002B2 (en) Composite semipermeable membrane and method for producing the same
EP1013337B1 (en) Highly permeable composite reverse osmosis membrane and method of producing the same
CN107708846B (en) Water treatment membrane and method for manufacturing the same
TWI793280B (en) Selectively permeable membrane, its manufacturing method, and water treatment method
KR20070018529A (en) Method of producing reverse osmosis membrane with boron removal effect
CN110354682B (en) Reverse osmosis membrane resisting biological pollution and preparation method and application thereof
JP2000334280A (en) Production of multiple reverse osmosis membrane
JP2000024470A (en) Cleaning of liquid separation membrane
CN111715083B (en) Modified polyamide desalting layer, reverse osmosis membrane and preparation method and application thereof
JPH07171363A (en) Composite reverse osmosis membrane
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
WO2022024452A1 (en) Method for manufacturing selectively-permeable membrane and water treatment method
JP7251369B2 (en) Selectively permeable membrane manufacturing method and water treatment method
GB2139113A (en) Reverse osmosis membrane and method for the preparation thereof
JP2021010885A (en) Selective permeable membrane, manufacturing method for selective permeable membrane and water treatment method
CN117679963A (en) High-desalination polyamide reverse osmosis membrane and preparation method and application thereof
WO2023139121A1 (en) Interfacially polymerised polyamide membrane for reverse osmosis with silane additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416